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Where are we?

Earth Solar System Solar Interstellar Neighborhood Milky Way Galaxy
= S
- - —E
== s
- e ."“ - = d.."i.’
-\ . -?_":o = ~ e
-2y 3 ) - — " e P = g ‘-‘— r—:
= = o - "'.—
&s / ¥ - -
— “: ".._-
e
Local Galactic Group Virgo Supercluster Local Superclusters
= = s = —
R . ‘ —- » ; ' : & =
el e ’!__‘ - , =T -
—_—— ‘- e .—..“-—f--“’_ _—
———— f——d - - T - - 2l —_T. 2— - 4
as== K tbon '%: 5
_ — b = a .
= e —— r 2 -
—-:-:-'- - ‘... - 9 = ‘-a 'ﬂ —— ‘--— .
— — ﬁ- N L=
e e




—
20

-

L
e
v




Where are we going?

Outer Planets

<Ay

To M. Celestial Pole

Earth iz tited 2342
from the plane
of its orbit.

Inner Planets

¥ Spring Equinay

Tothe Sun abowe
Celestial the Equatar
Ecjustor

Summeer Solstice.
. Sun highestin the
2 northern shy.

winter Solstice.
Sun lomest in the
southern sky.

Ecliptic lowest
in the night sky.

Celestial

Fall Equinay
Eqjuator

Sun abowe
the Equatar

Earth's ratation is
from west to East.

—_—
Earth's orbital motion is counter-clockwize around the

Sun a= seen from the Maorth side of the 2olar system.
To 5. Celestial Pale



How do we get there?
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Nicolaus Copernicus
1473-1543

& B
De revolutionibus orbium coelestium (1543)

» The center of the earth is not the center of the universe, but only of gravity and of the lunar sphere.

» All the spheres revolve about the sun as their midpoint, and therefore the sun is the center of the
universe.

« Whatever motion appears in the firmament arises not from any motion of the firmament, but from
the earth's motion. The earth together with its circumjacent elements performs a complete rotation
on its fixed poles in a daily motion, while the firmament and highest heaven abide unchanged.

» What appear to us as motions of the sun arise not from its motion but from the motion of the earth
and our sphere, with which we revolve about the sun like any other planet.

» The apparent retrograde and direct motion of the planets arises not from their motion but from the
earth's. The motion of the earth alone, therefore, suffices to explain so many apparent inequalities in
the heavens.



Tycho Brahe
1546-1601

Iveto Bsahe,

Tycho's geo-heliocentric astronomy

« Danish Nobleman, Astronomer, Astrologer,
Alchemist

» Built two observatories — Hven, Prague

» Accurate and Comprehensive Astronomical
Observations

* Published - De nova stella (1573)

« Combined geometric benefits of Copernican
system with philosophical benefits of the
Ptolemaic system

» Assisted by Johannes Kepler




i /s
//cw..,’ Johannes Kepler

: / -~ VENUS

- 1571-1630

Kepler's Laws

1. The orbits of planets are ellipses with the sun at one focus.

2. A line drawn from a planet to the sun sweeps out equal areas |
in equal intervals of time.

A planet must move rapidly when it is close to the sun and
more slowly when it is far from the sun. nree— e
.\'rmin.mjc‘u- axis

3. The square of a planet’'s orbital period is proportional to the
cube of its average distance from the sun:
P2 —
(when P is in years and a in AU)

Planets in large orbits take much longer to orbit the sun than do planets
in small orbits.




Issac Newton 1642-1727

If I have seee;mle rther it is

by standing on the shoulders of Giants.

[sage Newlony |
g Booiteom |

= Principia Mathematica (1687)

= Newton derived Kepler’s laws of
planetary motion from his
mathematical description of
gravity, removing the last doubts
about the validity of the
heliocentric model of the cosmos.




Richard Battin
1925-2014

RICHARD H. BATTIN

An Introduction to the
Mathematlics and Methods
of Astrodynamics,

Revised Edition

dAIAA.
Education Series
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Astronauts & Orbital Mechanics
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EVA Rescue (2)







Elements of Astrodynamics

Launch into desired orbit
7 Launch Window, Inclination
- LEO/GEQO/Departure

Orbital Maneuvers
- Feasible Trajectories/Orbit Types
: Minimize Propulsion Required
- Orbit/Plane Changes

Interplanetary Transfers

- Hyperbolic Orbits
- Changing Reference Frames
- Orbital Insertion

Rendezvous/Proximity Operations
L Relative Motion

Observations/Targeting/Entry/Landing
: Ground Coverage (ground track/swath)
- Deorbit Burn



Mission to Mars (Spirit & Opportunity)



Astrodynamics

Reference Frames




Coordinate Systems

Origin?
= Center of Earth
= Sun or a Star
= Center of a planetary body
= QOthers....
Reference Axes
= AXis of rotation or revolution
= Earth spin axis
« Equatorial Plane
= Plane of the Earth’s orbit
around the Sun
« Ecliptic Plane
= Need to pick two axes and
then 3 one is determined




Equator

Ecliptic and Equatorial Planes

North

Pole <+—

Obliquity of the Ecliptic = 23.44 °
Vernal Equinox vector
- Earth to Sun on March 21st
- Planes intersect @ Equinox

) \ \. |
3 S Autumn Equinox
2\ 23,5 deqa. from
I ’-I plane :;jecllpt»c ‘\ (September 22nd/23rd)
Winter Solstice \
(December 21th/22nd)' Autumn

26 1
:.'.g -
>0 e
S5 Winter 3
S é\ \ 132
= e \ A \..Summer J S
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&S B
< =
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=
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\_’ Spring
Spring Equinox Summer Solstice

(March 20th/21st) (June 21th/22nd)

UNS 3y Woy 1sayung



Inertital =~ fetux T B\
Coordinates

& — declination Vernal equinox g _, (_90°) - (+90°)
o — right ascension ' ¢¢t! o - (0°)—(360°)
Heliocentric ecliptic »
system of coordinates R o0
P :

autumnal equinox
Earth on
21-24 September

. = Vernal equinox < 2
B — ecliptic latitude vector B -+ (-90°)—(+90°)

A — ecliptic longitude A - (0°)—(360°)



Relationship between Coordinate Frames

ecliptic

(ecliptic pole) E C (celestial pole)

vernal
equinox
vector

sin 3 =sind cose —cosod sing sina
cos 3 cosA =cosd cosa
cos[3 sinA =sind sing + cosd cose sina

sind =sin 3 cose + cos} sing sinA
cosO cosa =cos[3 cosA
cosd sina =—sin [ sing +cosf3 cose sinA




Solar and Sldereal Tlme

The Sun

D_rn‘ts east in the sky ~1° per day.
"~ Rises 0.066 hours later each day.

(because the earth is orbiting)

The Earth...

Rotates 360° in 23.934 hours
(Celestial or “Sidereal” Day)
Rotates ~361° in 24.000 hours
(Noon to Noon or “Solar” Day)

Satellites orbits are aligned to the
Sidereal day — not the solar day




Astrodynamics

Orbital Elements




Properties of Orbits

* a is the semimajor axis;
b is the semiminor axis;

* I'yax=Ta I'vin=Tp are the maximum and
minimum radius-vectors;

* C Isthe distance between the focus and
the center of the ellipse;

e =c/a is eccentricity

Elliptical
orbit
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» 2p is the latus rectum
(latus = side, rectum = straight)
p — semilatus rectum or semiparameter

A =mab isthe area of the ellipse

Apoapsis

Line of Apsides

$ = 1+ ecosd




Orbital Elements

120°
€ 150° : ,

Eccentricity —_
(0.0 to 1.0)

V=@

True anomaly

(angle)
Apogee [ _a_' _______ : Perigee
180° ] _ : 0°
Semi-major :
axis ;
€=0.8 vs €=0.0

€ defines ellipse shape

A defines ellipse size
V/(p defines satellite angle from perigee



Inclination |

Intersection of the
equatorial and

. Inclination
orbital planes

(angle)

Ascending
Node

Equatorial Plane
( defined by Earth’s equator)

Ascending Node is where a
satellite crosses the equatorial
plane moving south to north



Right Ascension of the ascending node Q and
Argument of perigee w :
A

Q- angle from
vernal equinox to
ascending node on

the equatorial plane Perigee Direction
W = angle from " //

ascending node to o

perigee on the ' Z/

orbital plane /w —7

Ascending
// Node
= A
4

Vernal Equinox



Orbital Elements

i - inclination

Spacecraft

Q - right ascension
of ascending node

equinox

Line of nodes

v - true anomaly

Eccentricity vector

~
TS

Perigee

n - argument
of perigee

Ascending node

a - semi-major axis Q -right ascension of ascending node

e - eccentricity
| -inclination

® - argument of perigee
v -true anomaly (also Q)



The Six Orbital Elements

d = Semi-major axis (usually in
kilometers or nautical miles)

€ = Eccentricity (of the elliptical
orbit)

V/@ =True anomaly The angle

between perigee and satellite in
the orbital plane at a specific time

| =Inclination The angle between
the orbital and equatorial planes

() = Right Ascension (longitude)

of the ascending node The
angle from the Vernal Equinox
vector to the ascending node on
the equatorial plane

® = Argument of perigee The
angle measured between the
ascending node and perigee

Celestial body

True anomaly

Argument of pgriapsis

— - (Y)
Longitude of ascending node Reference

direction
Plane

0
Inclination
nding node Shape, Size,
Orientation,

and Satellite
Location.




1 255440 98067A

Two Line Orbital Elements
N ASA and NORAD Standard for specifying orbits of Earth-orbiting satellites

1SS (ZARYA)

08264.51782528 —.00002182 00000-0 -11606-4 0 2927

2 25544 51.6416 247.4627 0006703 130.5360 325.0288 15.72125391563537

Field| Columns
01-01
03-07
05-08
10-11
12-14
1617
19-20
21-32
3443
45-52
54-61
63-63
6568
69-69

(X = = T I 3 T T Y =S Y S T ) % T e

Slalala] =
[T R N O i

Ref: http://en.wikipedia.org/wiki/Two-line_element_set

Content
Line number

Satellite number

Classification {(U=Unclassified)

International Designator (Last two digits of launch year)

International Designator (Launch number of the year)

International Designator (Piece of the launch)

Epoch Year (Last two digits of year)

Epoch (Day of the year and fractional portion of the day)

First Time Derivative of the Mean Motion divided by two [2]

Second Time Derivative of Mean Mation divided by six (decimal point assumed)
BSTAR drag term {decimal point assumed) (&

The number 0 (Originally this should have been "Ephemeris type")

Element set number. incremented when a new TLE is generated for this object. 21292

Checksum (Modulo 10)

Example

1

25544

U

93

067

A

03

264 51782528

—.00002152

00000-0

-11606-4

0
Field Columns Content Example
1 01-01 Line number 2

! 2 03-07 Satellite number 25544
3 09-16 Inclination [Degrees] 51.6416
4 18-25 Right Ascension of the Ascending Node [Degrees] 247 4627
& 27-33 Eccentricity (decimal point assumed) 0006703
6 3542 Argument of Perigee [Degrees] 130.5360
7 44-51 Mean Anomaly [Degrees] 325.028%
8 53-63 Mean Motion [Revs per day] 157212531
9 6463 Revolution number at epoch [Revs] 56353

=y
=

G969 Checksum (Modulo 10) T



Astrodynamics

Equations of Motion




Integrating Multi-Body Dynamics

—GM; (?}. )
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j=1

V() = Vto) + f i (6)dt

to

t

X(®) = X(ty) + f V(©)dt

lo




Equations of Motion — The 2-Body Problem

m
: : Gmm, r A A1
Force on m, duetom, is F,, = — L 2. A A

- | 21 2 l? NN ‘
r r : s. CM r
< . Gmm, r NI
Force on m, due tom, is F,, = L2 Rl NN
'. ’. ”72

where r =R, - R,

( ?ml m,

Fle;n:RZ—_-— (R, -R))
J |R3 -R|| Adding gives:
F,=mR, = Gm,m, -(R, —-R, A mR, +m,R, =0
|R2 o R1| il

!

Center of mass position

(m, +m,)R. =mR, +m,R, =0 < (m, +m, ) R. =mR, +m,R,
S
R(‘ = () R( =v. R.=v_t+R_, ::> Center of mass moves

v at constant velocity.




Equations of Motion (2)
R,-R, =St p gy B (R ,-R)
— |R2"R1|' - |R R‘
=G(m, +m,)
for a S/C-Earth two body problem

m=m,>>m, — |W,=Gm, =398600441km’/s’

r=R,-R, —[lk= —%r Funda.mental
) 1 Equation (#1)
The motion of each body can be broken out as,
r=r,—r > r, = T r, = ", r
o " (mtmy)  (m+m,)
Differentiating ) i ) W,
cach gives: =-=r, L =70
5 £!

Relative to the Center of Mass, each body behaves similarly.



Equations of Motion - Energy

o r=re, r=re +0xre =re +rpe,
ry _
/ u N [ 0
AN ! r r=———r-r=——(rmr)=——=—| —
0 S ! },3 r?a( ) r2 df e
Also note that, r-r = i[lr T | = i[lvz
dr\ 2 ar\ 2
r Fundamental
i1, u 1, u " equation (#2)
_[_Vz ) _] =0 — |Zv'——=& | (Energy equation)
dt\ 2 4 7 \\

Kinetic Energy Potential Energy

Example: Escape velocity allows you to reach » = o0 with v =0



Equations of Motion — Angular Momentum

Fundamental d iy g s 2
equation (#3) F’(rxr)_r_?_rﬁrxr_—rx P
r xr =h= angular momentum vector = constant vAf

(1t provides three constants)

I 1
AAd = 5(1 +v,At)v At - 5(\’,,AI )(VPAI)

ﬁ: limﬂ: lim [l(r+vrAt)v) —lv,.v At]:lrv :llrxv|
di a0 At A0| 2 27 2 7 2
22—A:’rxv|=|rxi‘|=h < Kepler's 2™ law!
1

(Sweeps out equal areas in equal times!)



Equations of Motion - Eccentricity Vector

equation (#4)

<

i(l‘xh):i‘thri‘xh:i‘xh:
dt Y
8! 2 : 2 : :
= —— h = —— = —— . — . =
e (rxh) e [rx(rxr)] e [(r r)r—(r r)r]

S P P D PR L L )

B ﬁ[wr rr]_ r2rr+rr_dt[rr) Fundamental
i[1"><h—ﬁr]:0 — l"xh—&r:C: constant vector
dt r r

Rearranging this gives, th—Ezg,and define £2 ¢
peoorou u

e 1s the dimensionless eccentricity vector

which lies in the orbit plane



Equations of Motion — Conic Section

’
r i’xh—Erj=r-C=r-ue = r-(i'xh)—ﬁr-r=r-ue
r

k r

Using 4-(BxC)=(AxB)-C, - (rxr)-h=pr+pur-e

Since (rxr)=h, £=r+recosq)
1

Wipw  p Polar form of conic section

r = G . . .
l+ecosqp 1+ecosq| with the origin at one focus

p=h/n=a(l-e’)= "semilatus rectum" = const
from Latin semi="half," latus ="side," and rectum = "straight"
[ =0 r=a circle
e<l a>0 ellipse

Kepler's 1" law: <
e=1 a=w parabola

(le>] a<0 hyperbola



Possible Orbital Trajectories

e=0 --circle

e<l --ellipse
e=1 -- parabola
e>1 -- hyperbola

i

parabola

circle

ellipse

e <1 Orbitis ‘closed’ — recurring path (elliptical)
e >1 Not an orbit — passing trajectory (hyperbolic)




Conic Section Geometry

r,=a(l-e) and r,=a(l+e)

a

a

r,=1, _a(l+e)-a(l-e) _2e _ 2 'K o

r,+r, a(l+e)+a(l—e) 2 F “—ae |X

) 5 .8 P

b* +(ae)’ =a* > b=avl-e’

Usingrz £ , at =0, I, = 4 f - r,=a(l+d) r,=a(l-e)
| +ecos@ P l+e 2 e .

Sop=r(l+e)=a(l-e)(1+e)=a(l-e’)

p=h/p=a(l-é)

Now examine momentum and energy at periapsis:

|h|=h=\/p_== \/pa(l—ez) =ry,

: pa(l—ez)_pa(l—e)(l-ke) u(l+e)

)T —
) = 2

g o a*(1-e)’

So the general Energy Equation is:
(Also called the Vis Viva Equation)

a(l-—e)

1
2

v

Z.

i

2

.
1‘
=

(I+e)

I

"y

Tl

|
2"

_2a(l—e)

1

r

T

2a

a(l-

v 2
r — —

woor

e)

1
a



Other Useful Properties

For a Circular Orbut,

e=0 —> r=r,=r,=p=a=>b
vz—u(1+e) — |v.=v, =v = L
’ a(l-e) ; r

For Escape Velocity we would have,

lvz—&:é’:O — ves,c:‘/z—“:\/z\/gzx/zvc
2 A | 4 A

Matching momentum at apoapsis and periapsis,

K, V
— - P __ "a
’h‘ _ ’/;pvp = 1Y, = ==
' \%



Equations of Motion — Kepler’s 3rd Law

2— =|rxv|=|h|= Jup = \/ua |-¢’) < Kepler's 2™ law!

For the area of a full orbit we would have.
A \/
—]—lh‘ T =nab=rna’\/1-e’

p= al—e

Period: 7 = |- a_ 7% = (27 a’
\] L

\/pa l—e M
27 L

Kepler's 3rd law!
Mean Motion: n=—=,[—
1 a




Orbital Period vs. Altitude
T :27z\/§
U

Geosynchronous Orbit
h =19,324 n.mi
T=23h56m4s

h=160 n.mi
T = 90 minutes

“High” Earth Orbit
h = 3444 n.mi
T =4 hours



Orbital Velocity vs. Altitude

h =160n.mi

v = 25,300 ft/s Geosynchronous Orbit

h=19324 n.mi
v = 10,087 ft/s

“High” Earth Orbit
h = 3444 n.mi
v = 18,341 ft/s



Orbital Velocity vs. Altitude (2)
(Elliptical Orbits)

h=19,324 n.mi
v =5,273 ft/s

h =160 n.mi
v = 33,320 ft/s

Geosynchronous Transfer Orbit
a=13,186 n.mi
v e=0.726




Parabolic Trajectories
[

Total Energy =0

21 U

2 Vescape = |7 = V2 Ji — \/Evcircuiar
u r r
eE=0=——— N

2 T Parabola

V= Vg

Hyperbola
V>V

@ O O
I |

Sun

Ellipse
Ve<vVey




Hyperbolic Trajectories

Total Energy >0 2 1

Enyper = _%

a<( —a




Example 1 — Circular Orbit

A satellite in a polar circular orbit with an altitude of 274.6 km passes over
USYD at time t=0, when is the next fly-over?

Assumptions:
R, =6,378 km, 1.=398,600.441 km®/s’, w. =360° /24 hrs



Example 1 — Circular Orbit

A satellite in a polar circular orbit with an altitude of 274.6 km passes over
USYD at time t=0, when is the next fly-over?

Orbit Period: h=274.6 km, R, 6,378 km — r=a~6,652.6

a’ 6652.6° km®
T=2x =27 —
He 398,600.441 km® /s
When does USYD cross the orbit plane?

360° .
O, = ~15 /hr (not exactly right as we shall see
= 24 hrs ( ynd )

=5400 sec =90 min

It happens twice - near the ascending and decending nodes.

150 =12 hrs, 360 =24 hrs
15° / hr 15° / hr
Where is the satellite in 12 and 24 hours?

Since T =90 min, nzgzﬁlmin

In12 hrs, Ap =12x60x4° / min = 2880° = 8.0 orbits

The satellite is back near the ascending node, but USYD is on the descending node side...
In 24 hrs, Ap =24 x60%x4" [ min =5760° =16.0 orbits
The satellite and USYD meet again near the ascending node!



Example 2 — Elliptical Orbit

A giant space station is placed in a permanent elliptical orbit for
transporting crew and cargo from the Earth to the Moon. This ‘Cycler’
space station has an apogee at the same radius as the Moon’s orbit.
Describe/draw the orbit that cycles twice per month (i.e. has a lunar
rendezvous every other cycle)? What is the semi-major axis and the
eccentricity? For a vehicle launching from the surface of the Earth, what
IS the rendezvous altitude to dock with the cycler spacecraft? How fast
does a vehicle need to be going to rendezvous?

Assumptions:
1 =398,600.441 km® /s*, Lunar orbit is circular with T = 27.3 days



Example 2 — Elliptical Orbit

A giant space station is placed in a permanent elliptical orbit for transporting crew and cargo
from the Earth to the Moon. This ‘Cycler’ space station has an apogee at the same radius as
the Moon’s orbit. Describe the orbit that cycles twice per month (i.e. has a lunar rendezvous
every other cycle)? What is the semi-major axis and the eccentricity? For a vehicle
launching from the surface of the Earth, what is the rendezvous altitude to dock with the
cycler spacecraft? How fast does a vehicle need to be going to rendezvous?

3 3 3
T =203524%3600 = 21 |2 = 27 akm
2 e \398,600.441km’ /s

— a=241,263 km
rr=a(ll+e)=r,,, =384,403km — e=0.5933
r,.=a(l-e)=98,122 km (rendezvous altitude)

/2 1
v r,=v r,andv, =p, r——g:410 km/s

=1606 km/s

<
- |o
oS

V. =




Example 3 — Parabolic Trajectory

A comet from the Oort Cloud has entered the inner solar system and has a 20% probability of
crashing into the Earth. If it misses the Earth, it will pass within 10 million kilometres of the
Sun and then crash into Mercury with 100% probability on it’s way back out. In order to
avert disaster, and for scientific exploration, we would like to capture this comet and place it
into Earth orbit. What change in velocity is required to capture the comet?

Assumptions:

1 =398,600.441 km® /8%, u,,=132,712,440,018 km® /s
Planned Earth orbit is circular with h=1,000 km
R: = 6,378 km, Distance to the Sun = r, =149,597,870.7 km



Example 3 — Parabolic Trajectory

A comet from the Oort Cloud has entered the inner solar system and has a 20% probability of
crashing into the Earth. If it misses the Earth, it will pass within 10 million kilometres of the
Sun and then crash into Mercury with 100% probability on it’s way back out. In order to
avert disaster, and for scientific exploration, we would like to capture this comet and place it
into Earth orbit. What change in velocity is required to capture the comet?

E:O:EVZ_M S V= ZMSUH
2 r N r

At Earth's orbit intersection, r, =149,597,870.7 km
The comet's velocity would be,

V — 2“ Sun
comet A /
r@

A satellite in circular Earth orbit at h =1000 km

haS Ve|OCIty Vorbit = \/%
+
E

The change in velocity is

orbit — Veomet = He — _ZIJ'Sun =-34.77 km/s
R.+1000 \ r,

AV =V




Example 4 — Hyperbolic Trajectory

An interplanetary probe needs to depart Earth with a velocity of 10 km/s
(relative to the Earth). The last engine firing occurs at the perigee point
with an altitude of 1000 km. Find the velocity needed at perigee and the
parameters of the orbit (a, €)? What is the asymptotic departure angle o ?

v_ =10 km/s

Assumptions:
1. =398,600.441 km® /s?, R. = 6,378 km

7 o

&




Example 4 — Hyperbolic Trajectory

An interplanetary probe needs to depart Earth with a velocity of 10 km/s
(relative to the Earth). The last engine firing occurs at the perigee point
with an altitude of 1000 km. Find the velocity needed at perigee and the
parameters of the orbit (a, €)? What is the asymptotic departure angle O ?

Using, v:\/y(g—l} forr - oo, v, =10 km/s= e

r a a
— a=-3986 km
: 2 1
Therefore at perigee, v, = | 1 —— | =14.42 km/s
R: +1000 a

Nowh=rv, and h’/u=a(l-e?)

2
2 R. +1000)v
So solving for e = /1— h :\/1—(( : V) —2.85
ALl ALl

P
1+ecosg

Fromr =

, FT>oasl+ecosp—>0

This occurs at ¢ = cos™ (2—85j =110.5°, §=180-¢ =69.5°



Astrodynamics

Kepler’s Equation

Bg- ~ Ny




When Will You Be Where?

What do we know...

3
Given T, or a, we know the energy of an orbit T=2x a_’ E= —Zﬁ
\/ U a

: h?
Given e, we also know the angular momentum — = p=a(l—e®)

and everything else about the orbit's shape... b=avl-e’,r =a(l-e), r,=a(l+e)
2
Given a true anomaly we can compute position r = " p
1+ecosp
: " : 2 1
and with position we know velocity V= \/ﬂ(_ — _j
r a
What don’t we know?
- WHEN?

- All of this is in the orbit plane — we need 3D?



Position and Time

Beginning with angular momentum h=rxsp, h=r-v, =r’gp
h /| u b h | u 2a’(/)
| +ecosp’ | +ecosep | di

Using r =

Or 441’1 = i -
h (1+ecosep)

Integrating both sides,

)

—

4
E(t—1,)=
/73 0 '([

Defining 7, = 0 at periapsis (¢ =0),

do
(1+ecosg)

2

The following equation relates time to position for the two-body problem:
N h3 L4 d(D
My (1+ ecosqo)2

[




Kepler’s Equation

For an elliptical orbit (0 < e < 1), the solution becomes,

- T (h ) ), [2tzlll'[ sl lun%]— evl-¢’ sin(o}
0

s l+ecos(p (l—e l+e l+ecose

~

-~

M

M=[/;2(l—e )”} s [1-ef (=) <[ A0-e) 24 =) |

1

Now recall, p=h*/u=a(l-¢*),

So, M = 14, h—1= /,l,h—1= /—2/
ah \au ah” au a

And since, 7' =27 a M=(2,—/T)I=nl
7 /4

M 1is called the 'Mean Anomaly' and » is the '"Mean Motion'. M corresponds

to the angular position of a satellite on an equivalent circular orbit with the

same period. » is the average angular velocity of the orbit.



/ 2 oi J
From M :2tan1[ /i_—gtanﬂl—e 1-¢sing =E-esinE Kepler S
_|_

2 1+ecosgp

S Equation

It is convenient to define, E inwhich case, sinE (2)
V1-e*sing
onE_ SINE _ 1+ecosg _ V1-€’sing
2 l+cosE _ 2 2 Y
ey 14 1o V1-e*sing (1+e003¢)+\/(1+e003g0) —(\/1—e23|n¢)
1+ecose

) V1-e’sing
(1+ e005g0)+\/1+ 2eCos ¢ +e° cos’ ¢ — (1— ez)(l— cos’ 4”)

Ja+e)dl-e)sing
(1+ ec05¢)+\/1+ 2ecos@ +e°cos’ o —1+e° —e”cos’ @ +cos’ @

_ Jd+e)(l-e)sing _ Jd+e)(d-e)sing :\/(l+e)(1—e)sin(p
(1+ecosp)++/2ecosp+e>+cos2p  (1+€C05p)++/(e+Cosp)? 1+eCoSp+e+Cose

:\/(1+e)(1—e)sin(p:\/(1+e)(1—e) sing l-e. ¢

= |—tan—
(1+e)(1+cose) (1+e)*> 1+cos 1+e 2
® ®

Therefore, tanE:‘/l_—etan2 and E =2tan™ ,/1_—etan£
2 1+e 2 1+e 2




Kepler’s Equation (3)

What does this mean?
Now we can relate position and time!

For a given orbit (a,e) and position (i.e. true anomaly) o,

Compute the ‘eccentric anomaly’ E =2tan 1[, /—1_ ° tan %)
+€

Compute the mean anomaly M=E-esinE

Then using the period T, the
: . .. : M
time since periapsis passage is  t—t, = 2—T
7T
Note: From ¢ —t Is easy!

From t — ¢ Is not so easy (cannot write E = f(M,e))



Physical Interpretation
of the Eccentric Anomaly E

q
asi ’
2 E
A = » A T p
Auxihary circle !
For an arbitray true anomaly o,
M S RN . 2
A.=opq—ofq =(—]na (ae)(c;smE) g (L esin )
ba : dA nab nab
A=——(FE—-esmE)=—/(t—1 —(1—-1,)=— —I—
=273 ( ) 7 (1—1,)=—7—(1 ,/ 3 ( o)

n(t—to)zE—esmEzM




Computttg OrbitakPosition

SATELLITE

SATELLITE
ORBIT

HYPOTHETICAL
CIRCULAR ORBIT
SATELLITE

ECCENTRIC
ANOMALY

MEAN PERIGEE
ANOMALY

M(t) = n(t — 1p) Mean Anomaly

E(t) = M(t) + esin E(t) Eccentric Anomaly

E‘

If[f_' — P arctan ‘\- e i| True AnOma|y

Mean Motion



Solving Kepler’s Equation

e=1.0

e=08

e=04

In the case of finding position
as a function of time o(t), r(t)
From,

Mean anomaly, M

t>M: M =%(t—to)

M—o>E: E-esinE=M

0

~ 1 +e E Eccentric anomaly, I
E—>o: =2tan'| ,[—tan—
() ()

2r

1-e 2

E/o—>r: r=a(l—ecosE) or r=a(l-e*)/(1+ecoso)
So the only problem is finding E from M
Fortunately, the function M (E) = E —sin E is monotonic (if ET then M 1)



Solving Kepler’s Equation (2)

Method 1: Simple Iteration

For small eccentricity e, the values of M and E are close
Initially guess that E =M

10

Then calculate a new estimate E using E,,, = M +esinE,

| | -

E,.=M+esinE, with E, =M |

Error (deg)
=)

10 :

N

10

o ' ! N , \\\\
. The smallereis, |77 A L A J

the closer £ is to M 5 :
o™ I I | 4 |
0 2 4 6 8 10 12

14
Number of lterations



Solving Kepler’s Equation (3)
Method 2: Newton's Method
To find the root of f (x) =0, start with an
estimate x. and update the estimate based on
a simple slope calculation:

f(x V- f(x ; f=E-esinE-M
f’(xi): ( |+1) ( |) f
Xiyg =X
Choose x;,, such that f (x;,,) =0, ot o
: f(x
that is... Xy =X — (x) 0 — E
f ,(Xi) 1+ #
In this case, f(E)=E—-esinE-M | e
— f(E;)=E;-esinE;—~ M
f'(E)=1—ecosE
: : E.—esinE — M
So the iteration would be... E. ,=E —— |
1—-ecoskE,
: : f(x
Stop when the update is smaller than a desired tolerance (x) < €ITOF g

F/(x)



Error (deg)

Solving Kepler’s Equation (4)

I

8
Number of lterations



350 years of searching for the fastest method
(least number of computations)

Newton (1686)
f(x) =0 Lagrange (1771)
f(X ) EUIer (1740), EO — M _|_Z dk 1(S|n M) k
Xkﬂ:xk_Tka) E. =M+esinE, kI dm*?
Levi-Civita (1904) E =S L (M)z"
Bessel (1817) kz; k
E=M +ZEJk(ke)sin(kl\/l) eexp V1—e’
1 K z2(e) = >
1 o _ ‘ 1++v1-—e
Jk(x):;fo cos xsind—kv dv L (M)=p ¢ cos'M,s;sin’ M
Halley (1742)

f(E,)=E,—esinE, — M
1 f'(E,)=1—ecosE,
f7(E,)=esinE,

e _g_ 2MEE)
2f"(E)* — f(E) f"(E,)




Position and Time for Parabolic Trajectories

h® T do
1’3 (1+ecosp)
For e =1, the result is less complicated than for the ellipse,

3 ¢ 3 3
t= h j dp __ hz(ltan£+ltan3£j:h—zl\/l
2 6 2 P

Beginning again with t =

1’3 (1+cosp) 7
3
From ¢ —t: Mpzitanfqtltansﬂ, t:h—ZMIO
272 6 2 1
2
From t—> ¢ I\/Ipz%

3
@= root of 1(tanﬂj +Etan£—l\/lp=0
6 2 2 2

The only real root is,

1/3 -1/3
0= 2tan{(3l\/l N CIYIRRE I TN IVIEREY }




Position and Time for Hyperbolic Trajectories
Analogous to the Elliptical Solution, but with hyperbolic functions...

Recall: sinhx:(eX —e‘x)/2, cosh x:(eX +e‘x)/2

Kepler's Equations becomes: M, =esinhF —F (hyperbolic eccentric anomaly)
The relation between ¢ and F becomes,

tanh— = |£ =1 an
e+l 2
From ¢ —>t:
. 3
F =2tanh™ ,/e—ltanﬂ, M, =esinhF —F, t:h—ZMh(ez—l)Z/3
e+l 2 u
From t - ¢:

2
M, = %(e2 —1)3/2t, esinhF —F =M, (lteration), ¢= 2tan1£ el tanh E]

e—1 2



Astrodynamics

Orbital Maneuvers

ISEE3 MANEUVERS FROM LAUNCH
TO HALO ORBIT |
TO COMET EXPLORATION

- " DELTA 2914
LAUNCHED AUGUST 12,1978




Changing Orbits - The Effects of Burns
Posigrade & Retrograde

Initial Orbit
Final Orbit

Typical for low Earth orbit
Avof 1ft/s — Ah =~0.5nmi

A posi-grade burn will RAISE orbital altitude.
A retro-grade burn will LOWER orbital altitude.
Note — max effect is at 180° from the burn point.



Changing Orbits - The Effect of Burns
Radial In & Radial Out

EXAMPLE: Radial In Burn at Perigee

\
/\
\
\\
N\

Initial \elocity
Initial Orbit

Final Orbit

-
- -
~-< -
S ~-a -

\

Radial burns shift the argument of perigee without significantly
altering other orbital parameters



Orbital Transfers - Changing Planes

»
VV' “ AV
_’ %

V1

*Burn point must be intersection
of two orbits (“nodal crossings™)

*Extremely expensive energy-
wise:
For 160 nmi circular orbit,
V=~25,600 ft/sec.
A plane change of 1° requires
a AV of 470 ft/sec.



Plane Change Maneuver

The components of a Av determine
how the orbit is affected.
- In-plane Av can change the
parameters (a,e,®,¢)
- Out-of-plane Av can change
the parameters (Q,1).
Av can be expressed as:
AV =AV . +AV, 4 =AV 4 T +AV
AV, Cannot change the orbit plane
AN =1 XAV g =T X (AV 4 £) =0
AV ., can have components in and out of plane

orth radia orth

radial

Av orth = AVorbit T AVh = (Avorbit (b) + AVh
where ¢ Lr and ¢ Lh
Av ... can only change to magnitude of h (not direction)

Av, is the only component that can change the orbit plane



Plane Change Maneuver (2)
There are two kinds of plane changes Ai, AQ:

For Ai, Burn at the equatorial intersection (node)
For AQ), Burn at the maximum latitude (anti-node)
For a pure plane change:

a = const.
Energy = const. and /s =|rxv|=const. —

e = const.
If O 1s small, v,
Av= 2vsin(9j > 2\)9 =v0 Av
2 2
In general, v

2 5 i



Hohmann Transfer

A Hohmann Transfer is an orbital
maneuver that transfers a satellite
from one circular orbit to another. It
was Invented by Walter Hohmann, a
German scientist, in 1925.

A Hohmann Transfer i1s the most
fuel efficient way to get from one
circular orbit to another circular
orbit.




Hohmann Transfer (2)

VC2
<

For Example, if we want to move a
spacecraft from LEO — GEO and
assuming both orbits are in the
same plane

Initial LEO orbit has radius r; and
velocity v,

e
Vcl_ T

a

Desired GEO orbit has radius r,
and velocity v,

At LEO (ry), v, = 7,724 m/s
At GEO (r,), v, = 3,074 m/s

Could accomplish this in many |
ways |



Hohmann Transfer (3)

VC2
<

For Example, if we want to move a
spacecraft from LEO — GEO and
assuming both orbits are in the
same plane

Initial LEO orbit has radius r; and
velocity v,

e
Vcl_ T

a

Desired GEO orbit has radius r,
and velocity v,

At LEO (ry), v, = 7,724 m/s
At GEO (r,), v, = 3,074 m/s

Could accomplish this in many |
ways |



Hohmann Transfer (4)

VCZ
<

For Example, if we want to move a
spacecraft from LEO — GEO and
assuming both orbits are in the
same plane

Initial LEO orbit has radius r; and
velocity v,

e
Vcl_ T

a

Desired GEO orbit has radius r,
and velocity v,

At LEO (ry), v, = 7,724 m/s
At GEO (r,), v, = 3,074 m/s

Could accomplish this in many |
ways |



Hohmann Transfer (5)

For Example, if we want to move a
spacecraft from LEO — GEO and

assuming both orbits are in the
same plane

Initial LEO orbit has radius r; and

velocity v,

e
Vcl_ T

a

Desired GEO orbit has radius r,
and velocity v,

At LEO (ry), v, = 7,724 m/s
At GEO (r,), v, = 3,074 m/s

The Hohmann transfer iIs the
most efficient path

VCZ
<




Hohmann Transfer (7)

VCZ
<

v=u(?-1)

« Impulsive A/, is applied to get on
Hohmann transfer orbit at perigee:

AVl — Vtransfer o VLEO

2 1 Y7
— IL[ ( —_ —_ _ . _
rtransfer a‘transfer r1

noi(n+rn) I

« Leave LEO (r;) with a total
velocity of v,




Hohmann Transfer (8)

« Transfer orbit is an ellipse
with
— Perigee located at r,
— Apogee located at r,

« Aurrive at GEO (apogee)
with v,

Sl l2_ 1
i lu r-2 atransfer

Perigee



Hohmann Transfer (9)

« When arriving at GEO, which is at
apogee of elliptical transfer orbit, must
apply some Av, in order to circularize:

AV2 =Vggo —V

transfer

_ |H 2 1
(2
ré ré atransfer
N ) -
ré ré ri + ré

« This is exactly the Av that should be
applied to circularize the orbit at GEO

(ry)

Ve, =V, + AV,

« Ifthis AV is not applied, spacecraft will
continue on dashed elliptical trajectory



Hohmann Transfer (10)

Hohmann Transfer Summary

Initial LEO orbit has radius r, and

velocity v,
U

V, =,|—
cl r

Desired GEO orbit has radius r,
and velocity v,

Impulsive A, is applied to get on
Hohmann transfer orbit at perigee:

Avlz\/zﬂ— 2H —\/ﬁ
L h+h I
Coast to apogee and apply
impulsive A,,:

hvy = M [P0 2
: r2 r2 I?I.+r2




Example 1. Planar Hohmann Transfer

From an initial orbit with radius r, =14,000 km compute the
Hohmann transfer orbit to achieve an orbit with r, = 28,000 km.
What are the initial, intermediate and final speeds? What is the

total Av?

Useful information:
1 =398,600.441 km?® / s*

Vclz\/Z VCz:\/Z V:\/ﬂ(g_lj
I I I a




Example 1. Planar Hohmann Transfer(2)

V,, = \/Z =5.336 vV, = \/Z =3.773
h "
Av, = \/ZM(E _ j - \/E ~0.825 v,=V,+Av,=6.161
L h+h i

AV, = AV, +Av, =1.5197 km/sec



Geosynchronous Orbit

Geosynchronous Orbit

35,780 km

Fixed position of satellite
related to Earth

Coverage from GEO

. |

— ) b

TDRSS Comm Coverage



Geosynchronous Transfer

So, how can we get a spacecraft from a non-equatorial
orbit into a geosynchronous one?

Launching into a LEO orbit will have an inclination
greater than or equal to the latitude of the launch site.

Need to do a plane change as well as raising the
orbital altitude.

Solution - Do the transfer orbit first and do the plane
change and circularization burn at apogee!

Rationale — For the same plane change angle, Av is
less where v Is less.



Example 2. Geosynchronous Transfer

For launch from Cape Canaveral the initial orbit has an inclinition
of 1 =28 deg and an altitude of h, =300 km. We are targeting a
geosynchronous orbit with r, = 42,186 km, design the two Av burns,

taking into account the plane change. Is it possible that there is a
more efficient maneuver?

Useful information:
1 =398,600.441 km?® / s°

ol

AV =V, -V, +V, -V, =2V, -V, = V. +V: — 2V,V, COSO




Example 2. Geosynchronous Transfer (2)

Avlzvl—vm:\/Zp[i— = j—\/E=2.426 km/s
L h+h hy

Determine velocity needed at apogeeof transfer orbit

Ve, = \/Ez 3.074 km/s, v, = \/Zp( L 4 j =1.607 km/s
I, , L+

AV =V, +V2 —2v,,V,c0si — Av,=1.819km/s
AV, =|Av, |+|Av,| = 4.245 km/s




Bi-Elliptic Transfer

The Hohmann transfer is the most efficient 2-burn solution. The
Bi-Elliptic transfer can be more efficient with 3-burns when the
final orbit has a much greater radius than the initial orbit

s i

Bi-Elliptic sequence: o TS
(1) Circular Orbit 1 with radius r, A_Hi*_' S
(2) Av, to Orbit 2 with radii r,,r, ' \\Tm \#aec
(3) Av, to Orbit 3 with radii r,,r, "¢ 2 —— @) — "
(4) Av. to Circularize to Orbit4 ~ * l \\\»/ A /./
Notes: " |

-Ast, > o0, AV, =0 Mo e sl

- AV, will be retrograde (slowdown) i NER o

3 3
- Long transfer time , T,,.. oo = %Tz + %T3 — %(zn & _ o EJ
\ 1 1



Bi-Elliptic Transfer (2)

The Hohmann transfer is more efficient if r. /r,<11.94
The Bi-Elliptic transfer is more efficient if r. /r,>15.58
Otherwise, it depends on r,/r, as shown below.

100
80

60
A 40

20

| |
5 10 1194 15 20 25
e
A




Super Geosynchronous Transfer

3. Hohmann
burn circularizes
at GEO \ | —— GEO
<“Av, LEO gai?f t
Initial / rbi
/ A Orbit
T1
2. Plane change .. ]
plus Hohmann / ................ sz

burn

(Super GTO — Launch to GEO)

Initial transfer orbit has
greater apogee than
standard GTO.

Plane change at much
higher altitude requires
far less AV.

PRO: Less overall AV
from higher inclination
launch sites.

CON: Takes longer to
establish the final orbit.

~—— 1. LEO (or

Launch) to
‘Super GTO’




Phasing Maneuvers
Phasing orbits are used to change a spacecraft's position
In it's orbit (i.e. for rendezvous, targeting, timing).
Prograde Burn:
—Additional Av
—New orbit is slower, fall back
—"Speed Up To Slow Down"
Retrograde Burn:
—Negative Av
—Smaller orbit is faster, move ahead
—"Slow Down To Speed Up"

3 3
At = 27N [\/E _ | Behese j where N =# of cycles on phasing orbit
TR T




Launch Azimuth Angle to Orbit Plane
The lowest attainable orbit inclination

matches the latitude of the launch site.

Insertion N




Launch to Orbit Plane (2)

180
Relationship between 150 L ©OSi=cosgsinA

Launch Azimuth Angle —
and Orbital Inclination = |
as Function of Latitude 30 -

\ Zr 4 N 4 X

A = 30° A =60° A =90°

~ \\ ./g)—:.- \\\ /”;;}7\\‘

e e — ‘ ‘
/140 X /157 1407 AT
% grale - an nls e v
\ / / \

. A ¢ : _,f-"/ \.< B/ \ \\/

7 25 57 G

A =240° A=270° A = 300° A =330°



Propulsion Requirements

Balance of momentum
d(mV)

=mv+mv=0

dt mv, mv
Vs My
dm

jdv:—wj———

\ m m
m.

AV=V, -V, ==V, (Inm, —Inm, ) =v,In| —
mf

.. T mv, v
Definingl, =—=—"%=-—"%—>v =gl S
mg mg g "Look, it's quite simple. It isn't rocket
science you know... Er... Well, you know
( AV J what | mean!"
m. m, o
Av=gggn[—LJ > =gl Example:
m m : :
_ f f For an engine using LH, / LO, (I,,=450),
Since m; —m_ . =m; : :
what is the mass fraction of propellant
AV AV .
m, [g.pj ‘[g.p] to obtain a Av=10 km/s?
=e "/, me =m; =M 10,000
mi - mprop m (_9.8-,450] 0 896

P _1_e

@
Finally, Mprop = M| 1—€277 That is, 90% Propellant



Astrodynamics

Orbital Perturbations




Orbital Perturbations

North Pole

Nonspherical Planet
Gravitational Anomalies
Atmospheric Density
Magnetic Fields

South Pole

Solar Pressure
Thruster Firings \
Other Celestial Bodies |
Phaser Blasts




Perturbations - J2000 Inertial Frame

Ecliptic North Pole

Nutation
- «
| \Precessmn
=3
=
o =)
— /
%-/!

Ecliptic Plane
Equatorial Plane
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Zy

Eeliptic plane
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Direction North
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235 degrees)
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The Earth’s Gravitational Potential U

- de " T rde "
U = %{1 _ Z Ju [T} P.(sin( ¢)) + Z Z [T} P (sin( g)) [Cnm cos(mA) + Sum sIn( mi)]}

n=2 m=1

where

u = Universal Gravitational Constant x Mass of Earth
r = Spacecraft Radius Vector from Center of Earth

a, = Earth Equatorial Radius

P() = Legendre Polynomial Functions

¢ = Spacecraft Latitude

A = Spacecraft Longitude

J, = Zonal Harmonic Constants

Chmonm = Tesseral & Sectorial Harmonic Coefficients

Spherical Term

Zonal Harmonics
Notes: J2=0.001082635 has 1/1000th the
effect of the spherical term.
All other terms start at 1/1000th of

§ @ J2’s effect.

Tesseral Harmonics Sectorial Harmonics Only the first 4x4 (n=4, m=4)
n=m n=m Typically used for S/C software.




The J2 Effect

The Earth’s oblateness causes the
most significant perturbation of any of
the nonspherical terms.

Right Ascension of the Ascending
Node (€2), Argument of Perigee (o)
and the Mean Motion (n) are affected.

Cl
100

o ‘L;}\\\ Typical
.. i TR IN /| Shuttle
Nodal R(_egressmn IS the most important s 7l L] | orbits
operationally. | ~ RO\
Magnitude depends on orbit size (a), o IR
shape (e) and inclination (i). * - NEN
| .. \\
Posigrade orbits’ nodes regress ) S \\
Westward (0° <1 <90°) :
Retrograde orbits’ nodes regress o @ m wgge W w W @
Eastward (900 < | <1800) 180 170 160 150 140 130 120 110 100

Inclination, Degrees



Nodal Regression

Orbital planes
rotate westward
over time.

Ascending
Node

Nodal Regression can be used to
advantage (such as assuring
desired lighting conditions)




Ground Track

Ground tracks drift
westward as the Earth

15 deg/hr

rotates below.

360 deg / 24 hrs

+ Nodal Regression




N_=1, N_=130, i=136, a=8378 km

7,




Molniya - 12hr Period

Sets inclination such that argument of perigee
regression is zero. This enables along loitering
time over the apogee position.

Used by USA and USSR for spy satellites

..................................................................

..........................

....................

..........................................................................................




Sun-Synchronous Orbits (2)

A Sun-Synchronous Orbit has a shift in
ascending node ~1° per day.

Scans the same path under the same lighting
conditions each day.

Requires a slightly retrograde orbit
(For example: | = 97.56° for a 550km SSO).

Used for reconnaissance, terrain mapping, etc.







Atmospheric Drag Perturbations

Atmospheric density is a function
of altitude, latitude, solar heating,
season, time of day, land mass vs
water, etc.

Drag depends on atmospheric
density, but also spacecraft speed,
attitude, frontal area, material
properties, etc.

Effect is to lower the apogee of an elliptical orbit

Perigee remains relatively constant ]

F, =—C,pV°4

Drag ~— o Frontal



Relative Magnitude of Perturbations
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Relative Magnitude of Perturbations (2)
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Astrodynamics

Relative Motion




Relative Motion, Rendezvous &
Proximity Operations (Prox Ops)




Relative Motion

Consider two spacecraft flying in proximity to one another.
Target vehicle A is passive. All maneuvers are performed by chase vehicle B.
We are interested in the motion of B relative to A - as viewed from vehicle A

Inertial Perspective Relative Perspective
‘.‘im Period of both orbits = 1.977 97 hr from Veh|C|e A

gt

\ I
\\ 11 IV
|
v ¥: Y iy
|
!!
VIl Vi



For circular orbits, the magnitude of the velocity vector is constant. The magnitude
of the velocity vector varies for elliptical orbits. It has its greatest value at perigee
and its lowest value at apogee. This results in the "loop de loop" (or "wifferdil")
trajectory when an elliptical orbit is viewed in LVLH space.

28 Apogee to pengee

velocuy mavmtude
; mcreasmcr i

: TARGET
~in circular
- orbit.

”"""'_:I'I'ER o

\ / rels velocrty magmtude

l ORBITER dt
dpogee

+X

et apogee T T T
elocity magmtudeg: »:Apogeef;t' pe e,

3, ORBITER a periges, || deoremsing. ~ ORBITER appears w
highest vc1oc1ty i o . speed up and move
‘magnitude. U ~ closer to TARGET

Inertial Space _ LVLH Space



Astrodynamics

Targeting Maneuvers




Targeting Maneuvers

T1 NCZ
L

Leading Trailing

lv\/]\ NC1 NPC OMsz
Radially

down to VWV\/‘\k U\/

earth
Not to scale \

] | |
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Space Shuttle Orbital Targeting Display

Initial and desired
position and times

8l (FauLt | Bys | mse |
summ | sum |meser| ACK

o3 Ai Bl c

= )

T‘ch/ ‘.

l
1

ISYTIARAY

2021 /034 / ORBIT TGT 1 001/14:21:31
000/00 :03 :42
MNVR TIG AVX AVY AVZ AVT
10 1/14:25:13 + 8.3 - 0.4 - 0.2 + 8.3
PRED MATCH = 17
INPUT S CONTROL S
1 TGT NO 10 T2 TO Tf1 25
2 T1 TIG 1/14:25:13 LOAD 26
6 EL 0.00 COMPUTE T1 28
7 AX /DNRNG [ 52.61 COMPUTE T2 29
8 AY [+] 0.15
9 AZ/AH [ o.11
0 AX [ 11.53
1 AY [+] 0.57
2 Az [+ 1.14
13 T2 TIG 1/15:42 :06 ORBITER STATE
17 AT [+] 76.9 218 /20:36 :14 .458
18 AX [l 0.90 X - 6161 .856
19 AY [1 0.00 Y +20949 .483
20 AZ +] 1.80 Z + 3959 .738
21 BASE T IME 1/14:25:13 VX -16 .303619
VY - 1.165214
VZ -19 .145939

ITEM 28 EXEC

Computing the Av for targeted maneuvers

What's under the hood?
Lambert Targeting!

Current
State
Vector



Lambert’s Problem
Given rl, r2 and the flight time At from P1to P2,

find the orbital trajectory from P1 to P2.
K

7z A
Unknown trajectory ——

~_Fundamental
plane

)
Y

=

——

— Ascending node

i
Note: Considered an orbit determination problem, but commonly used as a rendezvous
and intercept technique.
The trajectory from P1to P2 also determines the Av required at P1. A sequence
of desired relative points can be accomplished with a series of Lambert targeted burns.

To Solve this we're going to need Lagrange Coefficients and Universal Variables!
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Space Shuttle Maneuver Targeting

A burn must be executed at the initial position to place the ORBITER on the transfer orbit. LAMBERT
computes the ORBITER's required velocity at the initial point to achieve the transfer. The difference
between the required velocity and the actual (pre-burn) velocity at the initial point is the delta velocity
(AV) to be executed.

~ Final
' Position
[ Tm

F i
I; 3
/ Transfer Orbit
y

/ (post-burn)

Original Orbit
(no burn)

~ Velocity of

- ORBITER
on original
orbit.

Initial
Position
(T1)

(required velocity)

Original Orbit
(pre-burn)




3.6 Relative Motion Projected Into the Local Horizontal Plane

When viewed in the local horizontal plane, orbiter out-of-plane motion appears to be sinusoidal
due to the wedge angle between the orbiter and target orbits .

NORTH

Nodel\_/—

Maximum
out-of-plane —p
distance

I Rev.
Node 2 / \

8
Node | —am w1

Maximum
out-of-plane

diamance LVLH Space
Inertial Space



5.2 OMS-2 Burn

After MECO, the ORBITER is in a highly elliptical orbit. Just prior to apogee, the OMS-2
maneuver is executed to raise the ORBITER's perigee. The post OMS-2 orbit could be
either circular or elliptical.

5. OMS-2 target

1. MECO * <«—  point (perigee).

2, ET SEP \>

4. Orbit if OMS-2

_——  were not performed.

3. OMS-2 just /"&

prior to apogee.



5.4 Plane Change Burn (NPC)

For a ground - up rendezvous, yaw steering is performed to place the ORBITER in the phantom plane.
Dispersions during ascent may cause the actual orbital plane to be different than the desired phantom
plane. The difference is measured in terms of wedge angle.

This maneuver corrects for the ascent planar dispersions by placing the ORBITER in the phantom plane.
NPC is done at the point where the actual and phantom planes intersect (node). Typically only one
NPC maneuver is performed.




5.5 Phasing Burn (NC)

NC burns are used to control how quickly the ORBITER is approaching the TARGET. They may be
executed either at apogee or perigee. By changing the altitude of apogee or perigee, the ORBITER
can control the rate at which it orbits the Earth.

The NC burn is designed so that the orbital rate of the ORBITER will place the ORBITER at some
desired down - range position (phase angle) relative to the TARGET at a designated time.

The lower the orbit, the
Qigher the orbital rate, a)j




5.6 Altitude Burn (NH)

The NH burn controls the differential height (AH) between the ORBITER's orbit and the TARGET's orbit.
It is executed at either apogee or perigee. NH is designed so that the AH condition is met after half a
revolution (180 degrees of orbit travel).

e

LVLH Space

Inertial Space



5.7 Coelliptic Burn (NSR)

An NSR (Slow Rate) burn places the ORBITER in a coelliptic orbit with the TARGET.
NSR burns are used to meet lighting requirements on the day of rendezvous.

Inertial Space



5.8 Circularization Burn (CIRC)

A fifth type of burn that may be executed is the circularization (CIRC) burn. It is
performed at either apogee or perigee and changes the orbit from elliptical to circular.
For a circular TARGET orbit, CIRC is equivalent to NSR.

LVLH Space




6.0  On-Board Targeted Phase

The ground targeted phase (from post OMS-2 to the final NC burn, NC-4 in this example) may last

several days.

The on-board targeted phase lasts anywhere from 3 to 4.5 hours.

-2000 nm -4000 nm -6000 nm -8000 nm -10000 nm
NC-4 ~ 33.? deg. | ~ 66.;7 deg. | - lOl? deg. ~ 133.13 deg. ~ 166.I7 deg.
¢ ' | I | | | | | I
+ Vbar
Average target altitude 205.5 nm.
T Direct insertion altitude 174 nm.
Units in nautical miles and degrees
-] of phase angle.
ﬁ NC-2 NC-1 OMS-2
T ® ®
+50 ==
| NH NC-3
NPC
+V Ti -20 -30 NC-4
4 < | 1 1 1
MC-4
MC-3
+100 - o
G vt
T +R A 4
v On board targeted phase, also called “day of rendezvous.” Adapted from a STS-101 OCF Cycle Rendezvous
+ Rbar FOP Chart by Kristine Pettinger and Richard Parker.



6.16 Summary Of ORBT On-Board Targeted Phase Events

9 Tlansmon Ir_nmauon
Burn (Ti) :

Places ORBITER
on trajectory to
MC-4 point.

" 1. Final Ground Targeted Burn
Targets ORBITER to arrive
at Ti point after two orbits.

e

6. Midcourse
Correction-1
‘Burn (MC-1)

/'.

2. Incorporate star
tracker measurements
into navigation.

'\/

to MC-4 point.

}

3. Nominal Corrective
Combination (NCC)

Tweaks 'ORBITER
trajectory to Ti.

Tweaks trajectory |

M
Target for +R-Bar . +Y
intercept at +600 LVLH

feet.
lO Manual appmdch

. phase, braking
gates, Prox Ops.,

\J

docking/berthing.
f | ‘8.MC2, MC3
7. Out-Of-Plane | Bums
Velocity Null R
(performed T\‘vealg trajectory
manually, not to MC-4 point.
targ‘éted). — -

4. Begin mcorporatmo
radar measurements.
into navigation.



6.15 Final Approach

The ORBT profile design takes advantage of orbital mechanics effects to perform most of the braking

inside 600 feet, rather than using propellant to do most of it.

MC-4 is the start of the manual phase.

The commander will keep the TARGET centered in the COAS and perform braking gates. After R-Bar is
established at 600 feet, procedures related to proximity operations, station keeping, grapple or docking are

executed. These procedures are often mission dependent.

+Rbar approaches, as was done with Mir.

< i I ]
+ V Bar -500 -1000 -1500
R-Bar Arrival
500
/ 1000 Foot Braking Gate
1000—
/ 1500 Foot Braking Gate
1500——
‘) MC-4
2000——

+ R Bar

=

[SS flights 4A and 5A are planned to use

MC 4 @ --900 0 +1800 feet LVLH

Estabhsh R Ba1 @

Range Desired Rdot
(kilo-feet) (ft/sec)
2.0 -3.0
1.5 -2.3
1.0 -1.5
0.6 -0.8
0.5 -0.5
0.4 -0.4
0.3 -0.3

O O +600 feet LVLH

The nominal trajectory
will have rates within
a few tenths of a foot
per second of the
rates in the table.



All ISS flights after 5A are planned to fly to the +Rbar intercept point, then transition to the +Vbar
using the Twice Orbital Rate Rbar To Vbar Approach (TORVA).

4 +Vbar amval 500
at ~ 310 feet.
N
— ]
LV Bar 500 L&& -500 -1000 -1500
/\@tﬁ"\ 3 R Bar Amval at 600 feet,i»:
Stdl't IORVA 3
1000—
1500 2. Start Manual Phase
ol ) — MC4
+ R Bar 1l




R 220 R -0.21 Waw TES 2(Cw) MT:  1/20:%57:0¢

ek Piteh 1m
X 220 X «0.22 Age 0| At 187
. Pow) 23%4~

Y 3 Y -0.02 Raot 0. 30
4 -3 2 -0.03 Elv 0.7}

Orb DPF to Tgt DP ad 0.1

RESID WATIO

0.0 0.01
0.01 0.07
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Interplanetary Trajectories
(Patched Conic Approximation)

region 2
Earth
departure

v

”

i N > ~ 7’
s region 1 iy "\
Sun-centered region 3
transfer target
planet
Ly arrival



Sphere of Influence

Interplanetary Trajectory has 3 regimes: |

P »
<« >

- 15t Planet’s gravity field 1s dominant

I

A\

0 mp

R
- Sun’s gravity field is dominant Q (’0\ I

- 2" Planet’s gravity field is dominant m
S

Sphere of influence - The sphere about a body in which its gravity field is dominant.
Approximately coincides with the definition of the L, Lagrangian
point.

Consider a spacecraft in orbit about planet with mass m at radius r, and the planet

IS in orbit about the Sun (mass m; ) at radius R. L, is located where forces balance.
Gm, Gm Gms Gm, L Gms Gm,

- > 4 @ (R—T1)=— R-r)=0 si ? =
\R—r\2+r +o’(R-r) \R—r\z - R3( r) since R3

2

Generally [r<R|, — [R- r\_z =R~ (1+ 2%+---j therefore,

1/3
m m m
_m 1+2%j+—p+%(1—%j=o 5 aler-Te L[ ]

r? r? R |3mg

2/5
H H ' rSOI mp
(Lagrange - more precise analysis - see Curtis) ~
mS




Interplanetary Hohmann Transfer

The most efficient inter-planetary trajectory occurs when the departure and arrival
velocities are tangent to the planetary orbits.
Assumptions:

- Both planets orbit the Sun in the same plane
- The planetary orbits are circular

- The transfer ellipse is only affected by the Sun's gravity

Heliocentric elliptical ; — Planet 2
: 2) :
_ 2 1 _ 2 1 transfer trajectory - - at departure
=AM 7T 7 T 4 Haun B e

r a R, (R+R,)/2 5
’ - Vo
V. = Hsun 2R2 2 D y V1
R \|R+R, '
V1 = :uFiun Planet 2 Planet 1
1 at amva!‘g, 7 F B at dgparturg . \
2R ‘ 'Qn
AVD =VD _V1 — \//uSun \/ 2 \//uSun S
R VR +R, R, - ) - Ry -
'
AVD = Hsun 2R2 . V2'Va &
R, R +R,
Planet 1

at arrival
Likewise, AV, = /@(1_ 2R, ]
R, R +R, -



Hyperbolic Departure

Example: Earth-to-Mars Hohmann Transfer Ve
- Departure is a hyperbolic trajectory in the Earth's SOI ]

- Departure is parallel to the Earth's velocity ’ e
Define V, = Required Perihelion Velocity, ;,4 '
ThenV, =V, +v,_ B | = Circular orbital

- Transfer to Planet 2 is Elliptical around Sun i / Spefld:l"ﬂ

- Arrival is hyperbolic relative to Planet 2 e | )1

- Trajectory begins in a circular Earth orbit L it e e I

Define the following terms: PESLEREO | Ny il

| departure hyperbola

>
o)
«30 -
-

R.,V; - Heliocentric Earth radius and velocity

I, v - Geocentric spacecraft position and velocity

R, V - Heliocentric spacecraft position and velocity

v_ - Hyperbolic excess velocity at infinity from Earth

I, - radius of circular Earth parking orbit

v, - speed in Earth circular orbit of radius r,

v, - speed at perigee of Earth hyperbolic trajectory (atr,)

V,,V, - speed at aphelion and perihelion of heliocentric transfer ellipse



Hyperbolic Departure (2)

First compute the transfer orbit velocity at perihelion:
. R. +R
The Earth to Mars transfer orbit has a, = —=—™%

The equation of energy applied to perihelion

V&
g=tp _Bs M ___Hs sphere of influence .,

2 R 24, R: +R,,

V..

Ve (Earth orbit)

V2 = — 2HsRy .
Re (Re + Ry )
At sphere of influence [R=R;+r d
(PatCh ConditionS) VP — VE 4+ Voo Vl = Vc + AV !
Vv
® >"

departure hyperbola



Hyperbolic Departure (3)

At the SOI the velocity is v=V, -V, =v_

Comparing energy between perigee and the SOl,

2 2 2
g:V_l_HE _Vsor  He _ Vi

2 2 Iy 2
which gives the velocity required at perigee,

v, = V2428
I‘-0

Therefore, the required Av, is

AV, =v,—v, = |2 +28e  |He
rO r-0

To determine the position for the burn,

USE,  Qperpola = ~Ee and I, =a(l-e),
r0
compute, e=1- >1,
ahyperbola
1_ 2
then fromr = P _al-e)

1+ecoso 1+ eCcos o

1
Note that as r — Iy, =, (1+ecos@)—>0 and ¢ =y —> cosl(——J

A2

sphere of influenéé""~~-~..,....

V, (Earth orbit)

»—

V<

departure hyperbola

e



Hyperbolic Departure (4)

Any departure velocity parallel to V. with magnitude v_ is valid,

so this results in a surface of possible departure hyperbolas.

- Each hyperbolic plane includes the Earth center and has a perigee r,,
while prescribes a cone of departure points.

v 4
Surface of revolution , o
of departure hyperbolas P4 v?
7 A

Circleof
injection points




Hyperbolic Arrival

Arrival trajectories similarly fall on a surface of possible hyperbolas.
For planetary capture (outer planet):
- a positive Av Is required

Sphere okinfluence

Planet 2's orbital track |

- rendevous must occur B
from ahead of the planet! [ e Ny

= 2o 4 To the sun
] . Flyby trajectory R me— I >
- a burn is required at | VA \ z
Capture orbit \ 3
/ 'I
! |

ajorduwdsy,

periapsis for capture K |
: & .
- The Av required depends el |
- - - o f A
on the periapsis radius r 5 |1.
SO Periapses of 1 T
L approach Vv Voo
: - . hyperbolas
A ;i 2

[ PREN

larget planet



Gravity Assist

h \
b SATURM ORBIT INSERTION ',
WVEMUS 1 FLYBY \ LJUL 2004 @
26 APR 1998 \
| VEMUS 2 FLYBY \
24 UK 1999 \ \
| I — !
| = '
. 'lﬁ
WVEMUS | A=
% / TARGETING = s |3
MANELUVER ull < |Z
! 3 DEC 1958 T 5 o2
.-'Il I-"l:'| m s -
I 3 (45} ||:|:|
III I :|
| |
LAUMCH |
15 OCT 1957 ,;', .'
/ JUPITER
/ FLYEY
/ 30 DEC 2000 !



Gravity Assist Maneuvers

Trailing side flyby increases velocity

Leading side flyby decreases velocity
V,=V,+v, and V,=V,+v,,

Vi =V
Consider the energy gain

1 1
(before) 51:5\/12_%3’ (after) &, :EV;

1
R ~R,

AE = %(VZ2 _Vlz) = %[(\/p2 +2V, -V, 4V, )= (VS +2V, -V, +V.,)]

Vio|=Vou| = Vi =Va,
The energy gained through gravity assist is:

AE =V, -(V,, =V, ) =2V v, cos(n—)
v = true anomaly at SOI (or at ), aswy T,AET



Gravity Assist Maneuvers (2)

Voyager 2

40;
‘{Earth 20 Aug 77
) 35,
: Neptune
30 | 25 Aug 89

Uranus

VOVAGER 2

€

3

£ 51 24 Jan 86

o [

S 220 | K

g 15 \ Satum Voyager 2 velocity
3 July 79 § 10! \

D - Jupiter * NNokf

T 5| 9]u| T H T e L

Solar system escape velocuty

cassini
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INTERPLANETARY TRAJECTORY
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