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Isolated Ring Systems Are Unstable

Theorem 1 The system is stable if and only if n = 2.

https://vanderbei.princeton.edu/WebGL/Lagrange3.html
https://vanderbei.princeton.edu/WebGL/Lagrange20.html


Saturn’s Rings

Beautiful Saturn

Simplified model of a ring system

In 1859, J.C. Maxwell won the prestigious
Adams Prize.

His Results:

• Rings of Saturn must be composed of
small particles.

• Modeled the ring as n co-orbital particles
of mass m.

• For large n, ring system is stable if

m

M
≤ 2.298

n3

Image From Earth

https:///vanderbei.princeton.edu/tex/talks/PU_Rocketry_Club/170640main_pia08356-movie.mp4


A Large Central Mass Stabilizes

Saturn and 20 Janus-mass moons

Stable! WHY?

Common misconception: the massive body dominates the dynamics dwarfing the
moon-moon interactions.

This is WRONG.

https://vanderbei.princeton.edu/WebGL/StableRings2.html


Slight Perturbation

Here, again, are 20 Janus masses

Orbits are initialized to be circular

Distances from Saturn are randomized (only slightly)

Note the effective repulsion!

https://vanderbei.princeton.edu/WebGL/StableRings2perturbed.html
https://vanderbei.princeton.edu/WebGL/StableRings2perturbed.html


Main Result

R. J. Vanderbei and K. Kolemen Linear Stability of Ring Systems. Astronomical Journal, 133:656-664, 2007.

Theorem 2

• For 2 ≤ n ≤ 6, the ring system is unsta-
ble.

• For n ≥ 7, the ring system is (linearly)
stable if and only if

m

M
≤ γn
n3
.

• limn→∞ γn = 2.2987.

Simulation confirms the stability analysis:

n γn Simulator
2 * [0.0, 0.007]
6 * [0.0, 0.025]
7 2.452 [2.45, 2.46]
8 2.4121 [2.41, 2.42]

10 2.3753 [2.37, 2.38]
12 2.3543 [2.35, 2.36]
14 2.3411 [2.34, 2.35]
20 2.3213 [2.32, 2.33]
36 2.3066 [2.30, 2.31]
50 2.3031 [2.30, 2.31]

100 2.2999 [2.30, 2.31]
500 2.2987

https://vanderbei.princeton.edu/tex/saturn/ms.pdf
https://vanderbei.princeton.edu/WebGL/StableRings2.html


The Formula For γn Is Explicit But Ugly

n3/γn = 2(Jn − J̃n/2±1,n) +
9

2
(Jn − J̃n/2,n)− 5In

+

√(
2(Jn − J̃n/2±1,n) +

9

2
(Jn − J̃n/2,n)− 4In

)2

− 9

4

(
Jn − J̃n/2,n

)2
,

where

In =
1

4

n−1∑
k=1

1

sin
(
πk/n

)
Jn =

1

4

n−1∑
k=1

1

sin3
(
πk/n

)
J̃j,n =

1

4

n−1∑
k=1

cos(2πkj/n)

sin3(πk/n)



Asymptotics

For n large,

In ≈
n

2π

(n−1)/2∑
k=1

1

k
≈ n

2π
log(n/2)

Jn ≈
n3

2π3

∞∑
k=1

1

k3
=

n3

2π3
ζ(3) = 0.01938 n3

J̃n/2,n ≈ −
3

4
Jn.

Hence,

γn ≈
1

7
8
(13 +

√
160)Jn/n3

≈ 2.2987.



Oblateness

If the central body is oblate with oblateness parameter J2 and equatorial radius R, a similar
analysis yields, for large n,

γn ≈
8

7

(1− 3
2
J2

(
R
r

)2
)2

13− 57
2
J2

(
R
r

)2
+

√
(13− 57

2
J2

(
R
r

)2
)2 − 9(1− 3

2
J2

(
R
r

)2
)2

n3

Jn

For Saturn, J2 = 1.6297 × 10−2 and R/r =
0.3967. With these values, we get

γn ≈ 2.2945.

From simulator with n = 60, 2.280 is stable
whereas 2.281 is not.

https://vanderbei.princeton.edu/WebGL/StableRings2.html


Rings at Multiple Radii

General principle: it is easier for a body to destabilize bodies at
the same radius from the central mass.

Hence, if each of many single rings are stable, then one might
expect the entire system to be stable.

Mathematical verification is profoundly difficult—no longer does
a single counter-rotation freeze all bodies.

https://vanderbei.princeton.edu/WebGL/StableRings2.html


Density Estimate
Let

λ = linear density of the masses =
diam of a boulder

separation between boulders

If δ denotes the boulders’ density, then the mass of a boulder is

m = (4π/3)(λπr/n)3δ.

The density of the boulders in Saturn’s rings is about 1/8 of Earth’s density

δ =
1

8

ME

(4π/3)r3E
.

Recall our stability threshold
m ≤ 2.298M/n3.

Combining, we get an inequality without n:(
λπ

r

rE

)3

≤ (8)(2.298)

(
MS

ME

)
Substituting r = 120, 000km and MS = 95.5ME and solving for λ, we get

λ ≤ 20.4%.

Remark: Gravity scales correctly—a marble orbits a bowling ball every 90 minutes.
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Appendix: Some Details



Complex Notation is Simple

Equation of motion for j = 0, . . . , n− 1

z̈j = GM
zn − zj
|zn − zj|3

+
∑
k 6=j,n

Gm
zk − zj
|zk − zj|3

.

About center of mass

zn = −m
M

n−1∑
j=0

zj.

Equilibrium point

zj(t) = rei(ωt+2πj/n), j = 0, . . . , n− 1

zn(t) = 0,

where

ω2 =
GM

r3
+
Gm

4r3

n−1∑
k=1

1

sin(πk/n)
.



Linear Stability Analysis

Counter rotate (and map to positive real axis):

wj = e−i(ωt+2πj/n)zj.

Treating wj and w̄j as independent variables, put

Wj =

[
wj

w̄j

]
.

Linearize equation of motion around equilibrium point:

d

dt



δW 0

δW 1
...

δW n−1
˙δW 0

˙δW 1
...

˙δW n−1


≈



I
I

. . .
I

D N1 · · · Nn−1 Ω
Nn−1 D · · · Nn−2 Ω

... ... ... . . .
N1 N2 · · · D Ω





δW 0

δW 1
...

δW n−1
˙δW 0

˙δW 1
...

˙δW n−1





Stability is Determined by Eigenvalues of 4n× 4n System



I
I

. . .
I

D N1 · · · Nn−1 Ω
Nn−1 D · · · Nn−2 Ω

... ... ... . . .
N1 N2 · · · D Ω





δW 0

δW 1
...

δW n−1
˙δW 0

˙δW 1
...

˙δW n−1


= λ



δW 0

δW 1
...

δW n−1
˙δW 0

˙δW 1
...

˙δW n−1


.

First 2n equations give
˙δW j = λδW j

Substituting, we get a block circulant matrix:
D N1 · · · Nn−1
Nn−1 D · · · Nn−2

... ... ...
N1 N2 · · · D




δW 0

δW 1
...

δW n−1

 + λ


Ω

Ω
. . .

Ω




δW 0

δW 1
...

δW n−1

 = λ2


δW 0

δW 1
...

δW n−1

 .



Block Circulant Matrix

Look for solutions of the form: 
δW 0

δW 1
...

δW n−1

 =


ξ
ρjξ

...
ρn−1j ξ

 ,

where ρj is an n-th root of unity
ρj = e2πij/n.

The 2n× 2n system then reduces to n 2× 2 systems the determinant of which must vanish:

det

D +
n−1∑
k=1

ρkjNk + λΩ− λ2I

 = 0.

Replacing λ with iλ, we get a characteristic polynomial with real coefficients

f (λ) = λ4 + Ajλ
2 + Bjλ + Cj = 0.

Find when this equation has 4 real roots.



Counting Real Roots of f (λ) = λ4 + Ajλ
2 + Bjλ + Cj = 0

For 2 ≤ n ≤ 6 and j = 1, f (λ) has this form:

Hence, there can be at most 2 real roots and so the system
is always unstable.

For n ≥ 7 and all j, f (λ) has this form:

Hence, there can be 4 real roots and so we have the possi-
bility of stability.

If j = n/2 has four real roots, then so do all other polyno-
mials.

Details are tedious, but analysis of the j = n/2 case pro-
duces the threshold γn given earlier.


