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Abstract

The Perona-Malik scheme is a numerical technique for de-noising digital im-
ages without blurring object boundaries (edges). In general, solutions gen-
erated by this scheme do not satisfy a comparison principle. We identify
conditions under which two solutions initially ordered remain ordered, and
state (restricted) comparison principles. These allow us to study stability
properties of the scheme. We also explore what these results say in the limit
as the discretization size goes to 0.
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1. Introduction
In this paper we state a restricted comparison principle for the semidiscrete Perona-
Malik scheme. This scheme is described by the system of o.d.e.’s

u̇i,j(t) = D−
1

(
Rκ
(
D+

1 ui,j
))

+D−
2

(
Rκ
(
D+

2 ui,j
))

(1)

where D+
m and D−

m are the standard forward and backward difference operators in
the m-th coordinate direction, and the function Rκ satisfies important properties
which we explain in Section 2. We note that a restriction of the kind we consider
is necessary, because the standard comparison result does not hold for this scheme.
We illustrate this easy to see fact by a simple numerical example (Figure 2).

Subsequently, we apply the comparison principle to explore stability properties
of the scheme at fixed discretization step size h > 0 and also in the limit h →
0+. We also expose some effects the precise shape of the function Rκ has on the
behavior of the scheme.

Scheme (1) was proposed by Perona and Malik as a numerical technique for
de-noising digital images without blurring object boundaries [6, 7]. In particular,
it is an alternative to Gaussian smoothing, which is equivalent to solving the heat
equation with the original image as initial data. The motivation was to replace
the standard heat equation by the following non-linear diffusion equation which is
designed to suppress diffusion at regions of large gradient, and for which scheme
(1) is a natural finite differences discretization:

ut = (Rκ(ux))x + (Rκ(uy))y (2)
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The essence of the technique is contained in the choice of the function Rκ(ξ); the
success of the scheme in preserving sharp edges (until they disappear) is due to this
choice. But for the functions Rκ that Perona and Malik advocate in their papers,
p.d.e. (2) becomes backwards parabolic in regions where the gradient of the solu-
tion is larger than some threshold that depends on the parameter κ. As such, there
is no well-posedness theory for this pde. That makes it interesting to investigate
continuum limits (limit as h→ 0) for scheme (1). And understanding how the be-
havior of a de-noising technique such as (1) depends on the discretization step size
is important since it is very common to have the same image at various resolutions.

In practice, scheme (1) exhibits much better stability properties than one would
expect from backwards diffusion equations, which are notoriously ill-posed. More-
over, it is extremely effective at its intended purpose. It has therefore become an
intriguing issue to explain the better than expected stability properties of Perona
and Malik’s technique. Some aspects of this surprisingly tame behavior have been
explained by previous authors; we believe with this paper we further our under-
standing of this problem.

Another interesting issue is what effects the precise shape of the non-linear
function Rκ has on the scheme. Perona and Malik, and subsequently many other
authors, reported numerical experiments with a variety of choices (each of which
conforms to the fundamental properties we listed in Section 2), and on occasion
mentioned differences in observed behavior [8]. Indeed, based on numerical ex-
periments, even with functions Rκ that have identical parabolicity thresholds the
behavior can still be quite different. The results presented in this paper allow us to
reveal and quantify some differences.

2. Perona-Malik Scheme
As we remarked above, it is the choice of Rκ(ξ) that distinguishes Perona and
Malik’s technique from previous ones. In [6], they report numerical experiments
using scheme (1) with

Rκ(ξ) =
ξ

1 + ξ2/κ
and Rκ(ξ) = ξ exp

(−ξ2
κ

)

Other choices used in practice include

Rκ(ξ) = ξ

(
1 +

ξ2

κ

)(β−1)

where β ∈
(

0,
1
2

)

These choices share the following essential characteristics:

1. ξRκ(ξ) ≥ 0 for all ξ.
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2. The parameter κ defines a positive critical value z(κ) such that

R′
κ(ξ)

{
< 0 for |ξ| > z(κ), and
≥ 0 otherwise.

(3)

3. Rκ(ξ) → 0 as |ξ| → ∞.

Figure 1 illustrates Rκ(ξ) for such a choice.
In (2), R′

κ appears as the diffusion coefficient. Therefore, as we indicated in
the previous section, the parameter κ constitutes a threshold value: when the gra-
dient of grayscale intensity, D+

mui,j , is large compared to κ, equation (2) violates
parabolicity.

Encouraged by favorable numerical results, some previous mathematical work
on the Perona-Malik technique deals with understanding whether equation (2) can
be given a well-posedness theory, so that the p.d.e. (2) can be properly understood
as the continuum limit of scheme (1). The paper [5] by Kichenassamy, and paper
[4] by Kawohl and Kutev pursue this direction. The present work is drastically
different from them in spirit: we do not try to understand equation (2) at all; instead,
we deal directly with scheme (1) and study its properties. This is also the approach
pursued in [2], where a continuum limit for (1) is established that differs from (2).

Nevertheless, we make use of ideas from the work of these previous researchers;
indeed, the motivation for this paper came from [4]. There, Kawohl and Kutev es-
tablish a restricted comparison principle for continuum solutions of (2). In this
paper, we strive to find conditions under which two discrete solutions generated
by the scheme (1) can be compared. In the end, however, we did not obtain direct
discrete analogues of Kawohl and Kutev’s results; the conditions and results in this
paper are entirely different.

Let us also note that computer vision is not the only context in which Perona-
Malik type equations and their associated issues come up. The recent paper [10]
proposes a p.d.e. model for granular flow that has much in common with the
Perona-Malik equation, and presents analysis directed at questions very related
to the ones raised in the image denoising literature.

3. Comparison Principle
We begin by introducing some notation. First, from now on the subscript κ in
Rκ will be suppressed, but it will be understood that R comes with a parameter κ.
Notice thatR is a two–to–one function; we will denote byR1 andR2 the restriction
of R to the domains [−z(κ), z(κ)] and (−z(κ), z(κ))c respectively:

R1(ξ) := R(ξ)|[−z(κ),z(κ)] , and R2(ξ) := R(ξ)|(−z(κ),z(κ))c
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Then, R1 and R2 are one–to–one functions, whose inverses will be denoted R−1
1

and R−1
2 respectively.

We will speak of the “jump set” S(φ) of a function {φi,j} defined on the grid;
with that we mean the collection of indices defined by

S(φ) :=
{
(i, j) : max

(∣∣D+
1 φi,j

∣∣ , ∣∣D+
2 φi,j

∣∣) ≥ z(κ)
}

Also, we adopt the terminology in [4] to say that φ is supersonic on S(φ), and
subsonic elsewhere.

Proposition 1 Let {ui,j(t)} and {vi,j(t)} be solutions generated by the Perona-
Malik scheme (1), subject to Neumann boundary conditions. Assume that:

1. |D+
mvi,j(t)| < z(κ) for all (i, j), t ∈ [0, T ], and m = 1, 2,

2. |D+
mui,j(t)| ≤ R−1

2 (R(|D+
mvi,j(t)|)) for all (i, j), t ∈ [0, T ], and m = 1, 2.

Then if {ui,j(t)} and {vi,j(t)} are strictly ordered at t = 0, they remain ordered
for all t ∈ [0, T ]; i.e.

1. if ui,j(0) > vi,j(0) then ui,j(t) ≥ vi,j(t) for all t ∈ [0, T ],

2. if ui,j(0) < vi,j(0) then ui,j(t) ≤ vi,j(t) for all t ∈ [0, T ].

Proof: We only treat the first case ui,j(0) > vi,j(0), the second case being com-
pletely analogous. Suppose the conclusion is false. Then there exists t0 ∈ (0, T ]
such that

ui,j(t) > vi,j(t) for all (i, j) and t ∈ [0, t0), and

uk,l(t0) = vk,l(t0) for some (k, l).

Consequently, v̇k,l(t0) − u̇k,l(t0) ≥ 0, and hence

D−
1 R

(
D+

1 vk,l(t0)
)−D−

1 R
(
D+

1 uk,l(t0)
)

+D−
2 R

(
D+

2 vk,l(t0)
)−D−

2 R
(
D+

2 uk,l(t0)
) ≥ 0

Therefore,

Either D−
1 R

(
D+

1 vk,l(t0)
)−D−

1 R
(
D+

1 uk,l(t0)
) ≥ 0, (4a)

or D−
2 R

(
D+

2 vk,l(t0)
) −D−

2 R
(
D+

2 uk,l(t0)
) ≥ 0. (4b)

Without loss of generality, assume that (4a) is true. That means:

R
(
D+

1 vk,l(t0)
)−R

(
D+

1 uk,l(t0)
)

+R
(
D+

1 uk−1,l(t0)
) −R

(
D+

1 vk−1,l(t0)
) ≥ 0

(5)
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But now, by hypothesis 1 and 2,(
R
(
D+

1 vk,l(t0)
)−R

(
D+

1 uk,l(t0)
) )(

D+
1 vk,l(t0) −D+

1 uk,l(t0)
)
≥ 0 (6a)

and,

(
R
(
D+

1 uk−1,l(t0)
)−R

(
D+

1 vk−1,l(t0)
) )

×
(
D+

1 uk−1,l(t0) −D+
1 vk−1,l(t0)

)
≥ 0 (6b)

By definition of t0, we also have:

D+
1 vk,l(t0) −D+

1 uk,l(t0) = D+
1 (vk,l − uk,l) (t0) ≤ 0, and

D+
1 uk−1,l(t0) −D+

1 vk−1,l(t0) = D+
1 (uk−1,l − vk−1,l) (t0) ≤ 0

(7)

So we get, in particular:

(
R
(
D+

1 vk,l(t0)
)−R

(
D+

1 uk,l(t0)
) )

×
(
R
(
D+

1 uk−1,l(t0)
) −R

(
D+

1 vk−1,l(t0)
) ) ≥ 0

By (5),

R
(
D+

1 vk,l(t0)
)−R

(
D+

1 uk,l(t0)
) ≥ 0

R
(
D+

1 uk−1,l(t0)
)−R

(
D+

1 vk−1,l(t0)
) ≥ 0

By (6a) and (6b) that means:

D+
1 vk,l(t0) −D+

1 uk,l(t0) ≥ 0
D+

1 uk−1,l(t0) −D+
1 vk−1,l(t0) ≥ 0

(8)

Finally, (7) and (8) imply that

D+
1 vj,l(t0) = D+

1 uj,l(t0) for j = k − 1, k

and thus:
vj,l(t0) = uj,l(t0) for j = k − 1, k, k + 1.

As a result, equality holds in (4a). Therefore, (4b) is also true. The same line of
reasoning we used for (4a) now gives:

vk,j(t0) = uk,j(t0) for j = l − 1, l, l + 1.
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Repetition of this argument (with k replaced by k ± 1 and l replaced by l ± 1, and
so on) gives:

vi,j(t0) = ui,j(t0) for all (i, j).

But then uniqueness of the solution to system (1) implies that

vi,j(t) = ui,j(t) for all (i, j) and t ≥ t0

which proves the proposition. �

Remark: Proposition 1 has been stated and proved only on a two-dimensional grid
for simplicity; the statement is true, and the proof works with small modifications,
for any space dimension.

Proposition 1 allows for comparison when one of the solutions is “smooth” (i.e.
subsonic). In the case of one space dimension, we shall say a bit more: the next
proposition allows for the comparison of more general one-dimensional signals. Its
proof is a slight variation on that of Proposition 1. Its hypothesis will be justified
in the next section, especially through Proposition 3. And eventually, it will find
an application in Section 4.3, where we will consider the behavior of scheme (1)
as h→ 0+.

Proposition 2 Let {uj(t)} and {vj(t)} be one-dimensional solutions generated by
the Perona-Malik scheme (1), subject to Neumann boundary conditions. Assume
that:

1. S(v(t)) = S(v(0)) := {p1, . . . , pn} ⊆ S(u(t)) for all t ∈ [0, T ],

2. |D+uj(t)| ≤ R−1
2 (R(|D+vj(t)|) for all j �∈ S(v(0)) and t ∈ [0, T ],

3. sign(ui(0) − vi(0)) = sign(uj(0) − vj(0))(−1)k−k′ �= 0 for i ∈ {pk +
1, . . . , pk+1} and j ∈ {pk′ + 1, . . . , pk′+1}.

Then, for all t ∈ [0, T ] we have:(
uj(t) − vj(t)

)(
uj(0) − vj(0)

) ≥ 0

Proof: The conclusion is satisfied for some positive time by continuity; suppose
that it fails for the first time at t = t0 < T and at index k. Without loss of
generality, let us assume that uk(0) > vk(0). Define α : Z → {0, 1} as follows:

α(j) :=
{

1 if j ∈ S(v(0))
0 otherwise.

By definitions of t0 and k, and by hypothesis 3, we have:(
D+uk(t0) −D+vk(t0)

)
(−1)α(k) ≥ 0(

D+uk−1(t0) −D+vk−1(t0)
)
(−1)α(k−1) ≤ 0

(9)
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Hypothesis 2 implies, as in the proof of Proposition 1, that(
R(D+uj(t)) −R(D+vj(t)

)(
D+uj(t) −D+vj(t)

)
≥ 0 if j �∈ S(v(0)) (10)

On the other hand, if j ∈ S(v(0)), then |D+uj |, |D+vj| ≥ z(κ); and since R is
decreasing on (−z(κ), z(κ))c we get:(
R(D+uj(t)) −R(D+vj(t))

)(
D+uj(t) −D+vj(t)

)
≤ 0 if j ∈ S(v(0)) (11)

We can summarize (10) and (11) as(
R(D+uj(t) −R(D+vj(t))

)(
D+uj(t) −D+vj(t)

)
(−1)α(j) ≥ 0 (12)

Furthermore, the definition of t0 implies that

u̇k(t0) − v̇k(t0) =R(D+uk(t0)) −R(D+vk(t0))
−R(D+uk−1(t0)) +R(D+vk−1(t0))

≤0
(13)

But now, (9) and (12) mean that

(
R(D+uk(t0)) −R(D+vk(t0))

)
×
(
R(D+vk−1(t0)) −R(D+uk−1(t0))

)
≥ 0 (14)

Combined with (13), (14) implies:

R(D+uk(t0)) −R(D+vk(t0)) ≤ 0
R(D+vk−1(t0)) −R(D+uk−1(t0)) ≤ 0

(15)

In light of (12), these inequalities lead to the conclusion:(
D+uk(t0) −D+vk(t0)

)
(−1)α(k)+1 ≥ 0(

D+uk−1(t0) −D+vk−1(t0)
)
(−1)α(k−1) ≥ 0

(16)

But then, (16) and (9) give:

D+ (uj(t0) − vj(t0)) = 0 for j = k − 1, k

so that
uj(t0) = vj(t0) for j = k − 1, k, k + 1
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That, much like in the proof of Proposition 1, leads to the conclusion of the Propo-
sition. �

4. Applications
The comparison principles stated and proved in the previous section are simply
tools; indeed, their hypothesis require knowledge of the solutions involved for all
time. Here, in Section 4.1, we use them to state some down to earth results, such
as the stability property that is the content of Theorem 1. Then, in Section 4.2, we
give concrete examples of how those results can be applied in practice. Section 4.3
is devoted to exploring what these results say in the limit as h→ 0+.

4a. Stability Results
We begin by recording a few simple but important properties of scheme (1) that
will help us apply Propositions 1 and 2.

Lemma 1 Let {ui,j(t)} be the solution generated by scheme (1) from subsonic
initial data. Then

sup
i,j,t

|D+
mui,j(t)| ≤ sup

i,j
|D+

mui,j(0)| for each m = 1, 2.

Proof: It is easy to see that in the subsonic regime, scheme (1) satisfies a maximum
principle for difference quotients. This in turn prevents the solution from entering
the supersonic regime, if the initial data is subsonic. The conclusion of the lemma
follows. �

In what follows, we will often specialize to the one–dimensional version of the
Perona–Malik scheme (1), which then reduces to:

u̇j(t) = D− (Rκ (D+uj
))

(17)

Next, we recall an important property of scheme (17): supersonic regions shrink in
time.

Proposition 3 Let {uj(t)} be a solution generated by scheme (17). Then S(u(t2)) ⊆
S(u(t1)) whenever 0 ≤ t1 ≤ t2.

Proof: See [3] where it first appeared, or [2].

Remark: The conclusion of Proposition 3 is false in two-dimensions: supersonic
regions can grow, as shown by the numerical experiment in Figure 3.

Our first application deals with subsonic data corrupted by low amplitude noise.
We estimate the difference between the evolutions of corrupted and uncorrupted
data in terms of the amplitude of the noise. The hypothesis of Proposition 1 involve
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all t ≥ 0. We will use in our proof sub and super solutions based only on the initial
data. As we shall explain, they will satisfy the hypothesis automatically for all
time.

Theorem 1 Let {φi,j} be subsonic initial data, i.e.

M := max
i,j,m

|D+
mφi,j| < z(κ)

Let {ui,j(t)} be the solution generated by scheme (1) from {φi,j}, and let {uni,j(t)}
be the one generated from {(φ+ n)i,j}. If

max
i,j

|ni,j| < h

2
(
R−1

2 (R(M)) −M
)
,

then

max
i,j

∣∣uni,j(t) − ui,j(t)
∣∣ ≤ max

i,j
|ni,j| for all t ≥ 0.

Proof: Fix a δ > 0 such that

max
i,j

|ni,j| < δ <
h

2
(
R−1

2 (R(M)) −M
)
.

The sub and super solutions, which we shall denote v−i,j(t) and v+
i,j(t) respectively,

will simply be:
v±i,j(t) := ui,j(t) ± δ (18)

Then v±i,j(t) are clearly solutions of (1). Furthermore, uni,j(0) ∈ (v−i,j(0), v
+
i,j(0)).

Since the initial condition φi,j is subsonic, by Lemma 1, ui,j(t) and therefore also
v±i,j(t) are subsonic for all time. Thus, Hypothesis 1 in Proposition 1 is satisfied.
Moreover, again by virtue of Lemma 1, we have:

max
i,j,m,t

|D+
mui,j(t)| = max

i,j,m,t
|D+

mv
±
i,j(t)| = M (19)

Also, inequality in Hypothesis 2 of Proposition 1 is strictly satisfied at t = 0 since

|D+
mu

n
i,j(0)| ≤ |D+

mui,j(0)| +
2
h

max
i,j

|ni,j|
< R−1

2 (R(M)) ≤ R−1
2

(
R(|D+

mui,j(0)|)
)
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by our assumption on the amplitude of the noise ni,j . We will now show that in
fact Hypothesis 2 is strictly satisfied for all time. Suppose not; then there exists
t0 > 0 such that ∣∣D+

mu
n
i,j(t)

∣∣ < R−1
2

(
R
(|D+

mui,j(t)|
))

for all (i, j) and m ∈ {1, 2} and t ∈ [0, t0), and

∣∣D+
mu

n
k,l(t0)

∣∣ = R−1
2

(
R
(|D+

muk,l(t0)|
))

for some (k, l) and some m ∈ {1, 2}. By (19), that means∣∣D+
mu

n
k,l(t0)

∣∣ ≥ R−1
2 (R(M)) (20)

We also have ∣∣D+
mu

n
k,l(t0)

∣∣ ≤ ∣∣D+
m(un − u)k,l(t0)

∣∣+ ∣∣D+
muk,l(t0)

∣∣
≤ ∣∣D+

m(un − u)k,l(t0)
∣∣+M

(21)

again by (19). Combining (20) and (21) we get

∣∣D+
m(un − u)k,l(t0)

∣∣ ≥ R−1
2 (R(M)) −M >

2δ
h

That means we have∣∣uni,j(t0) − ui,j(t0)
∣∣ > δ for some (i, j) ∈ {k, k + 1} × {l, l + 1} (22)

On the other hand, since both hypothesis of Proposition 1 are satisfied on t ∈
[0, t0), we have

v−i,j(t) ≤ uni,j(t) ≤ v+
i,j(t) for all t ∈ [0, t0)

and, by continuity, also at t = t0. Combined with (18) this means∣∣uni,j(t0) − ui,j(t0)
∣∣ ≤ δ for all (i, j)

which contradicts (22). �

An immediate consequence of Theorem 1 is the following elementary corol-
lary, which is, unlike the theorem, one dimensional. It tells us that a smooth one
dimensional signal corrupted by low amplitude noise is rapidly de-noised, and pro-
vides an upper bound on the de-noising time:
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Corollary 1 Let φj , nj, uj , unj , and M be as in Theorem 1, and assume that nj
satisfies the hypothesis of that theorem. If we set

T := inf{t0 ≥ 0 : S(un) is empty for all t ≥ t0}
then we have the estimate:

T ≤ 2maxj |φj + nj|
R
(

2
h maxj |nj| +M

)
Proof: The interesting case is when S(un(0)) is non-empty; under that assumption,
for any δ > maxj |nj| we have 2δ/h +M > z(κ). Fix an ε > 0 small enough so
that:

R (z(κ) − ε) > R

(
2δ
h

+M

)

For k ∈ S(un(0)), let

T εk := inf
{
t ≥ 0 : |D+unk(t)| = z(κ) − ε

}
In view of Proposition 3, we have

T < max
k

T εk

So fix a k ∈ S(un(0)); without loss of generality, we may assume thatD+unk(0) >
0. By Theorem 1,

D+unk(t) <
2δ
h

+M for all t ≥ 0.

Furthermore, since R is a decreasing function on [z(κ),∞), for t ∈ [0, Tεk ] we
have:

z(κ) − ε ≤ D+unk(t) <
2δ
h

+M =⇒ R(D+unk(t)) > R

(
2δ
h

+M

)
(23)

That gives:

d

dt

k∑
j=1

h

(
max
j

|φj + nj| − unj

)
= −R(D+unk) ≤ −R

(
2δ
h

+M

)

where the inequality follows via (23) for as long as t ∈ [0, Tεk ]. Also, since
|unk (t)| ≤ maxj |φj + nj | for all t ≥ 0, we have:

2(max
j

|φj + nj|) − T εkR

(
2δ
h

+m

)
≥ 0
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Letting δ → maxj |nj| from above leads to the desired inequality.�

4b. Examples
In this section, we apply the results of the previous subsection in some practical
situations.
Example 1: Take the function in Figure 4. It has maximum slope M = 4. The
Perona-Malik scheme (17) is applied using the choice:

R(ξ) =
ξ

1 + ξ2

100

(24)

for the nonlinear function appearing in the scheme. According to this choice, the
threshold value of slope is z(κ) = 10. We calculate the maximum noise amplitude
allowed by Theorem 1 to be 0.0525. The corrupted signal in the example of Figure
4, which is not subsonic, was obtained by adding noise of amplitude 0.05 to the
original signal.

The evolution shown in Figure 5 is obtained by adding a specific perturbation
of amplitude 0.06 to the original signal. We see how the comparison principle gets
violated.

Example 2: We now compare the effects of the precise shape of the function R(ξ)
on the behavior of the scheme, by using the same original image as in our first
example, but the different nonlinear function

R(ξ) = ξ exp(− ξ2

200
) (25)

which has the same threshold value of the slope as for (24) of the first example,
namely z(κ) = 10. The maximum amplitude of noise allowed by Theorem 1
this time (for R(ξ) given by (25)) turns out to be between 0.034 and 0.03425 –
significantly smaller than that for (24).

Theorem 1 thus suggests a way to quantify the difference in stability properties
of scheme (1) with respect to the two choices of Rκ(ξ). It is easy to see that this
difference is important; we illustrate it with a numerical example: Figure 6 shows
the evolution of the original image perturbed by a (contrived) noise of amplitude
0.05 under scheme (17) using the two choices forR(ξ) given in (24) and (25). Note
that 0.05 is above the allowed limit for (25), and below it for (24).

4c. Limit as h → 0+

In [2], the continuum limit of scheme (17) is investigated with the function Rκ(ξ)
given by

Rκ(ξ) = ξ

(
1 +

ξ2

κ

)(β−1)

where β ∈
[
0,

1
2

)
. (26)
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When β ∈ (0, 1
2 ) the evolution that (17) generates is the gradient descent for the

discrete energy
Eh
u(t) :=

∑
j

hΦκ,β

(
(D+uj(t))2

)
(27)

where

Φκ,β(ξ) :=
κ

β

((
1 +

ξ

κ

)β
− 1

)
(28)

The continuum limit studied in [2] is obtained by scaling the parameter κ (and
hence the threshold point z(κ)) with respect to the discretization step size h as
follows:

κ(h) = h(2β−1)/(1−β) =⇒ z(h) :=
1√

1 − 2β
h(2β−1)/(2−2β) (29)

Such scalings were studied previously in the stationary setting by Chambolle in
[1] to obtain interesting continuum limits for discrete energies similar to (27); the
approach taken in [2] follows Chambolle’s lead in adjusting the threshold z with
respect to the grid size h, but concerns the time dependent problem. The resulting
evolution is defined for piecewise smooth one-dimensional signals; it takes place
on a domain that changes at discrete times, and is described as follows:

For a given piecewise smooth initial data φ : [0, 1] → [0, 1] with jump dis-
continuities at p1, . . . , pN ∈ (0, 1), we solve the linear heat equation ut = uxx
on the domain (0, 1)−{p1, . . . , pN}, subject to homogeneous Neumann boundary
conditions at x = 0 and x = 1, and to the nonlinear boundary conditions

ux(p±j , t) =
(
u(p+

j , t) − u(p−j , t)
) ∣∣∣u(p+

j , t) − u(p−j , t)
∣∣∣2β−2

(30)

at the discontinuity points. The condition (30) becomes singular whenever one of
the discontinuities, say the one at pj , heals (i.e. when u(p+j , t) = u(p−j , t)); at such
special times, we merge the two intervals (pj−1, pj) and (pj , pj+1) into one longer
interval (pj−1, pj+1), and continue the evolution according to the heat equation on
the new (and smaller) collection of intervals.

The claim is that the numerical solutions generated by scheme (17) converge,
as h→ 0, to the continuum evolution described above, provided that the threshold
z(κ) is scaled with respect to h according to formula (29), and that the approxi-
mate (discrete) initial data φh converge to the continuum data φ in some suitable
sense. The proof in [2] for this statement involves a number of technical hypoth-
esis. One of the most restrictive among them requires the “jump sets” of φhand
φ to be compatible: it is assumed that S(φh) and {p1, . . . , pN} are in one-to-one
correspondence.
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A discussion of the most general conditions under which convergence takes
place would be very technical and out of place. But, as an application of Propo-
sition 2, we will show that under suitable hypothesis, the jump sets S(φh) of the
approximate initial data become compatible with {p1, . . . , pN} after an arbitrarily
small initial interval of time. To that end, let {hn}∞n=1 be a sequence of positive
numbers such that hn → 0 as n → ∞, and let xhn

j denote the grid points for the

uniform discretization size hn. Assume that a sequence φhn of discrete initial data
satisfies

lim
n→∞max

j

∣∣∣φhn
j − φ(xhn

j )
∣∣∣ = 0

Then we have the following result:

Theorem 2 Let {uhn(t)}n be the discrete solutions generated from {φhn}n by
scheme (17), where R is given by (26) and κ is scaled as in (29). Then, given any
ε > 0, there exists K ∈ N such that for any n > K the following property holds
at some t ∈ [0, ε):

|D+uhn
j (t)| ≥ z(κ) only if {p1, . . . , pN} ∩ [xhn

j , xhn
j+1] is non-empty.

Proof: The jump sets of initial data φhn can be much larger than that of φ; the
idea is to construct comparison functions ψn,± whose jump sets precisely match
{p1, . . . , pN}, and then compare using Proposition 2. We first define:

M := max
i

max
x∈(pi,pi+1)

∣∣φ′(x)∣∣ , m := min
i

∣∣φ(p+
i ) − φ(p−i )

∣∣
S̃n :=

{
j ∈ N :

∣∣∣D+φhn
j

∣∣∣ ≥ m

2hn

}
, α(j) := 	

{
i ∈ S̃n : i < j

}
Convergence of the approximate initial data φhn to φ uniformly on the grid implies
that for large enough n we have

j ∈ S̃n =⇒ pi ∈ [xj , xj+1] for some i, and

pi ∈ [xj , xj+1] =⇒ {j, j + 1} ∩ S̃n �= ∅ (31)

For δ ∈ (0, m4 ), we construct the pair of comparison functions ψn,±(t) via scheme
(17) from the following initial data:

ψn,±j (0) = φ(xhn
j ) ± δ(−1)α(j)

Then, ψn,±(0) satisfy the following properties:

S
(
ψn,±(0)

)
= S̃

(
φhn

)
(32a)

	S(ψn,±(0)) = N , and (32b)

sup
n

Ehn

ψn,±(0) <∞ (32c)
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Furthermore,
lim sup
n→∞

max
j �∈S(ψn,±)

∣∣D+ψn,±
∣∣ = M <∞ (32d)

We recall a few points from [2]: First, by virtue of property (32c), the evolutions
{ψn,±(t)}n are Holder continuous in time with values in L∞ of space, uniformly
in n. Moreover, the difference quotients of ψn,±(t) satisfy the maximum principle
on the complements of their jump sets, while the jump sets remain constant. In
light of these comments and of Proposition 3, we can determine a T > 0 so that
for all t ∈ [0, T ] the following hold:

S(ψn,±(t)) = S(ψn,±(0)) (33a)

max
j �∈S(ψn,±)

∣∣D+ψn,±(t)
∣∣ ≤ 2M (33b)

The dependence of κ on hn, as prescribed in (29), implies:

C := lim inf
n→∞ hnR

−1
2 (R(2M)) > 0 (33c)

so that, by (33b) for large enough n

R−1
2

(
R(D+ψn,±j (t))

)
>

C

2hn
for all j �∈ S

(
ψn,±j (0)

)
and t ∈ [0, T ]. (33d)

Choose δ < C/4. For large enough n, we will certainly have:

(−1)α(j)ψn,−j (t) < uhn
j (t) < (−1)α(j)ψn,+j (t) (33e)

for some positive time. Then (32a), (33a), and (33e) verify hypothesis 1 and 3 of
Proposition 2 for positive time. Meanwhile, (33d), (33e), and the choice of δ verify
hypothesis 2 of Proposition 2 at t = 0. But as in the proof of Theorem 1, since
(33d) holds for all t ∈ [0, T ], these are sufficient to ensure that the three hypothesis
of Proposition 2 are satisfied for all t ∈ [0, T ] and lead to the conclusion that we
want:

(−1)α(j)ψn,−j (t) ≤ uhn
j (t) ≤ (−1)α(j)ψn,+j (t) for all t ∈ [0, T ]. (34)

At this stage, it is possible to repeat the proof of Corollary 1 to get an estimate on
how fast jumps of height less than 2δ vanish; the upper bound one obtains goes to
0 when we send first n→ ∞ and then δ → 0. �

Remark: In some sense, Theorem 2 says that given an initial piecewise smooth
signal corrupted by noise (i.e. a signal with a few large and many small jumps), the
Perona-Malik scheme de-noises the signal by quickly removing the small jumps
and maintaining the large ones. This stability property hinged on inequality (33c)
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in our proof, and is a result of the choice of the constitutive function (26) and
scaling (29). It is in contrast to the different function and scaling considered in [3]
that lead to a different continuum limit for which such a stability property is not to
be expected.

Acknowledgement: The author would like to thank his former advisor Robert V.
Kohn for his continuing attention and encouragement.
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Figure 1: A typical choice for the function Rh(ξ) that appears in the scheme. Here Rh(ξ) =
ξ/(1 + ξ2/h) with h = 1.
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Figure 2: Violation of comparison principle. Solution represented by the dashed line remains in the
well–posed (parabolic) regime at all times. Nevertheless, order is lost. It is very easy to understand
why this happens.
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Figure 3: Jump set (or the supersonic regime) can grow in two–dimensions. Here, a small “crack”
in the initial data propagates.
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Figure 4: An application of the comparison principle. The corrupted initial data (which is not
subsonic) quickly becomes subsonic, and no artificial “edges” are introduced. The noise amplitude
here is 0.05, and the maximum amplitude allowed by Theorem 1 is 0.0525.
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Figure 5: Effects of a perturbation with a (deliberately chosen) noise of amplitude that exceeds the
maximum amplitude allowed. Here, the noise amplitude is 0.06, higher than what Theorem 1 allows,
which is 0.0525. The result is an artificial “edge”.
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Figure 6: Evolution via different choices for the function Rκ. The upper left hand figure illustrates
the initial signal and comparison functions; the initial signal was obtained from that of Example 1
(Figure 4) after modifying by a deliberately chosen perturbation. The lower left hand figure shows
the two distinct choices for the function R(ξ) used in this example. The second column shows
the evolution of the initial image and comparison functions with R(ξ) = ξ/(1 + ξ2/100) and
R(ξ) = ξ exp(−ξ2/200). For both of these functions, z(κ) = 10.
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