Project Information Building type Semi-detached house

Plotnumber Plot 5 Reference 08/02/2016 Date **Byatt Oliver** Project New Dwelling Plot 5 As-Designed Client Unit 1B Whitebridge Way Victoria Court May Bank Whitebridge Industrial Estate Brampron Stone ST5 Staffordshire ST158LQ Tel: 01785719268 Email: david@byattoliver.co.uk

SAP 2012 worksheet for notional dwelling - calculation of target emissions

1. Overall dwelling dimensions

	Area	Av. Storey	Volume	
	(m²)	height (m)	(m³)	
Ground floor (1)	44.77	2.40	107.45	(3a)
Firstfloor	44.17	2.65	117.05	(3b)
Second floor	25.42	2.05	52.11	(3c)
Total floor area	114.36			(4)
Dwelling volume (m ³)			276.61	(5)

JPA Designer Version 6.01x , SAP Version 9.92 Licensed to Laurence Jay Limited

Page 1 of 45

C:\Program Files\JPATL\JPA Designer 981\Brampton Road ADF Construction.JDP

2. Ventilation rate

											m [°] per ho	our
							main + s	eonda	ry + othe	er	-	
							heating					(a)
Numbe	erofchim	neys					0 + 0 + 0		x 40		0.00	(6a)
Numbe	erotopen	flues					0 + 0 + 0		x 20		0.00	(6b)
Numbe	erofinteri	mittentfa	ans				4		x 10		40.00	(7a)
Numbe	erotpass	ive vents	5				0		x 10		0.00	(7b)
Numbe	eroffluele	ess gas f	ires				0		x 40		0.00	(7c)
											Air chang	ges per hour
Infiltrat	ion due t	o chimne	eys, fans	and flue	S						0.14	(8)
Pressu	re test, r	esult q50	<u>כ</u>						5.00			(17)
Airperi	neability										0.39	(18)
Numbe	erofsides	s on whic	ch shelter	ed							2.00	(19)
Shelter	factor										0.85	(20)
Infiltrat	ion rate ir	ncorpora	ting shelf	ter factor							0.34	(21)
Infiltrat	ion rate n	nodified	for month	nly wind s	speed							
Jan	Feb	Mar	Apr	May	Jun	Jul	Aug	Sep	Oct	Nov	Dec	
5.10	5.00	4.90	4.40	4.30	3.80	3.80	3.70	4.00	4.30	4.50	4.70	
	a ata r										52.50	(22)
	actor											
1.27	1.25	1.23	1.10	1.08	0.95	0.95	0.93	1.00	1.08	1.13	1.18	
											13.13	(22a)
Adjuste	ed infiltra	tion rate	(allowing	for shell	ter and v	vind spee	ed)					
0.43	0.42	0.41	0.37	0.36	0.32	0.32	0.31	0.34	0.36	0.38	0.39	
	л.	- A			л.			- k			4.40	(22b)
Ventila Effectiv	tion : nat /e air cha	ural vent nge rate	tilation, ir	itermitte	nt extrac	ct fans						
0.59	0.59	0.58	0.57	0.57	0.55	0.55	0.55	0.56	0.57	0.57	0.58	(25)

Page 2 of 45

C:\Program Files\JPATL\JPA Designer 981\Brampton Road ADF Construction.JDP

3. Heat losses	and heat los	ss paramete	r				
Element	Gross	Openings	Netarea	U-value	ΑxU		
	area, m²	m²	A, m²	W/m²K	W/K		
Window-Double	e-glazed,		1.350	1.33 (1.40)	1.79	(27	7)
air-filled, low-E,	En=0.1, soft						
coat (West)							
Data							
Window - Double	e-glazed,		2.280	1.33 (1.40)	3.02	(27	7)
air-filled, low-E,	En=0.1, soft						
coat (South)							
Data			7 470	4 00 (4 40)	0.00	(0-	
Window - Double	e-glazed,		7.470	1.33 (1.40)	9.90	(2)	()
air-illed, low-E,	En=0.1, soit						
Dete							
Window, Doubl	o alazod		2 600	1 22 /1 40)	4 77	(27	7)
air-filled low-E	E-glazeu, En-0.1 soft		3.000	1.33 (1.40)	4.77	(27	')
coat (West)	LII-0.1, 30it						
Data							
Half glazed door	r -		2,100	1.20	2 52	(26	6)
Double-glazed.	air-filled.					(-)
low-E, En=0.1,	soft coat						
(East)							
Data							
Full glazed door	· _		8.400	1.40	11.76	(26	6)
Double-glazed,	air-filled,						
low-E, En=0.1,	soft coat						
(West)							
Data							
Pitched roofs in:	sulated betwe	en joists	29.56	0.13	3.84	(30	J)
Walls			15.20	0.18	2.74	(29	9)
l imber partitio	n to roofspace	9	4 50	0.40	0.00		<u>_</u>
vvalls			1.53	0.18	0.28	(25	J)
Dormerwalls			90.06	0.19	11 01	(30	0)
Groundfloore			02.20	0.10	14.01 5.92	(23	9) 9)
Pitched roofs in	sulated betwe	onraftors	44.77	0.13	1.02	(20	5) N
Party wall	Bulated betwe	emaiters	55 14	0.10	0.00	(00	"
Internal wall			141 52	0.00	0.00		
Internal timber	partition			0.00	0.00		
Internal floor			70.80	0.00	0.00		
Internal ceiling			70.80	0.00	0.00		
8							

JPA Designer Version 6.01x , SAP Version 9.92 Licensed to Laurence Jay Limited

Page 3 of 45

C:\Program Files\JPATL\JPA Designer 981\Brampton Road ADF Construction.JDP

3. Heat l	osses a	and heat	t loss pa	aramete	r							
Element		Gross	Ope	enings	Netarea	a U-\	/alue	ΑxU				
		area, m ²	m²		A, m²	W/	′m²K	W/K				
Total are:	anfexte	arnal elei	ments Si	ama A n	n²						212 77	(31)
Fabric be	a ol cxii	W/K		gina A, i							63.10	(33)
Thermal	masspa	rameter	k.l/m²K	(user-sp	ecified T	MP)					250.00	(35)
Effectoft	hermal	bridaes	,		oomoa n	, ,					10.54	. (36)
Total fabr	ric heat	loss									73.64	. (37)
Ventilatio	on heat l	oss calc	ulated m	onthly								
53.99	53.66	53.35	51.85	51.57	50.27	50.27	50.03	50.78	51.57	52.14	52.73	(38)
Heattran	sfercoe	efficient, V	W/K			я		Л				
127.63	127.30	126.99	125.49	125.22	123.92	123.92	123.67	124.42	125.22	125.78	126.37	
						л		J		.,	125.49	(39)
Heat loss	param	eter (HLF	P), W/m²l	K								. ,
1.12	1.11	1.11	1.10	1.09	1.08	1.08	1.08	1.09	1.09	1.10	1.11	
HLP (aver	rage)	А				я	n.	л			1.10	(40)
Number	ofdaysi	n month	(Table 1a	a)								. ,

Jan	Feb	Mar	Apr	May	Jun	Jul	Aug	Sep	Oct	Nov	Dec
31	28	31	30	31	30	31	31	30	31	30	31

JPA Designer Version 6.01 x , SAP Version 9.92 Licensed to Laurence Jay Limited

Page 4 of 45

4. Wate	er heatin	g energ ancy N	y requir	ements							kWh/year 2 84	<i>(Δ</i> :
Annual	average	not water	usageir	n litres pe	er day Vd	,average	9				101.62	(4
Jan	Feb	Mar	Apr	May	Jun	Jul	Aug	Sep	Oct	Nov	Dec	
Hot wat	er usage	in litres p	ber day f	or each r	nonth							
111.78	107.71	103.65	99.58	95.52	91.46	91.46	95.52	99.58	103.65	107.71	111.78	(4
Energy	content o	of hot wat	ter used									
165.76	144.98	149.61	130.43	125.15	108.00	100.07	114.84	116.21	135.43	147.83	160.53	
Energy Distribu	content (a tion loss	annual)									1598.83	(4
24.86	21.75	22.44	19.56	18.77	16.20	15.01	17.23	17.43	20.31	22.17	24.08	(4
Hot wate Volume Temper Energy Total sto	er cylinde factor ature fact lost from prage los	er loss fa or store (k\ s	ctor (kW Nh/day)	h/day)							0.0000 0.0000 0.0000 0.000	(5) (5) (5) (5)
0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00	(5
Net stor	age loss	Л	1	1	J	Л	J	Л	Л	Л		
0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00	(5
Primary	loss	A			,	я		Л	л			
0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00	(5
Combi l	oss calcu	lated for	each mo	onth	31	я		JL	н			
50.96	46.03	50.96	49.11	48.68	45.10	46.60	48.68	49.11	50.96	49.32	50.96	(6
Total he	atrequir	ed for wa	ter heati	ng calcul	ated for	each mo	nth					
216.72	191.01	200.56	179.54	173.83	153.10	146.68	163.51	165.32	186.39	197.15	211.49	(6
Output f	from wate	er heater	for each	month, k	wh/mor	nth						
216.72	191.01	200.56	179.54	173.83	153.10	146.68	163.51	165.32	186.39	197.15	211.49	(6
Heatga	ins from	water hea	ating, kW	/h/month							2185.29	(6
67.86	59.71	62.48	55.65	53.78	47.18	44.93	50.35	50.92	57.77	61.48	66.12	(6

Page 5 of 45

C:\Program Files\JPATL\JPA Designer 981\Brampton Road ADF Construction.JDP

5. Internal gains

Jan	Feb	Mar	Apr	May	Jun	Jul	Aug	Sep	Oct	Nov	Dec
Metabol	ic gains,	Watts								~	
141.93	141.93	141.93	141.93	141.93	141.93	141.93	141.93	141.93	141.93	141.93	141.93
Lighting	gains										
27.06	24.04	19.55	14.80	11.06	9.34	10.09	13.12	17.61	22.35	26.09	27.81
Appliand	ces gains	6									
277.68	280.56	273.30	257.84	238.33	219.99	207.74	204.85	212.12	227.57	247.09	265.43
Cooking	gains										
37.19	37.19	37.19	37.19	37.19	37.19	37.19	37.19	37.19	37.19	37.19	37.19
Pumpsa	and fans	gains									
3.00	3.00	3.00	3.00	3.00	3.00	3.00	3.00	3.00	3.00	3.00	3.00
Lossese	e.g.evap	oration (r	negative	values)							
-113.54	-113.54	-113.54	-113.54	-113.54	-113.54	-113.54	-113.54	-113.54	-113.54	-113.54	-113.54
Waterhe	eating ga	ins									
91.21	88.86	83.98	77.29	72.29	65.53	60.38	67.68	70.72	77.65	85.39	88.87
Totalinte	ernal gaiı	ns									
464.52	462.03	445.41	418.50	390.25	363.44	346.79	354.23	369.02	396.15	427.15	450.69

6. Solar gains (calculation for January)

				Area	a & Flux	9	g & FF	S	hading	Gains	
Window-Do	uble-glazed,	air-filled,	low-E,	0.9>	< 1.350 1	9.64	0.63 x 0.7	0 0.	.77	8.1031	
En=0.1, soft	coat (West)										
Data											
Window-Do	uble-glazed,	air-filled,	low-E,	0.9>	< 2.280 4	6.75	0.63 x 0.7	0 0.	.77	32.5767	,
En=0.1, soft	coat (South)										
Data											
Window-Do	uble-glazed,	air-filled,	low-E,	0.9>	7.470 1 v	9.64	0.63 x 0.7	0 0.	.77	44.8373	}
En=0.1, soft	coat (East)										
Data											
Window - Do	uble-glazed,	air-filled,	low-E,	0.9>	c 3.600 1	9.64	0.63 x 0.7	0 0.	.77	21.6084	ŀ
En=0.1, soft	coat (West)										
Data											
Halfglazedd	loor - Double	-glazed, a	air-filled,	0.93	< 2.100 0	0.00	0.63 x 0.7	0 0.	.77	0.0000)
low-E, En=0	.1, soft coat	(East)									
Data	_				o		.				
Full glazed d	oor - Double-	-glazed, a	ur-filled,	0.9>	×8.400 1	9.64	0.63 x 0.7	0 0.	.//	50.4195)
low-E, En=0	.1, soft coat	(West)									
Data											(00 A)
l otal solar ga	ains, January	/								157.55	o (83-1)
Solargains											
157.55 297	7.82 470.56	663.98	799.64	813.66	776.57	675.50	539.23	347.62	194.44	130.92	(83)
Total gains											
622.07 759	9.85 915.97	1082.48	1189.89	1177.10	1123.36	1029.7	3 908.25	743.78	621.58	581.60	(84)

JPA Designer Version 6.01x , SAP Version 9.92 Licensed to Laurence Jay Limited Page 6 of 45

C:\Program Files\JPATL\JPA Designer 981\Brampton Road ADF Construction.JDP

7. Mean internal temperature

Temper	ature dur	ing heati	na perio	dsinthel	iving are	a Th1(°	C)				21.0	8) 0(35)
Heating	system	esponsiv	/eness		i ing al o	α, πη (0)				1.0	0)
Jan	Feb	Mar	Apr	May	Jun	Jul	Aug	Sep	Oct	Nov	Dec		
tau					<u>д</u>	A		κ	л				
62.22	62.38	62.54	63.28	63.42	64.09	64.09	64.21	63.83	63.42	63.14	62.84		
alpha													
5.15	5.16	5.17	5.22	5.23	5.27	5.27	5.28	5.26	5.23	5.21	5.19		
Utilisati	on factor	forgains	forliving	area									
1.00	1.00	0.99	0.94	0.83	0.64	0.48	0.54	0.82	0.98	1.00	1.00	(8	6)
Meanin	ternal ter	nperatur	e in living	area T1									
19.75	19.93	20.22	20.59	20.85	20.97	20.99	20.99	20.90	20.52	20.06	19.72	(8	57)
Temper	ature du	ring heati	ng perio	ds in rest	ofdwelli	ng Th2							
19.99	19.99	19.99	20.00	20.00	20.01	20.01	20.02	20.01	20.00	20.00	20.00	(8	8)
Utilisati	on factor	for gains	for rest o	ofdwellir	ng								
1.00	0.99	0.98	0.92	0.78	0.56	0.38	0.43	0.74	0.96	1.00	1.00	(8	9)
Mean in	iternal tei	mperatur	re in the r	estofdw	elling T2	2							
18.32	18.58	19.01	19.53	19.87	20.00	20.01	20.01	19.93	19.45	18.78	18.28	(9)0)
Livinga	rea fracti	on (20.91	1/114.36	5)							0.1	8 (9) 1)
Meanin	ternal ter	nperatur	e (for the	whole d	welling)								
18.58	18.83	19.23	19.72	20.05	20.17	20.19	20.19	20.11	19.64	19.02	18.54	(9)2)
Applya	djustmen	t to the m	iean inte	rnaltem	perature,	where a	ppropria	ite					
18.58	18.83	19.23	19.72	20.05	20.17	20.19	20.19	20.11	19.64	19.02	18.54	(9)3)

8. Space heating requirement

Jan	Feb	Mar	Apr	May	Jun	Jul	Aug	Sep	Oct	Nov	Dec	
Utilisatic	on factor	for gains										
1.00	0.99	0.98	0.92	0.78	0.57	0.39	0.45	0.75	0.96	0.99	1.00	(
Useful g	ains											
620.45	754.33	894.24	993.49	928.71	672.90	443.06	464.83	680.25	713.19	617.86	580.52	(
Monthly	average	external	temperat	ture								
4.30	4.90	6.50	8.90	11.70	14.60	16.60	16.40	14.10	10.60	7.10	4.20	(
Heat los	s rate for	mean in	ternal ter	nperatur	e							
1822.37	1772.91	1616.33	1357.91	1045.15	690.69	445.11	468.86	747.88	1132.28	1498.92	1812.68	(
Fraction	ofmonth	n for heat	ing									
1.00	1.00	1.00	1.00	1.00	-	-	-	-	1.00	1.00	1.00	
Space h	eating re	quireme	ntforead	ch month	, kWh/m	onth						
894.23	684.48	537.23	262.38	86.64	-	-	-	-	311.80	634.36	916.73	
Total spa Space h	ace heat eating re	ing requi quireme	rement p nt per m²	er year ((kWh/m ²	kWh/yea ²/year)	ar) (Octo	ber to Ma	ay)			4327.86 37.84	

JPA Designer Version 6.01x , SAP Version 9.92 Licensed to Laurence Jay Limited

Page 7 of 45

C:\Program Files\JPATL\JPA Designer 981\Brampton Road ADF Construction.JDP

9a. Energy requirements

											kWh/year	
No seco Fractior Efficien	ondary he n of space cy of mai	eating sys e heat fro n heating	stem selo om main : g system	ected system(s	5)			9	1.0000 3.40%			(202) (206)
Jan	Feb	Mar	Apr	May	Jun	Jul	Aug	Sep	Oct	Nov	Dec	
Spaceh	neating re	quireme	nt		я	я	1	J	J			
894.23	684.48	537.23	262.38	86.64	-	-	-	-	311.80	634.36	916.73	(98)
Append	lix Q - mo	nthly ene	ergy save	ed (main	heating	system '	1)	κ.	λ	л		
0.00	0.00	0.00	0.00	0.00	-	-	-	-	0.00	0.00	0.00	(210)
Space	neating fu	iel (main	heating	system 1)	<i>х</i>		κ	R			
957.42	732.85	575.20	280.92	92.76	-	-	-	-	333.84	679.19	981.50	(211)
Append	lix Q - mo	nthly ene	ergy save	ed (main	heating	system	2)		л			
0.00	0.00	0.00	0.00	0.00	-	-	-	-	0.00	0.00	0.00	(212)
Space	neating fu	iel (main	heating	system 2	2)	я			J	л		
0.00	0.00	0.00	0.00	0.00	-	-	-	-	0.00	0.00	0.00	(213)
Append	lix Q - mo	nthly ene	ergy save	ed (seco	ndary he	ating sys	stem)		л	A		
0.00	0.00	0.00	0.00	0.00	-	-	-	-	0.00	0.00	0.00	(214)
Spaceh	neating fu	el (secor	ndary)		я	я			J			
0.00	0.00	0.00	0.00	0.00	-	-	-	-	0.00	0.00	0.00	(215)
Waterh	eating											
Waterh	eating red	quiremer	nt "	1	γ	v	1	1	γ <u> </u>	γ))	
216.72	191.01	200.56	179.54	173.83	153.10	146.68	163.51	165.32	186.39	197.15	211.49	(64)
Efficien	cy of wate	erheater	1	1	7	1	10		7	1	80.30	(216)
88.24	87.99	87.41	86.01	83.40	80.30	80.30	80.30	80.30	86.34	87.78	88.32	(217)
Waterh	eating fue	el	1	1	7		7		7	1	1	
245.62	217.09	229.45	208.75	208.43	190.66	182.66	203.63	205.87	215.88	224.58	239.47	(219)
Annual Space I Space I Water h	totals neating fu neating fu leating fue	ıel used, el (secor el	main sy ndary)	stem 1							kWh/year 4633.68 0.00 2572.09	(211) (215) (219)
Electric centra boiler	ity for pur I heating with a fan	mps, fan: pump -assistee	s and ele d flue	ectric kee	ep-hot						30.00 45.00	(230c) (230e)
Total ele Electric Energy	ectricity for ity for ligh saving/ge lix O -	or the abouting (100 eneration	ove, kWh).00% fix technolo	n/year ed LEL) ogies							75.00 477.91	(231) (232)
Energ	y saved o yy used ()	or genera :	ated ():								0.000 0.000	(236a) (237a)
Total de	eliverede	nergy for	alluses								7758.69	(238)

10a. Does not apply

11a. Does not apply

Page 8 of 45

C:\Program Files\JPATL\JPA Designer 981\Brampton Road ADF Construction.JDP

12a. Carbon dioxide emissions

	Energy	Emission factor	Emission	S
	kWh/year	kg CO2/kWh	kg CO2/y	ear
Space heating, main system 1	4633.68	0.216	1000.88	(261)
Space heating, main system 2	0.00	0.000	0.00	(262)
Space heating, secondary	0.00	0.519	0.00	(263)
Waterheating	2572.09	0.216	555.57	(264)
Space and water heating			1556.45	(265)
Electricity for pumps and fans	75.00	0.519	38.93	(267)
Electricity for lighting	477.91	0.519	248.04	(268)
Electricity generated - PVs	0.00	0.519	0.00	(269)
Electricity generated - µCHP	0.00	0.000	0.00	(269)
Appendix Q -				
Energy saved ():	0.00	0.000	0.00	(270)
Energy used ():	0.00	0.000	0.00	(271)
Total CO2, kg/year			1843.41	(272)

	kg/m²/yea	r
Emissions per m ² for space and water heating	13.61	(272a)
Emissions per m ² for lighting	2.17	(272b)
Emissions per m ² for pumps and fans	0.34	(272c)
Target Carbon Dioxide Emission Rate (TER)	16.12	(273)
$=(13,6101 \times 1,00) + 2,1689 + 0,3404$		

 $= (13.6101 \times 1.00) + 2.1689 + 0.3404$

JPA Designer Version 6.01x , SAP Version 9.92 Licensed to Laurence Jay Limited

Page 9 of 45

C:\Program Files\JPATL\JPA Designer 981\Brampton Road ADF Construction.JDP

Building type Semi-detached house

Plotnumber	Plot 5		
Reference			
Date	08/02/2016		
Client	Byatt Oliver	Project	New Dwelling Plot 5 As-Designed
	Unit 1B Whitebridge Way		Victoria Court
	Whitebridge Industrial Estate		May Bank
	Stone		Brampron
	Staffordshire		ST5
	ST158LQ		
Tel:	01785719268		
Email:	david@byattoliver.co.uk		

SAP 2012 worksheet for New dwelling as designed - calculation of dwelling emissions

1. Overall dwelling dimensions

	Area	Av. Storey	Volume	
	(m²)	height (m)	(m³)	
Ground floor (1)	44.77	2.40	107.45	(3a)
Firstfloor	44.17	2.65	117.05	(3b)
Second floor	25.42	2.05	52.11	(3c)
Total floor area	114.36			(4)
Dwelling volume (m ³)			276.61	(5)

Page 10 of 45

2. Ventilation rate

											m³ per ho	our
							main + s heating	seonda	ry + othe	er		
Numbe	rofchim	neys					0 + 0 + 0)	x 40		0.00	(6a)
Numbe	rofopen	flues					0 + 0 + 0)	x 20		0.00	(6b)
Numbe	rofinter	mittent fa	ins				2		x 10		20.00	(7a)
Numbe	rofpass	ive vents					0		x 10		0.00	(7b)
Numbe	eroffluele	ess gas fi	ires				0		x 40		0.00	(7c)
											Air chang	jes per hour
Infiltrat	ion due t	o chimne	eys, fans	and flues	S						0.07	(8)
Pressu	re test, r	esult q50)						3.00			(17)
Air perr	neability										0.32	(18)
Numbe	er of sides	s on whic	h shelter	ed							2.00	(19)
Shelter	factor										0.85	(20)
Infiltrati	ion rate ir	ncorpora	ting shelt	er factor							0.27	(21)
Infiltrat	ion rate n	nodifiedf	for month	ly wind s	speed							
Jan	Feb	Mar	Apr	May	Jun	Jul	Aug	Sep	Oct	Nov	Dec	
5.10	5.00	4.90	4.40	4.30	3.80	3.80	3.70	4.00	4.30	4.50	4.70	
Wind F	actor										52.50	(22)
1.27	1.25	1.23	1.10	1.08	0.95	0.95	0.93	1.00	1.08	1.13	1.18	
									J	I	13.13	(22a)
Adjuste	ed infiltra	tion rate	(allowing	forshelt	ter and w	vind spe	ed)					
0.35	0.34	0.34	0.30	0.29	0.26	0.26	0.25	0.27	0.29	0.31	0.32	
			R			_	,		JL	<u>R</u>	3.60	(22b)
Ventila Effectiv	tion : nat ⁄e air cha	ural vent nge rate	ilation, in	termitte	nt extrac	t fans						
0.56	0.56	0.56	0.55	0.54	0.53	0.53	0.53	0.54	0.54	0.55	0.55	(25)

Page 11 of 45

C:\Program Files\JPATL\JPA Designer 981\Brampton Road ADF Construction.JDP

3. Heat losses	and heat los	s paramete	r					
Element	Gross	Openings	Netarea	U-value	ΑxU	kappa-value	AxK	
	area, m²	m²	A, m²	W/m²K	W/K	kJ/m²K	kJ/K	
Window-Double	e-glazed,		1.350	1.33 (1.40)	1.79			(27)
argon filled, low-	·E, En=0.05,							
soft coat (West)								
Data								
Window-Double	e-glazed,		3.600	1.33 (1.40)	4.77			(27)
argon filled, low-	·E, En=0.05,							
soft coat (West)								
Data								
Window-Double	e-glazed,		7.470	1.33 (1.40)	9.90			(27)
argon filled, low-	E, En=0.05,							
soft coat (East)								
Data								
Window-Double	e-glazed,		2.280	1.33 (1.40)	3.02			(27)
argon filled, low-	·E, En=0.05,							
soft coat (South))							
Data								
Half glazed door	r –		2.100	1.10	2.31			(26)
Double-glazed, a	argon filled,							
low-E, En=0.05,	, soft coat							
(East)								
Data								
Full glazed door	· -		8.400	1.40	11.76			(26)
Double-glazed, a	argon filled,							
low-E, En=0.05,	, soft coat							
(West)								
Data								
Pitched roofs ins	sulated betwe	en joists	29.56	0.14	4.14	9.00	266.04	(30)
Walls			15.20	0.22	3.34	9.00	136.80	(29)
Timber partitio	n to roofspace	e						
Walls			1.53	0.22	0.34	9.00	13.77	(29)
Dormer walls								
Walls			82.26	0.20	16.45	60.00	4935.60	(29)
Ground floors			44.77	0.12	5.37	80.00	3581.60	(28)
Pitched roofs ins	sulated betwe	en rafters	14.25	0.15	2.14	9.00	128.25	(30)
Party wall			55.14	0.00	0.00	70.00	3859.80	
Internalwall			141.52	0.00	0.00	9.00	1273.68	
Internal timber	partition			• • •				
Internal floor			70.80	0.00	0.00	18.00	1274.40	
Internal ceiling			70.80	0.00	0.00	9.00	637.20	

JPA Designer Version 6.01x , SAP Version 9.92 Licensed to Laurence Jay Limited

Page 12 of 45

C:\Program Files\JPATL\JPA Designer 981\Brampton Road ADF Construction.JDP

3. Heat	losses a	and hea	t loss pa	aramete	r							
Element	:	Gross	Ope	enings	Netarea	a U-v	/alue	ΑxU	ka	ippa-valu	еАхК	
		area, m²	m²		A, m²	W/	m²K	W/K	kJ	/m²K	kJ/K	
Total are	ea of exte	ernal elei	ments Si	gma A, n	n²						212.	77 (31)
Fabric h	eat loss	, W/K									65.3	34 (33)
Heat cap	pacity										19.3	35 (34)
Therma	l mass pa	arameter	, kJ/m²K								140.8	35 (35)
Effectof	thermal	bridges									19.3	35 (36)
Total fat	oric heat	loss									84.0	39 (37)
Ventilati	on heat	oss calc	ulated m	onthly								
51.21	50.99	50.78	49.79	49.60	48.73	48.73	48.57	49.07	49.60	49.98	50.37	(38)
Heattra	nsfer coe	efficient,	W/K									
135.90	135.68	135.47	134.48	134.29	133.42	133.42	133.26	133.76	134.29	134.67	135.06	
											134.4	48 (39)
Heat los	s param	eter (HLF	²), W/m²	K								
1.19	1.19	1.18	1.18	1.17	1.17	1.17	1.17	1.17	1.17	1.18	1.18	
HLP (ave	erage)										1.1	18 (40)
Number	ofdaysi	n month	(Table 1	a)								
Jan	Feb	Mar	Apr	May	Jun	Jul	Aug	Sep	Oct	Nov	Dec	
31	28	31	30	31	30	31	31	30	31	30	31	

JPA Designer Version 6.01x , SAP Version 9.92 Licensed to Laurence Jay Limited

Page 13 of 45

C:\Program Files\JPATL\JPA Designer 981\Brampton Road ADF Construction.JDP

4. Wate Assume	e r heatin ed occupa	g energ ancy, N	y requir	ements							kWh/year 2.84	(42
Annual	average	hot wate	r usage ir	n litres pe	er day Vd	,average	9				101.62	(4
Jan	Feb	Mar	Apr	May	Jun	Jul	Aug	Sep	Oct	Nov	Dec	
Hot wat	er usage	in litres	ber day f	or each r	nonth							
111.78	107.71	103.65	99.58	95.52	91.46	91.46	95.52	99.58	103.65	107.71	111.78	(4
Energy	content of	of hot wat	ter used									
165.76	144.98	149.61	130.43	125.15	108.00	100.07	114.84	116.21	135.43	147.83	160.53	
Energy Distribu	content (a ition loss	annual)									1598.83	(4
24.86	21.75	22.44	19.56	18.77	16.20	15.01	17.23	17.43	20.31	22.17	24.08	(4
Hot wat Volume Temper Energy Total ste	er cylinde factor ature fact lost from orage los	er loss fa or store (k\ s	ctor (kW Nh/day)	h/day)							0.0000 0.0000 0.0000 0.000	(5 (5 (5 (5
0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00	(5
Net stor	rage loss	<u>д</u>			,	л						
0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00	(5
Primary	loss		,						~			
0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00	(5
Combi l	oss calcı	lated for	each mo	onth	<u>д</u>	<i>R</i>		R	л			
12.64	11.42	12.64	12.23	12.64	12.23	12.64	12.64	12.23	12.64	12.23	12.64	(6
Total he	eatrequir	ed for wa	ter heati	ng calcul	ated for	each mo	nth					
178.41	156.40	162.25	142.66	137.79	120.23	112.71	127.48	128.44	148.07	160.06	173.17	(6
Output	from wate	er heater	for each	month, k	wh/mor	nth						
178.41	156.40	162.25	142.66	137.79	120.23	112.71	127.48	128.44	148.07	160.06	173.17	(6
Heatga	ins from	water he	ating, kW	/h/month	ı						1747.67	(6
58.28	51.06	52.90	46.43	44.77	38.97	36.43	41.34	41.70	48.19	52.21	56.54	(6

Page 14 of 45

C:\Program Files\JPATL\JPA Designer 981\Brampton Road ADF Construction.JDP

5. Internal gains

Jan	Feb	Mar	Apr	May	Jun	Jul	Aug	Sep	Oct	Nov	Dec
Metabol	ic gains,	Watts				A					
141.93	141.93	141.93	141.93	141.93	141.93	141.93	141.93	141.93	141.93	141.93	141.93
Lighting gains											
27.06	24.04	19.55	14.80	11.06	9.34	10.09	13.12	17.61	22.35	26.09	27.81
Applianc	ces gains	5									
277.68	280.56	273.30	257.84	238.33	219.99	207.74	204.85	212.12	227.57	247.09	265.43
Cooking	gains										
37.19	37.19	37.19	37.19	37.19	37.19	37.19	37.19	37.19	37.19	37.19	37.19
Pumps a	and fans	gains									
10.00	10.00	10.00	10.00	10.00	10.00	10.00	10.00	10.00	10.00	10.00	10.00
Lossese	e.g.evap	oration (r	negative	values)							
-113.54	-113.54	-113.54	-113.54	-113.54	-113.54	-113.54	-113.54	-113.54	-113.54	-113.54	-113.54
Waterhe	eating ga	ins									
78.33	75.98	71.11	64.48	60.18	54.12	48.97	55.57	57.91	64.77	72.52	75.99
Total inte	ernal gaiı	ns									
458.65	456.16	439.53	412.70	385.15	359.03	342.38	349.12	363.21	390.28	421.27	444.81

6. Solar gains (calculation for January)

	Area & Flux	g & FF	Shading	Gains
Window - Double-glazed, argon filled, low-E, En=0.05, soft coat (West) Data	0.9 x 1.350 19.64	0.63 x 0.70	0.77	8.1031
Window - Double-glazed, argon filled, low-E, En=0.05, soft coat (West) Data	0.9 x 3.600 19.64	0.63 x 0.70	0.77	21.6084
Window - Double-glazed, argon filled, low-E, En=0.05, soft coat (East) Data	0.9 x 7.470 19.64	0.63 x 0.70	0.77	44.8373
Window - Double-glazed, argon filled, low-E, En=0.05, soft coat (South) Data	0.9 x 2.280 46.75	0.63 x 0.70	0.77	32.5767
Halfglazed door - Double-glazed, argon filled, low-E, En=0.05, soft coat (East) Data	0.9 x 2.100 0.00	0.63 x 0.70	0.77	0.0000
Full glazed door - Double-glazed, argon filled, low-E, En=0.05, soft coat (West) Data	0.9 x 8.400 19.64	0.63 x 0.70	0.77	50.4195
Lighting calculations				
	Area	g	FF x Shadir	ng
Window - Double-glazed, argon filled, low-E, En=0.05, soft coat (West) Data	0.9 x 1.35	0.80	0.70 x 0.83	0.56
Window - Double-glazed, argon filled, low-E, En=0.05, soft coat (West) Data	0.9 x 3.60	0.80	0.70 x 0.83	1.51

JPA Designer Version 6.01x , SAP Version 9.92 Licensed to Laurence Jay Limited

Page 15 of 45

C:\Program Files\JPATL\JPA Designer 981\Brampton Road ADF Construction.JDP

Lighting calculations

99				
	Area	g	FF x Shading	
Window - Double-glazed, argon filled, low-E,	0.9 x 7.47	0.80	0.70 x 0.83	3.12
En=0.05, soft coat (East)				
Data				
Window - Double-glazed, argon filled, low-E,	0.9 x 2.28	0.80	0.70 x 0.83	0.95
En=0.05, soft coat (South)				
Data				
GL = 6.15 / 114.36 = 0.054				
C1 = 0.500				
C2 = 1.049				
EI = 478				

7. Mean internal temperature

Temper Heating	ature dur system r	ing heati esponsiv	ing perio /eness	ds in the l	iving are	a, Th1 (°	C)				21.00 1.00) (85))
Jan	Feb	Mar	Apr	May	Jun	Jul	Aug	Sep	Oct	Nov	Dec	
tau										·		
32.92	32.98	33.03	33.27	33.32	33.53	33.53	33.57	33.45	33.32	33.22	33.13	
alpha												
3.19	3.20	3.20	3.22	3.22	3.24	3.24	3.24	3.23	3.22	3.21	3.21	
Utilisatio	on factor	for gains	forliving	area	<u>д</u>	R			л			
0.99	0.98	0.95	0.89	0.78	0.63	0.49	0.55	0.77	0.94	0.98	0.99	(86)
Meanin	ternal ter	nperatur	e in living	area T1	λ	Α	л		л.			
18.94	19.20	19.64	20.17	20.60	20.86	20.95	20.93	20.72	20.12	19.42	18.89	(87)
Temper	ature du	ring heati	ing perio	ds in rest	ofdwelli	ng Th2			л			
19.93	19.93	19.93	19.94	19.94	19.95	19.95	19.95	19.94	19.94	19.94	19.94	(88)
Utilisatio	on factor	for gains	for rest	of dwellir	ng							
0.99	0.97	0.94	0.87	0.74	0.55	0.39	0.44	0.71	0.92	0.98	0.99	(89)
Mean in	ternal ter	nperatu	re in the r	estofdw	elling T2	2						
17.17	17.56	18.18	18.94	19.51	19.83	19.92	19.91	19.68	18.89	17.88	17.10	(90)
Living a Mean in	rea fractio ternal ter	on (20.9´ nperatur	1/114.36 e (for the	3) whole dv	welling)						0.18	3 (91)
17.50	17.86	18.45	19.16	19.71	20.02	20.11	20.10	19.87	19.11	18.16	17.43	(92)
Applya	djustmen	t to the m	nean inte	rnal temp	, perature	, where a	ppropria	ite	л	_n	л	
17.50	17.86	18.45	19.16	19.71	20.02	20.11	20.10	19.87	19.11	18.16	17.43	(93)

JPA Designer Version 6.01x , SAP Version 9.92 Licensed to Laurence Jay Limited

C:\Program Files\JPATL\JPA Designer 981\Brampton Road ADF Construction.JDP

Approval of JPA Designer by BRE applies only to the software, data is not subject to quality control procedures, users are themselves responsible for the accuracy of the data. The results of the calculation should not be accepted without first checking the input data.

Page 16 of 45

8. Space heating requirement

Jan	Feb	Mar	Apr	May	Jun	Jul	Aug	Sep	Oct	Nov	Dec
Utilisatio	on factor	for gains									
0.98	0.96	0.92	0.85	0.73	0.56	0.40	0.46	0.70	0.90	0.96	0.98
Useful g	ains										
602.72	724.42	840.89	912.63	859.10	656.40	451.63	467.55	632.48	662.07	594.10	565.33
Monthly	average	external	temperat	ure		A					
4.30	4.90	6.50	8.90	11.70	14.60	16.60	16.40	14.10	10.60	7.10	4.20
Heat los	s rate for	meanin	ternal ter	nperatur	e						
1793.41	1758.19	1618.64	1380.02	1075.94	722.94	468.30	492.53	771.80	1143.03	1489.94	1786.64
Fraction	ofmonth	n for heat	ing			A					
1.00	1.00	1.00	1.00	1.00	-	-	-	-	1.00	1.00	1.00
Space h	eating re	quireme	ntforead	ch month	, kWh/m	onth					
885.87	694.69	578.65	336.52	161.33	-	-	-	-	357.83	645.01	908.65
Total sp	ace heat	ing requi	rementp	er year (kWh/yea	ar) (Octo	ber to Ma	ay)			4568.56
Spaceh	eating re	quireme	nt per m ²	(kWh/m	²/year)						39.95

8c. Space cooling requirement - not applicable

JPA Designer Version 6.01x , SAP Version 9.92 Licensed to Laurence Jay Limited Page 17 of 45

C:\Program Files\JPATL\JPA Designer 981\Brampton Road ADF Construction.JDP

9a. Energy requirements

											kWh/year	
Fraction Fraction Efficien	n of heat f n of space cy of mai	from sec e heat fro n heating	ondary s om main g system	ystem system(s	s)			9	0.1000 0.9000 2.90%		-	(201) (202) (206)
	Feb	Mar		May	lun	l lul	Δυα	0 Son	0.00%	Nov	Dec	(200)
Spacet			μΑρι nt	iviay	Jun	Jui	Aug	Sep		INOV	Dec	
885 87		578 65	336 52	161 33					357.83	645.01	008 65	(98)
Append	lix Q - mc	nthly en	erav sav	ed (main	l - heating	svstem '	<u> </u> - 1)		557.05	043.01	300.03	(00)
						-	· /	_	0.00	0.00	0.00	(210)
Space I	neating fu	lel (main	heating	svstem 1	1)				0.00	0.00	0.00	(210)
858 22	673.01	560.58	326.02	156 29	., _	-	-	_	346 66	624 87	880 29	(211)
Append	lix Q - mo	nthly en	erav sav	ed (main	l heating	svstem 2	 2)		0-10.00	02-1.07	000.20	(=)
0.00			0.00		-	-	-/	_	0.00	0.00	0.00	(212)
Space I	neating fu	lel (main	heating	svstem 2	2)	l			0.00	0.00	0.00	(= · =)
0.00	0.00	0.00	0.00	0.00	-	-	-	_	0.00	0.00	0.00	(213)
Append	lix Q - mo	nthly ene	eravsave	ed (seco	ا ndarv he	ating sve	stem)		10.00			()
0.00	0.00	0.00	0.00	0.00	-	-	-	-	0.00	0.00	0.00	(214)
Space	neating fu	el (secor	ndary)				1	И	1	1		()
. 104.22	81.73	68.08	39.59	18.98	-	-	-	-	42.10	75.88	106.90	(215)
Waterh	eating	JL	JL][JL	J	1	J(. ,
Waterh	eating re	quiremer	nt									
178.41	156.40	162.25	142.66	137.79	120.23	112.71	127.48	128.44	148.07	160.06	173.17	(64)
Efficien	cyofwate	erheater									87.30	(216)
89.41	89.37	89.27	89.05	88.61	87.30	87.30	87.30	87.30	89.06	89.33	89.43	(217)
Waterh	eating fu	el										
199.53	175.00	181.75	160.20	155.49	137.72	129.11	146.02	147.12	166.25	179.19	193.63	(219)
Annual Space I Space I	totals heating fu neating fu	uel used, Iel (secor	main sy ndary)	stem 1							kWh/year 4425.94 537.48	(211) (215)
Water h Electric	eating fu ity for pu	el mps, fan:	s and ele	ectric kee	ep-hot						1971.03	(219) (230c)
boiler	with a fan	pump i-assister	dflue								45.00	(2300) (230e)
Total el	ectricity f	or the ab	ove, kWł	h/year							175.00	(231)
Electric Energy	ity for ligh saving/ge lix Q -	nting (100 eneration	0.00% fix technolo	(ed LEL) ogies							477.91	(232)
Energ	y saved o y used ()	or genera):	ated ():								0.000 0.000	(236a) (237a)
Total de	elivered e	nergy for	alluses								7587.36	(238)

10a. Does not apply

11a. Does not apply

Page 18 of 45

C:\Program Files\JPATL\JPA Designer 981\Brampton Road ADF Construction.JDP

12a. Carbon dioxide emissions

	Energy	Emission factor	Emissions	
	kWh/year	kg CO2/kWh	kg CO2/y	ear
Space heating, main system 1	4425.94	0.216	956.00	(261)
Space heating, main system 2	0.00	0.000	0.00	(262)
Space heating, secondary	537.48	0.216	116.10	(263)
Waterheating	1971.03	0.216	425.74	(264)
Space and water heating			1497.84	(265)
Electricity for pumps and fans	175.00	0.519	90.83	(267)
Electricity for lighting	477.91	0.519	248.04	(268)
Electricity generated - PVs	0.00	0.519	0.00	(269)
Electricity generated - µCHP	0.00	0.000	0.00	(269)
Appendix Q -				
Energy saved ():	0.00	0.000	0.00	(270)
Energy used ():	0.00	0.000	0.00	(271)
Total CO2, kg/year			1836.70	(272)

Dwelling Carbon Dioxide Emission Rate (DER)

kg/m²/year 16.06 (273)

JPA Designer Version 6.01 x , SAP Version 9.92 Licensed to Laurence Jay Limited

Page 19 of 45

C:\Program Files\JPATL\JPA Designer 981\Brampton Road ADF Construction.JDP

Building type Semi-detached house

Plotnumber	Plot 5		
Reference			
Date	08/02/2016		
Client	Byatt Oliver	Project	New Dwelling Plot 5 As-Designed
	Unit 1B Whitebridge Way	-	Victoria Court
	Whitebridge Industrial Estate		May Bank
	Stone		Brampron
	Staffordshire		ST5
	ST158LQ		
Tel:	01785719268		
Email:	david@byattoliver.co.uk		

REGULATION COMPLIANCE REPORT - Approved Document L1A, 2012 Edition, England

assessed by program JPA Designer version 6.03a1, printed on 8/2/2016 at 3:53:39 PM

New dwelling as designed

1 TER and DER Fuel for main heating system: Gas (mains) (fuel factor = 1.00) Target Carbon Dioxide Emission Rate Dwelling Carbon Dioxide Emission Rate	TER = 16.12 DER = 16.06	ОК
1b TFEE and DFEE Target Fabric Energy Efficiency (TFEE) Dwelling Fabric Energy Efficiency (DFEE)	TFEE = 49.7 DFEE = 47.4	ОК

2a Thermal bridging

Thermal bridging calculated from linear thermal transmittances for each junction

2b Fabric U-values				
	Element	Average	Highest	
	Wall	0.20 (max. 0.30)	0.22 (max. 0.70)	OK
	Floor	0.12 (max. 0.25)	0.12 (max. 0.70)	OK
	Roof	0.14 (max. 0.20)	0.15 (max. 0.35)	OK
	Openings	1.39 (max. 2.00)	1.40 (max. 3.30)	OK
3 Air permeability				
	Air permeabili	ty at 50 pascals:	3.00	OK
	Maximum :		10.00	

JPA Designer Version 6.01x, SAP Version 9.92 Licensed to Laurence Jay Limited

Page 20 of 45

C:\Program Files\JPATL\JPA Designer 981\Brampton Road ADF Construction.JDP

4 Heating efficiency Main heating system:	,		
main neating eyetern	rs, mains gas		
a	Ideal Logic Code	Combi ES	
Source of efficiency:	from boiler databa		
	Ideal Logic Code	-OMDIES 33 Efficiency: 89.0% SEDBLIK 2009	
		Minimum: 88.0%	OK
Secondary heating sy	stem:		ÖR
,	Room heater syst	ems - Gas	
	Condensing gas fi	re	
		Efficiency: 85.00%	
		Minimum: 63.00%	OK
5 Cylinder insulatio	n		
Hot water storage	Nocylinder		
6 Controls			
(Also refer to "Domes	tic Building Service	s Compliance Guide" by the DCLG)	
Space heating contro	ls	Time and temperature zone control	OK
Hot water controls No cylinder			
Boiler Interlock Yes			
Hot water controls		Nocylinder	
7 Low energy lights			
0, 0		Percentage of fixed lights with low-energy fittings: 100.0%	
		Minimum: 75.0%	OK
8 Mechanical ventil	ation		
		Notapplicable	
9 Summertime terre	perature		
Overheating risk (Mid	ands).		ОК
e verneating her (initia		Slight	OK
Based on:			
Thermal mass para	meter :	140.85	
Overshading:		Average or unknown (20-60 % sky blocked)	
Orientation : East			
Ventilation rate :		4.00	
Blinds/curtains :	· · · · · · · · · · · · · · · · · · ·		
Light-coloured curta	un or roller blind wit	n blings/snutters closed 0.00% of daylight hours	
None with blinds/sh	utters closed 0.00%	o of daylight hours	
10 Key features			

Double-glazed, argon filled, low-E, En=0.05, soft coat U-value 1.10 W/m²K Ground floors U-value 0.12 W/m²K Design air permeability 3.0 m³/h.m²

JPA Designer Version 6.01x , SAP Version 9.92 Licensed to Laurence Jay Limited

Page 21 of 45

C:\Program Files\JPATL\JPA Designer 981\Brampton Road ADF Construction.JDP

Building type Semi-detached house

Plotnumber	Plot 5		
Reference			
Date	08/02/2016		
Client	ByattOliver	Project	New Dwelling Plot 5 As-Designed
	Unit 1B Whitebridge Way		Victoria Court
	Whitebridge Industrial Estate		May Bank
	Stone		Brampron
	Staffordshire		ST5
	ST158LQ		
Tel:	01785719268		
Email:	david@byattoliver.co.uk		

SAP 2012 input data Printed on 8 Feb 2016 at 03:53 PM

Plot 5 Victoria Court Development As-Designed

New Dwelling Plot 5 As-Des Victoria Court May Bank Brampron	gned		
ST5			
Located in: Region: Postcode: UPRN:	England Midlands ST5		
Date of assessment: Date of certificate: Assessment type: Tenure: Transaction type: Related party disclosure: PCDF revision number:	2016-02-08 2016-02-08 New dwelling as de Unknown New dwelling No related party 387	esigned	
Property description Dwelling type: Ground floor (1) First floor Second floor	Semi-detached ho area = 44.77m ² area = 44.17m ² area = 25.42m ²	use storey height = 2.40m storey height = 2.65m storey height = 2.05m	1 1 1
Living area:	20.91 (fraction 0.1)	83)	
Front of dwelling faces:	East		
Doors Halfglazed door	area = 2.10	U = 1.10	- Double-glazed, argon filled, low-E, En=0.05, soft coat (East)
Full glazed door	area = 8.40	U = 1.40	- Double-glazed, argon filled, low-E, En=0.05, soft coat (West)
Windows			
Window	area = 1.35	U = 1.40	- Double-glazed, argon filled, low-E, En=0.05, soft coat (West)
Overshading:	Average or unknow	wn (20-60 % sky blocke	d)
		Page 22 of 45	

JPA Designer Version 6.01x , SAP Version 9.92 Licensed to Laurence Jay Limited

C:\Program Files\JPATL\JPA Designer 981\Brampton Road ADF Construction.JDP

Building type Semi-detached house

Plotnumber	Plot 5		
Reference			
Date	08/02/2016		
Client	Byatt Oliver	Project	New Dwelling Plot 5 As-Designed
	Unit 1B Whitebridge Way		Victoria Court
	Whitebridge Industrial Estate		May Bank
	Stone		Brampron
	Staffordshire		ST5
	ST158LQ		
Tel:	01785719268		
Email:	david@byattoliver.co.uk		

SAP 2012 input data Printed on 8 Feb 2016 at 03:53 PM

Plot 5 Victoria Court Development As-Designed

Window	area = 3.60	U = 1.40	- Double-glazed, argon filled, low-E, En=0.05, soft coat (West)
Overshading:	Average or unkr	nown (20-60 % sky block	ed)
Window	area = 7.47	U = 1.40	- Double-glazed, argon filled, low-E, En=0.05, soft coat (East)
Overshading:	Average or unkr	nown (20-60 % sky block	ed)
Window	area = 2.28	U = 1.40	- Double-glazed, argon filled, low-E, En=0.05, soft coat (South)
Overshading:	Average or unkr	nown (20-60 % sky block	ed)
Rooflights			
Opaque Elements Roofs Walls Walls Walls Ground floors Roofs	area = 29.56 area = 15.20 area = 1.53 area = 82.26 area = 44.77 area = 14.25	U = 0.14, k = 9.0 U = 0.22, k = 9.0 U = 0.22, k = 9.0 U = 0.20, k = 60.0 U = 0.12, k = 80.0 U = 0.15, k = 9.0	Timber partition to roofspace Dormer walls
Thermal bridges: E10 Eaves (insulation at	Htb = 19.35 0.060	0.060	11.300
E12 Gable (insulation at ceiling level) [A] E10	0.240	0.240	6.900
E13 Gable (insulation at rafter level) [A] E13	0.040	0.040	7.000
E16 Corner (normal) [A] E16	0.090	0.090	10.800
E17 Corner (inverted – internal area greater than external area) [A] E17	-0.090	-0.090	10.800
E18 Party wall between dwellings (c) [A] E18	0.060	0.060	10.200

JPA Designer Version 6.01x , SAP Version 9.92

Page 23 of 45

Licensed to Laurence Jay Limited

C:\Program Files\JPATL\JPA Designer 981\Brampton Road ADF Construction.JDP

Building type Semi-detached house

Plotnumber	Plot 5		
Date	08/02/2016		
Client	Byatt Oliver Unit 1B Whitebridge Way Whitebridge Industrial Estate	Project	New Dwelling Plot 5 As-Designed Victoria Court May Bank
	Stone		Brampron
	Statiordshire ST158LQ		515
Tel: Email:	01785719268 david@byattoliver.co.uk		

SAP 2012 input data Printed on 8 Feb 2016 at 03:53 PM

Plot 5 Victoria Court Development As-Designed

E2 Other lintels (including other steel lintels) [A] E2	0.300	0.300	18.550
E25 Staggered party wall between dwellings (c) [D] E25	0.000	0.120	10.800
E3 Sill [A] E3	0.040	0.040	18.550
E4 Jamb [A] E4	0.050	0.050	31.200
E5 Ground floor (normal) [A] E5	0.160	0.160	13.700
E6 Intermediate floor within a dwelling [A] E6	0.070	0.070	23.900
P1 Ground floor (c) [D] P1	0.000	0.160	8.970
P2 Intermediate floor within a dwelling (c) [D] P2	0.000	0.000	8.970
P4 Roof (insulation at ceiling level) (c) [D] P4	0.000	0.240	3.000
P5 Roof (insulation at rafter level) (c) [D] P5	0.000	0.080	6.900
R8 Roof to wall (rafter) [D] R9	0.000	0.060	6.500
Thermal mass: Pressure test: Ventilation: Number of chimneys: Number of open flues: Number of intermittent fans:	Calculated from k value Yes (q50 - 3.00) : me Natural ventilation with 0 2	ues asured in this dwelling th intermittent extract f	g:No ans
Number of passive stacks: Number of sides sheltered: Measured/design q50:	0 2.00 3.00		
Main heating system:	Central heating syste Gas boilers (including Condensing combi w Index: 17179	ms with radiators or ur g LPG) 1998 or later ith automatic ignition	nderfloor heating

JPA Designer Version 6.01x , SAP Version 9.92

Licensed to Laurence Jay Limited

C:\Program Files\JPATL\JPA Designer 981\Brampton Road ADF Construction.JDP

Approval of JPA Designer by BRE applies only to the software, data is not subject to quality control procedures, users are themselves responsible for the accuracy of the data. The results of the calculation should not be accepted without first checking the input data.

Page 24 of 45

Building type Semi-detached house

Plot number Reference	Plot 5		
Date	08/02/2016		
Client	ByattOliver	Project	New Dwelling Plot 5 As-Designed
	Unit 1B Whitebridge Way		Victoria Court
	Whitebridge Industrial Estate		May Bank
	Stone		Brampron
	Staffordshire		ST5
	ST158LQ		
Tel:	01785719268		
Email:	david@byattoliver.co.uk		

SAP 2012 input data Printed on 8 Feb 2016 at 03:53 PM

Plot 5 Victoria Court Development As-Designed

Main heating controls: Boiler has load compensator: Boiler has weather compensator: Boiler has emhanced load compensator: Boiler interlock:	Eff 87.30% / 89.90% Ideal Logic Code Combi ES 33 Radiators Pump in heated space: Yes Boiler has load or weather compensator: Yes Boiler Interlock: Yes Design flow temperature : > 45°C Central heating pump pre-2013 Gas (mains) Time and temperature zone control No Yes No Yes
Secondary heating system:	Room heater systems Gas Condensing gas fire
	Gas (mains)
Water heating:	Combination boiler Combination boiler type : Instantaneous Solar panel: no
Water use <= 125 litres/person/day:	Yes
Low energy lights: Total fixed lighting outlets: Electricity tariff: Photovoltaics 1: Photovoltaics 2:	100.0% of fixed lighting outlets 10 Standard tariff Peak kW: 0.00 Peak kW: 0.00

JPA Designer Version 6.01x , SAP Version 9.92 Licensed to Laurence Jay Limited

Page 25 of 45

C:\Program Files\JPATL\JPA Designer 981\Brampton Road ADF Construction.JDP

Building type Semi-detached house

Plotnumber	Plot 5		
Reference			
Date	08/02/2016		
Client	Byatt Oliver	Project	New Dwelling Plot 5 As-Designed
	Unit 1B Whitebridge Way		Victoria Court
	Whitebridge Industrial Estate		May Bank
	Stone		Brampron
	Staffordshire		ST5
	ST158LQ		
Tel:	01785719268		
Email:	david@byattoliver.co.uk		

SAP 2012 input data Printed on 8 Feb 2016 at 03:53 PM

Plot 5 Victoria Court Development As-Designed

Photovoltaics 3:Peak kW: 0.00Conservatory:NoFixed air conditioning:NoSmoke Control Area:Not specifiedAdditional allowable electricity generation :0.00kg/m²/year

Page 26 of 45

Approval of JPA Designer by BRE applies only to the software, data is not subject to quality control procedures, users are themselves responsible for the accuracy of the data. The results of the calculation should not be accepted without first checking the input data.

New Dwelling Plot 5 As-Designed Dwelling type: Victoria Court May Bank Brampron ST5

Date of assessment: Produced by Total floor area:

Semi-detached house 8 February 2016 Laurence Jay Limited 114 m²

This is a Predicted Energy Assessment for a property which is not yet complete. It includes a predicted energy rating which might not represent the final energy rating of the property on completion. Once the property is completed, an Energy Performance Certificate is required providing information about the energy performance of the completed property.

Energy performance has been assessed using the SAP 2012 methodology and is rated in terms of the energy use per square metre of floor area, energy efficiency based on fuel costs and environmental impact based on carbon dioxide (CO_2) emissions.

The energy efficiency rating is a measure of the overall efficiency of a home. The higher the rating the more energy efficient the home is and the lower the fuel bills are likely to be.

The environmental impact rating is a measure of a home's impact on the environment in terms of carbon dioxide (CO_2) emissions. The higher the rating the less impact it has on the environment.

Building type Semi-detached house

Plotnumber	Plot 5		
Reference			
Date	08/02/2016		
Client	Byatt Oliver	Project	New Dwelling Plot 5 As-Designed
	Unit 1B Whitebridge Way		Victoria Court
	Whitebridge Industrial Estate		May Bank
	Stone		Brampron
	Staffordshire		ST5
	ST158LQ		
Tel:	01785719268		
Email:	david@byattoliver.co.uk		

SAP 2012 worksheet for - calculation of fabric energy efficiency

1. Overall dwelling dimensions

	Area	Av. Storey	Volume	
	(m²)	height (m)	(m³)	
Ground floor (1)	44.77	2.40	107.45	(3a)
Firstfloor	44.17	2.65	117.05	(3b)
Second floor	25.42	2.05	52.11	(3c)
Total floor area	114.36			(4)
Dwelling volume (m ³)			276.61	(5)

JPA Designer Version 6.01 x , SAP Version 9.92 Licensed to Laurence Jay Limited

Page 28 of 45

Approval of JPA Designer by BRE applies only to the software, data is not subject to quality control procedures, users are themselves responsible for the accuracy of the data. The results of the calculation should not be accepted without first checking the input data.

1 uge 20 01 40

2. Ventilation rate

											m³ per ho	our
							main + s heating	seonda	ry + othe	er		
Numbe	rofchim	neys					0 + 0 + 0)	x 40		0.00	(6a)
Numbe	rofopen	flues					0 + 0 + 0)	x 20		0.00	(6b)
Numbe	rofinterr	nittent fa	ins				4		x 10		40.00	(7a)
Numbe	rofpassi	ve vents					0		x 10		0.00	(7b)
Numbe	roffluele	ess gas fi	res				0		x 40		0.00	(7c)
											Air chang	ges per hour
Infiltrati	on due to	o chimne	eys, fans	and flues	S						0.14	(8)
Pressu	re test, re	esult q50)						5.00			(17)
Airpern	neability										0.39	(18)
Numbe	r of sides	s on whic	h shelter	ed							2.00	(19)
Shelter	factor										0.85	(20)
Infiltrati	on rate in	ncorpora	ting shelt	erfactor							0.34	(21)
Infiltrati	on rate n	nodifiedf	for month	ly wind s	speed							
Jan	Feb	Mar	Apr	May	Jun	Jul	Aug	Sep	Oct	Nov	Dec	
5.10	5.00	4.90	4.40	4.30	3.80	3.80	3.70	4.00	4.30	4.50	4.70	
Wind E	actor										52.50	(22)
1.27	1.25	1.23	1.10	1.08	0.95	0.95	0.93	1.00	1.08	1.13	1.18	
		Л					N		- Л.	I	13.13	(22a)
Adjuste	ed infiltrat	tion rate	(allowing	forshelf	ter and w	vind spee	ed)					
0.43	0.42	0.41	0.37	0.36	0.32	0.32	0.31	0.34	0.36	0.38	0.39	
		_,									4.40	(22b)
Ventila Effectiv	tion : natu e air cha	ural vent nge rate	ilation, in	termitte	nt extrac	t fans						
0.59	0.59	0.58	0.57	0.57	0.55	0.55	0.55	0.56	0.57	0.57	0.58	(25)

Page 29 of 45

C:\Program Files\JPATL\JPA Designer 981\Brampton Road ADF Construction.JDP

SAP 2012 worksheet for - calculation of fabric energy efficiency

3. Heat losses	and heat los	ss paramete	r					
Element	Gross	Openings	Netarea	U-value	ΑxU	kappa-value	A x K	
	area, m²	m²	A, m²	W/m²K	W/K	kJ/m²K	kJ/K	
Window-Double	e-glazed,		1.350	1.33 (1.40)	1.79			(27)
argon filled, low-	-E, En=0.05,							
soft coat (West))							
Data								
Window-Double	e-glazed,		2.280	1.33 (1.40)	3.02			(27)
argon filled, low-	-E, En=0.05,							
soft coat (South)							
Data								
Window - Double	e-glazed,		7.470	1.33 (1.40)	9.90			(27)
argon filled, low-	-E, En=0.05,							. ,
soft coat (East)								
Data								
Window - Double	e-glazed,		3.600	1.33 (1.40)	4.77			(27)
argon filled, low-	-E, En=0.05,			、				()
soft coat (West))							
Data								
Half glazed doo	r-		2.100	1.10	2.31			(26)
Double-glazed.	argon filled.							()
low-E. En=0.05	soft coat							
(Fast)	,							
Data								
Full glazed door			8 400	1 40	11 76			(26)
Double-glazed	argonfilled		0.100		11110			(_0)
low-F En=0.05	soft coat							
(West)	, con cour							
Data								
Pitched roofs in:	sulated betwe	en ioists	29.56	0 14	4 14	9.00	266 04	(30)
Walls		lonjoloto	15 20	0.22	3.34	9.00	136.80	(29)
Timber partitio	n to roofspace	2	10.20	0.22	0.01	0.00	100.00	(20)
Walls	into recipiedo	-	1.53	0.22	0.34	9.00	13 77	(29)
Dormerwalls			1.00	0.22	0.01	0.00	10.11	(20)
Walls			82 26	0.20	16 45	60.00	4935 60	(29)
Groundfloors			44 77	0.12	5.37	80.00	3581.60	(28)
Pitched roofs ins	sulated betwe	enrafters	14 25	0.12	2 14	9.00	128 25	(30)
Party wall		omatoro	55 14	0.00	0.00	70.00	3859 80	(00)
Internal wall			141 52	0.00	0.00	9.00	1273.68	
Internal timber	partition		111.02	0.00	0.00	0.00	.2.0.00	
Internal floor			70 80	0.00	0.00	18 00	1274 40	
Internal ceiling			70.80	0.00	0.00	9.00	637 20	
			10.00	0.00	0.00	0.00	501.20	

JPA Designer Version 6.01x , SAP Version 9.92 Licensed to Laurence Jay Limited

Page 30 of 45

C:\Program Files\JPATL\JPA Designer 981\Brampton Road ADF Construction.JDP

3. Heat	losses a	and hea	t loss pa	aramete	r							
Element	:	Gross	Ope	enings	Netarea	a U-\	/alue	ΑxU	ka	ppa-valu	еАхК	
		area, m²	² m²		A, m²	W/	′m²K	W/K	kJ	/m²K	kJ/K	
Total are	ea of exte	ernal ele	ments Si	gma A, r	n²						212.	77 (31)
Fabric h	eat loss	, W/K									65.3	34 (33)
Heat cap	pacity										16107.1	14 (34)
Therma	l mass pa	arameter	, kJ/m²K								140.8	35 (35)
Effectof	thermal	bridges									19.3	35 (36)
Total fat	oric heat	loss									84.0	59 (37)
Ventilati	on heat l	loss calc	ulated m	onthly								
53.99	53.66	53.35	51.85	51.57	50.27	50.27	50.03	50.78	51.57	52.14	52.73	(38)
Heat tra	nsfer coe	efficient,	W/K									
138.68	138.35	138.04	136.54	136.26	134.97	134.97	134.72	135.47	136.26	136.83	137.42]
											136.	54 (39)
Heat los	sparam	eter (HLF	^{>}), W/m²	K								
1.21	1.21	1.21	1.19	1.19	1.18	1.18	1.18	1.18	1.19	1.20	1.20]
HLP (ave	erage)										1.1	19 (40)
Number	ofdaysi	in month	(Table 1	a)								
Jan	Feb	Mar	Apr	May	Jun	Jul	Aug	Sep	Oct	Nov	Dec]
31	28	31	30	31	30	31	31	30	31	30	31	

JPA Designer Version 6.01 x , SAP Version 9.92 Licensed to Laurence Jay Limited

Page 31 of 45

C:\Program Files\JPATL\JPA Designer 981\Brampton Road ADF Construction.JDP

SAP 2012 worksheet for - calculation of fabric energy efficiency

4. Wate	er heatin	g energ ancy N	y requir	ements							kWh/year 2 84	(42
Annual	averagel	hot water	r usage ir	n litres pe	erday Vd	,average	9				101.62	(43
Jan	Feb	Mar	Apr	May	Jun	Jul	Aug	Sep	Oct	Nov	Dec	
Hot wat	er usage	in litres p	ber day f	or each r	nonth	л	Л	н.	Л	n		
111.78	107.71	103.65	99.58	95.52	91.46	91.46	95.52	99.58	103.65	107.71	111.78	(44
Energy	content c	of hot wat	ter used		3	я	Л		л			
165.76	144.98	149.61	130.43	125.15	108.00	100.07	114.84	116.21	135.43	147.83	160.53	
Energy Distribu	content (a ition loss	annual)			A						1598.83	(45
0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00	(46
Hot wat Hot wat Volume Temper Energy Total st	er storage er cylinde factor ature fact lost from orage los	e volume er loss fa or store (k\ s	(litres) ctor (kW Wh/day)	h/day)							0.00 0.0000 0.0000 0.0000 0.00	(50 (51 (52 (53 (55
0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00	(56
Net stor	rage loss	A			5	я			Я			
0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00	(57
Primary	loss		,									
0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00	(59
Combi I	oss calcu	lated for	each mo	onth								
0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00	(61
Total he	eatrequire	ed for wa	ter heati	ng calcul	ated for	each mo	nth					
0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00	(62
Output	from wate	er heater	for each	month, k	wh/mor	nth						
0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00	(64
Heat ga	ins from	water hea	ating, kW	/h/month) 1	1	1	1	1		0.00	(64
35.23	30.81	31.79	27.72	26.59	22.95	21.27	24.40	24.69	28.78	31.41	34.11	(65

Page 32 of 45

C:\Program Files\JPATL\JPA Designer 981\Brampton Road ADF Construction.JDP

SAP 2012 worksheet for - calculation of fabric energy efficiency

5. Internal gains

Jan	Feb	Mar	Apr	May	Jun	Jul	Aug	Sep	Oct	Nov	Dec
Metabol	ic gains,	Watts									
141.93	141.93	141.93	141.93	141.93	141.93	141.93	141.93	141.93	141.93	141.93	141.93
Lighting	gains										
27.06	24.04	19.55	14.80	11.06	9.34	10.09	13.12	17.61	22.35	26.09	27.81
Appliand	ces gains	5									
277.68	280.56	273.30	257.84	238.33	219.99	207.74	204.85	212.12	227.57	247.09	265.43
Cooking	gains										
37.19	37.19	37.19	37.19	37.19	37.19	37.19	37.19	37.19	37.19	37.19	37.19
Pumps a	and fans	gains									
0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00
Lossese	e.g.evap	oration (r	negative	values)							
-113.54	-113.54	-113.54	-113.54	-113.54	-113.54	-113.54	-113.54	-113.54	-113.54	-113.54	-113.54
Waterhe	eating ga	ins									
47.35	45.85	42.73	38.49	35.75	31.87	28.58	32.80	34.30	38.68	43.63	45.85
Totalinte	ernal gaiı	ns									
417.66	416.02	401.15	376.71	350.71	326.78	311.99	316.35	329.60	354.19	382.39	404.67

6. Solar gains (calculation for January)

	Area & Flux	g & FF	Shading	Gains
Window - Double-glazed, argon filled, low-E, En=0.05, soft coat (West) Data	0.9 x 1.350 19.64	0.63 x 0.70	0.77	8.1031
Window - Double-glazed, argon filled, low-E, En=0.05, soft coat (South) Data	0.9 x 2.280 46.75	0.63 x 0.70	0.77	32.5767
Window - Double-glazed, argon filled, low-E, En=0.05, soft coat (East) Data	0.9 x 7.470 19.64	0.63 x 0.70	0.77	44.8373
Window - Double-glazed, argon filled, low-E, En=0.05, soft coat (West) Data	0.9 x 3.600 19.64	0.63 x 0.70	0.77	21.6084
Halfglazed door - Double-glazed, argon filled, low-E, En=0.05, soft coat (East) Data	0.9 x 2.100 0.00	0.63 x 0.70	0.77	0.0000
Full glazed door - Double-glazed, argon filled, low-E, En=0.05, soft coat (West) Data	0.9 x 8.400 19.64	0.63 x 0.70	0.77	50.4195
Lighting calculations	_			
	Area	g	FF x Shadi	ng
Window - Double-glazed, argon filled, low-E, En=0.05, soft coat (West) Data	0.9 x 1.35	0.80	0.70 x 0.83	0.56
Window - Double-glazed, argon filled, low-E, En=0.05, soft coat (South) Data	0.9 x 2.28	0.80	0.70 x 0.83	0.95

JPA Designer Version 6.01x , SAP Version 9.92 Licensed to Laurence Jay Limited

Page 33 of 45

C:\Program Files\JPATL\JPA Designer 981\Brampton Road ADF Construction.JDP

Lightin	g calcul	ations											
-	-				Area	а	9	g		FF x Shad	ding		
Window	-Double	-glazed,	argon fill	led, low-l	Ξ, 0.9	x 7.47		0.80		0.70 x 0.8	3 3.	.12	
En=0.08 Data	5, soft co	at (East)											
Window	-Double	e-glazed,	argon fil	led, low-l	E, 0.9	x 3.60		0.80		0.70 x 0.8	3 1.	.51	
En=0.08 Data	5, soft co	at (West	:)										
7. Mean	n interna	i tempe	<i>rature</i>	de in the l	iving are	a Th1 (°	C)				21	00	(85)
Heating	systemr	esponsiv	/eness	13 11 11 10 1	iving are	α, πη (0)				1	.00	(00)
Jan	Feb	Mar	Apr	May	Jun	Jul	Aug	Sep	Oct	Nov	Dec	7	
tau			J	<u>1 </u>	1				<u> </u>	U	<u></u>	_	
32.26	32.34	32.41	32.77	32.83	33.15	33.15	33.21	33.03	32.83	32.70	32.56]	
alpha												_	
3.15	3.16	3.16	3.18	3.19	3.21	3.21	3.21	3.20	3.19	3.18	3.17		
Utilisatio	on factor	for gains	forliving	area									
0.99	0.98	0.96	0.90	0.80	0.65	0.51	0.56	0.79	0.94	0.98	0.99		(86)
Meanin	ternal ter	nperatur	e in living	area T1								_	
18.85	19.12	19.56	20.11	20.57	20.85	20.95	20.93	20.69	20.06	19.35	18.80		(87)
Temper	ature dur	ring heat	ing perio	ds in rest	ofdwelli	ng Th2						_	
19.91	19.91	19.91	19.92	19.93	19.94	19.94	19.94	19.93	19.93	19.92	19.92		(88)
Utilisatio	on factor	for gains	for rest o	ofdwellir	ng								
0.99	0.98	0.95	0.88	0.75	0.57	0.40	0.46	0.72	0.93	0.98	0.99		(89)
Meanin	ternal ter	mperatu	re in the r	estofdw	elling T2	2						_	
17.94	18.21	18.65	19.19	19.61	19.85	19.92	19.91	19.73	19.16	18.45	17.90		(90)
Living au Mean in	rea fractio ternal ter	on (20.9´ nperatur	1/114.36 e(for the	s) whole dv	vellina)						0.	.18	(91)
18 11	18.38	18 82	19.36	19 78	20.03	20 10	20.09	19 91	19.32	18.61	18.07	٦	(92)
Applya	e.ee diustmen	t to the m	nean inte	rnal tem	perature	, where a	ppropria	ate	10.02		10.07	_	()
18.11	18.38	18.82	19.36	19.78	20.03	20.10	20.09	19.91	19.32	18.61	18.07	7	(93)

JPA Designer Version 6.01 x , SAP Version 9.92 Licensed to Laurence Jay Limited

Page 34 of 45

C:\Program Files\JPATL\JPA Designer 981\Brampton Road ADF Construction.JDP

SAP 2012 worksheet for - calculation of fabric energy efficiency

8. Space heating requirement

Jan	Feb	Mar	Apr	May	Jun	Jul	Aug	Sep	Oct	Nov	Dec			
Utilisation factor for gains														
0.98	0.97	0.94	0.87	0.74	0.58	0.42	0.47	0.72	0.91	0.97	0.99			
Useful g	ains													
566.05	692.15	816.88	900.36	856.44	657.87	454.03	469.01	628.12	641.63	561.62	528.67			
Monthly average external temperature														
4.30	4.90	6.50	8.90	11.70	14.60	16.60	16.40	14.10	10.60	7.10	4.20			
Heat los	s rate for	meanin	ternal ter	mperatur	е									
1914.88	1864.47	1700.06	1428.45	1101.49	732.87	473.02	497.58	786.80	1188.64	1575.56	1905.83			
Fraction	ofmonth	n for heat	ing											
1.00	1.00	1.00	1.00	1.00	-	-	-	-	1.00	1.00	1.00			
Space h	eating re	quireme	ntforead	ch month	, kWh/m	onth								
1003.53	787.80	657.08	380.22	182.32	-	-	-	-	406.97	730.03	1024.60			
Total space heating requirement per year (kWh/year) (October to May)5172.57Space heating requirement per m² (kWh/m²/year)45.23														

Page 35 of 45

C:\Program Files\JPATL\JPA Designer 981\Brampton Road ADF Construction.JDP

SAP 2012 worksheet for - calculation of fabric energy efficiency

8c. Space cooling requirement

Jan	Feb	Mar	Apr	May	Jun	Jul	Aug	Sep	Oct	Nov	Dec
Externa	altempera	aturers			л	A		,	X		
-	-	-	-	-	14.60	16.60	16.40	-	-	-	-
Heat lo	ss rate W	Î		л	π	A	л	л	λ.		
-	-	-	-	-	1268.67	998.74	1023.91	-	-	-	-
Utilisati	on factor	for loss	л		я	31	Л	3	31		
-	-	-	-	-	0.81	0.87	0.84	-	-	-	-
Useful	loss W			л	л	я		л	_1		
-	-	-	-	-	1027.36	867.95	858.09	-	-	-	-
Interna	l gains W		л	Л		,		л	_1		
0.00	0.00	0.00	0.00	0.00	495.20	475.51	482.99	0.00	0.00	0.00	0.00
Solar g	ains W	х			л	,		л	<u> </u>		
0.00	0.00	0.00	0.00	0.00	951.03	907.67	789.55	0.00	0.00	0.00	0.00
Gains V	Ń	л	<u>"</u>		Л	,	Л	J	_1		
-	-	-	-	-	1446.24	1383.18	1272.53	\$ -	-	-	-
Fractio	n of mont	h for cool	ling		л	,	Л	л	<u> </u>	Д	
0.00	0.00	0.00	0.00	0.00	1.00	1.00	1.00	0.00	0.00	0.00	0.00
Space I	heating k	Ŵh	<u>л</u>	JL	л	1	Д	J	_1	N	
-	-	-	-	-	17.67	-53.41	-50.87	-	-	-	-
Space	cooling k	Ŵh	л	Л	J	J	Л	Л			
-	-	-	-	-	301.59	383.33	308.34	-	-	-	-
Total			Л	л	л	J	л	л	JL		993.27
Cooled	fraction										1.00
Intermit	ttency fac	tor		1	7	1	1	1			
-	-	-	-	-	0.25	0.25	0.25	-	-	-	-
Space	cooling re	quireme	nt for mo	nth		2		1	-)r		
-	-	-	-	-	75.40	95.83	77.09	-	-	-	-
Space of Spa	cooling (J cooling re	lune to A quireme	ugust) ntperm²	^r (kWh/m	²/year)						248.32 2.17

8f. Fabric Energy Efficiency

	kWh/year	
Energy for space heating	45.23	(99)
Energy for space cooling	2.17	(108)
Total	47.40	(109)
Dwelling Fabric Energy Efficiency	47.4	(109)

JPA Designer Version 6.01x , SAP Version 9.92 Licensed to Laurence Jay Limited

Page 36 of 45

C:\Program Files\JPATL\JPA Designer 981\Brampton Road ADF Construction.JDP

Building type Semi-detached house

Plotnumber	Plot 5		
Reference			
Date	08/02/2016		
Client	Byatt Oliver	Project	New Dwelling Plot 5 As-Designed
	Unit 1B Whitebridge Way		Victoria Court
	Whitebridge Industrial Estate		May Bank
	Stone		Brampron
	Staffordshire		ST5
	ST158LQ		
Tel:	01785719268		
Email:	david@byattoliver.co.uk		

1. Overall dwelling dimensions

	Area	Av. Storey	Volume	
	(m²)	height (m)	(m³)	
Ground floor (1)	44.77	2.40	107.45	(3a)
Firstfloor	44.17	2.65	117.05	(3b)
Second floor	25.42	2.05	52.11	(3c)
Total floor area	114.36			(4)
Dwelling volume (m ³)			276.61	(5)

Page 37 of 45

Approval of JPA Designer by BRE applies only to the software, data is not subject to quality control procedures, users are themselves responsible for the accuracy of the data. The results of the calculation should not be accepted without first checking the input data.

2. Ventilation rate

											m³ per ho	our
							main + s heating	eondai	ry + othe	ər		
Number	rofchimr	neys					0 + 0 + 0		x 40		0.00	(6a)
Number	rofopen	flues					0 + 0 + 0		x 20		0.00	(6b)
Number	rofintern	nittent fa	ins				4		x 10		40.00	(7a)
Number	ofpassi	ve vents					0		x 10		0.00	(7b)
Number	roffluele	ess gas fi	ires				0		x 40		0.00	(7c)
											Air chang	ges per hour
Infiltratio	on due to	o chimne	eys, fans	and flue	s						0.14	(8)
Pressur	e test, re	esult q50)						5.00			(17)
Air perm	neability										0.39	(18)
Number	rofsides	on whic	h shelte	red							2.00	(19)
Shelter	factor										0.85	(20)
Infiltratio	on rate in	corpora	ting shelt	ter factor							0.34	(21)
Infiltratio	on rate m	nodified f	for month	nly wind s	speed							
Jan	Feb	Mar	Apr	May	Jun	Jul	Aug	Sep	Oct	Nov	Dec	
5.10	5.00	4.90	4.40	4.30	3.80	3.80	3.70	4.00	4.30	4.50	4.70	
Wind Fa	actor										52.50	(22)
1.27	1.25	1.23	1.10	1.08	0.95	0.95	0.93	1.00	1.08	1.13	1.18	
	1			R	_,		R	л			13.13	(22a)
Adjuste	d infiltrat	ion rate	(allowing	g for shel	ter and w	vind spee	ed)					
0.43	0.42	0.41	0.37	0.36	0.32	0.32	0.31	0.34	0.36	0.38	0.39	
							ų			д	4.40	(22b)
Ventilat Effective	ion : natu e air char	ural vent nge rate	ilation, ir	ntermitte	nt extrac	t fans						
0.59	0.59	0.58	0.57	0.57	0.55	0.55	0.55	0.56	0.57	0.57	0.58	(25)

Page 38 of 45

C:\Program Files\JPATL\JPA Designer 981\Brampton Road ADF Construction.JDP

3. Heat losses	and heat los	ss paramete	r					
Element	Gross	Openings	Netarea	U-value	AxU	kappa-value	AxK	
	area, m²	m²	A, m ²	W/m ² K	W/K	kJ/m²K	kJ/K	()
Window - Double	e-glazed,		1.350	1.33 (1.40)	1.79			(27)
air-filled, low-E,	En=0.1, soft							
coat (West)								
Data					4 77			(07)
Window-Double	e-glazed,		3.600	1.33 (1.40)	4.77			(27)
air-filled, low-E,	En=0.1, soft							
coat (vvest)								
Data			7 470	4 00 (4 40)	0.00			(07)
vvindow - Double	e-glazed,		7.470	1.33 (1.40)	9.90			(27)
air-iiled, low-E,	En=0.1, son							
Coal (East)								
Window, Doubl	o alozod		2 200	1 22 (1 40)	3 0 2			(27)
air filled low E	En=0 1 coff		2.200	1.33 (1.40)	3.02			(27)
an-nneu, now-L,	LII-0.1, 50II							
Data								
Half dazed doo	r_		2 100	1 20	2 52			(26)
Double-glazed	air-filled		2.100	1.20	2.02			(20)
low-F En=0.1	soft coat							
(East)	oon oour							
Data								
Full glazed door	r-		8.400	1.40	11.76			(26)
Double-glazed,	air-filled,							()
low-E, En=0.1,	soft coat							
(West)								
Data								
Pitched roofs in:	sulated betwe	en joists	29.56	0.13	3.84	9.00	266.04	(30)
Walls			15.20	0.18	2.74	9.00	136.80	(29)
Timber partitic	on to roofspace	Э						
Walls			1.53	0.18	0.28	9.00	13.77	(29)
Dormer walls								
Walls			82.26	0.18	14.81	60.00	4935.60	(29)
Groundfloors		-	44.77	0.13	5.82	80.00	3581.60	(28)
Pitched roofs ins	sulated betwe	enrafters	14.25	0.13	1.85	9.00	128.25	(30)
Party wall			55.14	0.00	0.00	70.00	3859.80	
Internal wall			141.52	0.00	0.00	9.00	12/3.68	
Internal timber	partition		70.00	0.00	0.00	10.00	1074 40	
			70.80	0.00	0.00	10.00	1274.40	
internalcelling			70.80	0.00	0.00	9.00	031.20	

JPA Designer Version 6.01x , SAP Version 9.92 Licensed to Laurence Jay Limited

Page 39 of 45

C:\Program Files\JPATL\JPA Designer 981\Brampton Road ADF Construction.JDP

	3.	Heat	losses	and	heat	loss	parameter
--	----	------	--------	-----	------	------	-----------

Element		Gross area, m²	Ope m²	enings	Netarea A, m²	a U-\ W/	/alue m²K	A x U W/K	ka kJ	ppa-valu /m²K	e AxK kJ/K	
Total are	ea of exte	ernal elei	ments Si	gma A, r	n²						212.7	7 (31)
Thermal	l mass pa	arameter	, kJ/m²K	(user-sp	ecified T	MP)					250.0	0 (33)
Effectof	thermal	bridges									10.5	4 (36)
Total fat	oric heat	loss									73.6	4 (37)
Ventilati	on heat l	loss calc	ulated m	onthly								
53.99	53.66	53.35	51.85	51.57	50.27	50.27	50.03	50.78	51.57	52.14	52.73	(38)
Heattra	nsfer coe	efficient,	W/K		A	A		λ	λ			
127.63	127.30	126.99	125.49	125.22	123.92	123.92	123.67	124.42	125.22	125.78	126.37	
	A				л	<i>x</i>		<u>д</u>	<u>д</u>	R	125.4	9 (39)
Heat los	s param	eter (HLF	P), W/m²	K								
1.12	1.11	1.11	1.10	1.09	1.08	1.08	1.08	1.09	1.09	1.10	1.11	

HLP (average) Number of days in month (Table 1a)

Jan	Feb	Mar	Apr	May	Jun	Jul	Aug	Sep	Oct	Nov	Dec
31	28	31	30	31	30	31	31	30	31	30	31

JPA Designer Version 6.01 x , SAP Version 9.92 Licensed to Laurence Jay Limited

Page 40 of 45

C:\Program Files\JPATL\JPA Designer 981\Brampton Road ADF Construction.JDP

Approval of JPA Designer by BRE applies only to the software, data is not subject to quality control procedures, users are themselves responsible for the accuracy of the data. The results of the calculation should not be accepted without first checking the input data.

1.10 (40)

4. Wate	er heatin	g energ ancy N	y requir	ements							kWh/year 2 84	(42
Annual	average	hot wate	r usage ir	n litres pe	erday Vd	,average	9				101.62	(43
Jan	Feb	Mar	Apr	May	Jun	Jul	Aug	Sep	Oct	Nov	Dec	
Hot wat	er usage	in litres	per day f	or each r	nonth	я		JL	31			
111.78	107.71	103.65	99.58	95.52	91.46	91.46	95.52	99.58	103.65	107.71	111.78	(44
Energy	content o	of hot wa	ter used									
165.76	144.98	149.61	130.43	125.15	108.00	100.07	114.84	116.21	135.43	147.83	160.53	
Energy Distribu	content (a Ition loss	annual)									1598.83	(4
0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00	(4
Hot wat Volume Temper Energy Total ste	er cylinde factor ature fact lost from orage los	er loss fa or store (k\ s	ctor (kW Nh/day)	h/day)							0.000 0.0000 0.0000 0.000	(5 (5 (5 (5
0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00	(5
Net stor	rage loss	Л	Л	J	J	Л	J	JL	Л	Л		
0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00	(5
Primary	/ loss	я	Л			я			Л			
0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00	(5
Combi I	oss calcı	lated for	each mo	onth		<u>д</u>		х	л			
0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00	(6
Total he	eatrequir	ed for wa	ter heati	ng calcul	ated for	each mo	nth					
0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00	(6
Output	from wate	er heater	for each	month, k	wh/mor	nth						
0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00	(6
Heatga	ins from	water he	ating, kV	/h/month	1						0.00	(6
35.23	30.81	31.79	27.72	26.59	22.95	21.27	24.40	24.69	28.78	31.41	34.11	(6

Page 41 of 45

C:\Program Files\JPATL\JPA Designer 981\Brampton Road ADF Construction.JDP

5. Internal gains

Jan	Feb	Mar	Apr	May	Jun	Jul	Aug	Sep	Oct	Nov	Dec			
Metabol	lic gains,	Watts				A				A				
141.93	141.93	141.93	141.93	141.93	141.93	141.93	141.93	141.93	141.93	141.93	141.93			
27.06	24.04	19.55	14.80	11.06	9.34	10.09	13.12	17.61	22.35	26.09	27.81			
Appliances gains														
277.68	280.56	273.30	257.84	238.33	219.99	207.74	204.85	212.12	227.57	247.09	265.43			
Cooking gains														
37.19	37.19	37.19	37.19	37.19	37.19	37.19	37.19	37.19	37.19	37.19	37.19			
Pumps a	and fans	gains												
0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00			
Lossese	e.g.evap	oration (r	negative	values)										
-113.54	-113.54	-113.54	-113.54	-113.54	-113.54	-113.54	-113.54	-113.54	-113.54	-113.54	-113.54			
Waterh	eating ga	ins												
47.35	45.85	42.73	38.49	35.75	31.87	28.58	32.80	34.30	38.68	43.63	45.85			
Total internal gains														
417.66	416.02	401.15	376.71	350.71	326.78	311.99	316.35	329.60	354.19	382.39	404.67			

JPA Designer Version 6.01 x , SAP Version 9.92 Licensed to Laurence Jay Limited

Page 42 of 45

C:\Program Files\JPATL\JPA Designer 981\Brampton Road ADF Construction.JDP

Lightin	g calcul	ations			A	_					l'	
Window - Double-glazed, air-filled, low-E, En=0.1, soft coat (East)				0.9 x 7.47		g 0.80		(-F x Shac).70 x 0.8	1ing 3 3.1	2	
Data Window - Double-glazed, air-filled, low-E, En=0.1, soft coat (South) Data				0.9 x 2.28		0.80		(0.70 x 0.83		95	
7. Mean internal temperatureTemperature during heating periods in the living area, Th1 (°C)21.00Heating system responsiveness1.00												
Jan	Feb	Mar	Apr	May	Jun	Jul	Aug	Sep	Oct	Nov	Dec	
tau												
62.22	62.38	62.54	63.28	63.42	64.09	64.09	64.21	63.83	63.42	63.14	62.84	
alpha												
5.15	5.16	5.17	5.22	5.23	5.27	5.27	5.28	5.26	5.23	5.21	5.19	
Utilisation factor for gains for living area												
1.00	1.00	0.99	0.95	0.84	0.66	0.49	0.56	0.84	0.98	1.00	1.00	(86)
Meanin	ternal ter	nperatur	e in living	area T1								
19.71	19.89	20.19	20.56	20.84	20.97	20.99	20.99	20.89	20.49	20.03	19.69	(87)
Temper	ature dur	ring heati	ing perio	ds in rest	ofdwelli	ng Th2						
19.99	19.99	19.99	20.00	20.00	20.01	20.01	20.02	20.01	20.00	20.00	20.00	(88)
Utilisatio	on factor	for gains	for rest o	ofdwellir	ig							
1.00	1.00	0.98	0.93	0.79	0.57	0.39	0.45	0.76	0.97	1.00	1.00	(89)
Mean in	ternal ter	nperatu	re in the r	estofdw	elling T2	2						
18.81	18.99	19.29	19.65	19.90	20.00	20.01	20.01	19.95	19.59	19.13	18.79	(90)
Living area fraction (20.91/114.36) 0.18												8 (91)
Meanin	ternalter	nperatur	e (for the	whole d	welling)							
18.97	19.16	19.45	19.82	20.07	20.18	20.19	20.19	20.12	19.76	19.30	18.95	(92)
Apply ad	djustmen	t to the m	nean inte	rnal temp	perature	, where a	ppropria	ate				
18.97	19.16	19.45	19.82	20.07	20.18	20.19	20.19	20.12	19.76	19.30	18.95	(93)

Page 43 of 45

C:\Program Files\JPATL\JPA Designer 981\Brampton Road ADF Construction.JDP

8. Space heating requirement

Jan	Feb	Mar	Apr	May	Jun	Jul	Aug	Sep	Oct	Nov	Dec	
Utilisation factor for gains												
1.00	1.00	0.98	0.93	0.80	0.59	0.41	0.47	0.77	0.97	1.00	1.00	(94)
Useful gains												
574.29	710.31	856.01	968.02	918.06	670.75	442.77	464.13	670.84	679.88	574.61	535.00	(95)
Monthly average external temperature												
4.30	4.90	6.50	8.90	11.70	14.60	16.60	16.40	14.10	10.60	7.10	4.20	(96)
Heat loss rate for mean internal temperature												
1872.77	1814.73	1644.56	1370.37	1048.31	691.03	445.13	468.90	749.25	1146.71	1534.07	1864.12	(97)
Fraction of month for heating												
1.00	1.00	1.00	1.00	1.00	-	-	-	-	1.00	1.00	1.00	
Space heating requirement for each month, kWh/month												
966.07	742.17	586.68	289.69	96.91	-	-	-	-	347.33	690.81	988.87	
Total space heating requirement per year (kWh/year) (October to May)												2 (98)
Space heating requirement per m ² (kWh/m ² /year)											41.1	7 (99)

Page 44 of 45

C:\Program Files\JPATL\JPA Designer 981\Brampton Road ADF Construction.JDP

8c. Space cooling requirement

Jan	Feb	Mar	Apr	May	Jun	Jul	Aug	Sep	Oct	Nov	Dec	
Externa	Itempera	iturers										
-	-	-	-	-	14.60	16.60	16.40	-	-	-	-	
Heat los	ss rate W	Î							λ.			
-	-	-	-	-	1164.81	916.97	939.93	-	-	-	-	(100
Utilisatio	on factor	for loss				A			R			
-	-	-	-	-	0.92	0.96	0.94	-	-	-	-	(101
Useful l	oss W								л			
-	-	-	-	-	1067.30	878.69	881.63	-	-	-	-	(102
Internal	gains W		1	1				л				
0.00	0.00	0.00	0.00	0.00	495.20	475.51	482.99	0.00	0.00	0.00	0.00	
Solar ga	ains W	A				A	A		л			
0.00	0.00	0.00	0.00	0.00	951.03	907.67	789.55	0.00	0.00	0.00	0.00	
Gains V	V	31				e			J			
-	-	-	-	-	1446.24	1383.18	1272.53	-	-	-	-	(103
Fraction	ofmontl	n for cool	ing			A	A		л			
0.00	0.00	0.00	0.00	0.00	1.00	1.00	1.00	0.00	0.00	0.00	0.00	(103
Spaceh	neating k	Wh			31				J	1		
-	-	-	-	-	1311.94	1532.11	1511.82	-	-	-	-	(98)
Space of	ooling k	Nh							л			
-	-	-	-	-	272.83	375.34	290.83	-	-	-	-	(104
Total	9L	31			31	a		31	J		939.01	(104
Cooledf	fraction										1.00	(105
Intermit	tency fac	tor	1	10	1		10	1	1	10		
-	-	-	-	-	0.25	0.25	0.25	-	-	-	-	(106
Spacec	oolingre	quireme	nt for mo	nth			1	1	1	10		
-	-	-	-	-	68.21	93.84	72.71	-	-	-	-	
Space of	ooling (J	une to A	ugust)	/I-\A/I= /	2/						234.75	(107
Spaced	coolingre	quireme	nt per m ²	(KVVh/m	-/year)						2.05	(108

8f. Fabric Energy Efficiency

	kWh/year	
Energy for space heating	41.17	(99)
Energy for space cooling	2.05	(108)
Total	43.23	(109)
Target Fabric Energy Efficiency	49.7	(109)
= 43.2256 x 1.15, rounded to 1 d.p.		

JPA Designer Version 6.01x , SAP Version 9.92 Licensed to Laurence Jay Limited

Page 45 of 45

C:\Program Files\JPATL\JPA Designer 981\Brampton Road ADF Construction.JDP