SRS Readout architectures

Hans Muller, CERN PH

The SRS idea (2009)

- choose the frontend (ASIC, hybrid) that fits your detector
- have a common readout backend with standard DAQ Software
- start from a minimal systems > scale to large system

SRS = vertical slice LHC architecture

16/04/2012 SRU needed for larger systems for Data , Trigger, Slow Controls, Clock

SRS Minicrate

a portable solution for up to 4k channels

1 x FEC -ADC card Combo

CERN store items SCEM 07.89.00.100.1 (FEC) SCEM 07.89.00.105.6 (ADC)

CERN store SCEM 07.89.00.020.0

FEC V6 hardware

Virtex 6 , LX130T FPGA

SRS: 1st chip –link: HDMI

cheap, v. high quality , 3Gbit/s, power for hybrid, works very well

APV hybrid SRS

(CERN store SCEM 07.89.00.005.9)

Master-Slave Cable connector

Wire –bonded APV 25 chip Analogue 128 channels below globtop

Micro HDMI readout plug for SRS

SRS hybrids on a Detector

128 channels for 0.4 mm

New VFAT2 hybrid design*

Short version - no input protection

HDMI conn. (micro)

Optional stacking conn. for cable-less connection

Power option via ______ MMCX connectors

Long version - full RD51 compatibility

* Sorin Martoiu /RD51 for CMS GEM collaboration

16/04/2012

photo of 1st VFAT SRS hybrid

wire -bonded VFAT chip

Standard connector **RD51** Detectors (128 channels) double layer wire bonds SZIN DADD CHS ALVIS 21 readout plug **MMCX** connector array for Ground and power

16/04/2012

for SRS

Micro HDMI

New: SRS adapter for digital chips (VFAT readout CMS GEM collaboration*)

*collaboration on VFAT readout via SRS being set up. participation welcome

APV-srs DAQ (Labview 2011*)

like a 128- channel oscilloscope

* Riccardo de Asmundis INFN Naples with monitoring modules by Sorin Martoiu INFN Bucharest

Eurocrate

a scalable solution for up 16 k channels/crate

Channel cost small SRS systems

Example RD51, CERN store order

АТХ	FEC	ADC	CrateH P	MiniCra te	APV	V-M	APV-S	HDMI cable	Flat cable	TBASE-1000	MMCX pair	ATX Pack	other	Fs	
	2	2	1			16	16	16	16	1	32	0	0	10602	

1 Eurocrate, 2 FEC, 2 ADC, 16 Master, 16 Slaves, 16 HDMI cables, 16 Flat cables, 2 TBASE-1000 plugins, 32 MMCX pairs = 10.602 Fs

32 hybrids = 4096 channels

10.602/4096 = 2.6 Fs per channel

For larger, multi-crate systems channels cost is \sim 2 Eu Including 1 SRU (\sim 3kFs) per 40 FEC cards

RD51, CERN

Large SRS system architecture

SRS 19" rack environment

Scalable Readout Unit (SRU)

25 SRU's produced for ALICE EMCal, being installed for upgrade 10 produced for RD51 users

Hans.Muller@Cern.ch

....

DTCC links*

Clocks on SRU and FFC cards are aligned to exactly same phase with 200 ps jitter over 5 m cable

Slow controls needs no hardware (!) and is based on control commands from host PC to IP ports in FEC or SRU

DTCC protocol (based on 8b/10b)

Clock \leftarrow clk (from TTC or other source) \rightarrow data a (1 Gbit upstream) Data Trigger ← Trigger & Slow Control Clock Sync \rightarrow Slow Control & data b

*Alfonso Tarazona, ALICE

*AdvancedTCA (Adcanced Telecommunication Computing Architecture) an open industry standard developed by PICMG 3.0

SRS - ATCA*

1.) higher channel integration => reduce cost/channel for large systems

- 2.) certified crate standard 3.) replace DTCC cables by ATCA backplane
- 4.) start with 2-slot ATCA crate that can be read out via SRU

Large SRS systems: ATCA crate (13U) 3 crates per rack (max. 190 k channels)

16/04/2012

SRS User Status 9/2012*

CERN experiments

- ATLAS CSC upgrade MMegas (8kch APV-SRS systems, 1st SRS testbeams, MMDAQ developer)
- ATLAS CSC upgrade MMegas, (VMM1 readout chip developer, SRS Adapter by Arizona Univ, MMDAQ)
- ALICE EMCaL + FOCAL, SRU-based backend (50 kHz upgrade via SRS, DATE, new: Focal readout via SRS-Beetle)
- ALICE TPC upgrade, SRS readout electronics with DATE backend ?
- NA62 ref. tracker with Micro-Megas (1kCH-SRS Minicrate, MMDAQ)
- CMS high Eta GEM collaboration (VFAT hybrid and VFAT SRS adapter, in prep.)
- Totem upgrade R&D , SRS VFAT readout, DATE ?

HEP experiments

- NEXT Coll., dual Beta decay, SiPM, PM (Collaboration on SRS HW & FW, FEC cards, DATE)
- BNL GEM detector readout (2kCH. APV Minicrate, PHENIX SRDAQ porting to SRS)
- Jeff. Lab Virginia Univ. GEM prototyping, (Minicrate, Offline Data evaluation via AMORE + DATE)

Applications with Cosmic Tomography

- FIT Florida, Muon Tompography for homeland security, GEMs (1st 16K SRS application, DATE)
- Geoscienes CRNS- Waterquality in Rocks, MMegas (5kCh SRS Crate, DATE + Labview)

R&D with MPGD's (small systems)

- Bonn/Mainz Univ, Timepix readout (SRS- Timepix adapter card)
- Helsinki HIP, GEM-MMega (SRS evaluation, Trigger pickup box via CSP)
- MEXICO UNAM, THGEM 2x (SRS Minicrate, DATE)
- C.E. Saclay, Micromegas MMegas (2k Ch SRS Minicrate, MMDAQ)
- WIS Israel, THGEM 3x (Minicrate, Beetle hybrid, SRS- Labview Beta tester
- INFN Naples (Minicrate, Labview for SRS developer, CTF card , Zero-supression code)

New SRS system deliveries (orders via CERN store)

- RD51 lab, Radcore, LMU Munich, WIS, USTC, SAHA, INFN Bari, INFN Naples, Stony Brook, Yale Univ, J-Parc-RIKEN,
- East Carol. Univ., Jeff-Lab, Tsinghua Univ, Univ Texas,

Summary

- SRS , a complete DAQ from frontend chip to Online
- minimal SRS = vertical slice of a LHC architecture
- APV frontend well established, next is VFAT, Beetle
- VFAT frontend launched, CMS invites participation
- Channel cost around 2 Eu above 4k channel
- Various SRS compatible Online systems
- SRU needed for larger systems
- DTCC links for STAR interconnection 40x FEC-> SRU
- Online connected via Slink, Ethernet and 10 GBE
- TTC and Slow controls included w.out extra hardware
- SRS moves towards commercial ATCA for large systems

photo of a table-top SRS system (= 1 vertical slice)

SRS Electronics up 16 k channels in a 19" Eurocrate (no bus)

SRS-compatible DAQ software and slow controls SW

-Labview gen.purpose -DATE (ALICE) -MMDAQ (ATLAS) -RCDAQ (RHIC)

detector

Online DAQ systems

DATE, MMDAQ, RCDAQ (Linux based)

Integration into ATLAS DAQ

Root Analysis: Event statistics, distributions, cuts and fits

Triple-GEM2 Charge sharing with 11616 good events

Testbeam data

