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STA TISTICAL SIZE EFFECT IN QUASI-BRITTLE 

STRUCTURES: I. Is WEIBULL THEORY ApPLICABLE? 

By Zdenllk P. Baiant,' Fellow, ASCE, Yunping Xi,2 and Stuart G. Reid) 

ABSTRACT: The classical applications of Weibull statistical theory of size effect 
in quasi-brittle structures such as reinforced concrete structures, rock masses, ice 
plates, or tough ceramic parts are heing reexamined in light of recent results. After 
a brief review of the statistical weakest-link model. distinctions between structures 
that fail hy initiation of macroscopic crack growth (metal structures) and structures 
that exhibit large macroscopic crack growth prior to failure (quasi-brittle structures) 
are pointed out. It is shown that the classical Weibull-type approach ignores the 
stres~ redistrihutions and energy release due to stable large fracture growth prior 
to faIlure, whIch causes a strong deterministic size effect. Further, it is shown that, 
according to this classical theory, every structure is equivalent to a uniaxially loaded 
bar of variable cross section, which means that the mechanics of the failure process 
is ignored. Discrepancies with certain recent test data on the size effect are also 
pointed out. Modification of the Weibull approach that can eliminate these short­
comings is left for a subsequent paper. 

INTRODUCTION 

Quasi-brittle structures are those in which: (1) Failure is caused by fracture 
rather than plastic yield; and (2) the fracture front is surrounded by a large 
fracture-process zone in which progressive distributed cracking or other 
damage takes place. Brittle structures, which can be analyzed according to 
linear elastic fracture mechanics (LEFM), are the limiting special case of 
quasi-brittle structures for which the size of the fracture-process zone at 
failure becomes negligible compared to the structure size. Quasi-brittle 
structures do not follow LEFM, and nonlinear fracture mechanics is re­
quired. Both structure types are characterized by post-peak softening and 
absence of yield plateau on the load-deflection diagram. For quasi-brittle 
structures, the peak of the diagram is rounded, while for brittle structures 
there is an almost sudden change from rising slope to descending slope of 
the load-displacement diagram. Quasi-brittle failures are typical of rein­
forced concrete structures (here the established term is brittle failure, but 
quasi-brittle would be a better term since purely brittle failures are not seen 
in reinforced concrete structures). They are also typical of certain kinds of 
rock, ice, modern tough ceramics, various composites, etc. 

Traditionally, the size effect in failure of concrete structures has been 
explained in Weibull's (1939, 1951) statistical theory, which extended to 
multidimensional solids the weakest-link model for a chain proposed by 
Peirce (1926) and used the extreme value statistics originated by Tippett 
(1925), Frechet (1927), and others; see also Freudenthal (1968), Mihashi 
and Zaitsev (1981), Zech and Wittmann (1977), Carpinteri (1989), Mihashi 
(1983), Mihashi and Izumi (1977); for recent works and reviews, see Kitt! 
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and Diaz (1988, 1989, 1990). In Weibull's theory, th~ failure is deter~i~ed 
by the minimum value of the strength of the materIal, and the statI.stlcal 
size effect is due to the fact that the larger the structure, the smaller IS the 
strength value likely to be encountered in the structure. This expl~nation 
is certainly valid for one-dimensional structures such as a long cham or. a 
long fiber, but extension to multidimensional structu~e~ depends on certam 
simplifying hypotheses that do not have to ?e satIsfied for all typ~s. of 
structures. These hypotheses appear to be applicable to structures conslstmg 
of ceramics, glasses, and fatigue-embrittled metals. But they do not. apP.ly 
to quasi-brittle structures, such as concrete structu~es, bec~use of their abil­
ity to develop large fractures in a stable man~er prIor to. failure. T.he central 
idea in Weibull-type statistical analysis of failure and size effect IS that the 
survival probability of the structure is the joint probability of survival of all 
its elementary parts. Implementation <;>f thi~ i~e~, however, is. clear. and 
simple only for a long fiber or a long cham. It IS difficult for two-dimensional 
and three-dimensional structures. 

This paper will examine the limitations of the classical Weibull t~eory of 
size effect from the viewpoint of quasi-brittle structures, such as remfor~ed 
concrete structures. A companion paper will present a new formulatIOn 
which overcomes the main limitations. The basic idea of the present for­
mulation has been briefly outlined in a previous conference paper (Bazant 
1987). 

REVIEW OF WEIBULL THEORY 

We need to start by reviewing the principles of Weibull theory. First, we 
consider a one-dimensional structure consisting of many elements coupled 
in series, for example a chain [Fig. 1(a»). All of the eleme~ts (links of the 
chain) have the same distribution of strength a, charactenzed by t~~ cu­
mulative probability distribution PI(a): :-vhich represents theyrobability of 
failure of one element, i.e. ,the probability that the strength 10 the eleme~t 
is less than the applied stress a. The survival probability of one element IS 

1 - P . If the whole chain should survive, all of its elements must survive. 
This m~ans that the probability of survival of the chain is the jO.int probab!l!ty 
of the survival of all of the elements. According to the JOInt-probability 
theorem, the survival probability of a chain of N elements is, 1 - Pf = 
(1 - PI)(1 - PI) ... (1 - PI), or 

1 - Pf = (1 - PI)N ......................................... (1) 

where Pf = failure probability of the chain. Now 
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FIG. 1. Some Different Cases for Wei bull Distribution 
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In(1 - Pf) = N In(1 - PI) ................................... (2) 

and since PI is very small in practical application, In(1 - PI) = - PI' 
Therefore 

In(1 - Pf) = - NPI ......................................... (3) 

This may be extended to a continuous, homogeneously stressed solid [e.g., 
a long fiber, Fig_ l(b)] by setting N = VIV,; thus In(1 - PI) = - (VIV,)P

I 
or 

Pf(a) = 1 - exp [ -; PI(a)] ................................ (4) 

Here V = volume of the body; and V, = representative volume of the 
material. In the greatest generality, V, represents the smallest volume for 
which the material can be treated as a continuum (and for which the concept 
of stress on the macroscopic scale makes sense). In this definition, V, is 
defined as the smallest volume for which the main statistical characteristics 
of the microstructure do not change substantially if the volume is displaced 
within the material. The size of the representative volume is the character­
istic length I of the material-a central concept in the nonlocal-continuum 
theory. The foregoing definition of V, coincides wit~ that used in ~onlocal 
or statistical theories of microinhomogeneous matenals. For practical pur­
poses, though, V, can be taken as any material volume for which the strength 
distribution has been experimentally determined. 

To describe the statistical distribution of PI' Weibull (1939) [also Weibull 
(1951») introduced the following empirical form (Fig. 2) 

(J - a" ( )'" 
--- ; for a> au 

a o 

PI(a) = 0; for a :S au ........................................ (5) 

in which a o and au = empirical material parameters; m = shape parameter 
(Weibull modulus); a o = scale parameter; and au = datum parameter 

F 

F 
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FIG. 2. Geometrically Similar Structures with Microscopic Cracks 
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(strength threshold). For calculations it is convenient to assume that au = 
0, and then the results of direct tensile tests of concrete indicate approxi­
mately m = 12 (Zech and Wittmann 1977). In reality, the threshold au is 
of course nonzero, but it is hard to determine a" reliably due to scatter of 
test results. Unless the strength range of data is very broad, and random 
scatter is small, different a u-values (with different corresponding values of 
au and m) allow almost equally good fits of the data on PI(a). 

To generalize (4) for a structure with nonuniform stress [(e.g., a beam, 
Fig. I (c)], one may imagine the structure to consist of many parts of small 
volumes, Il V (J)' each with uniform stress a (j = 1, ... , Ii). The probability 
of survival of the structure is the joint probability of survival of all its parts, 
and so 

- {~ } {~ } 1 - Pf - exp - Vr PI[a(I)] exp - Vr PI[a(2)] ... 

{
_IlV(;;) [_]}_ {_~IlV(j) [ ]} () exp V PI a(n) - exp .::..- V PI aU) ................ 6 

r J - 1 r 

Now, if the volume of each part tends to zero and the number of the parts 
tends to infinity, one obtains a structure with continuously variable stress 
a(x). Eq. (6) thus becomes 

I - P
f 

= exp [- ( /a(x) - au)m dV(X)] ...................... (7) 
Jv \ an Vr 

where ( ) denotes the positive part of the argument, i.e., (x) = x if x> 0, 
and (x) = 0 if x :s 0; and x = the coordinate vectors of material points. 

Eq. (7) needs to be further generalized to triaxial-stress states. For this, 
in principle, the triaxial failure surface in the stress space needs to be used. 
However, for the sake of simplicity, one may assume that the cracks may 
form only in the planes normal to the principal stresses a;(x)(i = 1, 2, 3) 
and that the formation of any crack depends only on the principal stresses 
normal to it, but not on the other principal stresses, as proposed by Freu­
denthal (I 968). Considering the joint probability of survival of the material 
on all three principal stress planes, similarly to (6), one gets, for a structure 
with triaxial stresses, the following probability of survival (Pf = probability 
of failure) 

1 - P
f 

= exp [_ ( ± / a;(x) - au)m dV(X)] ................... (8) 
Jv '~I \ a o Vr 

where n = number of dimensions (1, 2, or 3). In anisotropic materials, 
furthermore, subscript i needs to be also attached to m, a o and au. 

I! may be noted that more sophisticated multiaxial formulations have 
been proposed. For example, Petrovic (1987) considered that a crack can 
form on a plane of any orientation and the failure probability depends only 
on the normal stress on that plane. In that case the joint probability of 
survival for the planes of all orientations leads to an integral over all spatial 
directions at each point. However, this might be no more realistic than (8), 
since the fact that the cracking probability may depend also on the stresses 
that act on the planes of other orientations (as well as on the strain and the 
invariants of stress and strain) is still neglected. 
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STATISTICAL SIZE EFFECT DUE TO RANDOM STRENGTH 

The size effect is defined by comparing geometrically similar structures 
of different characteristic dimensions (sizes) D. For this purpose, one in­
troduces the nominal strength (nominal stress at maximum load), 

F 
aN = bD ................................................... (9) 

where F = failure load (maximum load); and b = thickness of the structure 
which may either be constant (two-dimensional similarity), or proportional 
!o D (three-dimensional similarity). Now the basic property of all structures 
IS that, according to elastic analysis with allowable stress limit as well as 
plastic analysis or any analysis based on some material failure criterion in 
terms stress or strain, aN is independent of structure D, i.e., there is no 
size effect. This is not true, however, when the material properties are 
random, as shown by Weibull. To demonstrate it, we may represent the 
stress distributions in the structure as 

I 
~ = D x ................................. (10) 

in which S; = functions of the relative coordinate vectors ~, calculated 
according to elasticity or plasticity or any other suitable theory. Substituting 
dV = dX I ... dXn = Dnd~I' .. d~n' where Xl> •• . ,X = Cartesian-co­
ordinate components, and ~l> ••• , ~n = corresponding

n 

elastic-coordinate 
components of the vector ~ = (~I' ... , ~n)' we obtain 

In(1 - P) - - D" f ... f ~ /aNS,(~) - au)m 
f - Vr n ;L:

I 
\ a

o 
d~I ... d~n ........ (11) 

!n which n = th.e ~omain of the structure in relative coordinates ~, which 
IS the same for SImIlar structures of all sizes. 
. The strength threshold is usually neglected in practical calculations, that 
IS. a,u = 0,. not ?nly for the sake of simplicity but also because it is very 
dlfflcul~ to Id.ent.lfy t~~ value of a" from test data reliably, as already pointed 
out. WIth thIS SImplIfIcatIOn, (11) may be rewritten as follows 

with 

In = f···f ± [S;(~)]md~I ... d~n ............................. (12) 
n I~I 

Here In, au, and Vr = constants when the structure size D is varied. Thus, 
when the failure probability Pf is specified, the following dependence of the 
nominal strength of the structure on its size D or volume V(V ex: Dn) results: 

aN = koD-nlm .............................................. (13) 

in which ko = a o[ - Vr In(1 - Pf )IIn]lIm = constant. When one substitutes 
Pf = 0.5, one gets the size dependence of the median strength, which is 
known for concrete to be almost the same as the mean strength, aN [for 
the calculation of aN, see the companion paper (Bazant and Xi 1991)]. 
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From direct tensile tests, the typical value of m for concrete is about 12. 
Then, for two-dimensional similarity (n = 2) 

lIN ex D -1/6 .•...••.•.•••..•...••.•.•..•••..•..•....•..•..... (14) 

and for three-dimensional similarity (n = 3) 

lIN ex D- 1/4 ••.....•....•.......••.•.•..••..•..••.•....•..•.. (15) 

Eq. (13) is also valid for one-dimensional ~imilarity. This case is obt~i~ed, 
e.g., for the body in Fig. l(d), whic~ consl~ts ?f t'."o str?ng blocks lomed 
by a thin layer of weak glue (of Welbull dlstnbutlon with modulus m 
12). The blocks cannot fail and failure is assumed to occur in the glue layer 
as soon as one elementary volume of the glue fails. In that case 11 = 1 and 
(13) yields 

UN ex D-IIl2 ...................••........................... (16) 

provided that block thickness b and glue layer thickness h are not varied. 

BASIC CRITICISMS OF CLASSICAL WEIBULL-TvPE ApPROACH 

Stress Redistribution 
The key to the calculation of failure probability of the structure is the 

function Si(~)' characterizing the stress at point x = D~ .. In this re~a:~, ~ne 
must distinguish two types of structures: (1) Those falltng at the mltlatlon 
of the macroscopic crack growth (i.e., the structure just before failure con­
tains only microscopic cracks or other flaws, as is typical of many ceramics 
and fatigue-embrittled metal structures); ~nd ,<2) those failin~ only after a 
large stable macroscopic crack growth (which IS the case of remforced con­
crete structures). 

For the first type of structure, the key point is that function Si(~) just 
before failure is known, since microscopic flaws have negligible influence 
on the overall stress distribution within the structure. In such structures 
there exists a region of size H (Fig. 2) such that 

H « D and H »a ....................................... (17) 

where D = structure dimension; and a = crack or flaw size. The condition 
H « D means that the stress distribution within region H would be nearly 
uniform if the flaw did not exist. If the size of the flaw or initial crack is 
very small, a « D, it is a characteristic of the state of the material. It ~s 
related to the inhomogeneity size and is independent of the structure di­
mension D. Since H « D, the presence of the flaw of size a affects the 
stress distribution only locally, and the situation is nearly the same as that 
of a crack in an infinite space with a uniform-stress state at infinity equal 
to the stress in region H. Thus, the only effect of the flaw of size a is a 
reduction of the effective macroscopic strength of the material. This permits 
that the random variation of the sizes of the initial flaws can be related to 
the random variation of the material strength, as described by Wei bull 
distribution. 

For the second type of structure, for example, reinforced concrete struc­
tures, the behavior is completely different. Due to reinforcement as well as 
to the existence of strain softening in a large zone of microcracking and 
crack bridging near the front of a continuous fracture, reinfo~ced concrete 
structures do not fail at crack initiation. Large cracks, typically cutting 
through 50% to 90% of the cross section, grow in a stable manner before 
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the maximum load is reached (see the typical macroscopic crack patterns 
in Fig. 3). The design codes, in fact, require the failure load to be significantly 
higher than the crack-initiation load (for bending, at least 1.25 times higher, 
according to ACI Standard 318, but in practice this ratio is usually much 
larger). Consequently, a reinforced concrete structure normally undergoes 
pronounced inelastic deformation with large macroscopic stable crack growth 
prior to reaching the failure load (maximum load). This inevitably engenders 
stress redistributions, such that the stress distribution u(x) at incipient failure 
is very different from the elastic stress distribution, which has commonly 
been assumed in the previous studies of the statistical size effect. The ex­
istence of macroscopic crack growth is also documented by the load­
deflection diagram, in which the start of macroscopic crack growth is man­
ifested by a significant reduction of slope, as seen in Fig. 4(a). This contrasts 
with metal or some kinds of rock structures, for which the load-deflection 
diagram typically looks as shown in Fig. 4(b). 

To sum up, Weibull theory cannot be applied to the failure of reinforced 
concrete structures unless the effect of stable macroscopic crack growth on 
the stress distribution function Si(~) is taken into account (Bazant 1988). 

Equivalence to Uniaxially Stressed Bar 
Another limitation of the existing Weibull-type formulations is revealed 

by realizing that, if the stress-distribution function Si(~) is known a priori, 
every structure is equivalent to a uniaxially stressed bar of variable cross­
sectional area, A. To demonstrate it, consider the bar in Fig. 5, where x is 
the longitudinal coordinate. For the real structure, one can calculate the 

12" 
_t 
-t 

FIG. 3. Example of Geometrically Similar Reinforced Concrete Structures with 
Stable Macroscopic Fracture Growth before Failure [adapted from Kani (1967)) 
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FIG,S, Uniaxially Loaded Bar of Variable Cross Section 

volume_V(S) of the part of the structure in which the equivalent uniaxial 
stress, S(~) = [L7-IS7'(~)r/m, exceeds the value S, representing the stress 
at some cross section of a uniaxial bar (Fig. 5) 

V(S) = Iv H[(TNS;(~) - S1 dV(~) .............................. (18) 

in which H = Heaviside step function. Now one may subdivide the stress 
range into small steps !:!..S with S representing the value at the middle of 
each step. Then one can calculate function V(S) from (18), and also get the 
derivative V/(S) = !:!..V(S)/!:!..S. Beginning with S = 0, one must satisfy for 
each step !:!..S (with the value S at the middle of the step) the condition of 
equal volume in the real structure, i.e., V/(S)!:!"S = A!:!..x = (TN!:!..xIS. The 
cross-sectional area of the bar corresponding to each stress value S is then 
calculated as A = (TNIS (in which (TN is imagined as the load applied on the 
uniaxial bar, Fig. 5), and the length of the bar element having this cross­
sectional area is 

!:!..x = V'(S)!:!..S ~ ........................................... (19) 
(TN 

Putting all these segments !:!..x with areas A = (TNIS together, one obtains 
the profile of the equivalent bar. So, we see that, indeed, for every mul­
tidimensional structure for which the stress-distribution function at incipient 
failure is known a priori, an equivalent uniaxial bar of variable cross section 
can be found (Bazant 1988). This bar, according to the classical application 
of Weibull theory, behaves in the same way as the actual structure. 

Obviously, in this approach, all information about the mechanics of failure 
is lost, and the structural geometry becomes irrelevant. Of course this cannot 
be true. So the Weibull-type approach cannot be regarded as realistic, unless 
the stress-distribution function realistically describes the stress field at im­
minent failure. 

Differences between Two- and Three-Dimensional Geometric 
Similarities 

Another questionable aspect of the classical Weibull-type approach is the 
effect of the number of dimensions, n, implied by (13). Consider, for ex-
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ample, that the beam dimensions are increased in the ratio D21DI according 
to either two-dimensional similarity, in which case, the beam thickness b is 
kept constant, or according to three-dimensional similarity, in which case, 
the beam thickness is also increased in proportion to D. According to (13), 
the nominal strength aN should change in the ratio (D21 D1) - 21m or 
(D21 D 1)- 31m, respectively. Now, although systematic data on the effect of 
thickness is unavailable, it appears from experience that there is no signif­
icant difference between these two cases. 

No significant difference is manifested by comparing the slopes of the 
plots of log( a N) versus 10g(D) for tests with two-dImensional similarity and 
three-dimensional similarity. The effect of the number of dimensions, n, 
can be checked by using Bazant and Kazemi's (1989) tests of diagonal shear 
failure of concrete beam (reinforced by longitudinal bars with hooks at the 
ends), which were similar to two dimensions (same thickness), and the pull­
out tests of bars by Bazant and Sener (1988) or the torsional shear fracture 
tests by Bazant et al. (1990), which were similar in three dimensions; see 
the data points in Fig. 6. Taking the diagonal shear test as reference, the 
fact that the slope of the mean trend of the data is approximately ~ 1/2 
implies that m = 4 (let us pretend we do not know any uniaxial test data 
that indicate a much larger m). Then, for three-dimensional similarity, the 
slope of the line should be ~ nlm = ~ 3/4 (Bazant 1988). But the pull-out 
tests made with the same concrete indicate the slope to be also ~ 112, which 
does clearly disagree with the classical Wei bull-type analysis [but agrees 
with the modified statistical theory presented in the companion paper (Ba­
zant and Xi 1991)J. 

The classical Weibull-type theories are further put in question when one 
tries to compare the results of tests on bars of different sizes failing in uniaxial 
tension with the diagonal shear tests. The former tests indicate that, ap­
proximately, 111 = 12 (Zech and Wittmann 1977). But if m = 12, then the 
slope of the line in Fig. 6 on the left would have to be ~ 116 rather than 
~ 112. This is a serious discrepancy indeed [it is remedied in the companion 
paper (Bazant and Xi 1991)J. 

Energy Release Due to Large Stable Crack Growth 
From the mechanics viewpoint, the basic problem with the classical 

Wei bull-type approaches to reinforced concrete structures is that they gen­
erally ignore the effect of macroscopic fracture growth on the energy-release 
rate of the structure. Experiments confirm that in concrete structures, the 
fracture length at maximum load is usually proportional to the structure 
dimension, while the width of the fracture process zone, h, is almost the 
same for any size and is a material property, as shown by the example of 
rectangular panel in Fig. 7 (Bazant 1984). The fracture length ao before 
failure of this panel may be imagined to release the stress from the sparsely 
shaded triangular areas in the figure. When, during failure, the fracture 
extends by D.a, the stress is further relieved from the densely cross-hatched 
narrow strips, the area of which gets larger as the structure size gets larger. 
This means that the release of the stored energy of the structure into the 
fracture extension D.a, which comes from the strip, is larger for a larger 
structure if the nominal stress is the same. However, fracture extension 
requires roughly the same energy per unit length of extension, regardless 
of the structure size. Therefore, the nominal stress at failure must get smaller 
if the structure gets larger, so that the strain energy density in the densely 
cross-hatched strip would be smaller in a larger structure, thus making it 
possible to obtain the same energy release per unit length of the fracture. 
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FIG. 6. Test Results of Bazant and Kazeml (1989) for Diagonal Shear Failure (a) 
and of Bazant and Sener (1988) for PUll-Out (b), and Comparisons with Size Effect 
Lines Obtained from Classical Wei bull-Type Theory 
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FIG. 7. Stress Relief Zone In Geometrically Similar Panels with Large Similar 
Fractures 

The foregoing argument has been used to derive a deterministic size effect 
law that is different from that in (13) and agrees quite well with a broad 
range of test results (Bazant 1984; Bazant and Kazemi 1990). That law has 
also been supported by certain other, more general, arguments. 

Spatial Correlation 
Another questionable aspect of classical Weibull-type theories based on 

(2) is the neglect of spatial correlation. This might be justified for the links 
in a chain, but not for continuous bodies of concrete cast at one time. If 
the strength value realized in one small material element is on the low side 
of the average strength, the strength value realized in the adjacent material 
elements is more likely to be also on the low side than on the high side of 
average strength. The standard way to deal with spatial correlation would 
be to introduce a spatial autocorrelation function for material behavior, 
such as strength, but that approach would be rather complicated for the 
present purpose. There is, nevertheless, another simpler way to introduce 
spatial correlation-the non local concept, advanced in the subsequent pa­
per. 

CONCLUSION 

The classical applications of Weibull theory to failure of reinforced con­
crete structures suffer from several serious shortcomings. 
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1. The stress-distribution function used in the applications cannot be assumed 
as the elastic stress distribution, but must take into account the stress redistri­
butions caused by large macroscopic stable crack growth prior to reaching max­
imum load. That growth causes a strong deterministic (or systematic) size effect, 
which prevails over the statistical size effect due to random strength. 

2. According to classical applications of Weibull theory, every structure is 
equivalent to a uniaxial bar with a variable cross section, which means that all 
information on the failure mechanism and structure geometry is lost. 

3. According to classical theories, the differences in the size effect between 
two-dimensional similarity and three-dimensional similarity are predicted to be 
too strong, contradicting experience. 

4. Tests of geometrically similar concrete structures, e.g., diagonal shear tests, 
show a much stronger size than that predicted by classical Weibull-theory ap­
plications (provided that the Weibull modulus value is taken the same as that 
obtained from direct tension test). 

5. The classical Weibull-type theories neglect spatial statistical correlation of 
random material properties. 

Modifications of the Weibull theory required to eliminate the aforemen­
tioned shortcomings are relegated to the subsequent paper. 
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