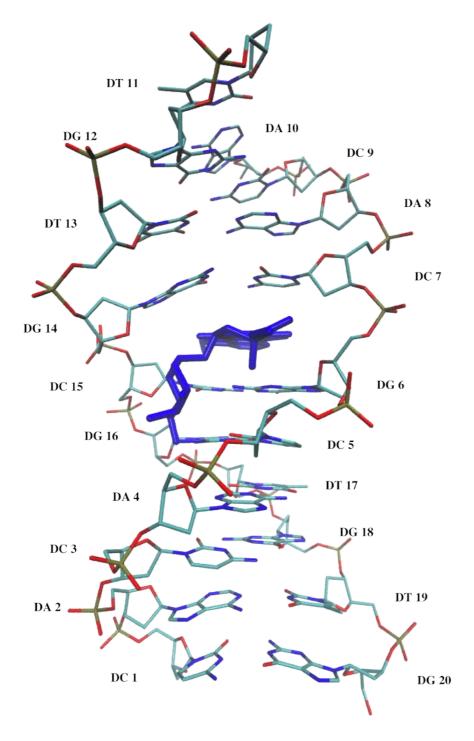
Stability and iron coordination in DNA adducts of anthracycline based anti-cancer drugs

Ane Eizaguirre^a, Manuel Yáñez^{a^*} and Leif A. Eriksson^{b^*}


^aDepartamento de Química, Módulo 13, Universidad Autónoma de Madrid. Cantoblanco, Campus de Excelencia UAM-CSIC, 28049-Madrid (Spain)

^bDepartment of Chemistry and Molecular Biology, University of Gothenburg, 412 96 Göteborg (Sweden)

Supplementary Data

(A total of seven pages)

Figure S1. Structure of the [Anthracycline-DNA]Fe(III) complex. The Anthracycline drug is presented in blue and DNA is presented in element-coloured stick model.

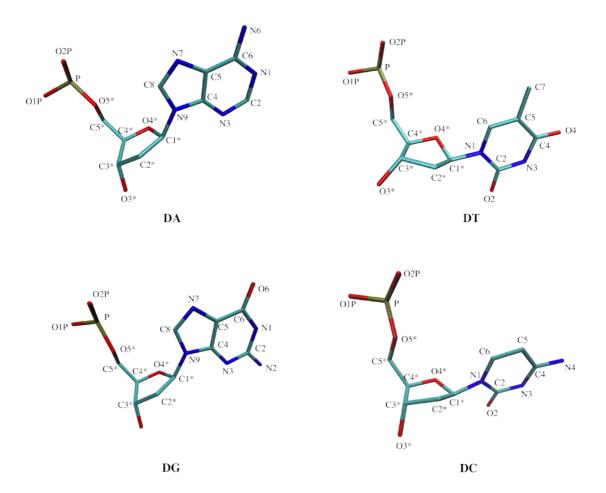


Figure S2. Atom numbering of the nucleotides.

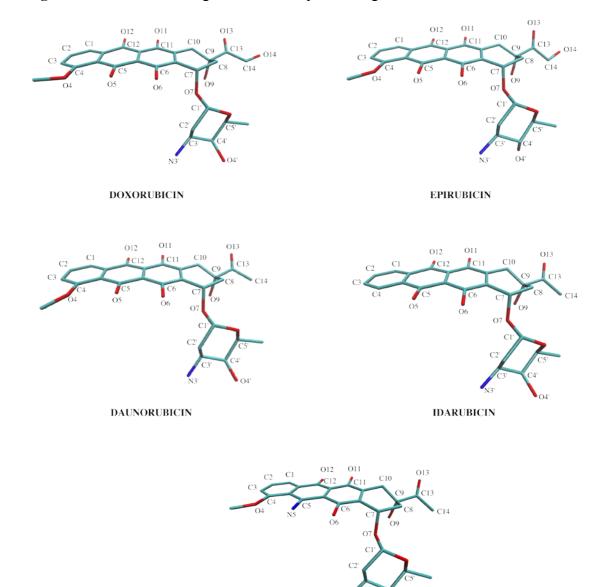
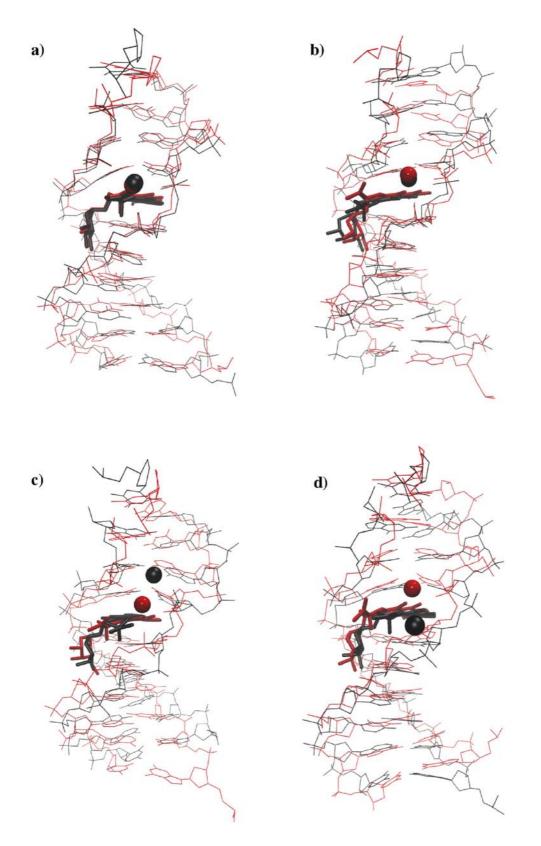


Figure S3. Atom numbering of the Anthracycline drugs.


•

5-IMINODAUNOMYCIN

Table S1. H-bond distances (in Å) in the final structures of the [Anthracycline-DNA] and [Anthracycline]Fe(III) systems. O9H-N3 corresponds to the H-bond formed between the O9 atom belonging to the drug and the N3 atom belonging to DG 6. N2H-O7 is the H-bond generated between the O7 atom of the drug and the N2 atom of the DG 6 nucleotide. N3'H-O2 is the H-bond between the O2 atom of DC 15 and the N3' atom of the drug. N3'H-O4* is the H-bong generated between the N3' atom of the drug and the O4* atom of the DC 15. O4'H-O2 represents the H-bond between the O4' atom of the Epirubicin drug and the O2 atom of DC 5. O14H-O5* is the H-bond formed between the O14 of Doxorubicin and the O5* atom belonging to the DT 13 nucleotide.

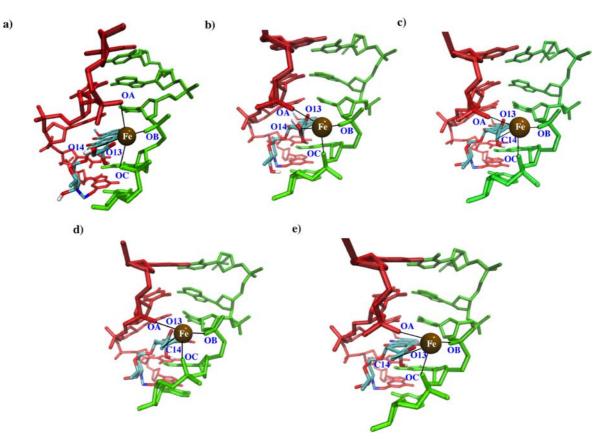

	O9H-N3	N2H-O7	N3'H-O2	N3'H-O4*	O4'H-O2	O14H-O5*
DOX-DNA	1.817	2.016	1.976			
EPI-DNA	1.907	2.095	2.010		1.590	
DNR-DNA	1.825	2.052	-			
IDA-DNA	1.786	2.026	2.121			
5-IMINO-DAU-DNA	1.765	1.967	2.008			
[DOX-DNA]Fe(III)	1.765	2.088	-	2.337		2.006
[EPI-DNA]Fe(III)	2.020	1.887	2.084		1.628	
[DNR-DNA]Fe(III)	-	-	-			
[IDA-DNA]Fe(III)	1.836	1.927	2.115			
[5-IMINO-DAU- DNA]Fe(III)	1.870	1.899	-			

Figure S4. Superposition of [Anthracycline-DNA]Fe(III) systems. The equilibrated and final structures are represented in red and black respectively. a) [EPI-DNA]Fe(III) system. b) [DNR-DNA]Fe(III) system. c) [IDA-DNA]Fe(III) system. d) [5-IMINO-DAU-DNA]Fe(III) system.

Figure S5. Initial structures of the Fe-containing systems after minimazation. a) The [DOX-DNA]Fe(III) system, where the Fe-OA, Fe-OB, Fe-OC, Fe-O14 and Fe-O13 distances are 2.924, 2.612, 2.753, 3.056 and 2.921 Å, respectively. b) The [EPI-DNA]Fe(III) system, where the Fe-OA, Fe-OB, Fe-OC, Fe-O14 and Fe-O13 distances are 2.711, 2.694, 2.633, 2.903 and 4.770 Å, respectively. c) The [DNR-DNA]Fe(III)

system, where the Fe-OA, Fe-OB, Fe-OC, Fe-C14 and Fe-O13 distances are 2.672, 2.617, 2.683, 4.280 and 4.783 Å, respectively. d) The [IDA-DNA]Fe(III) system, where Fe-OA, Fe-OB, Fe-OC, Fe-C14 and Fe-O13 distances are 2.626, 2.627, 2.676, 4.470 and 4.762 Å, respectively. e) The [5-IMINO-DAU-DNA]Fe(III) system, where Fe-OA, Fe-OB, Fe-OC, Fe-C14 and Fe-O13 distances are 2.624, 2.614, 2.633, 4.249 and 3.239 Å, respectively.

