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Recent simulations predict that aggregating nanospheres functionalized with polymer ‘‘tethers’’ can

self-assemble to form the double gyroid (DG) phase seen in block copolymer and surfactant systems.

Within the struts of the gyroid, the nanoparticles pack in icosahedral motifs, stabilizing the gyroid

phase in a small region of the phase diagram. Here, we study the impact of nanoparticle size

polydispersity on the stability of the double gyroid phase. We show for low amounts of polydispersity

the energy of the double gyroid phase is lowered. A large amount of polydispersity raises the energy of

the system, disrupts the icosahedral packing, and eventually destabilizes the gyroid. Our results show

that the DG forms readily up to 10% polydispersity. Considering polydispersity as high as 30%, our

results suggest no terminal polydispersity for the DG, but that higher polydispersities may kinetically

inhibit the formation of phase. The inclusion of a small population of either smaller or larger

nanospheres encourages low-energy icosahedral clusters and increases the gyroid stability while

facilitating its formation. We also introduce a new measure for determining the volume of a component

in a microphase-separated system based on the Voronoi tessellation.
I. Introduction

The ability of block copolymers to self assemble into systems

with periodic micro-domains makes them attractive building

blocks for engineering self-assembled nanomaterials.1–3 Possible

applications of the periodic nanometre-sized domains include

microelectronics4 and high-density storage media,5 photonic

band gap materials,6,7 and drug delivery systems.8,9 Recent

attention has focused on the use of polymer-tethered nano-

particles as a means to create novel nano-materials by exploiting

the block copolymer-like immiscibility between the nanoparticle

and tether.10–14 Several techniques exist to create composite

polymer-nanoparticles. Westenhoff and Kotov, for example,

used poly(ethyleneglycole) PEG polymer to tether a CdTe

nanoparticle to a surface.15 Several research groups have created

gold or SiO2 nanoparticles functionalized with polymers or DNA

linkers.16–18 Even more advanced techniques are being proposed

to create nanoparticles with multiple functionalizations with

controlled placements for creating self-assembled structures.19,20

Polymer tethered nanosphere amphiphiles are, therefore,

currently realizable. Iacovella and coworkers21–23 predicted using

computer simulations that polymer-tethered nanospheres (NS)

(Fig. 1a), under suitable conditions, form phases similar to block

copolymers,24–26 including the double gyroid (DG) phase. The

DG (Fig. 1b) is a triply periodic structure of space group Ia3d

where space is divided into three regions: two interpenetrating
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but identical networks (here, the NS domain) and a matrix

(polymer tether domain). The surface separating the domains is

approximately a surface of constant mean curvature and mini-

mizes the interfacial area subject to a volume constraint.27

The DG predicted by Iacovella, et al. was formed in simula-

tions of monodisperse tethered nanospheres (TNS), that is, TNS

with a uniform diameter NS. In most nanoparticle synthesis

approaches, the level of polydispersity is non-zero, and in some

cases can be appreciable. State-of-the-art techniques are able to

achieve nanoparticles with polydispersity values as low as 6%.28–30

For other self-assembling liquid crystal or hard sphere systems, it

has been recognized that certain crystalline structures can only

tolerate a certain level of polydispersity and still be a stable

phase; that is, they exhibit terminal polydispersity.31 For

example, Pusey (1987) argued that crystallization of hard sphere

colloids would have a terminal polydispersity between 6–11%,32

a range supported by subsequent experiments.33 Terminal poly-

dispersity for different systems has been studied experimentally,34
Fig. 1 (a) A single tethered nanosphere (TNS), (b) Eight unit cells of

a monodisperse gyroid and (c) a single unit cell of a 24% polydisperse

gyroid. Tethers are omitted in (b) and (c). The two interweaving gyroid

domains are colored blue and grey to show the separate bicontinuous

structure, but are composed of identical NS.
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analytically,35 and computationally.31,36 The sensitivity of the

DG phase to polydispersity in nanosphere diameter may very

well determine the cost and method of manufacturing TNS

capable of forming this phase, or even the likelihood of ever

obtaining the DG phase under non-idealized conditions. Iaco-

vella et al.22,23 suggested that the stability of the DG phase for

tethered nanoparticles is linked to the ability of the nanoparticles

to locally order into low energy motifs. Specifically, it was found

that the nanospheres locally formed icosahedral structures with

partial coordination. While icosahedral local packing may be an

ideal stable configuration for same size spheres, the addition of

polydispersity will undoubtedly frustrate icosahedral packing,

potentially affecting the overall stability of the structure.

In this paper, we seek to determine the role polydispersity

plays in the formation of the DG structure for a system of TNS.

We will investigate how much polydispersity the DG phase can

tolerate before it ceases to be a free energy minimum for the TNS

system. We also seek to understand by what mechanism

increasing polydispersity destabilizes the gyroid phase as this

may point to compensating strategies. In section II of this paper,

we describe the method we use to model polydisperse TNS. In

section III we describe the analytical techniques we use to study

the packing properties of polydisperse nanospheres, namely (1)

the structure factor calculation designed to identify the unique

peaks associated with the DG structure in a single unit cell, (2)

the RYLM structure analysis used to identify the local ordering of

particles within the DG, and (3) the Voronoi tessellation,

extended to handle polydisperse spheres and used to identify how

increasing the polydispersity affects the net packing of nano-

spheres in the DG structure. This third technique represents, to

our knowledge, the first use of a Voronoi tessellation in this

context and a more detailed consideration of this technique is

provided in the supplemental materials. In section IV we present

the results of our simulations and analysis. In subsection IV.A,

we explore polydispersity both by ‘‘growing’’ polydispersity into

‘‘pre-assembled’’ DG structures formed from ideal TNS, and by

cooling polydisperse TNS from a disordered initial condition.

Using these two methods we consider the impact of poly-

dispersity on the DG. In section IV.B, we discuss the impact of

polydispersity on the free energy of the system. In subsection

IV.C, we use the RYLM structure analysis to determine how

polydispersity affects the local icosahedral packing in the DG

and analyze why a low level of polydispersity promotes local

icosahedral structure in the DG. In subsection IV.D, we use an

extended Voronoi tessellation, the radical tessellation, to

measure the impact of polydispersity on the packing fraction in

the DG domain and on the average NS coordination number. In

section V we provide concluding remarks.
II. Simulation model and method

A. Model

We utilize a minimal coarse-grained molecular model to study the

phase behavior of tethered NS, the same model used by Iacovella

et al.22 NS are modeledas beads with average diameter 2.0s connected

to tethers via a finitely extensible non-linear elastic (FENE) spring.37

Tethers are modeled as bead-spring chains containing eight beads of

diameter s connected via FENE springs. Interactions between beads
1694 | Soft Matter, 2010, 6, 1693–1703
and NS are modeled using empirical pair potentials. The model

captures the geometry of the nanoparticles, immiscibility between

tether and nanoparticles, and flexibility of the polymer tether.

Solvent selectivity is modeled by assuming that at sufficiently

low T the solvent is poor for the NS but good for the tethers,

resulting in a condition where nanoparticles will tend to aggre-

gate. The effective attraction between two nanoparticles of

diameters si and sj is modeled using a radially shifted 12-6

Lennard-Jones potential (LJ), which is also truncated and shifted

to zero at rcutoff,

ULJS ¼
43

 �
s

r�aij

�12

�
�

s

r�aij

�6
!
�43

 �
s

2:5

�12

�
�

s

2:5

�6
!

r\rcutoff

0 r $ rcutoff

8>><
>>:

(1)

where rcutoff ¼ 2.5s + aij, and aij ¼ (si + sj)/2 � s. The effect of

the radially shifted Lennard-Jones potential is to fix the range of

the potential and location of the attractive well with respect to

the NS surface; the potential well minimum is the same distance

from the surface of the NS for all sizes of NS. If the attraction

between particles is the result of solvent selectivity, then this

functional form is a reasonable assumption, as attraction will be

a short ranged interaction not strongly affected by small changes

in the particle size.38

All solvophilic tether beads interact via a purely repulsive

Weeks-Chandler-Andersen (WCA) soft-sphere potential54 to

account for short-range, excluded volume interactions,

UWCA ¼
43
�� s

r� aij

�12

�
�

s

r� aij

�6�
þ 3 r\rcutoff

0 r $ rcutoff

8><
>: (2)

where si ¼ sj ¼ s (that is, aij ¼ 0) and rcutoff ¼ 21/6s. NS-tether

interactions are also treated with the purely repulsive WCA soft-

sphere potential to account for short-range, excluded

volume interactions, modeled using eqn (2) with stether ¼ s and

rcutoff ¼ 21/6s + aij.

The natural units of this system are s, the diameter of the

tether bead; mtether, the mass of a tether bead; and 3, the Lennard-

Jones well depth. Bulk system volume fraction, f, is defined as

the ratio of volume of the beads to the system volume, the

dimensionless time is t* ¼ s
ffiffiffiffiffiffiffiffiffi
m=3

p
, and the degree of immisci-

bility and solvent quality are determined by the dimensionless

temperature, T*¼ kBT/3, where T is fixed at 1.0 and 3 is varied to

set T*, unless otherwise indicated.

B. Method

We use Brownian dynamics (BD) to simulate the assembly of the

TNS, which is described in detail in ref. 10,21,23. In BD, each

bead is subjected to conservative, random and drag forces, and

its motion is governed by the Langevin equation. For this system,

the drag force scales with the size of the particle.

A set of polydisperse NS is created by sampling from

a Gaussian distribution of particle diameters s:

PðsÞ ¼ 1

d
ffiffiffiffiffiffi
2p
p exp

�
� 1

2

�
s� �s

d

��
(3)

The non-dimensionalized polydispersity, D, is defined as

100 d/s. Normally distributed populations of diameters are
This journal is ª The Royal Society of Chemistry 2010
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generated. The population of diameters is then shifted so that the

net volume of the nanoparticles is kept constant in order to

prevent the bulk system volume fraction from deviating as

polydispersity is introduced. The diameter distribution is also

truncated at a minimum value of 1.0 so that all the NS are at least

as large as a tether bead. The NS are polydisperse in size

only. The mass of each nanoparticle is kept fixed at mnanoparticle

¼ 27mtether to minimize the number of variables in the system.

Since any simulation contains a finite set of NS drawn from this

distribution (typically 505 for the volume fractions studied here),

the nominal polydispersity of the distribution, i.e. the poly-

dispersity of the distribution being sampled, and the actual

polydispersity of the set generated differ slightly. In this paper,

the nominal polydispersity of the distribution is presented as an

integer value. When the polydispersity has a decimal component,

this represents the actual polydispersity of the distribution.

Polydispersity values reported on plots are actual D values.
C. Methods for introducing polydispersity

To study the impact of polydispersity on the stability of the DG

phase, we use two methods that tend to stabilize the ordered or

disordered state, respectively. A third method is used to study the

impact of polydispersity as a continuous variable on the DG

phase.

To generate the upper bound on a terminal polydispersity, if

one exists, we artificially create ‘‘polydisperse DGs’’ starting

from a ‘‘monodisperse DG’’, that is, a DG composed of

a monodisperse set of NS, by ‘‘growing’’ a polydisperse set of NS

from a monodisperse set. Starting at T* ¼ 0.256, well below the

order-disorder temperature, we slowly modify the radii of the

nanoparticles until they match the target radii generated from

a prescribed Gaussian distribution. We change the size of

a particle during a simulation under the constraint that the

change is done slowly relative to the time step of the simulation.

The system is allowed to equilibrate for several million time

steps, and then we observe whether the system remained within

the DG structure. We then raise T* slowly, allowing the potential

energy to equilibrate for several million time steps at each T*

before heating again, until the polydisperse gyroids finally reach

the order–disorder transition. This provides a rapid method to

determine a rough estimate of the level of polydispersity that

destabilizes the structure and what trends to expect for a self-

assembled polydisperse gyroid structure. This method is

considered to be the upper limit for finding polydisperse ordered

structures as we are likely to form kinetically arrested structures;

that is, the system may be trapped in a local free energy minimum

and unable to evolve to a global free energy minimum. All DGs

generated by this method will be referred to as artificially grown

(AG) double gyroids.

To generate a lower bound for terminal polydispersity, we

incrementally cool the polydisperse system from random initial

conditions. We initialize a system with a polydisperse set of TNS

at a high temperature, disordered state, and subsequently allow

the system to run for several million time steps at decreasing

temperatures. We cool the system until an ordered state is ach-

ieved. If a DG self-assembles repeatedly at a given polydispersity

but not higher, then we consider that level of polydispersity to

represent a lower bound for the terminal polydispersity, DGs
This journal is ª The Royal Society of Chemistry 2010
formed by this method will be referred to as self-assembled (SA)

double gyroids.

To determine the stability of the DG phase across a range of

polydispersities, D, and system volume fractions, f, we initialize

SA systems with f in the range of 0.285 to 0.315, or 5% above

and below where the DG phase was found for the monodisperse

case in Iacovella 2007.22 At each f, most of the simulations are

run with identical box dimensions (L¼ 23.8s). A few simulations

are run varying the box dimension by �1%. Polydispersities of

0 to 30% are investigated with 10 independent simulations per

state point. At each state point, the system is equilibrated at a

high temperature and then follows a cooling schedule of 6 � 106

time steps at T*¼ 0.32, 50� 106 time steps at T*¼ 0.31, 50� 106

time steps at T* ¼ 0.3, 20 � 106 time steps at T* ¼ 0.29, 20 � 106

time steps at T*¼ 0.28, 6� 106 time steps at T*¼ 0.25. For these

simulations T rather than 3 is adjusted to change the dimen-

sionless temperature T* for coding convenience. For D ¼ 25%

and 30%, a separate cooling schedule is also used (50 � 106 time

steps at T*¼ 0.27, 50� 106 time steps at T*¼ 0.26, 50� 106 time

steps at T* ¼ 0.25, 50 � 106 time steps at T* ¼ 0.24).

To study D as a continuous variable, polydispersity is contin-

uously added to the NS extremely slowly, or quasi-statically. The

polydispersity is changed slowly enough that the system is able to

relax in response to the change and the properties of the system,

calculated as a function of time, closely approximate those of the

equilibrated system. This is evident, as when polydispersity is

subsequently removed from the system at the same rate, there is

a minimal amount of hysteresis in the calculated properties. This

is also verified by comparing the properties of equilibrated

systems at fixed polydispersity values. Thus, the properties of this

system, quasi-equilibrated over a continuous polydispersity

range, approximate the average values of a collection of systems

equilibrated at each polydispersity level. For this system, poly-

dispersity is added at a rate of 2.385 � 10�6 D/time-step to a D ¼
23.85% and then removed from the NS at the same rate until

reaching a monodisperse state, all while holding the reduced

temperature constant at T* ¼ 0.256.

As shown in Section IV, the properties of the DG produced by

the three methods are consistent and in good agreement.

D. Computational resources

Simulations used locally authored code and the GPU-based

HOOMD-Blue code package under development in our group,

which permitted rapid exploration of the phase diagram. The

latter simulations were run on our GPU cluster at the University of

Michigan and on the 32-node GPU cluster, AC, at the National

Center for Supercomputing Applications on NVIDIA Tesla

S1070s. The former simulations using our CPU-based code were

run on 2.0 Ghz G5 nodes at the University of Michigan and

2.2 Ghz Opteron Nodes (Jacquard Cluster at National Energy

Research Scientific Computing Center). Roughly 800 independent

simulations were investigated over 100,000 CPU (or GPU) hours.

III. Analysis methods

A. Identification of the double gyroid phase

To identify the DG structure in our simulations we calculate the

structure factor in addition to using visual inspection. The
Soft Matter, 2010, 6, 1693–1703 | 1695
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Fig. 2 The structure factor of a double gyroid with 20% polydispersity is

shown as a function of m, the modulus of the integer wavelengths scaled

wave vector, which is independent of the unit cell size. The characteristic

gyroid peaks at
ffiffiffi
6
p

,
ffiffiffi
8
p

and
ffiffiffiffiffi
20
p

are clearly visible.
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structure factor in a simulation cell with a periodic structure is

calculated following Schultz39 for the nanoparticle component of

the system:

SðqÞ ¼

�P
j
cosðq ,

*
rÞ
�2

þ
�P

j
sinðq ,

*
rÞ
�2

N

where the wave vector, q, is restricted to an integer number of

wavelengths within the simulation box, q ¼ 2p

�
nx

Lx

;
ny

Ly

;
nz

Lz

�
. A

structure is considered to be the DG if peaks are identified at

m ¼
ffiffiffi
6
p

and
ffiffiffi
8
p

24,25,40 where m ¼
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
n2

x þ n2
y þ n2

z

q
(Fig. 2). Peaks

at higher frequencies that are also associated with the DG,

namely
ffiffiffiffiffi
20
p

and
ffiffiffiffiffi
22
p

, were generally not clearly visible in our

systems as they were obscured by noise in the structure factor,

however excluding these higher order peaks is reasonable as our

calculations are supplemented by visual inspection.

B. RYLM local structure analysis: Spherical harmonics

To analyze the local configurations of the nanospheres, we utilize

the RYLM local structure analysis first introduced in Ref. 22 and

further discussed in Ref. 23. The RYLM method relies on creating

a rotationally invariant spherical harmonic fingerprint of the

central particle of a cluster of particles (for harmonics L ¼ 4, 6,

/12)41 and then matching this fingerprint to a library of known

structures.22,23 A cluster is identified as the reference

configuration that minimizes the residual value, R, where

R ¼
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiX12

i¼4
ðQi �Qref Þ2 þ

X12

i¼4
ðwi � wref Þ2

r
or it is classified as

disordered if it exceeds a certain cutoff. In the definition of R, Qi

and wi are two metrics of local ordering based on evaluating a set

of spherical harmonic functions Ylm(q,f) and defined in Stein-

hardt et al.41 For our system, the local packing of nanospheres is

divided into ‘‘clusters’’ by grouping each NS and its nearest-

neighbor nanospheres, which define the coordination of

the NS. Nearest neighbors are considered to be those with
1696 | Soft Matter, 2010, 6, 1693–1703
a surface-to-surface distance less than or equal to 0.5 s, such that

each neighbor would be within the potential well of the central

NS. In turn, each NS in the system is considered as a central NS

to determine the distribution of cluster types. This method

characterizes the bond angles in the local structures rather than

the radial distance, which is considered indirectly in SðqÞ. The

RYLM method permits recognition of the fact that the internal

structure of a domain may be composed of many different local

structures, not just one dominant structure type.

In general, local structures are characterized by which ‘‘family’’

they belong to, namely icosahedral (Z12), Frank-Kasper poly-

hedra (excluding icosahedra Z12), crystalline, or disordered.

Each family of structure types contains multiple reference struc-

tures with different coordination numbers. To characterize local

icosahedral packing, we incorporated into our reference database

a series of partial icosahedral clusters that maintain the same

bond angles as the full icosahedral cluster, but with 0–4 particles

removed. These local structures are almost identical to the LJ

minimum potential energy clusters found by Wales and Doye,42

which were also included in the reference database. The local

structure is considered to be icosahedral if it matches the partial

clusters from Wales and Doye42 or a partial icosahedral cluster.

We also include a family of Frank-Kasper (FK) polyhedra

with coordinations 8 through 16, referred to as ZN, where N is

the coordination number. The Z12 structure is the basis of the

icosahedral family. Partial Frank-Kasper polyhedra were not

included, as these local configurations, in practice, generally have

similar structure and thus similar spherical harmonic fingerprints

to partial icosahedra. The library also includes a family of

crystalline structures composed of full and partial coordination

clusters with face-centered-cubic (fcc) and hexagonal-close-

packed bond angles (hcp).

The local structure of the DG was analyzed under two ther-

modynamic conditions, at T*¼ 0.256 with a residual cutoff of 0.2,

and quenched to T*¼ 0.02 with a residual cutoff of 0.1. With these

cutoffs, any cluster with R > 0.2 or 0.1, respectively, is considered

disordered. These cutoffs were chosen to reduce the inclusion of

disordered local structures. When the system is rapidly quenched

to T*¼ 0.02, the nanospheres become kinetically trapped in place,

but still oscillate around their bond-angle position so the fraction

of local structures found is time averaged over 250 dimensionless

units of time while quenched. All values shown are averaged over

50–60 instances of the system separated by at least 500 units of

time at T*¼ 0.256, sufficient time for each particle in the system to

have moved a distance of at least its radius.
C. Voronoi tessellation

To examine packing density (compactness) and nearest neighbor

trends as a function of polydispersity we use an extension of the

Voronoi tessellation. The Voronoi cell around a point is gener-

ally defined as the region of space that is closer to the given point

than any other point. In a three-dimensional space, the Voronoi

tessellation for a set of points uniquely divides the space into

irregular polyhedra with flat faces and straight edges. If each

point is the center of a sphere in a system of non-overlapping

monodisperse spheres, then each sphere will be completely con-

tained within its Voronoi cell. The volume fraction of the sphere

inside its Voronoi cell has been proposed as a local measure of
This journal is ª The Royal Society of Chemistry 2010
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density.43,44 For polydisperse spheres, a standard Voronoi

tessellation is no longer a suitable tessellation since it is possible

for the Voronoi cell to be completely embedded inside of

a sphere. In the supplemental materials, we present two exten-

sions of the Voronoi tessellation that are suitable for poly-

disperse spheres, the Voronoi S tessellation and the radical

tessellation, and justify using the radical tessellation. We use

a radical tessellation throughout the paper,45 which is as

computationally simple to calculate as the Voronoi tessellation.

Like the Voronoi tessellation, the radical tessellation also

decomposes space into irregular polyhedra with flat faces and

straight edges. Each sphere of the polydisperse set will be

completely contained within its radical cell.

Using the radical tessellation we introduce a novel way to

study microphase-separated systems of multiple domains, which

is discussed in more depth in the supplemental materials.† By

summing the tessellation cells generated around one component

type, we can calculate the volume of the domain containing that

component. By dividing the volume of the measured domain by

the volume of the components, we can calculate the packing

fraction of a component within a domain. For example, for the

TNS system we will sum the radical tessellation cells around the

nanospheres to calculate the volume of the DG domain, and

divide this volume by the net volume of the nanospheres to

calculate a packing fraction.

We also use the radical tessellation to measure the local

coordination or neighbor shell of each NS, which is discussed in

more depth in the supplemental materials. We are interested only

in the NS neighbors of a NS, and not the tether component, since

the NS-NS interaction represents the important energetic inter-

action in the cooled system. Two NS are considered to be

neighbors if the radical cells of the two nanospheres share a facet.

We use this definition to calculate both how the system average

NS coordination number (CN) is affected by polydispersity and

how the NS CN depends on NS size as polydispersity is

increased.
Fig. 3 A survey of the TNS phase diagram for 0.285 # f # 0.315 and

0% # D # 30%, indicating the probability of observing the DG phase.

The darkness of the shading indicates the fraction of the ten trials for

which the DG phase was found. If multiple simulation box sizes were

considered, the box size that produced most instances of the DG phase

was used.
IV Results

A. Simulation results

Artificially grown double gyroids were generated by growing

polydispersity into a DG structure that was previously formed

under monodisperse conditions at f ¼ 0.30 and 0.31. We

explored polydispersity values of D ¼ 2, 4, 5, 6, 8, 10, 15, 20, 25

and 30%. The double gyroid phase is found to be stable for D¼ 2,

4, 6, 8, 10%, and does not disassemble below T* ¼ 0.31 � 0.1,

similar to the order-disorder temperature of the monodisperse

DG phase.22 For D > 10%, we find that the double gyroid phase is

stable (i.e. does not disassemble within 107 time steps) at low

temperatures but disassembles at temperatures below the mon-

disperse order-disorder temperature. We find that double gyroids

of D ¼ 25% disassemble above T* ¼ 0.27 � 0.1. Double gyroids

of D ¼ 30% disassemble above T* ¼ 0.26 � 0.1.

Cooling tethered nanospheres generated self-assembled DG

systems for f from 0.285 to 0.315. To remove any artificial bias

from our system, we started from high temperature disordered

configurations of polydisperse TNS. Nominal polydispersity

values of D ¼ 0, 2, 4, 5, 6, 8, 10, 12, 14, 15, 16, 18, 20, 24, 25, and
This journal is ª The Royal Society of Chemistry 2010
30% were considered. SA polydisperse DGs formed at values of

D ¼ 0, 2, 4, 5, 6, 8, 10, 12, 14, 15, 18, 20, 24 and 25% on cooling.

For D > 20%, the DG phases generally disassembled within

10 million time steps unless cooled to below T* ¼ 0.26. Systems

that did not form the DG were generally found to form hexago-

nally close packed cylinders (H), perforated lamellae (PL), an

intermediate cylinder/perforated lamellae phase (H/PLH), or

disordered wormy micelles (DWM). Both H and PL are the

neighboring phases for the DG phase in the monodisperse TNS

system22 and they are found at polydispersity levels where the

gyroid did not form. The presence of H/PLH and DWM appears

to be a TNS system kinetically trapped in a disordered state or

oscillating between the H and PL phase. The order-disorder

temperature of the SA polydisperse double gyroids for D<10%

occurs at T* ¼ 0.3+/0.1. The order-disorder temperature of

the SA polydisperse DG for D > 10% drops to T* ¼ 0.26 for D $

25%.

Fig. 3 shows the results of the phase diagram survey for

0.285 # f # 0.315 and 0% # D # 30%, plotted in grid fashion

with steps 0.005 in volume fraction and 5% in D. The relative

proportion of the DG phase found at each concentration and

(nominal) polydispersity is shown by darkness of shading. To be

considered stable, we required that the phase in question persist

for a minimum of 10 million time steps.

In this study, a single phase is almost never exclusively found

at a state point due to kinetics and metastability. The distribution

of alternate phases found (H, PL, and a intermediate H/PLH

phase) can be found in the supplemental material. If the assem-

bled structure in a simulation cell contained too many flaws (for

example, screw dislocations, non-ordered connections between

the cylinders or layers), the simulation was discarded as being not

clearly identifiable. This is consistent with studying the self-

assembly of small systems very close to the boundaries between

phases. In the thermodynamic limit, we would expect only

a single phase to be present. We observe that the H phase appears

predominantly at lower volume fractions and the PL phase

appears predominantly at higher volume fractions in the range

examined. As polydispersity is increased, the cross-over volume
Soft Matter, 2010, 6, 1693–1703 | 1697
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fraction from H phase to PL phase, as alternate phases,

increases.

The DG phase appears to have a stability range of f ¼ 0.3 �
0.1. We observe a peak in the presence of the DG phase for D

between 5–10%. We also observe that for D > 15%, the DG phase

self assembled more rarely, even when using a cooling schedule

targeting self-assembly at T* ¼ 0.25. This may indicate that the

ideal box size has shifted slightly, that DG with D > 15% are

kinetically difficult to form, or that the DG phase is no longer the

free energy minimum phase for the system.

Fig. 4 shows properties of both the SA and AG systems as

a function of polydispersity at T* ¼ 0.256 for f ¼ 0.3; these

properties are discussed in detail in the succeeding subsections.

Fig. 4 also shows the same properties for the quasi-equilibrated

AG system. Each data point in Fig. 4 represents a unique

distribution of particle sizes drawn from the distribution function

(2). Despite the different histories of how the double gyroid

phase was generated, all the data is in good agreement. The

correlations in potential energy and overall bulk structural trends

between AG and SA DGs suggests that artificially adding

polydispersity to a monodisperse system (i.e. growing the parti-

cles) can be used to rapidly assess the stability of a structure with

relatively minimal computational cost. Also, the correlations

between the order–disorder transitions found for SA DG and

heated AG DG suggests that artificially adding polydispersity to

a monodisperse system can also be used to estimate the poly-

disperse phase diagram with relatively minimal computational

cost.
Fig. 4 Figure 4: Properties of the Double Gyroid (DG) phase are

shown as a function of polydispersity (O) at T* ¼ 0.256 (unless

otherwise indicated). Properties are shown up to 24% D, the maximum

D for which the DG phase is stable at T* ¼ 0.256 when artificially

grown. In (a) the potential energy (PE) based only on the NS-NS

interaction is plotted. Artificially grown, quasi-equilibrated, and self

assembled double gyroids all behave consistently with increasing D. In

general the PE decreases until 8% D, and then increases. In (b), we

calculate the average coordination number (CN) of the nanospheres.

The CN decreases monotonically as D increases. The red and blue

linear fits demonstrate the decrease becomes steeper after 8% D. In (c),

we show the packing fraction of the NS in the domain of the gyroid

(channels and nodes). Both (b) and (c) are generated from Voronoi

tessellations (radical) of the DG domain. In (d) a RYLM local struc-

tural analysis is used to identify the proportion of icosahedral (I),

Frank-Kasper (F–K), and crystalline (C) cluster motifs in the DG

structure. The trends identified at T* ¼ 0.256 (closed shapes) and at

T* ¼ 0.02 or quenched, (open shapes) are similar. The dotted line

represents quenched quasi-equilibrated data for increasing poly-

dispersity.
B. Polydispersity and the free energy minimum

In general, we expect the DG to self-assemble when the phase is

a kinetically accessible, free energy minimum for the system. We

consider NS polydispersity to have very little impact on entropic

free energy terms; we find the radius of gyration of the tethers, for

example, increases by less than half a percent when D is changed

from 0 to 24%, smaller by a factor of two than the standard

deviation. Thus, polydispersity primarily impacts the energetic

interaction between the nanospheres.

In Fig. 4a, the contribution to the potential energy from the

NS-NS interactions of the various polydisperse double gyroids is

shown. This energetic interaction will be subsequently referred to

as the potential energy (PE) of the system. We observe that the

PE of the NS decreases as we increase polydispersity for D < 8%.

For D > 8%, PE increases with increasing D. At D¼ 15% the DG

phase has a higher potential energy than the monodisperse state.

We note that our parameter search found very few cases of DG

for D > 15%. While the AG DG may be trapped in a metastable

basin at higher polydispersity, the nanoparticles themselves are

not frozen but are still actively exploring phase space. As can be

seen from Fig. 5, at T* ¼ 0.256 the TNS are still diffusing

through the gyroid domain. We observe that for all levels of

polydispersity, individual NS occasionally detach from one

network of the double gyroid and recombine with the other

network. As the polydispersity of the system increases, there is

a growing gap between the diffusion coefficient of the smallest

particles and the largest particles. However, all the particles have

a well-defined diffusion coefficient. For D > 10% the diffusion
1698 | Soft Matter, 2010, 6, 1693–1703 This journal is ª The Royal Society of Chemistry 2010
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Fig. 5 The diffusion coefficients of the average, 10% smallest, and 10%

largest NS are shown as a function of polydispersity. The y-axis is scaled

by a factor of 1000. The dimensionless units are in
ffiffiffiffiffiffiffiffiffi
3=m
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coefficient of the larger particles increases, perhaps due to the

lubricating presence of the fast moving smaller particles.

We note that the diffusion coefficient also shows a trend

change at D z 8%. This trend change may be due to the increase

in the potential energy of the structure; as particles become less

likely to become caught in deep local energy minima, they diffuse

through the system more freely. In Section IV.C we give a more

detailed analysis of these deep local energy minima.
‡ The full icosahedral cluster (coordination 12) has a shell of large
particles around a small particle up to a binary diameter ratio of 1.15.
At a ratio of 1.2, four of the shell particles become small, as the central
particle is now too small for twelve large particles to fit around
comfortably.
C. Local structure analysis of polydisperse gyroids

We can better understand the trends in polydispersity by

analyzing the effect of polydispersity on the packing properties of

the NS. We use the RYLM analysis to identify the local structure,

and calculate the average packing properties of the DG domain

using a Voronoi (radical) tessellation.

i. Applying the RYLM local structure analysis to the poly-

disperse gyroid phase. It was observed that in monodisperse TNS

icosahedral structures are favored in systems of NS confined to

cylindrical geometries where the relative diameter of the cylinder

is less than 5, otherwise hcp/fcc crystalline arrangements form22.

As previously noted, the DG phase is essentially composed of

a series of interconnected cylindrical tubes. In the TNS system,

the tether sterically restricts particle packing and the NS tend to

pack into icosahedral and crystalline clusters with partial coor-

dination (i.e. one coordination position of an ideal cluster must

be unoccupied so that the central particle’s tether can escape the

local structure). The RYLM method is used to match the pattern

of bond angles between a particle and its nearest neighbors, or

coordination shell, with a library of structural motifs. Iacovella

et al.22 showed using the RYLM method with a residual cutoff

R ¼ 0.316 that at T* ¼ 0.256, about 30% of the NS are central

particles of a local structure that resembles an icosahedral cluster

with partial coordination. Since Iacovella et al. also proposed

that the local icosahedral packing stabilized the DG structure, it

is of interest to consider how adding polydispersity to the system

affects the local packing.

In this paper we utilize a lower cutoff of R ¼ 0.2 at T* ¼ 0.256

and R¼ 0.1 at T*¼ 0.02, creating a tighter tolerance than used in

Ref. 22 for the structures we identify. In Fig. 4d, the local

structure analysis of polydisperse gyroids is shown at T* ¼ 0.256
This journal is ª The Royal Society of Chemistry 2010
and quenched to T* ¼ 0.02, as well as the quasi-equilibrated AG

system for increasing polydispersity at T* ¼ 0.02. We see that in

all cases the trends are similar with a distinct peak in icosahedral

ordering at D ¼ 6–8% and almost no icosahedral ordering at

D ¼ 20%. For D $ 20%, the icosahedral packing motif is dis-

rupted by polydispersity.

In general we note that polydispersity increases the dimen-

sionality of the energy landscape for the NS. Individual NS are

no longer interchangeable. However, for low levels of poly-

dispersity most of the NS are still the same size and are

approximately interchangeable, i.e. the energy difference caused

by interchanging the particles should be small. We find the

formation of icosahedral local packing is still dominant at low

polydispersity. In fact, a low level of polydispersity promotes

well-ordered icosahedral local structure, with the degree of ico-

sahedrality peaking at approximately D ¼ 6–8%. At higher

polydispersity, the formation of local icosahedral packing is

rapidly suppressed. We note that this trend is consistent with the

idea that local icosahedral packing stabilizes the DG structure as

local icosahedral packing becomes suppressed at roughly the

same polydispersity level where the DG ceases to self-assemble

readily from a disordered configuration (i.e. D > 15%).

In comparison, the presence of Frank-Kasper and crystalline

local structure is largely unaffected by polydispersity. Since,

neither local structure is a significant motif in the DG structure,

as can be seen in Fig. 4d. The F–K clusters identified in Fig. 4d

are most likely due to thermal noise in the bond-angle

measurement.

ii. Analysis of low polydispersity promotion of local icosahe-

dral packing. The key to understanding why low polydispersity

would promote local icosahedral packing can be related to two

observations: (1) The local structure of the monodisperse DG is

characterized by icosahedral packing motifs, and (2) To the local

structure, a low level of polydispersity implies most particles are

the same size, with an occasional larger or smaller particle present.

As such, we consider the impact of the presence of a single larger or

smaller particle on the isolated icosahedral cluster.

Doye and Meyer studied the energy minimizing arrangements

of isolated binary clusters, i.e. clusters of LJ particles of two

different sizes.46 They found that up to a diameter ratio of 1.1, the

low-energy binary cluster formed by 9–13 LJ particles is a partial

to full icosahedral cluster with all large particles in the shell and

the small particle at the center. This arrangement is because the

distance between atomic centers for neighboring atoms in the

shell of an icosahedral monodisperse cluster is 5.15% larger than

that for a central atom and a nearest neighbor atom. A 9.79%

reduction in the diameter of the central atom relieves this

strain,46,47 and an energy minimum of the binary icosahedral

cluster occurs around this value. However, a further increase in

the ratio of the diameters of the two species causes a change in

the lowest-energy LJ cluster structure,46 i.e. small particles begin

appearing in the shell as well‡, or the partial icosahedral
Soft Matter, 2010, 6, 1693–1703 | 1699
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Table 1 A cluster analysis is performed on the energy minimizing binary
clusters of Doye 2005,46 and the Cambridge Cluster Database. For each
binary cluster, an ‘‘I’’ is indicated if the cluster best matched a full or
partial icosahedral cluster, or a ‘‘Z’’ for best matching a Frank-Kasper
polyhedra. The c value of the cluster match is also shown. For a coor-
dination of 12, note that an icosahedral cluster and the Frank-Kasper
polyhedra are identical

Coordination

Binary Ratio

1.05 1.10 1.15 1.20 1.25 1.30

8 I 0.091 I 0.103 I 0.097 I 0.130 I 0.146 I 0.149
9 I 0.056 I 0.017 I 0.070 I 0.147 Z 0.153 Z 0.146
10 I 0.040 I 0.014 I 0.196 I 0.208 I 0.261 Z 0.049
11 I 0.005 I 0.004 I 0.062 I 0.108 Z 0.147 Z 0.234
12* I 0.001 I 0.105 I 0.115 I 0.217 I 0.198 I 0.219
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structure becomes distorted. In Table 1, we perform a RYLM

analysis on the lowest-energy binary LJ clusters, and find the

clusters progressively deviate from icosahedral bond angles and

begin resembling other Frank-Kasper polyhedra as the binary

ratio increases.

Following the work of Doye and Meyer, we would expect that

for an icosahedral cluster with a single large particle, the large

particle would tend to occupy the shell and not the center of the

cluster; we would also expect the resulting cluster to be lower

energy than an equivalent monodisperse cluster as the larger

particle would help relieve strain.

We test this hypothesis by growing a set of NS with discrete

binary polydispersity into a monodisperse DG structure. One

‘‘binary’’ DG was created with 10% of the NS having radii 10%

larger and a second was created with 10% of the NS having radii

10% smaller. These binary DGs were created identically to the

artificially grown DGs described in Section III at T*¼ 0.256, and

equilibrated at this temperature until the NS had, on average,

diffused at least halfway across the simulation box. We find that

small NS are 16 times more likely to be found at the center of local

icosahedral structures than the large NS. The large NS were 1.3

times more likely to be found in a coordination shell than a small

NS. Small NS and large NS promote local icosahedral structure by

2% and 15%, respectively. Small NS may also promote local

icosahedral structures with slightly higher coordination; quenched

local icosahedral structures had 4% higher coordination.

In general, we find that the presence of small NS lowers the

potential energy of a given local icosahedral structure by creating

a lower-energy, higher-coordination structure, while large NS,

which relieve the strain in the coordination shell, encourage more

local icosahedral structures to form. Thus, for a DG formed at

low polydispersity levels, the minor fraction of smaller and larger

NS are working in concert to lower the energy and further

stabilize the DG structure. Fig. 4d shows that the fraction of

well-ordered icosahedral clusters peaks at around a poly-

dispersity of 6%. At this level of polydispersity, we find that a NS

in the center of the local icosahedral structure is 5.6% smaller

than its coordination shell NS.
D. Studying the average structure properties of the DG phase

with the Voronoi tessellation

We use a generalized Voronoi tessellation, specifically the radical

tessellation,45 to determine how polydispersity affects the average
1700 | Soft Matter, 2010, 6, 1693–1703
volume fraction of the gyroid domain and the average NS coor-

dination number (see section IIIC and the supplemental material

for more details†). As shown in Fig. 4c, we find that as the

polydispersity of the system is increased, the gyroid domain

becomes more densely packed, increasing from 0.535 at D¼ 0% to

0.548 at D ¼ 24%. This increase is a result of the extra degree of

freedom in particle size, which permits the NS to locally arrange

in tighter configurations. This is in good agreement with simu-

lations of hard spheres, where variation in particle size is shown to

increase the packing fraction.48 Like the measure of potential

energy, calculating the packing fraction of the DG is indifferent to

how the polydisperse gyroid is formed. We note that while in

monodisperse systems tighter sphere packing is associated with

lower energy configurations, the ability of a polydisperse system

to pack tighter than a monodisperse system does not necessarily

imply that the polydisperse system must also have a lower energy

than the monodisperse system. We find that packing fraction

increases over the entire range of polydispersity (Fig. 4c) while

potential energy initially decreases with increasing D up to D¼ 8%

and then increases with increasing D (Fig. 4a).

Fig. 4b shows that increasing polydispersity lowers the average

NS coordination number of the system. Linear fits of the NS

coordination as a function of the polydispersity below and above

8% are shown to illustrate the slope change that occurs with

increasing polydispersity. The potential energy of the NS is

a function of two properties, the coordination number of NS and

the distance to each neighbor in the coordination shell. For D < 8%

we previously observed that PE decreases with increasing D

(Fig. 4a); we additionally observe that the packing fraction of the

DG increases rapidly but the average NS coordination number

drops only slightly with increasing D. We conclude the system is

lowering its PE by finding tighter configurations where more NS

are sitting in the bottom of the potential energy wells of their

neighbors, in a manner analogous to the isolated icosahedral

cluster with a 9.7% smaller particle at its center. As the average NS

coordination begins to drop more rapidly, the effect of this drop

can be seen in the increase of potential energy shown in Fig. 4a.

Although the average NS coordination decreases with increasing

polydispersity, this decrease is not universal for all NS sizes, but

represents a net effect. The fact that the net effect is negative may

be due to sphere packing in a DG structure. In Fig. 6a, we show the

coordination number for the NS in different polydisperse systems

averaged over 20,000 time units and plotted against the diameter

of each particle. As the polydispersity increases, the coordination

number becomes a strong function of NS diameter. In Table 2, we

show how average coordination trends with polydispersity and

how the coordination becomes a stronger function of sphere size

as polydispersity increases. The correlation coefficient, which

measures the strength of the linear relationship between diameter

and number of neighbors, increases significantly between D ¼ 2,

10, and 24%. As the potential energy of a shifted Lennard-Jones

NS is a strong function of its coordination, in Fig. 6b we see that

the average PE of each NS, averaged over the same elapsed time,

decreases with NS diameter. It is also clear that for the more

polydisperse DG, the vertical spread of potential energy values for

a given diameter is a function of the particle diameter. This reflects

the different diffusion coefficients for large and small particles in

the same system, as shown in Fig. 5. That is, smaller NS, in

shallower potential energy wells, diffuse faster through the system
This journal is ª The Royal Society of Chemistry 2010
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Fig. 6 Increasing polydispersity induces a spreading in the coordination

number and potential energy of the NS as a function of NS diameter. In

(a), the number of NS neighbors (averaged over 2 � 106 time steps) for

each NS is shown. In (b), the potential energy (averaged over 2� 106 time

steps) for each NS is shown.

Table 2 An analysis is performed on the influence of polydispersity on
the average coordination and the correlation between NS diameter and
coordination for the data shown in Fig. 6

Polydispersity
Average NS
coordination number

Correlation
coefficient

2% 8.24 � 2.00 0.080
10% 8.23 � 2.02 0.395
24% 7.98 � 2.25 0.922
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and also explore the range of possible energy configurations

faster, resulting in less spread in the measured potential energy for

a small diameter.

We conclude that for low levels of polydispersity, the system is

able to relieve internal packing frustration, i.e. NS are able to

adjust so that more spheres are sitting in the bottom of the

potential energy wells of other particles, lowering the energy of

the system. For larger values of polydispersity, the net decrease in

average NS coordination is responsible for the net increase in the

potential energy of the system.
V. Conclusions

We have determined that tethered NS will readily form the

gyroid phase for polydispersities up to 10% and has no terminal

polydispersity as high as 30%. Polydisperse TNS with aggre-

gating head-groups with polydispersities of �10% form the DG

phase at the same volume fraction f (0.285–0.315) and temper-

ature (0.31 � 0.1) as the monodisperse TNS system. At this low

level of polydispersity, the larger and smaller NS work together

to create a larger number of lower energy icosahedral clusters

which add to the stability of the DG. However, as polydispersity

increases beyond 10%, the icosahedral structures in the DG

become disrupted, the local structure becomes disordered, and
This journal is ª The Royal Society of Chemistry 2010
although the gyroid domain becomes more densely packed, the

average nanosphere coordination number decreases. This results

in a net increase in the potential energy of the system and thus for

D > 10%, the DG phase self-assembles at a decreasing temper-

ature and self-assembles more rarely. We conclude that above

a polydispersity level of 10% the disruption of local icosahedral

structure in the gyroid system has a strong impact on the free

energy of the gyroid system and the phase becomes energetically

more difficult to form.

If we compare the properties of polydisperse tethered LJ

spheres confined to the NS domain to the properties of a bulk

supercooled polydisperse LJ liquid, we find good agreement with

some properties and disagreement with others. For both systems,

initially increasing polydispersity lowers the diffusion coeffi-

cient,49,50 but for the TNS in the NS domain, at 10% poly-

dispersity the diffusion coefficient begins to increase as a function

of polydispersity. Also, while the coordination number of

a polydisperse supercooled LJ liquid increases as a function of

polydispersity,50 for the TNS in a DG, the coordination number

decreases. These differences are likely caused by a combination

of the act of confining LJ spheres to a DG domain and the steric

influence of the tether on the LJ sphere packing.

As to whether polydisperse gyroids will be able to be found in

experiment, we observe that a polydispersity of 10% is within the

range of values reported by some manufacturers of nano-

particles,28–30 but is a tighter tolerance than what other ‘‘mono-

disperse’’ nanoparticle synthesis methods can produce.51–53 Our

simulations suggest that only NS manufactured at a poly-

dispersities of up �10% should be expected to form this phase,

but that manufacturing to polydispersities less than 6% is

unnecessary and may even lower the likelihood of finding this

phase.

More generally, it is also apparent that polydispersity can have

subtle but important impacts on the properties of sphere

packing, especially in an unusual domain geometry. A relatively

small amount of polydispersity can disrupt internal structures

and change the per-particle energy of the packing. For sensitive

phases, therefore, it can be critical to consider how much poly-

dispersity a phase can tolerate before assuming the phase will be

found in experimental systems.
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