
Space Engineering

Astrodynamics



Where are we?





Where are we going?



How do we get there?



Early Navigation



Nicolaus Copernicus

1473-1543

De revolutionibus orbium coelestium (1543)

• The center of the earth is not the center of the universe, but only of gravity and of the lunar sphere.

• All the spheres revolve about the sun as their midpoint, and therefore the sun is the center of the 

universe.

• Whatever motion appears in the firmament arises not from any motion of the firmament, but from 

the earth's motion. The earth together with its circumjacent elements performs a complete rotation 

on its fixed poles in a daily motion, while the firmament and highest heaven abide unchanged.

• What appear to us as motions of the sun arise not from its motion but from the motion of the earth 

and our sphere, with which we revolve about the sun like any other planet. 

• The apparent retrograde and direct motion of the planets arises not from their motion but from the 

earth's. The motion of the earth alone, therefore, suffices to explain so many apparent inequalities in 

the heavens.



Tycho Brahe

1546-1601

Tycho's geo-heliocentric astronomy
• Danish Nobleman, Astronomer, Astrologer, 

Alchemist

• Built two observatories – Hven, Prague

• Accurate and Comprehensive Astronomical 

Observations

• Published - De nova stella (1573)

• Combined geometric benefits of Copernican 

system with philosophical benefits of the 

Ptolemaic system

• Assisted by Johannes Kepler



Johannes Kepler

1571-1630



Issac Newton 1642-1727

 Principia Mathematica (1687)

 Newton derived Kepler’s laws of 

planetary motion from his 

mathematical description of 

gravity, removing the last doubts 

about the validity of the 

heliocentric model of the cosmos.



Richard Battin

1925-2014



Astronauts & Orbital Mechanics



Rendezvous



EVA Rescue



EVA Rescue (2)





Elements of Astrodynamics
Launch into desired orbit

 Launch Window, Inclination

 LEO/GEO/Departure

Orbital Maneuvers
 Feasible Trajectories/Orbit Types

 Minimize Propulsion Required

 Orbit/Plane Changes

Interplanetary Transfers
 Hyperbolic Orbits

 Changing Reference Frames

 Orbital Insertion

Rendezvous/Proximity Operations
 Relative Motion

Observations/Targeting/Entry/Landing
 Ground Coverage (ground track/swath)

 Deorbit Burn



Mission to Mars (Spirit & Opportunity)



Astrodynamics
Reference Frames



Coordinate Systems

(X,Y,Z)

(R,q,l)

(R,j,l)

Origin?

 Center of Earth

 Sun or a Star

 Center of a planetary body

 Others….

Reference Axes

 Axis of rotation or revolution

 Earth spin axis

• Equatorial Plane

 Plane of the Earth’s orbit 

around the Sun

• Ecliptic Plane

 Need to pick two axes and 

then 3rd one is determined



Ecliptic and Equatorial Planes

Obliquity of the Ecliptic = 23.44 °

Vernal Equinox vector

- Earth to Sun on March 21st

- Planes intersect @ Equinox



Inertial 

Coordinates



Relationship between Coordinate Frames



Solar and Sidereal Time

The Sun
Drifts east in the sky ~1° per day.         

Rises 0.066 hours later each day.
(because the earth is orbiting)

The Earth…
Rotates 360° in 23.934 hours

(Celestial or “Sidereal” Day)

Rotates ~361° in 24.000 hours
(Noon to Noon or “Solar” Day)

Satellites orbits are aligned to the 
Sidereal day – not the solar day



Astrodynamics
Orbital Elements



• a is the semimajor axis;

• b is the semiminor axis;

• rMAX = ra,  rMIN = rp are the maximum and 

minimum radius-vectors;

• c is the distance between the focus and 

the center of the ellipse;

• e = c/a is eccentricity

• 2p is the latus rectum

(latus = side, rectum = straight)

p — semilatus rectum or semiparameter

• A = ab is the area of the ellipse

 
  =  1 + e cos  
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Properties of Orbits



Orbital Elements

Perigee

0°

Apogee

180°

e defines ellipse shape                          

a defines ellipse size                                 

v/j defines satellite angle from perigee

Semi-major 

axis

True anomaly

(angle)

Eccentricity

(0.0 to 1.0)

90°

120°

a

e

V=j
150°

e=0.8 vs e=0.0



Inclination  i

Inclination 
(angle)

Equatorial Plane                

( defined by Earth’s equator )

Intersection of the 

equatorial and 

orbital planes

(below)

(above)

Ascending 

Node

Ascending Node is where a 

satellite crosses the equatorial 

plane moving south to north

i



Vernal Equinox

Perigee Direction

Ω

ω

Ω = angle from 

vernal equinox to 

ascending node on 

the equatorial plane

ω = angle from 

ascending node to 

perigee on the 

orbital plane

Ascending 

Node

Right Ascension of the ascending node Ω and

Argument of perigee ω



a  - semi-major axis   Ω - right ascension of ascending node 

e  - eccentricity           - argument of perigee

i - inclination             - true anomaly (also j)

Orbital Elements



The Six Orbital Elements

a = Semi-major axis (usually in 

kilometers or nautical miles)

e = Eccentricity (of the elliptical 

orbit)

v/j = True anomaly The angle 

between perigee and satellite in 

the orbital plane at a specific time

i = Inclination The angle between 

the orbital and equatorial planes 

Ω = Right Ascension (longitude) 

of the ascending node The 

angle from the Vernal Equinox 

vector to the ascending node on 

the equatorial plane

 = Argument of perigee The 

angle measured between the 

ascending node and perigee

Shape, Size, 

Orientation, 

and Satellite 

Location.



Two Line Orbital Elements
N ASA and NORAD Standard for specifying orbits of Earth-orbiting satellites

ISS (ZARYA)

1 25544U 98067A   08264.51782528 −.00002182  00000-0 -11606-4 0  2927

2 25544  51.6416 247.4627 0006703 130.5360 325.0288 15.72125391563537

Ref:  http://en.wikipedia.org/wiki/Two-line_element_set



Astrodynamics
Equations of Motion



Integrating Multi-Body Dynamics



Equations of Motion – The 2-Body Problem



Equations of Motion (2)



Equations of Motion - Energy



Equations of Motion – Angular Momentum



Equations of Motion - Eccentricity Vector



Equations of Motion – Conic Section



• e=0  -- circle

• e<1  -- ellipse

• e=1  -- parabola

• e>1  -- hyperbola

e < 1   Orbit is ‘closed’ – recurring path (elliptical)

e > 1   Not an orbit – passing trajectory (hyperbolic)

Possible Orbital Trajectories



Conic Section Geometry



Other Useful Properties



Equations of Motion – Kepler’s 3rd Law



h = 160 n.mi

T = 90 minutes

“High” Earth Orbit

h = 3444 n.mi

T = 4 hours

Geosynchronous Orbit

h = 19,324 n.mi

T = 23 h 56 m 4 s

Orbital Period vs. Altitude

3

2
a

T 






h = 160n.mi

v = 25,300 ft/s

“High” Earth Orbit

h = 3444 n.mi

v = 18,341 ft/s

Geosynchronous Orbit

h = 19,324 n.mi

v = 10,087 ft/s

Orbital Velocity vs. Altitude

2 1
v

r a



  

 



h = 160 n.mi

v = 33,320 ft/s

h = 19,324 n.mi

v = 5,273 ft/s

Geosynchronous Transfer Orbit

a = 13,186 n.mi

e = 0.726

Orbital Velocity vs. Altitude (2)

(Elliptical Orbits)

2 1
v

r a



  

 



Parabolic Trajectories

Total Energy = 0



Hyperbolic Trajectories

Total Energy > 0

As 

2 1
v

r a



  

 



Example 1 – Circular Orbit
A satellite in a polar circular orbit with an altitude of 274.6 km passes over 

USYD at time t=0, when is the next fly-over?

Assumptions:
3 2R 398,600.441 km / s ,  6,378 km, 360 / 2=  r 4 h sE EE  



Example 1 – Circular Orbit
A satellite in a polar circular orbit with an altitude of 274.6 km passes over 

USYD at time t=0, when is the next fly-over?

Orbit Period: 6,378 km  274.6 km,   6,652 6 R .E rh a  

3 3 3

3 2

6652.6  km
2 2 5400 sec = 90 min

398,600.441 km / sE

a
T     



When does USYD cross the orbit plane?

 
360

15 / hr   not exactly right as we shall see
24 hrs

E  

It happens twice - near the ascending and decending nodes.

180 360
12 hrs, 24 hrs

15 / hr 15 / hr
 

Where is the satellite in 12 and 24 hours?
360

Since 90 min, 4 / min

In 12 hrs, 12 60 4 / min 2880 8.0 orbits

The satellite is back near the ascending node, but USYD is on the descending node side...

In 24 hrs, 24 60 4 / min 5760 16.0 

T n
T

j

j

  

     

      orbits

The satellite and USYD meet again near the ascending node!



Example 2 – Elliptical Orbit
A giant space station is placed in a permanent elliptical orbit for 

transporting crew and cargo from the Earth to the Moon.  This ‘Cycler’ 

space station has an apogee at the same radius as the Moon’s orbit. 

Describe/draw the orbit that cycles twice per month (i.e. has a lunar 

rendezvous every other cycle)?  What is the semi-major axis and the 

eccentricity?  For a vehicle launching from the surface of the Earth, what 

is the rendezvous altitude to dock with the cycler spacecraft?  How fast 

does a vehicle need to be going to rendezvous?

Assumptions:
3 2398,600.441 km / s ,  Lunar orbit is circular with 27.3 days=E T 



Example 2 – Elliptical Orbit
A giant space station is placed in a permanent elliptical orbit for transporting crew and cargo 

from the Earth to the Moon.  This ‘Cycler’ space station has an apogee at the same radius as 

the Moon’s orbit. Describe the orbit that cycles twice per month (i.e. has a lunar rendezvous 

every other cycle)?  What is the semi-major axis and the eccentricity?  For a vehicle 

launching from the surface of the Earth, what is the rendezvous altitude to dock with the 

cycler spacecraft?  How fast does a vehicle need to be going to rendezvous?

3 3 3

3 2

27.3  km
* 24*3600 2 2

2 398,600.441 km / s

  a=241,263 km

(1 )   0.5933

= (1- ) 98,122 km (rendezvous altitude)

2 1
,  and 410 km/s

16

384,403

06 

 km

km/s

E

a Moon

p

a a p p a E

a

a a
p

p

a a
T

r a e r e

r a e

v r v r v
r a

v r
v

r

    




     



    

 



Example 3 – Parabolic Trajectory
A comet from the Oort Cloud has entered the inner solar system and has a 20% probability of 

crashing into the Earth.  If it misses the Earth, it will pass within 10 million kilometres of the 

Sun and then crash into Mercury with 100% probability on it’s way back out.  In order to 

avert disaster, and for scientific exploration, we would like to capture this comet and place it 

into Earth orbit.  What change in velocity is required to capture the comet?

Assumptions:

3 2 3 2398,600.441 km / s ,  = km / s

Planned Earth orbit is cir

= 132,712,440,018 

6,378 km, Distance to 

cular with 1,0

the Sun = 149,597,870.7 k

00

m

 km

Sun

E

E

h

R r

 





 



Example 3 – Parabolic Trajectory
A comet from the Oort Cloud has entered the inner solar system and has a 20% probability of 

crashing into the Earth.  If it misses the Earth, it will pass within 10 million kilometres of the 

Sun and then crash into Mercury with 100% probability on it’s way back out.  In order to 

avert disaster, and for scientific exploration, we would like to capture this comet and place it 

into Earth orbit.  What change in velocity is required to capture the comet?

2

149,597,870.7 km

The comet's velocity would be, 

1 2
         0     

2

At Earth's orbit intersection, 

2
                    

A satellite in circular Earth orbit at 1000 km

h

Sun Sun

Sun
comet

E v v
r r

r

v
r

h





 
    








as velocity 
1000

The change in velocity is 

2
34.77 km/s

1000

E
orbit

E

E Sun
orbit comet

E

v
R

v v v
R r






 
      





Example 4 – Hyperbolic Trajectory

Assumptions:
3 2398,600.441 km / s ,  = 6,378 kmEE R 

An interplanetary probe needs to depart Earth with a velocity of 10 km/s 

(relative to the Earth).  The last engine firing occurs at the perigee point 

with an altitude of 1000 km.  Find the velocity needed at perigee and the 

parameters of the orbit (a, e)?   What is the asymptotic departure angle     ?

10 km/sv 







Example 4 – Hyperbolic Trajectory

  

2 2

2
2

2 1
Using, ,  for ,  10 km/s=

             3986 km

2 1
Therefore at perigee, 14.42 km/s

1000

Now   and   

1000

/ (1 )

So  solving   for 1 .= 1 2

E

p E

E

p

p

E

p

E

E

h a e

h
e

a a

v r v
r a a

a

v
R a

h r v

R v








 



 

  


    

 

  


  

 






1

85

From ,   as 1 cos 0
1 cos

1
This occurs at cos 110.5 ,   180 69.5

2.85

p
r r e

e
j

j

j  j

   


 
     

 

An interplanetary probe needs to depart Earth with a velocity of 10 km/s 

(relative to the Earth).  The last engine firing occurs at the perigee point 

with an altitude of 1000 km.  Find the velocity needed at perigee and the 

parameters of the orbit (a, e)?   What is the asymptotic departure angle     ?



Astrodynamics
Kepler’s Equation



When Will You Be Where?

3

2
2

Given ,  or ,  we know the energy of an orbit    T 2 ,  
2

Given , we also know the angular momentum   (1 )

and everything else about the orbit's shape...        1

What do we know...

a
T a E

a

h
e p a e

b a e








  

  

 

2

2

/
   

, (1 ),  (1 )

Given  a true anomaly we can compute positio
1 cos

and with position we 

n 

2 1
                know velocity     

p a

h
r

r a e r a e

e

v
r a





j

   






  
 

What don’t we know?

- WHEN?

- All of this is in the orbit plane – we need 3D?



Position and Time



Kepler’s Equation



2
1

2

Trig Identity

1 1 sin
From                   2 tan tan  - sin

1 2 1 cos

It is convenient to define,              in which case, sin

1 sin

sin 1
tan

2 1 cos

e e
M e E e E

e e

E E

e

E E

E

j j

j

j


  

  
  




 


     

    

 

2

2 2
2 22

2

2 2 2 2

2 2 2 2 2 2

1 sincos

1 cos 1 cos 1 sin1 sin
1 1

1 cos

1 sin
        

1 cos 1 2 cos cos 1 1 cos

(1 )(1 ) sin
        

1 cos 1 2 cos cos 1 cos cos

(1 )(1 ) si

ee

e e ee

e

e

e e e e

e e

e e e e e

e e

jj

j j jj

j

j

j j j j

j

j j j j j




     
  

  




      

 


       

 

   2 2 2

2

n (1 )(1 ) sin (1 )(1 ) sin

1 cos cos1 cos 2 cos cos 1 cos ( cos )

(1 )(1 ) sin (1 )(1 ) sin 1
tan

(1 )(1 cos ) (1 ) 1 cos 1 2

1
Therefore,    tan tan     and    2 ta

2 1 2

e e e e

e ee e e e e

e e e e e

e e e

E e
E

e

j j j

j jj j j j j

j j j

j j

j

   
 

        

    
  

    


 



1 1
n tan  

1 2

  

e

e

j
 


 

Kepler’s 

Equation 

(2)



Kepler’s Equation (3)
What does this mean?  

Now we can relate position and time!

1

For a given orbit ( , ) and position (i.e. true anomaly) , 

1
Compute the 'eccentric anomaly'   2 tan tan

1 2

Compute the mean anomaly         - sin

Then using the period ,  the

time since 

a e

e
E

e

M E e E

T

j

j
 

 
 



0periapsis passage is       
2

:     From  is easy!

              From  is not so easy (cannot write ( , )) 

  

M
t t T

Note t

t E f M e



j

j

 



 



Physical Interpretation 

of the Eccentric Anomaly E



Computing Orbital Position

Mean Anomaly

Eccentric Anomaly

True Anomaly

Mean Motion



Solving Kepler’s Equation

 0

1

2

In the case of finding position 

as a function of time ( ), ( )

From,    

2
:      

:     sin

1
:       2 tan tan

1 2

/ :   (1 cos )  or   (1 ) / (1 cos )

So the only p

t r t

t M M t t
T

M E E e E M

e E
E

e

E r r a e E r a e e



j


  

  

 
 j j  

 

j      j

roblem is finding  from 

Fortunately, the function ( ) sin  is monotonic (    )

E M

M E E E if E then M   



Solving Kepler’s Equation (2)

1

Method 1:  Simple Iteration

For small eccentricity , the values of  and  are close

Initially guess that 

Then calculate a new estimate  using sini i

e M E

E M

E E M e E



 



Solving Kepler’s Equation (3)

1

1

1

Method 2:  Newton's Method

To find the root of ( ) 0,  start with an 

estimate  and update the estimate based on

a simple slope calculation:  

( ) ( )
            ( )

Choose  such tha

i

i i
i

i i

i

f x

x

f x f x
f x

x x

x










 



1

1

1

t ( ) 0,  

( )
that is...           

( )

In this case,  ( ) sin

                    ( ) 1 cos

sin
So the iteration would be...   

1 cos

Stop when the update is sma

i

i
i i

i

i i
i i

i

f x

f x
x x

f x

f E E e E M

f E e E

E e E M
E E

e E









 


  

  

 
 



( )
ller than a desired tolerance  

( )

i
desired

i

f x
error

f x






Solving Kepler’s Equation (4)



1

Newton (1686)

( ) 0

( )

( )

k
k k

k

f x

f x
x x

f x




 


350 years of searching for the fastest method 

(least number of computations)

0

1

Euler (1740),

sink k

E M

E M e E



 

1

1
1

Lagrange (1771)

1 (sin )

!

k k
k

k
k

d M
E M e

k dM

1

0

Bessel (1817)

2
( )sin( )

1
( ) cos sin

k

k

k

E M J ke kM
k

J x x k d

1

2

2

Levi-Civita (1904) ( )

exp 1
( )

1 1

( ) cos , sin

k

k

k

i j

k i j

E L M z

e e
z e

e

L M p c M s M

1 2

( ) sin
2 ( ) ( )

( ) 1 cos
2 ( ) ( ) ( )

( ) sin

k k k

k k
k k k k

k k k

k k

f E E e E M
f E f E

E E f E e E
f E f E f E

f E e E

Halley (1742)



Position and Time for Parabolic Trajectories

 

 

3

22

0

3 3 3
3

22 2 2

0

 
1 cos

For 1,  the result is less complicated than for the ellipse,

1 1
                      tan tan

2 2 6 21 co
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s

1
From :       ta
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p
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h d
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3
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1
n tan ,    

2 6 2

From  :      

1 1
                           =   tan tan 0

6 2 2 2

                           The only real root is,

                          2 tan 3 9
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Position and Time for Hyperbolic Trajectories

   

Analogous to the Elliptical Solution, but with hyperbolic functions...

Recall:                    sinh /2, cosh /2

Kepler's Equations becomes:   sinh    (hyperbolic eccentric anomal
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Astrodynamics
Orbital Maneuvers



Changing Orbits - The Effects of Burns
Posigrade & Retrograde

A posi-grade burn will RAISE orbital altitude.

A retro-grade burn will LOWER orbital altitude.

Note – max effect is at 180° from the burn point.

h

h
V

V

Typical for low Earth orbit

  1 /      0.5 v of ft s h nmi   

Initial Orbit 

Final Orbit



Initial Velocity

Resultant Velocity

Changing Orbits - The Effect of Burns
Radial In & Radial Out

( )1V =    2
r aEXAMPLE:  Radial In Burn at Perigee

Radial burns shift the argument of perigee  without significantly 

altering other orbital parameters

Initial Orbit 

Final Orbit



Orbital Transfers - Changing Planes

V1

V2
V

•Burn point must be intersection 

of two orbits (“nodal crossings”)

•Extremely expensive energy-

wise:

For 160 nmi circular orbit,   

V25,600 ft/sec.

A plane change of 1° requires 

a V of 470 ft/sec. 



Plane Change Maneuver

 

The components of a  determine 

how the orbit is affected.  

  - In-plane  can change the 

    parameters , , ,

 - Out-of-plane  can change 

    the parameters ( , ).

 can be expressed as:   

     

v

v

a e

v

i





 j





v

 

ˆ  

        cannot change the orbit plane

ˆ               

        can have components in and out of plane
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               is the only component that can
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φ r φ h

v h

v  change the orbit plane
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Plane Change Maneuver (2)



Hohmann Transfer

A Hohmann Transfer is an orbital 

maneuver that transfers a satellite 

from one circular orbit to another. It 

was invented by Walter Hohmann, a 

German scientist, in 1925.

A Hohmann Transfer is the most 

fuel efficient way to get from one 

circular orbit to another circular 

orbit. 



Hohmann Transfer (2)
• For Example, if we want to move a 

spacecraft from LEO → GEO and 

assuming both orbits are in the 

same plane

• Initial LEO orbit has radius r1 and 

velocity vc1

• Desired GEO orbit has radius r2

and velocity vc2

• At LEO (r1), vc1 = 7,724 m/s

• At GEO (r2), vc2 = 3,074 m/s

• Could accomplish this in many 

ways

LEO

GEO

r1

r2

vc1

vc2

1

1

cv
r


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LEO

GEO

r1

r2

vc1

vc2

Hohmann Transfer (3)
• For Example, if we want to move a 

spacecraft from LEO → GEO and 

assuming both orbits are in the 

same plane

• Initial LEO orbit has radius r1 and 

velocity vc1

• Desired GEO orbit has radius r2

and velocity vc2

• At LEO (r1), vc1 = 7,724 m/s

• At GEO (r2), vc2 = 3,074 m/s

• Could accomplish this in many 

ways

1

1

cv
r






LEO

GEO

r1

r2

vc1

vc2

Hohmann Transfer (4)
• For Example, if we want to move a 

spacecraft from LEO → GEO and 

assuming both orbits are in the 

same plane

• Initial LEO orbit has radius r1 and 

velocity vc1

• Desired GEO orbit has radius r2

and velocity vc2

• At LEO (r1), vc1 = 7,724 m/s

• At GEO (r2), vc2 = 3,074 m/s

• Could accomplish this in many 

ways

1

1

cv
r


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LEO

GEO

r1

r2

vc1

vc2

Hohmann Transfer (5)
• For Example, if we want to move a 

spacecraft from LEO → GEO and 

assuming both orbits are in the 

same plane

• Initial LEO orbit has radius r1 and 

velocity vc1

• Desired GEO orbit has radius r2

and velocity vc2

• At LEO (r1), vc1 = 7,724 m/s

• At GEO (r2), vc2 = 3,074 m/s

• The Hohmann transfer is the 

most efficient path

1

1

cv
r


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• Impulsive V1 is applied to get on 

Hohmann transfer orbit at perigee:

• Leave LEO (r1) with a total 

velocity of v1

 

1

1

1 1
1 1 2 12

2 1
     

2 1

transfer LEO

transfer transfer

v v v

r a r

v
r r r r


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LEO

GEO

r1

r2

vc1
v1

vc2

v1

Hohmann Transfer (7)



• Transfer orbit is an ellipse 

with

– Perigee located at r1

– Apogee located at r2

• Arrive at GEO (apogee) 

with v2

LEO

GEO

r1

r2

vc1
v1

vc2

v1

Perigee

Apogee

Hohmann Transfer (8)
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2

2 1

transfer

v
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
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V2



• When arriving at GEO, which is at 

apogee of elliptical transfer orbit, must 

apply some v2 in order to circularize:

• This is exactly the v that should be 

applied to circularize the orbit at GEO 

(r2)

• If this V is not applied, spacecraft will 

continue on dashed elliptical trajectory

LEO

GEO

r1

r2

vc1
v1

v1

v2
v2

vc2

2

2 2

2 2 1 2

2 1
      =

2 2
     =

GEO transfer

transfer

v v v
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r r r r
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 

 


Hohmann Transfer (9)

2 2 2Cv v v  



Hohmann Transfer Summary

• Initial LEO orbit has radius r1 and 

velocity vc1

• Desired GEO orbit has radius r2

and velocity vc2

• Impulsive V1 is applied to get on 

Hohmann transfer orbit at perigee:

• Coast to apogee and apply 

impulsive V2:

1

1 1 2 1

2 2
v

r r r r
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Hohmann Transfer (10)



Example 1:  Planar Hohmann Transfer

1

2

From an initial orbit with radius 14,000   compute the 

Hohmann transfer orbit to achieve an orbit with 28,000 .

What are the initial, intermediate and final speeds?  What is the

total ?

r km

r km

v
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



Useful information:
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1 1 1 1

1 1 2 1

1 1
2 0.825,      6.161Cv v v v

r r r r
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1 2 1.5197  / sectotv v v km     

Example 1:  Planar Hohmann Transfer(2)
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Coverage from GEO

TDRSS Comm Coverage

Geosynchronous Orbit

Geosynchronous Orbit



Geosynchronous Transfer
So, how can we get a spacecraft from a non-equatorial

orbit into a geosynchronous one?

• Launching into a LEO orbit will have an inclination 

greater than or equal to the latitude of the launch site.

• Need to do a plane change as well as raising the 

orbital altitude.

• Solution - Do the transfer orbit first and do the plane 

change and circularization burn at apogee!  

• Rationale – For the same plane change angle, v is 

less where v is less.



Example 2: Geosynchronous Transfer

1

2

For launch from Cape Canaveral the initial orbit has an inclinition

of  28 deg and an altitude of 300 .  We are targeting a 

geosynchronous orbit with 42,186 , design the two  burns,

taking

i h km

r km v

 

 

 into account the plane change.   Is it possible that there is a

more efficient maneuver?

Useful information:
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Example 2: Geosynchronous Transfer (2)

 1 2
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Bi-Elliptic Transfer
The Hohmann transfer is the most efficient 2-burn solution.  The

Bi-Elliptic transfer can be more efficient with 3-burns when the

final orbit has a much greater radius than the initial orbit.  

Bi-Elliptic sequence:

(1)  Circular Orbit 1 with radius  

(2)   to Orbit 2 with radii ,

(3)   to Orbit 3 with radii ,

(4)   to Circularize to Orbit 4 

A

A A B

B B C

C

r

v r r

v r r

v




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3 3

2 3
2 3

Notes:

     - As ,  0

     -  will be retrograde (slowdown)

1 1 1
     - Long transfer time , 2 2

2 2 2
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C
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Bi-Elliptic Transfer (2)

The Hohmann transfer is more efficient if / <11.94

The Bi-Elliptic transfer is more efficient if / >15.58

Otherwise, it depends on /  as shown below.

C A

C A

B A

r r

r r

r r



Super Geosynchronous Transfer 
(Super GTO – Launch to GEO)

Initial transfer orbit has 

greater apogee than 

standard GTO.

Plane change at much 

higher altitude requires 

far less ΔV.

PRO: Less overall ΔV 

from higher inclination 

launch sites.

CON: Takes longer to 

establish the final orbit.

2. Plane change 

plus Hohmann

burn

GEO 

Target 

Orbit

1. LEO (or 

Launch) to 

‘Super GTO’

3. Hohmann

burn circularizes 

at GEO

LEO 

Initial 

Orbit

T1

T2

1  v

2  v

3  v



Phasing Maneuvers
Phasing orbits are used to change a spacecraft's position

in it's orbit (i.e. for rendezvous, targeting, timing).

Prograde Burn:

Additional 

New orbit is slower, fall back

"     "

Retro

v

Speed Up To Slow Down

 





3 3

grade Burn:

Negative 

Smaller orbit is faster, move ahead

"     "

2 ,   where  # of cycles on phasing orbit Phase

v

Slow Down To Speed Up

a a
t N N

 






    

   



Launch Azimuth Angle to Orbit Plane
The lowest attainable orbit inclination 

matches the latitude of the launch site.



Launch to Orbit Plane (2)

Relationship between 

Launch Azimuth Angle

and Orbital Inclination 

as Function of Latitude 



Propulsion Requirements
Balance of momentum
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For an engine using LH / LO  ( =450),

what is the mass fraction of propellant

to obtain a 10 / ?
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Astrodynamics
Orbital Perturbations



Orbital Perturbations

- Nonspherical Planet

- Gravitational Anomalies

- Atmospheric Density

- Magnetic Fields

- Solar Pressure

- Thruster Firings

- Other Celestial Bodies

- Phaser Blasts



Perturbations - J2000 Inertial Frame



The Earth’s Gravitational Potential U

Spherical Term

Zonal Harmonics

Tesseral Harmonics Sectorial Harmonics

where

 = Universal Gravitational Constant x Mass of Earth

r = Spacecraft Radius Vector from Center of Earth

ae = Earth Equatorial Radius

P() = Legendre Polynomial Functions

f = Spacecraft Latitude

l = Spacecraft Longitude

Jn = Zonal Harmonic Constants

Cn,m,Sn,m = Tesseral & Sectorial Harmonic Coefficients

Only the first 4x4 (n=4, m=4)

Typically used for S/C software.

Notes:  J2=0.001082635 has 1/1000th the

effect of the spherical term.

All other terms start at 1/1000th of 

J2’s effect.

n m n m



The J2 Effect

h

orbit

J2

The Earth’s oblateness causes the 

most significant perturbation of any of 

the nonspherical terms.

Right Ascension of the Ascending 

Node (Ω), Argument of Perigee (ω) 

and the Mean Motion (n) are affected.

Nodal Regression is the most important 

operationally.
Magnitude depends on orbit size (a), 

shape (e) and inclination (i).

Posigrade orbits’ nodes regress 

Westward (0° < i < 90°)

Retrograde orbits’ nodes regress 

Eastward (90° < i <180°)
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Nodal Regression

Orbital planes 

rotate westward 

over time.

(below)

(above)

Ascending 

Node

Nodal Regression can be used to 

advantage (such as assuring 

desired lighting conditions)



Ground Track

Ground tracks drift 

westward as the Earth 

rotates below.

360 deg / 24 hrs

= 15 deg/hr

+ Nodal Regression





Molniya - 12hr Period

Sets inclination such that argument of perigee 

regression is zero.  This enables a long loitering 

time over the apogee position.  

Used by USA and USSR for spy satellites



Sun-Synchronous Orbits (2)

A Sun-Synchronous Orbit has a shift in 

ascending node ~1° per day.

Scans the same path under the same lighting 
conditions each day.

Requires a slightly retrograde orbit 

(For example:  I = 97.56° for a 550km SSO).

Used for reconnaissance, terrain mapping, etc..



Sunsynchronous (Landsat 7)

700 km

Period 98 min

i = 98.8°



Atmospheric Drag Perturbations

Effect is to lower the apogee of an elliptical orbit

Perigee remains relatively constant

Atmospheric density is a function 

of altitude, latitude, solar heating, 

season, time of day, land mass vs 

water, etc.

Drag depends on atmospheric 

density, but also spacecraft speed,  

attitude, frontal area, material 

properties, etc.



Relative Magnitude of Perturbations



Relative Magnitude of Perturbations (2)



Astrodynamics
Relative Motion



Relative Motion, Rendezvous & 

Proximity Operations (Prox Ops)



Relative Motion
Consider two spacecraft flying in proximity to one another.

Target vehicle  is passive.   All maneuvers are performed by chase vehicle .

We are interested in the motion of  relative to  - as viewed 

A B

B A from vehicle .A

 Inertial Perspective  

  

Relative Perspective

from Vehicle A
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Targeting Maneuvers



Space Shuttle Orbital Targeting Display

Initial and desired 

position and times

Current

State

Vector

Computing the  for targeted maneuvers

What's under the hood?  

!

v

Lambert Targeting





Lambert’s Problem
Given 1,  2 and the flight time  from 1 to 2, 

find the orbital trajectory from 1 to 2.

r r t P P

P P



Note:  Considered an orbit determination problem, but commonly used as a rendezvous

           and intercept technique.

           The trajectory from 1 to 2 also determines the  required at 1.   AP P v P  sequence 

           of desired relative points can be accomplished with a series of Lambert targeted burns.

           To Solve this we're going to need Lagrange Coefficients and Universal Variables!  



Astrodynamics
Shuttle/ISS Rendezvous & Prox Ops



Space Shuttle Maneuver Targeting
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Interplanetary Trajectories
(Patched Conic Approximation)



Sphere of Influence
Interplanetary Trajectory has 3 regimes:

- 1st Planet’s gravity field is dominant

- Sun’s gravity field is dominant

- 2nd Planet’s gravity field is dominant

Sphere of influence - The sphere about a body in which its gravity field is dominant. 

Approximately coincides with the definition of the L1 Lagrangian

point.  
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Consider a spacecraft in orbit about planet with mass  at radius , and the planet 
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Interplanetary Hohmann Transfer
The most efficient inter-planetary trajectory occurs when the departure and arrival

velocities are tangent to the planetary orbits.

Assumptions: 

     - Both planets orbit the Sun in the same plane

     - The planetary orbits are circular

     - The transfer ellipse is only affected by the Sun's gravity
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Hyperbolic Departure

Circular orbital 

speed = vc

EV

- Departure is a hyperbolic trajectory in the Earth's SOI

- Departure is parallel to the Earth's velocity

      Define Required Perihelion Velocity,

      Then 

- Transfer to Planet 2 is Ellipt

P

P E

V

V V v



 

ical around Sun

- Arrival is hyperbolic relative to Planet 2

- Trajectory begins in a circular Earth orbit

Define the following terms:

     ,  - Heliocentric Earth radius and velocity

,  - Geocentric spacecraft position and velocity

,  - Heliocentric spacecraft position and velocity

 - Hyperbolic excess velocity at infinity from Ear

E E



R V

r v

R V

v

0

0

1 0

th

 - radius of circular Earth parking orbit

 - speed in Earth circular orbit of radius 

 - speed at perigee of Earth hyperbolic trajectory (at )

,  - speed at aphelion and perihelion of helio

c

A P

r

v r

v r

V V centric transfer ellipse

Example:  Earth-to-Mars Hohmann Transfer



Hyperbolic Departure (2)

At sphere of influence
  

(Patch conditions)

E

P E 

 
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R R r

V V v

tr

2

tr

First compute the transfer orbit velocity at perihelion:

The Earth to Mars transfer orbit has 
2

The equation of energy applied to perihelion

        
2 2

So, 
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Hyperbolic Departure (3)

 (Earth orbit)EV

v

1 c  vv v

departure hyperbola

sphere of influence

d

0r

2 2 2

1 SOI

0 SOI
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At the SOI the velocity is  

Comparing energy between perigee and the SOI,

          
2 2 2

which gives the velocity required at perigee,

          2

Therefore,
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To determine the position for the burn, 

use,      and (1 ),
2

compute,         1 1,  

(1 )
then from 
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Hyperbolic Departure (4)

0

Any departure velocity parallel to  with magnitude  is valid,

so this results in a surface of possible departure hyperbolas.

- Each hyperbolic plane includes the Earth center and has a perigee r ,

  

E vV

while prescribes a cone of departure points. 



Hyperbolic Arrival
Arrival trajectories similarly fall on a surface of possible hyperbolas.

For planetary capture (outer planet):

    - a positive  is required

    - rendevous must occur 

      from ahead of the planet!

  

v

  - a burn is required at 

      periapsis for capture

    - The required depends  

       on the periapsis radius 

    

pr

v 



Gravity Assist



Gravity Assist Maneuvers
Trailing side flyby increases velocity

Leading side flyby decreases velocity
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Consider the energy gain
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he energy gained through gravity assist is:  
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true anomaly at SOI (or at ),   as ,
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Gravity Assist Maneuvers (2)
Voyager 2

Cassini



Farewell


