ECE4540/5540: Digital Control Systems 4—1

STABILITY ANALYSIS TECHNIQUES

4.1: Bilinear transformation

= Three main aspects to control-system design:

1. Stability,
2. Steady-state response,
3. Transient response.

= Here, we look at determining system stability using various methods.

DEFINITION: A system is BIBO stable iff a bounded input produces a
bounded output.

m Check by first writing system input—output relationship as
= CZEEB_ R(z) = KT = 2)
1+ GH(2) [T"G = pi)
= Assume for now that all the poles {p;} are distinct and different from
the poles in R(z). Then,

R(2).

k < an
Y(2) = —— 4+ + +  Yr().
Z— P1 Z— Pn
S — Response to R(z)

—
Response to initial conditions

= |[f the system is stable, the response to initial conditions must decay to
zero as time progresses.

z [Z ’fzp} = ki(p)*11k].

So, the system is stable if |p;| < 1.
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= {p;} are the roots of 1 + GH(z) = 0. So, the roots of 1 + GH(z) =0
must lie within the unit circle of the z-plane.

o Same result even if poles are repeated, but harder to show.

= |f the magnitude of a pole |p;| = 1, then the system is marginally
stable. The unforced response does not decay to zero but also does
not increase to co. However, it is possible to drive the system with a
bounded input and have the output go to co. Therefore, a marginally
stable system is unstable.

Bilinear transformation

» The stability criteria for a discrete-time system is that all its poles lie
within the unit circle on the z-plane.

m Stability criteria for cts.-time systems is that the poles be in the LHP.
» Simple tool to test for continuous-time stability—Routh test.

= Can we use the Routh test to determine stability of a discrete-time
system (either directly or indirectly)?

= To use the Routh test, we need to do a z-plane to s-plane conversion
that retains stability information. The s-plane version of the z-plane

system does NOT need to correspond in any other way.
z-plane w-plane

= That is, y
o The frequency responses / >{—\

may be different

 The step responses may

be different . . X\/
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m Since only stability properties are maintained by the transform, it is
not accurate to label the destination plane the s-plane. It is often
called the w-plane, and the transformation between the z-plane and
the w-plane is called the w-Transform.

m A transform that satisfies these requirements is the bilinear transform.
Recall:

H(U)) = H(Z)'Z_H—(T/Z)w and H(Z) = H(U))'w:%z—l .

1 (T2)w 7+l

= Three things to check:

1. Unit circle in z-plane — jw-axis in w-plane.
2. Inside unit circle in z-plane — LHP in w-plane.
3. Outside unit circle in z-plane — RHP in w-plane.

m [f true,

1. Take H(z) — H(w) via the bilinear transform.
2. Perform Routh test on H(w).

CHECK: Let z = re/®T. Then, z is on the unit circle if » = 1, z is inside the
unit circle if |[r| < 1 and z is outside the unit circle if |r| > 1.

z :rejcoT
2z7—1 2 re/?T — 1
w = = = =
Tz+1 r=reioT T reieT + 1

= Expand ¢/“" = cos(wT) + j sin(wT) and use the shorthand
¢ 2 cos(wT) and s = sin(wT). Also note that s% + ¢ = 1.
2 |rc+ jrs—1
T [rc + jrs + 1]

T
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[ (rc — 1)+ jrs][(rc+ 1) — jrs

| (re+1) + jrs:| [(rc +1) — jrs]

(2= 1D+ jrs)re+1)— jrs)(re — 1) + r2s?

(rc + 1) + (rs)? }

T 2 —1 2 2rs

| r2+2rc + 1i| +]? |:r2—|—2rc+ 1i|'

Notice that the real part of w is 0 when r = 1 (w is on the imaginary
axis), the real part of w is negative when |r| < 1 (w in LHP), and that

the real part of w is positive when |r| > 1 (w in RHP). Therefore, the
bilinear transformation does exactly what we want.

s Whenr =1,

2

.2 2sin(wT) 2 T
w=J]—= = J—tan ,
T2+ 2cos(wT) T

which will be useful to know.

= The following diagram summarizes the relationship between the
s-plane, z-plane, and w-plane:

s-plane z-plane

_@__j&_/(@
By \/ ,
JI_X@ A __ﬁ\ R=1
e LY
_@__._ﬂ'ﬁ)zi_/(@
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4.2: Discrete-time stability via Routh—Hurwitz test

m Review of Routh test.

b
Let H(w) = % ...a(w) isthe characteristic polynomial.

a(w) = a,w" + a, 1w+ -+ ayw + ap.

Case 0: If any of the a,, are negative then the system is unstable
(unless ALL are negative).
Case 1: Form Routh array:
w" ap ap—2 dp—4
W' a1 an—z aps
U)n_2 b1 b2
w3 ¢ Co
w' Ji
U)O k1
by = —1 a, a,_» by — —1 a, a,—4
ap—1 | a,—1 a,_3 Ap—1 | Ap—1 Ap-—5
—1 ap—1 dp-3 —1 dp—1 dnp—s
1= 7 2= ——
by | by by by | by b
TEST: Number of RHP roots = number of sign changes in left column.
Case 2: If one of the left column entries is zero, replace it with ¢
as e — 0.

Case 3: Suppose an entire row of the Routh array is zero, the
w'~'th row. The w'th row, right above it, has coefficients

a1, 0o,y ...
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Then, form the auxiliary equation:

o w + o P+ oz T+ = 0.

This equation is a factor of the characteristic equation
and must be tested for RHP roots (it WILL have non-LHP
roots—we might want to know how many are RHP).

EXAMPLE: Consider:
sT 1

+ 1 —e
) —— — K > > - y(t
r(t) A)j/T s s(s+1) )

o (1= 1
(S)‘( S )(s<s+1>)‘

m From z-transform tables:

z—1 1
60 =) 2 w11

_ (z — 1) ((eT +T -2+ A —eT - TeT)z)

-\ z (z—1)2(z—eT)

Let T =0.1s.
_0.00484z + 0.004638

(z — 1)(z — 0.905)

m Perform the bilinear transform

G (U)) =G (Z) |z— 1+(T/2)w

=1T=T2)w

— G (Z) | 140.05w

1=120.050

—0.00016w?% — 0.1872w + 3.81
3.81w?2 + 3.80w '

m The characteristic equation is:
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0=1+KG(w)
= (3.81 — 0.00016K)w* + (3.80 — 0.1872K)w + 3.81K.

w? | (3.81 —0.00016K) 3.81K m™ K <23,813
w'| (3.80 — 0.1872K) > K <203
w 3.81K > K >0

m So, for stability, 0 < K < 20.3.

NOTE: The “equivalent” continuous-time system is:

+ 1
r () A’T__' K s+ 1) ~0
KG
T(s) = )
1+ KG(s)
» Characteristic equation: s(s +1) + K = 0.
s’ 1 K
st 1
s K

m Stable for all K > 0 ™ sample and hold destabilizes the system.
EXAMPLE: Let’'s do the same example, but with 7 = 1 s (not 0.1 s).
= (math happens)
0=1+KG(w)
= (1 —0.0381K)w?> + (0.924 — 0.86K)w + 0.924K.

w?| (1—0.0381K) 0.924K m™ K <26.2
w'](0.924 — 0.386K) mw K <2.39
w” 0.924K > K>0
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m So, for stability, 0 < K < 2.39.

= This is a much more restrictive range than when T = 0.1 s = slow
sampling really destabilizes a system.
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4.3: Jury’s stability test

m H(z) » H(w) — Routh is complicated and error-prone.
= Jury made a direct test on H (z) for stability.

m Disadvantage (?) ... another test to learn.

b . :
mletT(z) = % a(z) ="“characteristic polynomial.”
a\z
ma(z) —a,7"+a, 17" '+ +az+ay=0, a, > 0.

= Form Jury array:

70 /! 72 .ok Sl
ao aj ar An—k ay—1 dy
ay an—1 ap-2 Ak ai ao
by b1 b bu—ti bn—1
b1 by_> b3 b1 bo

Co C1 C2 Cn—k

Chn—2 Cn-3 Cn—4 Cr—2

mo mi %)

= Quite different from Routh array.

» Every row is duplicated ... in reverse order.
« Final row in table has three entries (always).
o Elements are calculated differently.

ay An—k by bp_1-x Co Cn—o—k
bk — Ck = dk =
a, ag b,—1 by Chn—  Ck
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o Stability criteria is different.

a(z)];=1 > 0

(=1)"a(z),=—y >0

|(l()| < ay

Dol > [bn—1

ol > |cn—2]

|dol > |dy—3]

|mo| > |m>] .

n = order of a(z)

e First, check that a(1) > 0, (—1)"a(—1) > 0 and |ay| < a,. (relatively
few calculations). If not satisfied, stop.

o Next, construct array. Stop if any condition not satisfied.

EXAMPLE:

rlk] JT—» K

= Characteristic equation:

0=1+KG(z)=1+K

=z K
s s(s + 1) >y(0)
| 0.3682 40264 i
22— 1368 +0368[1
(0.3687 + 0.264)

72 —1.368z + 0.368
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= 722+ (0.368K — 1.368)z + (0.368 + 0.264K).

= The Jury array is:

- z! a

0.368 + 0.264K 0.368K — 1.368 1

m The constraint a(1) > 0 yields
1 +0.368K — 1.368 + 0.368 + 0.264K = 0.632K >0 ™ K > 0.

= The constraint (—1)%a(—1) > 0 yields
1—0.368 K +1.36840.36840.264K = —0.104K+2.736 > 0 m» K < 26.3.

m The constraint |ag| < a, yields
0.632

0.264
m S0, 0 < K < 2.39. (Same result as on pg. 4—8 using bilinear rule.)

0.368 4+ 0.264K <1 m K < 2.39.

EXAMPLE: Suppose that the characteristic equation for a closed-loop
discrete-time system is given by the expression:

a(z) =7° — 1.822 +1.05z — 0.20 = 0.
mq(1)=1-18+105-02=005>0
s (—Da(-1)=—-[-1-18-1.05-02]>0
mayg =02 <a3;=1 v

= Jury array:

ZO Zl Z2 23
-02 105 -1.8 1
1 —-18 105 -02

—0.96 1.59 —-0.69
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—02 1 —0.2 —-1.8
by = = —0.96 b = = 1.59
I =02 I 1.05
—0.2 1.05
by = = —0.69
1 —1.8

w The system is stable.
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4.4: Root-locus and Nyquist tests

m For cts.-time control, we examined the locations of the roots of the
closed-loop system as a function of the loop gain K " Root locus.

r(r)JT—» K || D6) | Gs) f—— »()
H(s)

<
i

T(s) — KD(s)G(s)
&) = T KDOICHHG)
mlet L(s) = D(s)G(s)H(s). (The “loop transfer function”).

m Developed rules for plotting the roots of the equation

(PO _

T

0.

“Root Locus Drawing Rules.”
= Applied them to plotting roots of
1+ KL(s)=0.

Now, we have the digital system:
G(s)

—sT

r(t) Jﬁ—» K |~ D() ~1_: > G,(s5) > (1)
H(s)

\

<
i

KD(2)G(2)
1+ KD()GH(2)
= So, we let L(z) = D(z)GH (2).

T(z) =

m Poles are roots of 1 + KL(z) = 0.
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= This is exactly the same form as the Laplace-transform root locus.
Plot roots in exactly the same way.

EXAMPLE: 0.368(z 4 0.717)
. Z .
CHO) = @036y @=L

numd=0.368*[1 0.717];

K =12.39
dend=conv ([1 -1],[1 -0.368]1); Kﬁ

d=tf (numd, dend, -1) ; -
rlocus (d) ;

The Nyquist test

= |In continuous-time control we also used the Nyquist test to assess
stability.

ATI(s) Al(s) Zoom

I \p — 0
> R(s) )0 > R(s)

A %4

= The Nyquist “D” path encircles the entire (unstable) RHP.
» The Nyquist plot is a polar plot of L(s) evaluated on the “D” path.

= Adjustments to “D” shape are made if pole on the jw-axis.
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= The Nyquist test evaluated stability by looking at the Nyquist plot.

o N=No. of CW encirclements of —1 in Nyquist plot.
o P=No. of open-loop unstable poles (poles inside “D” shape).

o Z=No. of closed-loop unstable poles.
eZ =N+ P, Z = 0 for stable closed-loop system.

EXAMPLE: o
= This gives:

O ey T L(s) = —

= Pole at origin: Need detour s = pe’?, p « 1.

m Resulting Nyquist map has infinite radius. L

Cannot draw to scale. l /

= No poles inside modified-“D” curve: P = 0.

mZ =N+ P =0 Stable system.

= Note that increasing the gain “K” only magnifies the entire plot. The
—1 point is not encircled for K > 0 (infinite gain margin).

Nvquist test for discrete systems

» Three different ways to do the Nyquist test for discrete systems.
= Based on three different representations of the characteristic eqn.
1.1+ L*(s) =0. L=DGH

2.1+ L(z) =0.
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1.1+ L*(s) = 0.

= We know that L*(s) is periodic in jaw;. j%ﬂm) - .
Therefore, the “D” curve does not need N
to encircle the entire RHP to encircle \
all unstable poles. [If there were any, 0 > IRi(s)}
there would be an infinite number.] )

= Modify “D” curve to be: i 7

2

» Evaluate L*(s) on new contour and plot polar plot. Same Nyquist
test as before.

2.1+ L(z) =0.

= We can do the Nyquist test directly using z-transforms. The stable
region is the unit circle. The z-domain Nyquist plot is done using a
Nyquist curve which is the unit circle.

m Nyquist fest changes because we are now encircling the STABLE

region (albeit CCW).
I(2)

A
o Z = # closed-loop unstable poles.

o P = # open-loop unstable poles.

e N = # CCW encirclements of —1 in > R(z)
Nyquist plot.
e/ =P —N.

= Probably difficult to evaluate L(z)|,—.;» for —# < 6 < 7 unless using
a digital computer.
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= Now, we convert L(z) — L(w) A(w)

L(U)) = L(Z)| 1+(T/2)w .

1-(T/Dw

= Bilinear transform maps unit circle

o ) > R(w)
to jw-axis in w-plane.
m Use standard continuous-time test
in w-plane.
= Summary:

Open-loop fn. Range of variable Rule
G_H*(s) s = jo, —ws/2 <o < w/2 Z =P+ N¢y
GH(2) z=eT, g <ol <= Z=P—N¢y=P+ Ny
GH(w) W= jwy,, —00=<w, <00 Z =P+ N,

m All three methods produce identical Nyquist plots.
Nyquist Diagrams

= Note that the sampled
system does not have oo
gain margin (a = 0.418,
GM = 2.39) and has smaller
PM than cts.-time system.

Imaginary Axis

Real Axis
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4.5: Bode methods

= Bode plots are an extremely important tool for analyzing and
designing control systems.

= They provide a critical link between continuous-time and discrete-time
control design methods.

m Recall:
» Bode plots are plots of frequency response of a system:
Magnitude and Phase.
e In s-plane, H(s)l;—;, is frequency response for 0 < o < oco.
e In z-plane, H(z)|,_.i.r is frequency response for 0 < w < w,/2.

m Straight-line tools of s-plane analysis DON’T WORK! They are based
on geometry and geometry has changed—jw-axis to z-unit circle.

= BUT in w-plane, H(w)|,—;,, is the frequency response for
0 < w, < oo. Straight-line tools work, but frequency axis is warped.

PROCEDURE:

1. Convert H(z) to H(w) by H(w) = H(Z)| li—ETg;w

2. Simplify expression to rational-polynomial in w.

3. Factor into zeros and poles in standard “Bode Form” (Refer to review
notes).

4. Plot the response exactly the same way as an s-plane Bode plot.
2 ol
Note: Plots are versus log,y@, ... @, = ?tan (7) Can

re-scale axis in terms if w if we want.

EXAMPLE: Example seen before with 7 = 1 second.
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0.368z + 0.264

LetG(2) = X
(D) = 313682 7 0.363

(1,2)
0.368 [11522] + 0.264
140.5w 12 0.5w
[1J—ro.5w] — 1.368 [io.su}] +0.368
B 0.368(1 + 0.5w)(1 — 0.5w) 4+ 0.264(1 — O.Sw)2
a (1 +0.5w)? —1.368(1 + 0.5w)(1 — 0.5w) + 0.368(1 — 0.5w)?

~ —0.0381(w — 2)(w + 12.14)
N w(w + 0.924) '

G(w) =

(3)

> Wy

G(ja)w) = — (].2 — 1)506)]% * 1)'
Jow (Jyos + 1)

(4)

Bode Plots

N
o

N
[=]

-
———————— —— i ————— L -

|
n
o
T

S o
~

Magnitude (dB)

|
N
o

107 10 10’ 10° °

107 1&)" 16‘ 1&)2 1-03
Frequency (warped rads/sec)
= Gain margin and phase margin work the SAME way we expect.
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WAIT!

= We have discussed frequency-response methods without verifying
that discrete-time frequency response means the same thing as
continuous-time frequency response.

= \erify
X(z) — G(z) — Y(2)

zsinwT

(z —eloT)(z — e7ioT)
Y(2) = G(2)X(2)
G(z)zsinwT
T (e— )z —eIoT)

= Do partial-fraction expansion

Y(Z) k1 k2
= e_ij —|— Yg(Z).

mletx[k] =sin(wkT) ... X(z)=

Z z—e/ol 7 —
= Y,(2) is the response due to the poles of G(z). IF the system is
stable, the response due to Y,(z) - 0 as ¢t — oc.

= SO, as r — oo we say

Yss(Z) _ kl k2
z _Z—ej“’T 7 —e—JjoT
G(z)sinwT
kl = —joT
z—e/ r=eioT

_ G/ sinoT
e/oT — g—joT
G(e/®T)
— SETEE
|G (e/eT)|ed 0"
— 2
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= Similarly,

|G(eij)|e—jZG(ej“’T) |G(eij)|e—jZG(ej“’T)
- 2(—J) - 2j
= Combining and solving for y[k]

ko

Yeslk] = ki (/") + ko (e 79T
ejwkT+j1G(efwT) . e—jwkT—jZG(ej“’T)
2j
= |G (e/?T)| sin(wkT + LG (e/®T)).

=G (/)]

= Sure enough, |G(e/“")| is magnitude response to sinusoid, and
/G (e’*T) is phase response to sinusoid.

Closed-loop frequency response

= \We have looked at open-loop concepts and how they apply to closed
loop systems ... our end product.
= Clos(ed-loop frequency response usually calculated by computer:
G(z2)
14+ G(2)’
= In general, if |G(e/“T)| large, |T (e/*T)| ~ 1. If |G(e/*T)| small,
T ()| = |G ().

for example.

= Closed-loop bandwidth similar to open-loop bandwidth.

e If PM =90°, then C.L. BW = O.L. BW.
o If PM = 45°, then C.L. BW = 2x0O.L. BW.
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