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ABSTRACT
Pansharpening aims to fuse a high spatial resolution panchromatic
(PAN) image and a low resolution multispectral (LR-MS) image
to obtain a multispectral image with the same spatial resolution
as the PAN image. Thanks to the flexible structure of convolution
neural networks (CNNs), they have been successfully applied to the
problem of pansharpening. However, most of the existing methods
only simply feed the up-sampled LR-MS into the CNNs and ignore
the spatial distortion caused by direct up-sampling. In this paper,
we propose an explicit spectral-to-spatial convolution (SSconv) that
aggregates spectral features into the spatial domain to perform
the up-sampling operation, which can get better performance than
the direct up-sampling. Furthermore, SSconv is embedded into a
multiscale U-shaped convolution neural network (MUCNN) for
fully utilizing the multispectral information of involved images.
In particular, multiscale injection branch and mixed loss on cross-
scale levels are employed to fuse pixel-wise image information.
Benefiting from the distortion-free property of SSconv, the proposed
MUCNN can generate state-of-the-art performance with a simple
structure, both on reduced-resolution and full-resolution datasets
acquired from WorldView-3 and GaoFen-2.

CCS CONCEPTS
• Computer systems organization→ Embedded systems; Re-
dundancy; Robotics; • Networks→ Network reliability.
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1 INTRODUCTION
With the development of spectral imaging technology, the applica-
tion of multispectral (MS) images in medicine, geology, agriculture,
and other fields have become more and more important. MS im-
ages are usually acquired by sensors that are deployed on satellites.
However, due to hardware limitations, the sensor cannot guarantee
the spectrum and spatial resolution of the captured image at the
same time [31]. Sensors usually acquire either a high-resolution
(HR) PAN image or a low-resolution (LR) MS image. The popularity
of pansharpening is proved by the contest in 2006 [3, 7] and many
recently review papers [27, 29]. In order to make full use of the
rich spectral information in the LR-MS image and the spatial infor-
mation in the HR-PAN image, researchers come up with the idea
of pansharpening, which attempts to fuse an HR-PAN image and
an LR-MS image to obtain an HR-MS image. The main challenge
of pansharpening is to achieve a balance between spectral and
spatial information on the basis of avoiding distortion. Therefore,
it is necessary to fully master the feature of the HR-PAN image
and LR-MS image, and their potential relationship, especially the
margin between their spectral and spatial resolution.

The up to date strategies of pansharpening can be divided into
four categories [31]: (1) component substitution (CS)-based meth-
ods; (2) multi-resolution analysis (MRA)-based methods; (3) varia-
tional model-based methods; (4) deep learning (DL)-based methods.
The first three categories can be classified as traditional methods,
while the deep learning that based on convolutional neural net-
works (CNNs) recently has achieved great success in a wide range
of vision tasks, such as image recognition, target detection [26],
and single image super-resolution [14, 39, 41]. Driven by the map-
ping requirement of relationship among LR-MS image, HR-PAN
image, and the desired HR-MS image, various DL-based methods
have been proposed to improve the fusion results of pansharpening
since they can generate more details after training on a large num-
ber of existing datasets. The reason why the DL-based methods can
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Figure 1: The PAN image and LR-MS image and the pan-
sharpened images by DMDNet [9], and our model MUCNN.

achieve advanced results lies in the powerful non-linear fitting and
feature extraction capabilities of CNNs.

An inevitable problem for pansharpening is to mitigate the gap
between the spatial resolution of HR-PAN images and LR-MS im-
ages. Up-sampling, as an operation to expand spatial resolution,
is important in the process of information fusion. Existing up-
sampling methods include linear interpolation, deconvolution, and
unpooling [38]. Direct linear interpolation up-sampling is the most
common one, which roughly supplements the image based on the
average value of adjacent pixels. Although it is simple and fast, its
results often appear unexpectedly smooth. Different from the pre-
defined interpolation method, deconvolution with parameters that
can be learned, has been widely used in segmentation tasks [20]
and has achieved good results. However, the feature maps need to
be padded with zero before the convolution operation, thus a large
amount of information is fairly useless, and its calculation process
is computationally expensive. Another method, unpooling, which
upgrades the resolution of the feature maps through direct zero
paddings, thus fails to explore the underlying information between
the pixel and its neighbors. It is worth mentioning that up-sampling
is equally critical for the single image super-resolution task. In [25],
an efficient and effective up-sampling method for a single-channel
feature map is proposed. In their work, the original LR image is
reconstructed into an HR image through convolutions and periodic
shuffling. Inspired by this, we believe that through similar pixel
rearrangement operations, a spectral to spatial feature mapping
can be learned with the help of convolution, which is reasonably
suitable for processing multispectral images like pansharpening.

In addition to the specific operation of the upsampling method,
we also consider the ratio of upsampling to LR-MS. Most prior
DL-based methods upsample the original LR-MS image directly to

the same resolution as the HR-PAN image, which may lead to spec-
tral distortion and loss of information. In this paper, we propose a
new U-shaped network with a multiscale injection branch to fully
explore and utilize the information provided by the original LR-MS
image and HR-PAN image. Particularly, we design a Spectral-to-
Spatial convolution (SSconv) for the up-sampling in pansharpening
to avoid the distortion caused by the conventional up-sampling
methods. Following the U-shaped network and multiscale injection,
feature maps with different scales are produced in the process of our
network. To supervise the intermediate products of the network
learning process, a mixed loss strategy is proposed. Finally, the
proposed approach is validated on several datasets acquired from
two satellites, i.e., WorldView-3 and GaoFen-2. Through the exper-
imental analysis performed on both reduced and full resolutions,
the proposed multiscale U-shaped convolutional neural network
(MUCNN) is confirmed to be able to outperform a wide range of
competitive methods.

The main contributions of our work are as follows:
(1) We design a Spectral-to-Spacial convolution to aggregate the

spectral feature to the spacial domain. In addition to increas-
ing the spatial resolution of the feature maps by making full
use of the spectral information, SSconv also helps with the
construction of the feature maps in the MUCNN.

(2) We propose a U-shaped convolution neural network with a
multiscale injection branch to fuse the information both in
spatial and spectral domains.

(3) A mixed loss strategy is adopted to supervise the output MS
images with three different scales and train via backprop-
agation, which could capitalize on rich feature hierarchies.
In addition, our method significantly exceeds the existing
state-of-the-art methods with a simple structure.

The remaining of this paper is organized as follows. The nota-
tions and related works are introduced in Section 2. The proposed
network architectures will be detailed in Section 3. Section 4 is de-
voted to the description of the experimental results and the related
discussions. Finally, conclusions are drawn in Section 5.

2 NOTATIONS AND RELATEDWORKS
2.1 Notations
For clearness and convenience, it is necessary to introduce the
notations used in this paper.MS ∈ Rw×h×b denotes the observed
LR-MS image, wherew,h, and b represent the width, height, and
spectral band of the image, respectively. P ∈ RW ×H×1 denotes the
observed PAN image, where H = 4h,W = 4w , and GT ∈ RW ×H×b

is the ground-truth image. The desired HR-MS image is defined as
M̂S4× ∈ RW ×H×b . Apart from that, we upsample theMS through
SSconv to obtain the 2 ↑ and 4 ↑ MS images, defined as MS2↑ ∈

R2w×2h×b and MS4↑ ∈ RW ×H×b . And we use 2 × 2 convolution
with the stride of 2 and 4 × 4 convolution with the stride of 4 to
downsample the P thus obtain the 2 ↓ and 4 ↓ P images, defined as
P2↓ ∈ R2w×2h×1 and P4↓ ∈ Rw×h×1.

2.2 CNNs for pansharpening
As mentioned in the introduction, most of the DL-based methods
that have emerged in the field of pansharpening in recent years are
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based on CNNs. The first DL-based method for pansharpening is
proposed by Masi et. al in [21] named as PNN, which just simply
stacks three convolutional layers and achieves remarkable results.
Since then, more and more DL-based approaches have been pro-
posed. A noteworthy work called PanNet [36] proposes a simple
structure with a certain degree of physical interpretability focusing
on spectral and spatial preservation. Subsequent works, e.g., DMD-
Net [9], and FusionNet [8] further explore the potential of CNNs
and achieve the promising results. Overall, the main framework
of the application of CNNs in pansharpening can be described as
a non-linear mapping fΘFS , where ΘFS denote the parameters of
CNNs. And their loss function can be unified as follows:

Loss(ΘFS ) = ∥ fΘFS (P,MS) − GT∥

where ∥ · ∥ represents a kind of norm which can be seen as a
measurement of vector or matrix, e.g., L1 Loss or L2 Loss.

However, existing methods may fail to capture complex features
caused by variations of scales and resolution ratios. Most of their
network structure extract and learn the features of upsampled LR-
MS images of the same size as HR-PAN images. And only focus on
the final output without considering the products of the intermedi-
ate convolutional layers.

2.3 U-Net
U-Net [24], a classic network architecture designed for pixel-wise
segmentation, has been proven to perform promisingly [6, 23, 42]. In
particular, it learns different levels of semantic features and reduces
the size of the feature maps through several down-sampling steps.
Then the size of the feature map is gradually restored through
the up-sampling steps, and the extracted semantic features are
successfully used to complete the final segmentation task.

Concurrent with our work, there are several reasons that moti-
vated us to chose it as our backbone. First, pansharpening is also a
pixel-wise task, which needs to be refined to the characteristics of
each pixel and the relationship with its neighborhood. Therefore,
we believe that the powerful targeting and depicting the ability
of a U-shaped network can be applied to the pansharpening task.
Second, pyramid features meet our expectations for overcoming
the spatial resolution gap between LR-MS and HR-PAN images.
A U-shaped network provides a possibility to fuse images across
scales by stages. Third, in the structure of U-Net, the feature maps
are propagated progressively, which is consistent with the aim of
the pansharpening task, since more detailed information can be
restored in the feature maps.

3 THE PROPOSED METHOD
Our proposed model adopts multiscale input and U-shaped CNN
to explore the feature of spatial, spectral, and their relationship.
The proposed MUCNN consists of four parts, which are: (1) SSconv
for upsampling operation of multi-spectral images, (2) multiscale
injection branch which feeds MS images and PAN images progres-
sively to the network, (3) U-shaped overall network structure which
performs excellently on the pixel-wise problem, (4) mixed multi-
scale loss, which plays a role in accelerating the backpropagation
of network and examine the fusion results by stages.

 
Mapping

X
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Figure 2: Schematic diagram of SSconv.

3.1 Spectral-to-Spatial Convolution
As the LR-MS image contains different spectral bands of the same
scene, which can be treated as a multiple image super-resolution
problem. We believe that information aggregation from different
spectral bands will be helpful for the reconstruction of spatial infor-
mation. Therefore, we propose a novel Spectral-to-Spatial convolu-
tion to perform upsampling operations. The operation process is
shown in Figure 2, we use r2b convolutions (3×3) to integrate spatial
and spectral features, where r is the ratio of upsampling. Through
the pixel-mapping for each r2b band, the upsampled LR-MS im-
age is generated. For example, the i-th feature map Oi ∈ R

w×h is
obtained from the following operation conducting on X ∈ Rw×h×b :

Oi = X ⊗ Ki (i = 0, 1, . . . , r2b − 1) (1)

where the Ki ∈ R
1×3×3×b denotes i-th convolution kernel and ⊗

denotes the convolution operation in conventional CNNs. Then,
we can obtain upsampled X through the mapping (mentioned in
Figure 2):

SSconv(X)r i+c1,r j+c2,k = Oi , j ,kr 2+c1r+c2
(i = 0, 1, . . . ,w − 1; j = 0, 1, . . . ,h − 1;
c1 = 0, 1, . . . , r − 1; c2 = 0, 1, . . . , r − 1;
k = 0, 1, . . . ,b − 1)

(2)

where the SSconv(X)r i+c1,r j+c2,k denotes the pixel of upsampled
image, SSconv(·) is the SSconv operation. When the number of
spectral bandsb equals to 1, the problem degenerates into the single-
image super-resolution. Besides, the SSconv also degenerates into
the pixel shuffle [25]. More details please refer to Figure 2.

3.2 Multiscale injection branch
The ratio of the spatial resolution between the P and theMS is four.
In order to fully explore the potential information of the images
and model the relationship among the P,MS, and M̂S4×. We intend
to take the known image, i.e., P,MS as input in multiscale pyramid
form. As shown in Figure 3, the MS is upsampled by SSconv twice,
obtain MS2↑ ∈ R2w×2h×b andMS4↑ ∈ R4w×4h×b as follows:
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Figure 3: Schematic diagram of Multiscale injection branch.
MS4↑ is directly generated from theMS and theP4↓ is directly
generated from the P.

MS2↑ = SSconv(MS) (r = 2)
MS4↑ = SSconv(MS) (r = 4)

(3)

Even-sized convolutions, i.e., 2×2 and 4×4, are used to downsample
the images, whose effectiveness has be verified in [12, 22, 35]. And
we obtain P2↓ ∈ R2w×2h×1 and P4↓ ∈ Rw×h×1:

P2↓ = K1 ⊗ P
P4↓ = K2 ⊗ P

(4)

where K1 ∈ R1×2×2×1 and K2 ∈ R1×4×4×1 represent the convolu-
tion kernels.

Finally, we concatenate the images in the same resolution to get
the following three inputs:

input1× = C[MS;P4↓]
input2× = C[MS2↑;P2↓]
input4× = C[MS4↑;P]

(5)

where input1× ∈ Rw×h×(b+1), input2× ∈ R2w×2h×(b+1), input4× ∈

R4w×4h×(b+1), and C[·] stands for the concatenate operation. All
these inputs are fed into the following U-shaped network in their
corresponding scales.

3.3 MUCNN
The network arichitecture is shown in Figure 4. It consists of a
feature extraction path (left side) and a reconstruction path (right
side). The extraction path has two steps, each step contains a 3 ×
3 convolution, a rectified linear unit (ReLU) and a max pooling
operation. Between each step, a new input is concatenated after
max pooling. As for the reconstruction path, it is made up of three
steps, each step contains a SSconv operation and a 3×3 convolution.
The reconstruction path is connected with the extraction path by
two skip connections and a 3 × 3 convolution in the bottom of the
network, see Figure 4 for more details.

To accelerate the back propagation and promote the network to
learn the rich feature hierarchies, we set three 3 × 3 convolutions
to get three outputs M̂S1× ∈ Rw×h×b , M̂S2× ∈ R2w×2h×b and

M̂S4× ∈ R4w×4h×b , while the M̂S4× is the desired HR-MS image.
Overall, the MUCNN can be summarized as follows:

[M̂S1×, M̂S2×, M̂S4×] = fΘMUCNN (input1×, input2×, input4×)
(6)

where fΘMUCNN present the network and ΘMUCNN denotes
the parameters inside the network. M̂S1×, M̂S2×, M̂S4× denote the
outputs of MUCNN of different scales.

3.4 Mixed multiscale loss
The mixed loss strategy is proposed to make the most of rich feature
hierarchies. On the premise that the reduced image is reliable, we
compare the three outputs with the GT image of the corresponding
scale to form the final loss function. Low-resolution GT (GT2↓)
and medium-resolution GT (GT4↓) are obtained through linear
interpolation. Finally, the mixed loss function of the MUCNN is
defined as follows:

Loss(ΘMUCNN ) =
λ1
b

b∑
i=1

∥GT − M̂S4×∥2F

+
λ2
b

b∑
i=1

∥GT2↓ − M̂S2×∥2F

+
λ3
b

b∑
i=1

∥GT4↓ − M̂S1×∥2F

(7)

where ∥ · ∥F is Frobenius norm, λ1, λ2, λ3 in this work are three
proportionality coefficients, which are set as [0.5, 0.3, 0.2].

4 EXPERIMENTS
In this section, we conduct several comparative experiments us-
ing datasets acquired by WorldView-3 and GaoFen-2 sensors. The
proposed MUCNN is compared with some state-of-the-art pan-
sharpening methods belonging to the CS-based, MRA-based, and
DL-based methods.

We set the kernel size in convolution in MUCNN as 3 × 3. As for
the kernels in the multiscale injection branch, we have mentioned
in Sections 3.1 and 3.2. The number of feature maps is shown in
figure 4. The non-linear activation is ReLU [17]. We use Pytorch
framework and the Adam [16] with a mini-batch size of 32 to train
our network. We initialize the learning rate as 0.001 and divide it
by 10 every 200 epoch, and terminate the training after 600 epochs.

4.1 Datasets
Datasets adopted in most of our work are downloaded on the public
website1. For WorldView-3 (8-band) satellite whose resolutions
are 0.5 m and 2 m for PAN and LR-MS, we simulate 12580 HR-
PAN/LR-MS/GT image pairs with the size 64 × 64, 16 × 16 × 8, and
64 × 64 × 8, respectively. Besides, we divide them into 70%, 20%,
and 10% for training (8806 examples), validation (2516 examples),
and testing (1258 examples). The process simulating is as follows:
1) downsample the original HR-PAN and the original LR-MS image
by a resolution ratio of 4 using modulation transfer function (MTF)
based filters, 2) take the downsampled images as the HR-PAN and
1http://www.digitalglobe.com/samples?search=Imagery

http://www.digitalglobe.com/samples?search=Imagery
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Figure 4: The architecture of the MUCNN. The sizes of feature maps are examples of the WorldView-3 training datasets men-
tioned in Section 4.1, while the numbers of the convolution filters are fixed.
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Figure 5: Visual comparisons innatural colors of themost representive approaches on reduced-resolution datasets (WorldView-
3).

LR-MS images for training, validation, and testing, 3) the original
LR-MS images are used as the GT images.

Apart from the 8-band WorldView-3 images, we also evaluate
the performances of the proposed method on 4-band (red, green,
blue, and near-infrared) datasets. In particular, we use the images
acquired by GaoFen-2 whose resolutions are 3.2 m for the LR-MS
images, 0.8 m for the PAN images, and 10 bits for radiometric. For
GaoFen-2 (4-band) satellite, we generate the training and testing
data using the same way as the WorldView-3 datasets. For training,
we download a large dataset (6907 × 7300 × 4) over the city of
Beijing from the website2 to simulate 21607 examples. As for the

2http://www.rscloudmart.com/dataProduct/sample

testing, we use a huge image acquired by GaoFen-2 over the city of
Guangzhou to simulate 81 testing data (size: 256 × 256 × 4).

4.2 Baseline Methods
We compare our network with four CS-based methods: the Gram-
Schmidt sharpening approach (GS) [18], the band-dependent spatial-
detail method (BDSD) [11], the robust band-dependent spatial-detail
approach (BDSD-PC) [28], the partial replacement adaptive compo-
nent substitution approach (PRACS) [5], there MRA-based meth-
ods: the smoothing filter-based intensity modulation (SFIM) [19],
the GLP with MTF-matched filter [2] and multiplicative injection
model [32] (GLP-HPM), the GLP with MTF-matched filter [2] and

http://www.rscloudmart.com/dataProduct/sample
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Figure 6: The AEMs of Figure 5.

regression-based injection model (GLP-CBD) [4], [1], and five DL-
based methods, such as PNN [21], PanNet [36], DiCNN [13], DMD-
Net [9] and the FushionNet [8].

To be fair in comparison, all the CNNs are trained and tested
on the same datasets, the same hardware, and the same software
environments.

4.3 Evaluation Metrics
The performance assessment is implemented at both reduced and
full resolution. For the reduced resolution, the five measures are
chosen: the spectral angle mapper (SAM) [37], the relative dimen-
sionless global error in synthesis (ERGAS) [33], the spatial corre-
lation coefficient (SCC) [40], universal image quality index [34]
averaged over the bands (QAVE), and the universal image quality
index for 4-band image (Q4) and 8-band images (Q8) [10]. For Q4,
Q8, QAVE, and SCC, the desired value is 1, while SAM and ERGAS
are both 0. As for the performance assessment at full resolution, we
use the QNR, the Dλ , and the Ds indexes [30]. The QNR’s desired
value is 1, instead of 0 for Dλ and Ds .

4.4 Reduced-Resolution Experimental Results
We first train our network on the training datasets of WorldView-
3. Then, we test our model on 1258 reduced-resolution images
from WorldView-3, whose number of spectral bands is 8. For color
visualization, we only display the three selected bands, while all
spectral bands are used for quality assessments.

In Table 1, we list the average quantitative results of those meth-
ods on the testing datasets. For each pair in testing datasets, PAN,
LR-MS, and GT images are of the same scale as the training datasets.
In the table, the mean and standard deviation of quantitative scores
are shown. Among them, the model we proposed performs the best.
What’s more, we present natural color maps and the absolute error
maps (AEM) with GT in Figure 5 and Figure 6 respectively. The
better result, which is less different from GT, has a darker AEM. It
is clear that MUCNN performs better.

4.5 Evaluation at the Full-Resolution
We evaluate the different methods at the full-resolution of the
WorldView-3 satellite on 200 test images with the size of 256×256×8.

Table 1: Average quantitative comparisons of themost repre-
sentive approaches on 1258 reduced-resolution WorldView-
3 samples. Best results in boldface.

Method SAM ERGAS SCC Q8 QAVE
GS [18] 5.698 ± 2.008 5.282 ± 2.187 0.873 ± 0.071 0.766 ± 0.139 0.768 ± 0.146
SFIM [19] 5.452 ± 1.903 5.200 ± 6.574 0.866 ± 0.067 0.798 ± 0.122 0.811 ± 0.130
BDSD [11] 7.000 ± 2.853 5.167 ± 2.248 0.871 ± 0.080 0.813 ± 0.123 0.817 ± 0.126
BDSD-PC [28] 5.425 ± 1.972 4.246 ± 1.860 0.891 ± 0.069 0.853 ± 0.116 0.852 ± 0.124
PRACS [5] 5.286 ± 1.958 4.163 ± 1.775 0.890 ± 0.070 0.854 ± 0.114 0.849 ± 0.123
GLP-CBD [4] 5.286 ± 1.958 4.163 ± 1.775 0.890 ± 0.070 0.854 ± 0.114 0.849 ± 0.123
GLP-HPM [32] 5.604 ± 1.974 4.764 ± 1.935 0.873 ± 0.065 0.817 ± 0.128 0.810 ± 0.135
PNN [21] 4.002 ± 1.329 2.728 ± 1.004 0.952 ± 0.046 0.908 ± 0.112 0.911 ± 0.114
PanNet [36] 4.092 ± 1.273 2.952 ± 0.978 0.949 ± 0.046 0.894 ± 0.117 0.907 ± 0.118
DiCNN [13] 3.981 ± 1.318 2.737 ± 1.016 0.952 ± 0.046 0.910 ± 0.112 0.911 ± 0.115
DMDNet [9] 3.971 ± 1.248 2.857 ± 0.966 0.953 ± 0.045 0.900 ± 0.114 0.913 ± 0.115
FusionNet [8] 3.744 ± 1.226 2.568 ± 0.994 0.958 ± 0.045 0.914 ± 0.112 0.914 ± 0.117
MUCNN 3.495 ± 1.254 2.425 ± 0.956 0.963 ± 0.044 0.923 ± 0.109 0.921 ± 0.114
Ideal value 0 0 1 1 1

Table 2: Average quantitative comparisons of themost repre-
sentive approaches on 200 full-resolution WorldView-3 ex-
amples. Best results in boldface.

Method QNR Dλ Ds
GS [18] 0.9026 ± 0.0453 0.0172 ± 0.0195 0.0821 ± 0.0322
SFIM [19] 0.9346 ± 0.0453 0.0216 ± 0.0210 0.0452 ± 0.0212
BDSD [11] 0.9352 ± 0.0389 0.0171 ± 0.0116 0.0488 ± 0.0309
BDSD-PC [28] 0.9166 ± 0.0495 0.0193 ± 0.0190 0.0660 ± 0.0357
PRACS [5] 0.9149 ± 0.0448 0.0174 ± 0.0165 0.0694 ± 0.0329
GLP-CBD [4] 0.9195 ± 0.0504 0.0278 ± 0.0242 0.0550 ± 0.0321
GLP-HPM [32] 0.8939 ± 0.0621 0.0470 ± 0.0322 0.0633 ± 0.0380
PNN [21] 0.9591 ± 0.0260 0.0163 ± 0.0149 0.0251 ± 0.0139
PanNet [36] 0.9581 ± 0.0199 0.0224 ± 0.0108 0.0201 ± 0.0111
DiCNN [13] 0.9460 ± 0.0325 0.0165 ± 0.0160 0.0385 ± 0.0201
DMDNet [9] 0.9460 ± 0.0196 0.0187 ± 0.0093 0.0214 ± 0.0122
fusionNet [8] 0.9559 ± 0.0276 0.0178 ± 0.0151 0.0269 ± 0.0161
MUCNN 0.9629 ± 0.0215 0.0128 ± 0.0140 0.0247 ± 0.0102
Ideal value 1 0 0

We give an example in Figure 7. As there is no GT image, we show
the LR-MS image instead.

We evaluate the performances of different approaches with the
assessment mentioned before, and the result is shown in Table 2.
Our proposed model performs the best in the assessment of QNR
and Dλ , except for Ds .
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GS SFIM BDSD BDSD-PC PRACS GLP-CBD GLP-HPM

PNN PanNet DiCNN DMDNet FusionNet MUCNN LR-MS

Figure 7: Visual comparisons in natural colors of the most representive approaches on full-resolution datasets (WorldView-3).

GS SFIM BDSD BDSD-PC PRACS GLP-CBD GLP-HPM

PNN PanNet DiCNN DMDNet FusionNet MUCNN GT

Figure 8: Visual comparisons in natural colors of themost representive approaches on reduced-resolution datasets (GaoFen-2).

GS SFIM BDSD BDSD-PC PRACS GLP-CBD GLP-HPM

PNN PanNet DiCNN DMDNet FusionNet MUCNN GT

Figure 9: The AEMs of Figure 8.

4.6 Evaluation at 4-band datasets
From the indicators shown in Table 3, and the visual results shown
in Figure 8 and Figure 9, the proposed MUCNN can recover more
details in the spatial dimension without losing the spectral informa-
tion, and its results far exceed the existing methods. This indicates

that MUCNN can also be applied to 4-band data and its outcomes
are satisfactory enough.



MM ’21, October 20–24, 2021, Virtual Event, China Trovato and Tobin, et al.

Table 3: Average quantitative comparisons of the most rep-
resentive approaches on 81 reduced-resolution GaoFen-2 ex-
amples. Best results in boldface.

Method SAM ERGAS SCC Q8 QAVE
GS [18] 2.975 ± 1.111 2.966 ± 1.010 0.852 ± 0.062 0.787 ± 0.076 0.797 ± 0.076
SFIM [19] 2.297 ± 0.637 2.189 ± 0.695 0.861 ± 0.054 0.865 ± 0.040 0.876 ± 0.037
BDSD [11] 2.307 ± 0.669 2.070 ± 0.610 0.877 ± 0.052 0.876 ± 0.042 0.885 ± 0.020
BDSD-PC [28] 2.304 ± 0.643 2.075 ± 0.604 0.878 ± 0.051 0.878 ± 0.040 0.887 ± 0.039
PRACS [5] 2.311 ± 0.597 2.169 ± 0.599 0.867 ± 0.050 0.872 ± 0.035 0.876 ± 0.034
GLP-CBD [4] 2.274 ± 0.733 2.046 ± 0.620 0.873 ± 0.053 0.877 ± 0.041 0.880 ± 0.040
GLP-HPM [32] 0.552 ± 0.777 2.299 ± 0.713 0.867 ± 0.054 0.852 ± 0.045 0.852 ± 0.044
PNN [21] 1.460 ± 0.361 1.271 ± 0.324 0.948 ± 0.021 0.947 ± 0.020 0.949 ± 0.017
PanNet [36] 1.395 ± 0.326 1.224 ± 0.283 0.956 ± 0.012 0.947 ± 0.022 0.957 ± 0.015
DiCNN [13] 1.495 ± 0.381 1.320 ± 0.354 0.946 ± 0.022 0.945 ± 0.021 0.947 ± 0.018
DMDNet [9] 1.297 ± 0.316 1.128 ± 0.267 0.964 ± 0.010 0.953 ± 0.022 0.963 ± 0.014
FusionNet [8] 1.219 ± 0.292 1.037 ± 0.256 0.968 ± 0.010 0.962 ± 0.017 0.964 ± 0.015
MUCNN 1.100 ± 0.274 0.937 ± 0.234 0.975 ± 0.008 0.970 ± 0.013 0.970 ± 0.013
Ideal value 0 0 1 1 1

4.7 Comparison of the MUCNNs with different
strategies

Since the multiscale injection branch, SSconv, the mixed multiscale
loss is the core of our method. For demonstrating their indispens-
able and effectiveness, we provide the ablation study and compare
our model with its seven variants on the datasets fromWorldView-3
that is introduced in Section 4.1. As reported in Table 4, compared
with our backbone model, adding the multiscale injection branch
achieves an improvement on multiple quantitative metrics. Sim-
ilarly, the mixed multiscale loss improves the results markedly.
The best result can be obtained by combining the three proposed
components, which exceed other network structures significantly.

4.8 Discussion on Multiscale Inputs and
Outputs

The up/down-sampling method in prior approaches is fixed, which
is inflexible for feature representation and extraction. In our work,
the up/down-sampling modules we designed are equipped with
learnable parameters, which are adaptively adjusted according to
specific training examples. Therefore, we attempt to analyze these
up/down-sampled images to explore how to help the network per-
form better.

As shown in Figure 10, we present the multiscale inputs and out-
puts. It is clear that P4↓ maintains the outline. Although P2↓ almost
lost its original outline, which looks like a differential map that has
be verified as useful feature in [15]. Besides, MS2↑ and MS4↑ are
produced by the given SSconv operating on MS, containing rich
spectral information and conducive to feature extraction. Moreover,
it can be seen that the multiscale outputs ( M̂S1×, M̂S2×, M̂S4×) are
quite close to their corresponding GT images, which proves the
effectiveness of the mixed multiscale loss.

5 CONCLUSIONS
This paper proposes MUCNN with the SSconv which is specially
designed for pansharpening. The key difference from the prior tech-
niques lies in that we map spectral feature to the spatial domain
through SSconv so that the feature extraction of the MUCNN is
more competent to the fusion of HR-PAN and LR-MS images. Be-
sides, the multiscale injection branch is introduced to mitigate the

P4↓ ∈ R64×64×1 P2↓ ∈ R128×128×1 P ∈ R256×256×1

MS ∈ R64×64×8 MS2↑ ∈ R128×128×8 MS4↑ ∈ R256×256×8

M̂S1× ∈ R64×64×8 M̂S2× ∈ R128×128×8 M̂S4× ∈ R256×256×8

GT4↓ ∈ R64×64×8 GT2↓ ∈ R128×128×8 GT ∈ R256×256×8

Figure 10: The multiscale PAN/LR-MS/GT/output images.
Please note that for themultispectral images, we show them
in naturall colors. And the images in same column are of
same resolution.

distortion caused by the upsampling of LR-MS images. We choose
U-Net as the backbone to construct MUCNN. Also, a mixed loss
strategy is used to control the outputs hierarchically. A wide range
of experiments demonstrates that our proposed method not only
can capture the underlying details of HR-PAN and LR-MS images
but also holds the powerful ability to balance spatial restoration
and spectral preservation.

Certainly, there are still some drawbacks to our method, espe-
cially for the extremely bright spots on the images. For example, the
reflection of the sun, which comes from the roof of a car towards
the sensor, sometimes will be sharpened like a flock of scattered
stars and lose the original outline of the car roof. Apart from that,
sometimes pixel-wise noisy points will appear in the solid region.
Through the experiments, we find that almost all DL-based methods
had similar problems with uneven edges, while traditional methods
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Table 4: Average quantitative comparisons of MUCNNs with different strategies on 1258 reduced-resolution WorldView-3
examples.

Method multiscale injection branch SSconv mixed multiscale loss SAM ERGAS SCC Q8 QAVE
UMCNN × × × 3.755 ± 1.264 2.565 ± 0.954 0.959 ± 0.045 0.915 ± 0.111 0.914 ± 0.115

× × ✓ 3.660 ± 1.262 2.511 ± 0.946 0.961 ± 0.044 0.918 ± 0.109 0.916 ± 0.115
× ✓ × 4.265 ± 1.381 2.973 ± 1.107 0.945 ± 0.049 0.900 ± 0.118 0.900 ± 0.122
✓ × × 3.593 ± 1.234 2.441 ± 0.938 0.962 ± 0.044 0.920 ± 0.109 0.918 ± 0.114
✓ ✓ × 3.985± 1.282 2.699 ± 0.987 0.955 ± 0.045 0.909 ± 0.116 0.908 ± 0.115
✓ × ✓ 3.676± 1.229 2.507 ± 0.932 0.960 ± 0.044 0.917 ± 0.110 0.915 ± 0.116
× ✓ ✓ 3.745± 1.270 2.567 ± 0.954 0.959 ± 0.044 0.915 ± 0.445 0.914 ± 0.116
✓ ✓ ✓ 3.495 ± 1.254 2.425 ± 0.956 0.963 ± 0.044 0.923 ± 0.109 0.921 ± 0.114

Ideal value 0 0 1 1 1

did not. This drawback reminds us to look for the characteristics of
conventional methods and combine them with DL-based methods.
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