
Stability, consistency, and convergence
of numerical discretizations
Douglas N. Arnold, School of Mathematics, University of Minnesota

Overview
A problem in differential equations can rarely be solved analytically, and so often is
discretized, resulting in a discrete problem which can be solved in a finite sequence
of algebraic operations, efficiently implementable on a computer. The error in a dis-
cretization is the difference between the solution of the original problem and the solu-
tion of the discrete problem, which must be defined so that the difference makes sense
and can be quantified. Consistency of a discretization refers to a quantitative measure
of the extent to which the exact solution satisfies the discrete problem. Stability of
a discretization refers to a quantitative measure of the well-posedness of the discrete
problem. A fundamental result in numerical analysis is that the error of a discretization
may be bounded in terms of its consistency and stability.

A framework for assessing discretizations

Many different approaches are used to discretize differential equations: finite differ-
ences, finite elements, spectral methods, integral equation approaches, etc. Despite the
diversity of methods, fundamental concepts such as error, consistency, and stability are
relevant to all of them. Here we describe a framework general enough to encompass all
these methods, although we do restrict to linear problems to avoid many complications.
To understand the definitions, it is good to keep some concrete examples in mind, and
so we start with two of these.

A finite difference method

As a first example, consider the solution of the Poisson equation, ∆u = f , on a domain
Ω ⊂ R2, subject to the Dirichlet boundary condition u = 0 on ∂Ω. One possible
discretization is a finite difference method, which we describe in the case Ω = (0, 1)×
(0, 1) is the unit square. Making reference to Figure 1, let h = 1/n, n > 1 integer, be
the grid size, and define the grid domain, Ωh = { (lh,mh) | 0 < l,m < n }, as the set
of grid points in Ω. The nearest neighbors of a grid point p = (p1, p2) are the four grid
points pW = (p1−h, p2), pE = (p1 +h, p2), pS = (p1, p2−h), and pN = (p1, p2 +h). The
grid points which do not themselves belong to Ω, but which have a nearest neighbor in
Ω constitute the grid boundary, ∂Ωh, and we set Ω̄h = Ωh ∪ ∂Ωh. Now let v : Ω̄h → R
be a grid function. Its five-point Laplacian ∆hv is defined by

∆hv(p) =
v(pE) + v(pW ) + v(pS) + v(pN)− 4v(p)

h2
, p ∈ Ωh.

The finite difference discretization then seeks uh : Ω̄h → R satisfying

∆huh(p) = f(p), p ∈ Ωh, uh(p) = 0, p ∈ ∂Ωh.

If we regard as unknowns the N = (n − 1)2 values uh(p) for p ∈ Ωh, this gives us a
systems of N linear equations in N unknowns which may be solved very efficiently.
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Fig. 1. The grid domain Ω̄h consists of the points in Ωh, marked with solid dots, and in ∂Ωh, marked
with hollow dots. On the right is the stencil of the five-point Laplacian, which consists of a grid point
p and its four nearest neighbors.

A finite element method

A second example of a discretization is provided by a finite element solution of the same
problem. In this case we assume that Ω is a polygon furnished with a triangulation Th,
such as pictured in Figure 2. The finite element method seeks a function uh : Ω → R
which is continuous and piecewise linear with respect to the mesh and vanishing on
∂Ω, and which satisfies

−
∫
Ω

∇uh · ∇v dx =

∫
Ω

fv dx,

for all test functions v which are themselves continuous and piecewise linear with
respect to the mesh and vanish on ∂Ω. If we choose a basis for this set of space of test
functions, then the computation of uh may be reduced to an efficiently solvable system
of N linear equations in N unknowns, where, in this case, N is the number of interior
vertices in the triangulation.

Fig. 2. A finite element mesh of the domain Ω. The solution is sought as a piecewise linear function
with respect to the mesh.

Discretization

We may treat both these examples, and many other discretizations, in a common
framework. We regard the discrete operator as a linear map Lh from a vector space Vh,
called the discrete solution space, to a second vector space Wh, called the discrete data
space. In the case of the finite difference operator, the discrete solution space is the
space of mesh functions on Ω̄h which vanish on ∂Ωh, the discrete data space is the space
of mesh functions on Ωh, and the discrete operator Lh = ∆h, the five-point Laplacian.
In the case of the finite element method, Vh is the space of continuous piecewise linear
functions with respect to the given triangulation that vanish on ∂Ω, and Wh = V ∗h , the
dual space of Vh. The operator Lh is given by
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(Lhw)(v) = −
∫
Ω

∇w · ∇v dx, w, v ∈ Vh.

For the finite difference method we define the discrete data fh ∈ Wh by fh = f |Ωh
,

while for the finite element method fh ∈ Wh is given by fh(v) =
∫
fv dx. In both cases,

the discrete solution uh ∈ Vh is found by solving the discrete equation

Lhuh = fh. (1)

Of course, a minimal requirement on the discretization is that the finite dimensional
linear system (1) has a unique solution, i.e., that the associated matrix is invertible
(so Vh and Wh must have the same dimension). Then the discrete solution uh is well-
defined. The primary goal of numerical analysis to ensure that the discrete solution is
a good approximation of the true solution u in an appropriate sense.

Representative and error

Since we are interested in the difference between u and uh, we must bring these into a
common vector space, where the difference makes sense. To this end, we suppose that a
representative Uh ∈ Vh of u is given. The representative is taken to be an element of Vh
which, though not practically computable, is a good approximation of u. For the finite
difference method a natural choice of representative is the grid function Uh = u|Ωh

. If
we show that the difference Uh−uh is small, we know that the grid values uh(p) which
determine the discrete solution are close to the exact values u(p). For the finite element
method, a good possibility for Uh is the piecewise linear interpolant of u, that is, Uh is
the piecewise linear function that coincides with u at each vertex of the triangulation.
Another popular possibility is to take Uh to be the best approximation of u in Vh in an
appropriate norm. In any case, the quantity Uh − uh, which is the difference between
the representative of the true solution and the discrete solution, defines the error of
the discretization.

At this point we have made our goal more concrete: we wish to ensure that the
error, Uh − uh ∈ Vh, is small. To render this quantitative we need to select a norm on
the finite dimensional vector space Vh with which to measure the error. The choice of
norm is an important aspect of the problem presentation, and an appropriate choice
must reflect the goal of the computation. For example, in some applications, a large
error at a single point of the domain could be catastrophic, while in others only the
average error over the domain is significant. In yet other cases, derivatives of u are the
true quantities of interest. These cases would lead to different choices of norms. We
shall denote the chosen norm of v ∈ Vh by ‖v‖h. Thus we now have a quantitative goal
for our computation: that the error ‖Uh − uh‖h be sufficiently small.

Consistency and stability

Consistency error

Having used the representative Uh of the solution to define the error, we also use it to
define a second sort of error, the consistency error, also sometimes called the truncation
error. The consistency error is defined to be LhUh−fh, which is an element of Wh. Now
Uh represents the true solution u, so the consistency error should be understood as a
quantity measuring the extent to which the true solution satisfies the discrete equation
(1). Since Lu = f , the consistency error should be small if Lh is a good representative
of L and fh a good representative of f . In order to relate the norm of the error to the
consistency error, we need a norm on the discrete data space Wh as well. We denote this
norm by ‖w‖′h for w ∈ Wh and so our measure of the consistency error is ‖LhUh−fh‖′h.
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Stability

If a problem in differential equations is well-posed, then, by definition, the solution u
depends continuously on the data f . On the discrete level, this continuous dependence
is called stability. Thus stability refers to the continuity of the mapping L−1h : Wh → Vh,
which takes the discrete data fh to the discrete solution uh. Stability is a matter of
degree, and an unstable discretization is one for which the modulus of continuity of
L−1h is very large.

To illustrate the notion of instability, and to motivate the quantitative measure
of stability we shall introduce below, we consider a simpler numerical problem than
the discretization of a differential equation. Suppose we wish to compute the definite
integral

γn+1 =

∫ 1

0

xnex−1 dx, (2)

for n = 15. Using integration by parts, we obtain a simple recipe to compute the
integral in short sequence of arithmetic operations:

γn+1 = 1− nγn, n = 1, . . . , 15, γ1 = 1− e−1 = 0.632121 . . . . (3)

Now suppose we carry out this computation, beginning with γ1 = 0.632121 (so trun-
cated after six decimal places). We then find that γ16 = −576, 909, which is truly a
massive error, since the correct value is γ16 = 0.0590175 . . .. If we think of (3) as a
discrete solution operator (analogous to L−1h above) taking the data γ1 to the solution
γ16, then it is a highly unstable scheme: a perturbation of the data of less than 10−6

leads to a change in the solution of nearly 6×105. In fact, it is easy to see that for (3), a
perturbation ε in the data leads to an error of 15!× ε in solution—a huge instability. It
is important to note that the numerical computation of the integral (2) is not a difficult
numerical problem. It could be easily computed with Simpson’s rule, for example. The
crime here is solving the problem with the unstable algorithm (3).

Returning to the case of the discretization (1), imagine that we perturb the

discrete data fh to some f̃h = fh + εh, resulting in a perturbation of the discrete
solution to ũh = L−1h f̃h. Using the norms in Wh and Vh to measure the perturbations
and then computing the ratio, we obtain

solution perturbation

data perturbation
=
‖ũh − uh‖h
‖f̃h − fh‖′h

=
‖L−1h εh‖h
‖εh‖′h

.

We define the stability constant Cstab
h , which is our quantitative measure of stability,

as the maximum value this ratio achieves for any perturbation εh of the data. In other
words, the stability constant is the norm of the operator L−1h :

Cstab
h = sup

06=εh∈Wh

‖L−1h εh‖h
‖εh‖′h

= ‖L−1h ‖L(Wh,Vh).

Relating consistency, stability, and error

The fundamental error bound

Let us summarize the ingredients we have introduced in our framework to assess a
discretization:

• the discrete solution space, Vh, a finite dimensional vector space, normed by
‖ · ‖h
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• the discrete data space, Wh, a finite dimensional vector space, normed by ‖ · ‖′h
• the discrete operator, Lh : Vh → Wh, an invertible linear operator
• the discrete data fh ∈ Wh

• the discrete solution uh determined by the equation Lhuh = fh
• the solution representative Uh ∈ Vh
• the error Uh − uh ∈ Vh
• the consistency error LhUh − fh ∈ Wh

• the stability constant Cstab
h = ‖L−1h ‖L(Wh,Vh)

With this framework in place, we may prove a rigorous error bound, stating that the
error is bounded by the product of the stability constant and the consistency error:

‖Uh − uh‖h ≤ Cstab
h ‖LhUh − fh‖′h. (4)

The proof is straightforward. Since Lh is invertible,

Uh − uh = L−1h [Lh(Uh − uh)] = L−1h (LhUh − Lhuh) = L−1h (LhUh − fh).

Taking norms, gives

‖Uh − uh‖h ≤ ‖L−1h ‖L(Wh,Vh)‖LhUh − fh‖
′
h,

as claimed.

The fundamental theorem

A discretization of a differential equation always entails a certain amount of error. If
the error is not small enough for the needs of the application, one generally refines
the discretization, for example using a finer grid size in a finite difference method or a
triangulation with smaller elements in a finite element method. Thus we may consider
a whole sequence or family of discretizations, corresponding to finer and finer grids
or triangulations or whatever. It is conventional to parametrize these by a positive
real number h called the discretization parameter. For example, in the finite difference
method, we may use the same h as before, the grid size, and in the finite element
method we can take h to be the maximal triangle diameter, or something related to
it. We shall call such a family of discretizations a discretization scheme. The scheme
is called convergent if the error norm ‖Uh − uh‖h tends to 0 as h tends to 0. Clearly
convergence is a highly desirable property: it means that we can achieve whatever level
of accuracy we need, as long as we do a fine enough computation. Two more definitions
apply to a discretization scheme. The scheme is consistent if the consistency error norm
‖LhUh − fh‖′h tends to 0 with h. The scheme is stable if the stability constant Cstab

h

is bounded uniformly in h: Cstab
h ≤ Cstab for some number Cstab and all h. From the

fundamental error bound, we immediately obtain what may be called the fundamental
theorem of numerical analysis: a discretization scheme which is consistent and stable
is convergent.

Historical perspective

Consistency essentially requires that the discrete equations defining the approximate
solution are at least approximately satisfied by the true solution. This is an evident
requirement, and has implicitly guided the construction of virtually all discretization
methods, from the earliest examples. Bounds on the consistency error are often not
difficult to obtain. For finite difference methods, for example, they may be derived
from Taylor’s theorem, and, for finite element methods, from simple approximation
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theory. Stability is another matter. Its central role was not understood until the mid-
twentieth century, and there are still many differential equations for which it is difficult
to devise or to assess stable methods.

That consistency alone is insufficient for the convergence of a finite difference
method was pointed out in a seminal paper of Courant, Friedrichs, and Lewy [2] in
1928. They considered the one-dimensional wave equation and used a finite difference
method, analogous to the five-point Laplacian, with a space-time grid of points (jh, lk)
with 0 ≤ j ≤ n, 0 ≤ l ≤ m integers and h, k > 0 giving the spatial and temporal grid
size, respectively. It is easy to bound the consistency error by O(h2 + k2), so setting
k = λh for some constant λ > 0 and letting h tend to 0, one obtains a consistent
scheme. However, by comparing the domains of dependence of the true solution and of
the discrete solution on the initial data, one sees that this method, though consistent,
cannot be convergent if λ > 1.

Twenty years later, the property of stability of discretizations began to emerge
in the work of von Neumann and his collaborators. First, in von Neumann’s work with
Goldstine on solving systems of linear equations [4], they studied the magnification
of round-off error by the repeated algebraic operations involved, somewhat like the
simple example (3) of an unstable recursion considered above. A few years later, in
a 1950 article with Charney and Fjørtoft [1] on numerical solution of a convection
diffusion equation arising in atmospheric modeling, the authors clearly highlighted
the importance of what they called computational stability of the finite difference
equations, and they used Fourier analysis techniques to assess the stability of their
method. This approach developed into von Neumann stability analysis, still one of the
most widely used techniques for determining stability of finite difference methods for
evolution equations.

During the 1950s, there was a great deal of study of the nature of stability of
finite difference equations for initial value problems, achieving its capstone in the 1956
survey paper [3] of Lax and Richtmeyer. In that context, they formulated the definition
of stability given above and proved that, for a consistent difference approximation,
stability ensured convergence.

Techniques for ensuring stability

Finite difference methods

We first consider an initial value problem, for example the heat equation or wave
equation, discretized by a finite difference method using grid size h and time step
k. The finite difference method advances the solution from some initial time t0 to a
terminal time T by a sequence of steps, with the lth step advancing the discrete solution
from time (l−1)k to time lk. At each time level lk the discrete solution is a spatial grid
function ulh, and so the finite difference method defines an operator G(h, k) mapping
ul−1h to ulh, called the amplification matrix. Since the amplification matrix is applied
many times in the course of the calculation (m = (T − t0)/k times to be precise,
a number which tends to infinity as k tends to 0), the solution at the final step umh
involves a high power of the amplification matrix, namely G(h, k)m, applied to the data
u0h. Therefore the stability constant will depend on a bound for ‖G(h, k)m‖. Usually this
can only be obtained by showing that ‖G(h, k)‖ ≤ 1, or, at most, ‖G(h, k)‖ ≤ 1+O(k).
As a simple example, we may consider an initial value problem for the heat equation
with homogeneous boundary conditions on the unit square:
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∂u

∂t
= ∆u, x ∈ Ω, 0 < t ≤ T,

u(x, t) = 0, x ∈ ∂Ω, 0 < t ≤ T, u(x, 0) = u0(x), x ∈ Ω,

which we discretize with the five-point Laplacian and forward differences in time:

ul(p)− ul−1(p)
k

= ∆hu
l−1(p), p ∈ Ωh, 0 < l ≤ m,

ul(p) = 0, p ∈ ∂Ωh, 0 < l ≤ m, u0(p) = u0(p), p ∈ Ωh.

(5)

In this case the norm condition on the amplification matrix ‖G(h, k)‖ ≤ 1 holds if
4k ≤ h2, but not otherwise, and, indeed, it can be shown that this discretization scheme
is stable, if and only if that condition is satisfied. Figure 3 illustrates the tremendous
difference between a stable and unstable choice of time step.

Fig. 3. Finite difference solution of the heat equation using (5). Left: initial data. Middle: discrete
solution at t = 0.03 computed with h = 1/20, k = 1/2, 000 (stable). Right: same computation with
k = 1/1, 000 (unstable).

Several methods are used to bound the norm of the amplification matrix. If
an L∞ norm is chosen, one can often use a discrete maximum principle based on the
structure of the matrix. If an L2 norm is chosen, then Fourier analysis may be used if
the problem has constant coefficients and simple enough boundary conditions. In other
circumstances, more sophisticated matrix or eigenvalue analysis is used.

For time-independent PDEs, such as the Poisson equation, the requirement is
to show that the inverse of the discretization operator is bounded uniformly in the grid
size h. Similar techniques as for the time-dependent problems are applied.

Galerkin methods

Galerkin methods, of which finite element methods are an important case, treat a
problem which can be put into the form: find u ∈ V such that B(u, v) = F (v) for all
v ∈ V . Here V is a Hilbert space, B : V × V → R is a bounded bilinear form, and
F ∈ V ∗, the dual space of V . (Many generalizations are possible, e.g., to the case where
B acts on two different Hilbert spaces, or the case of Banach spaces.) This problem
is equivalent to a problem in operator form, find u such Lu = F , where the operator
L : V → V ∗ is defined by Lu(v) = B(u, v). An example is the Dirichlet problem for

the Poisson equation considered earlier. Then V = H̊1(Ω), B(u, v) =
∫
Ω
∇u · ∇v dx,

and F (v) =
∫
Ω
fv dx. The operator is L = −∆ : H̊1(Ω)→ H̊1(Ω)∗.

A Galerkin method is a discretization which seeks uh in a subspace Vh of V
satisfying B(uh, v) = F (v) for all v ∈ Vh. The finite element method discussed above
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took Vh to be the subspace of continuous piecewise linears. If the bilinear form B is
coercive in the sense that there exists a constant γ > 0 for which

B(v, v) ≥ γ‖v‖2V , v ∈ V,

then stability of the Galerkin method with respect to the V norm is automatic. No
matter how the subspace Vh is chosen, the stability constant is bounded by 1/γ. If the
bilinear form is not coercive (or if we consider a norm other than the norm in which
the bilinear form is coercive), then finding stable subspaces for Galerkin’s method may
be quite difficult. As a very simple example, consider a problem on the unit interval
I = (0, 1), to find (σ, u) ∈ H1(I)× L2(I) such that∫ 1

0

στ dx+

∫ 1

0

τ ′u dx+

∫ 1

0

σ′v dx =

∫ 1

0

fv dx, (τ, v) ∈ H1(I)× L2(I). (6)

This is a weak formulation of system σ = u′, σ′ = f , with Dirichlet boundary conditions
(which arise from this weak formulation as natural boundary conditions), so this is
another form of the Dirichlet problem for Poisson’s equation u′′ = f on I, u(0) = u(1) =
0. In higher dimensions, there are circumstances where such a first-order formulation
is preferable to a standard second-order form. This problem can be discretized by a
Galerkin method, based on subspaces Sh ⊂ H1(I) and Wh ⊂ L2(I). However, the
choice of subspaces is delicate, even in this one-dimensional context. If we partition I
into subintervals and choose Sh and Wh both to be the space of continuous piecewise
linears, then the resulting matrix problem is singular, so the method is unusable. If we
choose Sh to continuous piecewise linears, and Wh to be piecewise constants, we obtain
a stable method. But if we choose Sh to contain all continuous piecewise quadratic
functions, and retain the space of piecewise constants for Wh, we obtain an unstable
scheme. The stable and unstable methods can be compared in Figure 4. For the same
problem of the Poisson equation in first-order form, but in more than one dimension,
the first stable elements were discovered in 1975 [5].

Fig. 4. Approximation of the problem (6), with u = cosπx shown on left, and σ = u′ on the right. The
exact solution is shown in blue, and the stable finite element method, using piecewise linears for σ and
piecewise constants for u, is shown in green (in the right plot, the blue curve essentially coincides with
the green curve, and so is not visible). An unstable finite element method, using piecewise quadratics
for σ, is shown in red.
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