

WELDING CONSUMABLES FOR JOINING AND CLADDING STAINLESS STEELS AND NICKEL-BASE ALLOYS

Contents

	page
Overview stainless steel consumables	4
Consumable selection by parent material	8
Covered electrodes for MMA welding	10
Solid wires for MIG/MAG welding	42
Welding of exhaust systems.	49
Wires for TIG Welding	50
Orbital-TIG – a great way to join pipes	57
Tubular cored wires for MIG/MAG welding	58
Construction of chemical tankers with cored wires	66
Fluxes for submerged arc welding	67
The stainless steel cladding process	75
Facts about Stainless Steels	76
Corrosion	81
Ferrite in weld metals	82
Joining of Dissimilar Steels	86
Storage and handling	90
Global manufacturing	91

DISCLAIMER

Whilst all reasonable efforts have been made to ensure the accuracy of the information contained in this handbook at the time of going to press, ESAB gives no warranty with regard to its accuracy or completeness. It is the responsibility of the reader to check the accuracy of the information contained in this handbook, read product labels and equipment instructions and comply with current regulations. If the reader is in any doubt with regard to the proper use of any technology they should contact the manufacturer or obtain alternative expert advice. ESAB accepts no responsibility or liability for any injury, loss or damage incurred as a result of any use or reliance upon the information contained in this handbook.

Overview stainless steel consumables

					Typical	chemic	al comp	osition (%	o)				
	Classification		AWS/SF	-A	С	Si	Mn	Cr	Ni	Мо	N	others	FN
	Euronorm												
OK 61.20	EN 1600	E 19 9 L R 1 1	A5.4	E308L-16	0.026	0.7	0.7	19.2	9.6		0.10		5
OK 61.25	EN 1600	E 19 9 H B 2 2	A5.4	E308H-15	0.06	0.03	1.7	18.8	9.8		0.05		4
OK 61.30	EN 1600	E 19 9 L R 1 2	A5.4	E308L-17	0.03	0.9	0.7	19.3	10.0		0.09		4
OK 61.35	EN 1600	E 19 9 L B 2 2	A5.4	E308L-15	0.04	0.3	1.6	19.5	9.8		0.06		6
OK 61.35 Cryo	EN 1600	E 19 9 L B 2 2	A5.4	E308L-15	0.04	0.3	1.6	18.7	10.5		0.06		3
OK 61.50	EN 1600	E 19 9 H R 1 2	A5.4	E308H-17	0.05	0.7	0.7	19.8	10.0		0.10		4
OK 61.80	EN 1600	E 19 9 Nb R 1 2	A5.4	E347-17	0.03	0.7	0.6	19.5	10.0		0.09	Nb: 0.29	7
OK 61.81	EN 1600	E 19 9 Nb R 3 2	A5.4	E347-16	0.06	0.7	1.7	20.2	9.7		0.08	Nb: 0.72	5
OK 61.85	EN 1600	E 19 9 Nb B 2 2	A5.4	E347-15	0.04	0.4	1.7	19.5	10.2		0.07	Nb: 0.61	5
OK 61.86	EN 1600	E 19 9 Nb R 1 2	A5.4	E347-17	<0.03	0.8	0.7	19.0	10.4		0.09	Nb: 0.50	4
OK 62.53					0.07	1.6	0.6	23.1	10.4		0.16		8
OK 63.20	EN 1600	E 19 12 3 L R 1 1	A5.4	E316L-16	0.02	0.7	0.7	18.4	11.5	2.8	0.11		4
OK 63.30	EN 1600	E 19 12 3 L R 1 2	A5.4	E316L-17	0.02	0.8	0.6	18.1	11.0	2.7	0.10		6
OK 63.34	EN 1600	E 19 12 3 L R 1 1	A5.4	E316L-16	0.02	0.8	0.8	18.7	11.8	2.8	0.13		6
OK 63.35	EN 1600	E 19 12 3 L B 2 2	A5.4	E316L-15	0.04	0.4	1.6	18.3	12.6	2.7	0.06		4
OK 63.41	EN 1600	E 19 12 3 L R 5 3	A5.4	E316L-26	0.03	0.8	0.7	18.2	12.5	2.8	0.09		4
OK 63.80	EN 1600	E 19 12 3 Nb R 3 2	A5.4	E318-17	0.02	0.8	0.6	18.2	11.5	2.9	0.08	Nb: 0.31	7
OK 63.85	EN 1600	E 19 12 3 Nb B 4 2	A5.4	E318-15	0.04	0.5	1.6	17.9	13.0	2.7	0.06	Nb: 0.55	4
OK 64.30	EN 1600	E 19 13 4 N L R 3 2	A5.4	E317L-17	0.02	0.7	0.7	18.4	13.1	3.6	0.08		8
OK 64.63	EN 1600	E 18 16 5 N L R 3 2			0.04	0.4	2.5	17.8	16.4	4.7	0.17		0
OK 67.13	EN 1600	E 25 20 R 1 2	A5.4	E310-16	0.12	0.5	1.9	25.6	20.5				0
OK 67.15	EN 1600	E 25 20 B 2 2	A5.4	E310-15	0.10	0.4	2.0	25.7	20.0				0
OK 67.20	EN 1600	E 23 12 2 L R 1 1	A5.4	(E309LMo-16)	0.02	1.1	0.8	22.9	13.1	2.9	0.13		15
OK 67.43	EN 1600	E 18 8 Mn B 1 2	A5.4	(E307-16)	0.08	0.8	5.4	18.4	9.1				0
OK 67.45	EN 1600	E 18 8 Mn B 4 2	A5.4	(E307-15)	0.09	0.3	6.3	18.8	9.1				<5
OK 67.50	EN 1600	E 22 9 3 N L R 3 2	A5.4	E2209-17	0.03	0.9	1.0	22.6	9.0	3.0	0.16		35
OK 67.51	EN 1600	E 22 9 3 N L R 5 3	A5.4	E2209-26	0.03	0.8	0.7	22.7	8.9	3.0	0.16		40
OK 67.52	EN 1600	E 18 8 Mn B 8 3	A5.4	(E307-25)	0.09	0.9	7.0	17.7	8.5	0.0	0.10		<3
OK 67.53	EN 1600	E 22 9 3 N L R 1 2	A5.4	(E2209-16)	0.03	1.0	0.7	23.7	9.3	3.4	0.16		35
OK 67.55	EN 1600	E 22 9 3 N L B 2 2	A5.4	E2209-15	0.03	0.7	1.0	23.2	9.4	3.2	0.17		40
OK 67.60										0.2	0.17		15
	EN 1600	E 23 12 L R 3 2	A5.4	E309L-17	0.03	0.8	0.9	23.7	12.4				
OK 67.62		E Z 23 12 L R 7 3	A5.4	E309-26	0.04	0.8	0.6	23.7	12.7	0.0	0.09		15
OK 67.70	EN 1600	E 23 12 2 L R 3 2	A5.4	E309L-17	0.02	0.8	0.6	22.5	13.4	2.8	0.08		18
OK 67.71	EN 1600	E 23 12 2 L R 5 3	A5.4	E309LMo-26	0.04	0.9	0.9	22.9	13.3	2.6	0.08		15
OK 67.75	EN 1600	E 23 12 L B 4 2	A5.4	E309L-15	0.04	0.3	0.2	23.5	12.9				15
OK 68.15	EN 1600	E 13 B 4 2	A5.4	E410-15	0.04	0.4	0.3	12.9					
OK 68.17	EN 1600	E 13 4 R 3 2	A5.4	E410NiMo-16	0.02	0.4	0.6	12.0	4.6	0.6			
OK 68.25	EN 1600	E 13 4 B 4 2	A5.4	E410NiMo-15	0.04	0.4	0.6	12.2	4.5	0.6			
OK 68.37	NF A 81-383	E Z 17.4.1.B 20			0.05	0.16	1.1	16.0	5.0	0.43			
OK 68.53	EN 1600	E 25 9 4 N L R 3 2	A5.4	E2594-16	0.03	0.6	0.7	25.2	10.3	4.0	0.25		39
OK 68.55	EN 1600	E 25 9 4 N L B 4 2	A5.4	E2594-15	0.03	0.6	0.9	25.2	10.4	4.3	0.24		45

	Classification			Typica	chemic	al comp							
	Euronorm		AWS/SF	A	С	Si	Mn	Cr	Ni	Мо	N	others	FN
OK 68.81	EN 1600	E 29 9 R 3 2	A5.4	E312-17	0.13	0.7	0.9	28.9	10.2				50
OK 68.82	EN 1600	E 29 9 R 3 2	A5.4	(E312-17)	0.13	1.1	0.6	29.1	9.9				50
OK 69.25	EN 1600	E 20 16 3 Mn N L B 4 2	A5.4	E316LMn-15	0.04	0.5	6.5	19.0	16.0	3.0	0.15		<0.5
OK 69.33	EN 1600	E20 25 5 Cu N L R 3 2	A5.4	E385-16	0.03	0.5	1.0	20.5	25.5	4.8	0.08	Cu: 1.7	0
OK 310Mo-L	EN 1600	E 25 22 2 N L R 1 2	A5.4	(E310Mo-16)	0.038	0.4	4.4	24.2	21.7	2.4	0.14		0
OK 92.05	EN ISO 14 172	E Ni 2061 (NiTi3)	A5.11	ENi-1	0.04	0.7	0.4		96.0			Ti: 1.5, Al: 0.10, Fe: 0.4	4
OK 92.15	EN ISO 14 172	E Ni 6133 (NiCr16Fe12NbMo)	A5.11	ENiCrFe-2	0.03	0.45	2.7	16.1	69.0	1.9		Nb: 1.9, Fe: 7.7	
OK 92.18	EN ISO 1071	E C Ni-Cl 3	A5.15	ENi-CI	1.0	0.6	0.8		94.0			Fe: 4	
OK 92.26	EN ISO 14 172	E Ni 6182 (NiCr15Fe6Mn)	A5.11	ENiCrFe-3	0.03	0.5	6.6	15.8	66.9			Nb: 1.7, Fe: 8.8	
OK 92.35	EN 14 700	E Z Ni2	A5.11	(ENiCrMo-5)	0.05	0.5	0.9	15.5	57.5	16.4		W: 3.5, Fe: 5.5	
OK 92.45	EN ISO 14 172	E Ni 6625 (NiCr22Mo9Nb)	A5.11	ENiCrMo-3	0.03	0.4	0.2	21.7	63.0	9.3		Nb: 3.3, Fe: 2.0	
OK 92.55	EN ISO 14 172	E Ni 6620 (NiCr14Mo7Fe)	A5.11	ENiCrMo-6	0.05	0.3	3.0	12.9	69.4	6.2		Nb: 1.3, W: 1.6, Fe: 5.0	0
OK 92.58	EN ISO 1071	E C NiFe-CI-A 1	A5.15	ENiFe-CI-A	1.5	0.7	0.8		51.0			Al: 1.4, Fe: 46	
OK 92.59	EN ISO 14 172	E Ni 6059 (NiCr23Mo16)	A5.11	ENiCrMo-13	0.01	0.2	0.2	22.0	61.0	15.2		W: 0.25, Fe: 0.8	
OK 92.60	EN ISO 1071	E C NiFe-1 3	A5.15	ENiFe-CI	0.9	0.5	0.6	53.0				Fe: 44, Cu: 0.9, Al: 0.4	Į.
OK 92.78	EN ISO 1071	E C NiCu 1			0.35		0.9		65.0			Cu: 32, Fe: 2.2	
OK 92.86	EN ISO 14 172	E Ni 4060 (NiCu30Mn3Ti)	A5.11	ENiCu7	0.01	0.3	2.1		66.0			Cu: 29, Fe: 1.6, Ti: 0.2	
OK 94.25	DIN 1733	EL-CuSn7					0.35					Cu: 93, Sn: 6.5	

Solid wires for MIG/MAG welding

Solid wires for MIG/N													
	Classification				Турі	cal chen	nical com	position	(%)				
	Euronorm		AWS/SF	A	С	Si	Mn	Cr	Ni	Mo	N	others	FN
OK Autrod 308H	EN ISO 14343	G 19 9 H	A5.9:	ER308H	0.04	0.4	1.8	19.5	9.0				
OK Autrod 308L	EN ISO 14343	G 199L	A5.9:	ER308L	0.02	0.4	1.6	20.0	10.0	0.05	<0.08		5-10
OK Autrod 308LSi	EN ISO 14343	G 19 9 LSi	A5.9:	ER308LSi	0.01	0.8	1.8	20.0	10.0	0.1	<0.08		8
OK Autrod 309L	EN ISO 14343	G 23 12 L	A5.9:	ER309L	0.03	0.4	1.5	23.5	13.0	0.1	<0.11		9
OK Autrod 309LSi	EN ISO 14343	G 23 12 LSi	A5.9:	ER309LSi	0.02	0.8	1.8	24.0	13.0	0.1	<0.09		8
OK Autrod 309MoL	EN ISO 14343	G 23 12 L	A5.9:	(ER309MoL)	0.01	0.3	1.8	21.5	14.5	2.6			8
OK Autrod 310	EN ISO 14343	G 25 20	A5.9:	ER310	0.10	0.4	1.7	25.0	20.0				
OK Autrod 312	EN ISO 14343	G 29 9	A5.9:	ER312	0.10	0.5	1.7	29.0	8.5				
OK Autrod 316L	EN ISO 14343	G 19 12 3 L	A5.9:	ER316L	0.02	0.4	1.8	18.5	12.0	2.5	<0.08		8
OK Autrod316LSi	EN ISO 14343	G 19 12 3 LSi	A5.9:	ER316LSi	0.02	0.8	1.8	18.5	12.0	2.5	<0.08		7
OK Autrod 318Si	EN ISO 14343	G 19 12 3 Nb	A5.9:	ER318	0.08	0.8	1.5	19.0	12.0	2.7	<0.08	Nb: 0.7	7
OK Autrod 347Si	EN ISO 14343	G 19 9 Nb	A5.9:	ER347	0.04	0.7	1.7	19.0	9.8	0.1	<0.08	Nb: 0.6	5-10
OK Autrod 385	EN ISO 14343	G 20 25 5 Cu L	A5.9:	ER385	0.01	0.3	1.6	20.0	25.0	4.7		Cu: 1.4	0
OK Autrod 410NiMo	EN ISO 14343	G 13 4			0.015	0.4	0.7	12.0	4.2	0.5	<0.3		
OK Autrod 430LNb	EN ISO 14343	G Z 17 L Nb			0.015	0.5	0.5	18.5	0.2	0.06	0.01	Nb>12xC	
OK Autrod 430Ti	EN ISO 14343	G Z 17 Ti			0.09	0.9	0.4	18.0	0.3	0.1		Ti: 0.3	
OK Autrod 16.95	EN ISO 14343	G 18 8 Mn			0.10	1.0	6.5	18.5	8.5	0.1	<0.08		
OK Autrod 2209	EN ISO 14343	G 22 9 3 N L	A5.9:	ER2209	0.01	0.6	1.6	23.0	9.0	3.0	0.1		45
OK Autrod 2307					0.02	0.4	0.5	23	7.0	<0.5	0.14		40
OK Autrod 2509	EN ISO 14343	G 25 9 4 N L		-	0.01	0.35	0.4	25.0	9.8	4.0	0.25		40
OK Autrod 19.81	EN ISO 18274	G Ni6059 (NiCr23Mo16)	A5.14:	ERNiCrMo-13	0.002	0.03	0.15	22.7	bal	15.4		Al: 0.15	
OK Autrod 19.82	EN ISO 18274	G Ni6625 (NiCr22Mo9Nb)	A5.14:	ER NiCrMo-3	0.01	0.1	0.1	22.0	bal	9.0		Nb+Ta: 3.65, Fe<	2
OK Autrod 19.85	EN ISO 18274	G Ni6082 (NiCr20Mn3Nb)	A5.14:	ERNiCr-3	0.02	0.1	3.0	20.0	bal			Nb+Ta: 2.5, Ti<3	
OK Autrod 19.92	EN ISO 18274	G Ni 2061 (NiTi3)	A5.14	ERNi-1	0.02	0.3	0.4		93.0			Ti: 3	
OK Autrod 19.93	EN ISO 18274	G Ni 4060 (NiCu30Mn3Ti)	A5.14	ERNiCu-7	0.03	0.3	3.0		64.0			Cu: 28, Ti: 2	

Overview stainless steel consumables

Wires for TIG welding

	Oleveridie etiem				Typical	chemi	cal coi	mnositi	on (%)				
OK Tigrod	Classification Euronorm		AWS/SFA		С	Si	Mn	•	Ni	Мо	N	others	FN
308H	EN ISO 14343	G 19 9 H	A5.9:	ER308H	0.05	0.4	1.8	20	9.3			Tot<0.5	
308L	EN ISO 14343	G 19 9 L	A5.9:	ER308L	0.01	0.4	1.6	20.0	10.0	0.1	<0.08	Tot<0.5	9
308LSi	EN ISO 14343	G 19 9 LSi	A5.9:	ER308LSi	0.01	0.8	1.8	20.0	10.0	0.1	<0.08	Tot<0.5	8
309L	EN ISO 14343	G 23 12 L	A5.9:	ER309L	0.02	0.4	1.6	24.0	13.0	0.1	<0.11	Tot<0.5	9
309LSi	EN ISO 14343	G 23 12 Lsi	A5.9:	ER309LSi	0.02	0.8	1.8	23.0	13.0	0.1	<0.09	Tot<0.5	9
309MoL	EN ISO 14343	G 23 12 L	A5.9:	(ER309MoL)	0.01	0.3	1.6	22.0	14.5	2.7		Tot<0.5	8
310	EN ISO 14343	G 25 20	A5.9:	ER310	0.10	0.4	1.7	25.0	20.0			Tot<0.5	
312	EN ISO 14343	G 29 9	A5.9:	ER312	0.10	0.5	1.7	29.0	9.0			Tot<0.5	
316L	EN ISO 14343	G 19 12 3 L	A5.9:	ER316L	0.01	0.4	1.6	18.5	12.0	2.5	<0.08	Tot<0.5	8
316LSi	EN ISO 14343	G 19 12 3 LSi	A5.9:	ER316LSi	0.01	0.8	1.7	18.0	0.3	0.1	<0.08	Tot<0.5	7
318 S i	EN ISO 14343	G 19 12 3 Nb	A5.9:	ER318	0.04	0.8	1.5	19.0	12.5	2.5	<0.08	Nb=0.5	7
347Si	EN ISO 14343	G 19 9 Nb	A5.9:	ER347	0.04	0.8	1.5	20.0	10.0	0.1	<0.08	Nb=0.7	7
385	EN ISO 14343	G 20 25 5 Cu L	A5.9:	ER385	0.01	0.4	1.8	20.0	25.0	4.5		Cu=1.5	0
410NiMo	EN ISO 14343	G 13 4			0.01	0.3	0.7	12.3	4.5	0.5	<0.3	Tot<0.5	
430Ti	EN ISO 14343	G Z 17 Ti			0.09	0.7	0.4	17.5	<0.4	<0.3		Ti=0.5	
16.95	EN ISO 14343	G 18 8 Mn			0.08	0.7	6.5	18.5	8.5	0.1	<0.08	Tot<0.5	
2209	EN ISO 14343	G 22 9 3 N L	A5.9:	ER2209	0.01	0.5	1.6	22.5	8.5	3.2	0.15	Tot<0.5	45
2509	EN ISO 14343	G 25 9 4 N L	A5.9:	-	<0.02	0.35	0.4	25.0	9.8	4.0	0.25		40
19.81	EN ISO 18274	G Ni6059 (NiCr23Mo16)	A5.14:	ERNiCrMo-13	0.002	0.03	0.15	22.7	bal	15.4		Al=0.15	
19.82	EN ISO 18274	G Ni6625 (NiCr22Mo9Nb)	A5.14:	ER NiCrMo-3	0.02	0.1	0.1	22.0	bal	9.0		Nb+Ta=3.65, Fe<2	
19.85	EN ISO 18274	G Ni6082 (NiCr20Mn3Nb)	A5.14:	ERNiCr-3	<0.1	<0.5	3.0	20.0	>67			Nb+Ta=2.5, Ti<3	
19.92	EN ISO 18274	G Ni 2061 (NiTi3)	A5.14	ERNi-1	0.02	0.1	0.4		93.0			Ti=3	
19.93	EN ISO 18274	G Ni 4060 (NiCu30Mn3Ti)	A5.14	ERNiCu-7	0.03	0.3	3.0		64.0			Cu=28, Ti=2,	

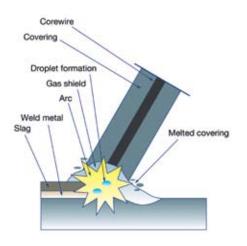
Fe=2

Tubular cored wires for MIG/MAG welding

	Classification				Typica	l chem	ical c	omposi	tion (%)			
	Euronorm		AWS/S	FA	С	Si	Mn	Cr	Ni	Мо	N	others
Shield-Bright 308L X-tra	EN ISO 17633-A	T 19 9 L R C 3 / T 19 9 L R M 3	A5.22	E308LT0-1 / E308LT-4	0.02	0.9	1.4	19.6	9.9	0.1		
Shield-Bright 309L X-tra	EN ISO 17633-A	T 23 12 L R C 3 / T 23 12 L R M 3	A5.22	E309LT0-1 / E309LT0-4	0.03	0.8	1.4	24.5	12.5	0.1		
Shield-Bright 309LMo X-tra	EN ISO 17633-A	T 23 12 2 L R C 3 / T 23 12 2 L R M 3	A5.22	E309LMoT0-1 / E309LMoT0-4	0.03	0.8	1.2	23.5	13.5	2.5		
Shield-Bright 316L X-tra	EN ISO 17633-A	T 19 12 3 L R C 3 / T 19 12 3 L R M 3	A5.22	E316LT0-1 / E316LT0-4	0.03	0.6	1.3	18.5	12.0	2.7		
Shield-Bright 317L X-tra			A5.22	E317LT0-1 / E317LT0-4	0.03	0.7	1.5	19.0	12.0	3.5		
Shield-Bright 347 X-tra	EN ISO 17633-A	T 19 9 Nb R M 3	A5.22	E347T0-1 / E347T0-4	0.04	0.5	1.6	19.0	9.6	0.1		Nb:0.8
Shield-Bright 308L	EN ISO 17633-A	T 19 9 L P M 2 / T 19 9 L P C 2	A5.22	E308LT1-1 / E308LT1-4	0.03	0.9	1.2	19.0	10.0	0.1		
Shield-Bright 309L	EN ISO 17633-A	T 23 12 L P C 2 / T 23 12 L P M 2	A5.22	E309LT1-1 / E309LT1-4	0.03	0.9	1.3	24.0	12.5	0.1		
Shield-Bright 309LMo			A5.22	E309LMoT1-1 / E309LMoT1-4	0.03	0.8	1.2	23.5	13.5	2.5		
Shield-Bright 316L	EN ISO 17633-A	T 19 12 3 L P M 2 / T 19 12 3 L P C 2	A5.22	E316LT1-1 / E316LT1-4	0.03	0.6	1.3	18.5	12.0	2.7		
Shield-Bright 317L			A5.22	E317LT1-1 / E317LT1-4	0.03	0.9	1.2	19.5	13.0	3.5		
Shield-Bright 347			A5.22	E347LT1-1 / E347LT1-4	0.03	0.9	1.2	19.5	10.0	0.1		
OK Tubrod 14.27	EN ISO 17633-A	T 22 9 3 N L P M 2 / T 22 9 3 N L P C 2	A5.22	E2209LT1-4 / E2209LT1-1	0.03	0.9	1.0	22.6	9.0	3.0	0.15	
OK Tubrod 14.28					0.03	0.6	0.9	25.2	9.2	3.9	0.25	
OK Tubrod 14.37	EN ISO 17633-A	T 22 9 3 N L R C 3 / T 22 9 3 N L R M 3	A5.22	E2209T0-1 / E2209T0-4	0.02	0.6	0.8	21,7	8,6	2.8	0.13	
Shield-Bright 410 NiMo			A5.22	E410T1-4	0.01	0.7	0.5	11.3	4.1	0.5		
OK Tubrod 15.30	EN ISO 17633-A	T 19 9 L M M 2			0.02	0.7	1.3	18.8	9.8	0.1		
OK Tubrod 15.31	EN ISO 17633-A	T 19 12 3 L M M 2			0.02	0.7	1.2	17.6	11.6	2.7		
OK Tubrod 15.34	EN ISO 17633-A	T 18 8 Mn M M 2			0.10	0.7	6.7	18.5	8.7	0.1		

Wires for Submerged Arc Welding

	Classification		AWS/SFA				al comp	osition (%)				
	Euronorm		AWS/SFA		С	Si	Mn	Cr	Ni	Мо	N	others	FN
OK Autrod 308L	EN ISO 14343	S 19 9 L	A5.9:	ER308L	0.02	0.4	1.8	20.0	10.0	0.2	0.05		
OK Autrod 308H	EN ISO 14343	S 19 9 H	A5.9:	ER308H	0.05	0.5	1.7	21.0	10.0	0.2	0.04		
OK Autrod 347	EN ISO 14343	S 19 9 Nb	A5.9:	ER347	0.04	0.4	1.7	19.3	10.0	0.1	0.08	Nb: 0.8	
OK Autrod 316L	EN ISO 14343	S 19 12 3 L	A5.9:	ER316L	0.01	0.4	1.7	18.5	12.2	2.7	0.05		
OK Autrod 317L	EN ISO 14343	S 18 15 3 L	A5.9:	ER317L	0.01	0.4	1.7	19.0	13.5	3.6	0.05		
OK Autrod 316H	EN ISO 14343	S 19 12 3 H	A5.9:	ER316H	0.05	0.4	1.7	19.3	12.5	2.6	0.04		
OK Autrod 16.38	EN ISO 14343	S 20 16 3 Mn L	A5.9:		0.01	0.4	6.9	19.9	16.5	3.0	0.18		
OK Autrod 318	EN ISO 14343	S 19 12 3 Nb	A5.9:	ER318	0.04	0.4	1.7	18.5	11.5	2.5	0.08	Nb: 0.8	
OK Autrod 309L	EN ISO 14343	S 23 12 L	A5.9:	ER309L	0.01	0.4	1.7	23.4	13.4	0.1	0.05		
OK Autrod 309MoL	EN ISO 14343	S 23 12 L	A5.9:	(ER309MoL)	0.01	0.4	1.4	21.4	15.0	2.7	0.05		
OK Autrod 385	EN ISO 14343	S 20 25 5 Cu L	A5.9:	ER385	0.01	0.4	1.7	20.0	25.0	4.4	0.04	Cu: 1.5	
OK Autrod 310	EN ISO 14343	S 25 20	A5.9:	ER310	0.11	0.4	1.7	25.9	20.8	0.1	0.04		
OK Autrod 312	EN ISO 14343	S 29 9	A5.9:	ER312	0.10	0.4	1.8	30.3	9.3	0.2	0.04		
OK Autrod 2209	EN ISO 14343	S 22 9 3 N L	A5.9:	ER2209	0.01	0.5	1.6	23.0	8.6	3.2	0.16		
OK Autrod 310MoL	EN ISO 14343	S 25 22 2 N L	A5.9:	(ER310MoL)	0.01	0.1	4.5	25.0	21.9	2.0	0.14		
OK Autrod 2509	EN ISO 14343	S 25 9 4 N L	A5.9:	-	0.01	0.4	0.4	25.0	9.5	3.9	0.25		
OK Autrod 16.97	EN ISO 14343	S 18 8 Mn	A5.9:	(ER307)	0.07	0.5	6.5	18.5	8.2	0.1			
OK Autrod 19.81	EN ISO 18274	S Ni6059 (NiCr23Mo16)	A5.14:	ERNiCrMo-13	0.01	0.1	0.2	23.0	Bal.	16.0		Al: 0.3, Fe: 1.0	
OK Autrod 19.82	EN ISO 18274	S Ni6625 (NiCr22Mo9Nb)	A5.14:	ER NiCrMo-3	0.05	0.2	0.2	22.0	Bal.	9.0		Nb: 3.5, Fe≤1.0	
OK Autrod 19.83	EN ISO 18274	S Ni 6276 (NiCr15Mo16Fe6W4)	A5.14:	ER NiCrMo-4	0.01	0.05	0.8	15.5	Bal.	15.5		W: 4.0, Co: 2.0, Fe≤5.0)
OK Autrod 19.85	EN ISO 18274	S Ni6082 (NiCr20Mn3Nb)	A5.14:	ERNiCr-3	0.05	0.3	3.0	20.0	Bal.	0.1		Nb: 2.6, Fe≤1.0	


Strips for Submerged Arc Strip Cladding and Electroslag Strip Cladding

	Classification				Typica	l chemic	cal comp	osition ([%]				
	Euronorm		AWS/SFA	L	С	Si	Mn	Cr	Ni	Мо	N	others	FN
OK Band 308L	EN ISO 14343	S 19 9 L	A5.9:	EQ308L	0.015	0.3	1.8	20.0	10.5		0.06		11
OK Band 347	EN ISO 14343	S 19 9 Nb	A5.9:	EQ347	0.02	0.4	1.8	19.5	10.0		0.06	Nb: 0.5	11
OK Band 316L	EN ISO 14343	S 19 12 3 L	A5.9:	EQ316L	0.02	0.4	1.8	18.5	13.0	2.9	0.06		8
OK Band 309L	EN ISO 14343	S 23 12 L	A5.9:	EQ309L	0.015	0.4	1.8	23.5	13.5		0.06		13
OK Band 309LNb	EN ISO 14343	S 23 12 L Nb			0.02	0.3	2.1	24.0	12.5		0.06	Nb: 0.8	22
OK Band 309L ESW					0.015	0.2	1.8	21.0	11.5		0.06		11
OK Band 309LNb ESW					0.015	0.2	1.8	21.0	11.0		0.06	Nb: 0.6	15
OK Band 309LMo ESW					0.015	0.2	1.8	20.5	13.5	2.9	0.06		13
OK Band 430	EN ISO 14343	S 17			0.04	0.4	0.7	17.0			0.06		
OK Band NiCr3	EN ISO 18274	S Ni6082 (NiCr20Mn3Nb)	A5.14:	ERNiCr-3	< 0.1	0.2	3.0	20.0	≥67.0		0.05	Nb: 2.5, Fe≤3.0	
OK Band NiCrMo3	EN ISO 18274	S Ni6625 (NiCr22Mo9Nb)	A5.14:	ER NiCrMo-3	< 0.1	0.1	0.3	22.0	≥58.0	9.0	0.05	Nb: 4.0. Fe≤2.0	

Consumable selection by parent material

EN Standard	Designation	No.	AISI (LINS)	Covered electrodes for MMA welding	Solid wires for MIG/MAG welding
FERRITIC	Designation	140.	Aloi (ONO)	Covered electrodes for MINIA Welding	Solid Wiles for Mild/MAG Welding
EN 10088-1	X2CrNi12	1.4003	S41050	OK 61.20, OK 61.30, OK 61.35	OK Autrod 308L, OK Autrod 308LSi
EN 10088-1	X6Cr13	1.4000	403	OK 61.20, OK 61.30, OK 61.35	OK Autrod 308L, OK Autrod 308LSi
EN 10088-1	X6Cr17	1.4016	430	OK 61.20, OK 61.30, OK 61.35	OK Autrod 308L, OK Autrod 308LSi
EN 10088-1	X2CrMoTi18-2	1.4521	S44400	OK 61.20, OK 61.30, OK 61.35	OK Autrod 308L, OK Autrod 308LSi
EN 10088-1	-	1.4762	446	OK 67.15	OK Autrod 310
AUSTENTIC		1.4702	440	OK OF .13	OK Aution 510
EN 10088-1	X2CrNi18-9	1.4307	304L	OK 61.20, OK 61.30, OK 61.34, OK 61.35, OK 61.35 Cryo	OK Autrod 308L, OK Autrod 308LSi
EN 10088-1	X10CrNi18-8	1.4310	301	OK 61.20, OK 61.30, OK 61.34, OK 61.35, OK 61.35 Cryo	OK Autrod 308L, OK Autrod 308LSi
EN 10088-1	X2CrNiN18-10	1.4311	304LN	OK 61.20, OK 61.30, OK 61.34, OK 61.35, OK 61.35 Cryo	OK Autrod 308L, OK Autrod 308LSi
EN 10088-1	X5CrNi18-10	1.4301	304	OK 61.20, OK 61.30, OK 61.34, OK 61.35, OK 61.35 Cryo	OK Autrod 308L, OK Autrod 308LSi
EN 10088-1	X8CrNiS18-9	1.4305	303	OK 68.81	OK Autrod 312
EN 10088-1	X6CrNiTi18-10	1.4541	321	OK 61.80, OK 61.81, OK 61.85, OK 61.86	OK Autrod 347Si
EN 10088-1	X6CrNiNb18-10	1.4550	347	OK 61.80, OK 61.81, OK 61.85, OK 61.86	OK Autrod 347Si
EN 10088-1	X3CrNiMo17-13-3	1.4436	316	OK 63.20, OK 63.30, OK 63.34, OK 63.35, OK 63.41	OK Autrod 316L, OK Autrod 316LSi
EN 10088-1	X5CrNiMo17-12-2	1.4401	316	OK 63.20, OK 63.30, OK 63,34, OK 63.35, OK 63.41	OK Autrod 316L, OK Autrod 316LSi
EN 10088-1	X2CrNiMo17-12-2	1.4404	316L	OK 63.20, OK 63.30, OK 63,34, OK 63.35, OK 63.41	OK Autrod 316L, OK Autrod 316LSi
EN 10088-1	X2CrNiMo18-14-3	1.4435	316L	OK 63.20, OK 63.30, OK 63,34, OK 63.35, OK 63.41	OK Autrod 316L, OK Autrod 316LSi
EN 10088-1	X2CrNiMoN17-13-3	1.4429	S31653	OK 63.20, OK 63.30, OK 63,34, OK 63.35, OK 63.41	OK Autrod 316L, OK Autrod 316LSi
EN 10088-1	X6CrNiMoTi17-12-2	1.4571	316Ti	OK 63.80, OK 63.85	OK Autrod 318Si
EN 10088-1	X6CrNiMoNb17-12-2	1.4580	316Nb	OK 63.80, OK 63.85	OK Autrod 318Si
EN 10088-1	X12CrMnNiN17-7-5	1.4372	201	OK 67.43, OK 67.45, OK 67.52	OK Autrod 16.95
EN 10088-1	X2CrNiMo18-14-3	1.4435	S31603	OK 69.25	
EN 10088-1	X1CrNiMoN25-22-2	1.4466	310MoLN	OK 310Mo-L	OK Autrod 310
EN 10088-1	X1NiCrMoCu25-20-5	1.4539	N08904	OK 69.33	OK Autrod 385, OK Autrod 19.82
EN 10088-1	X2CrNiMo18-15-4	1.4438	S31703	OK 64.30, OK 64.63	OK Autrod 385, OK Autrod 19.82
EN 10088-1	X1CrNiMoCuN20-18-7	1.4547	S31254	OK 92.45	OK Autrod 19.82
EN 10088-1	X1NiCrMoCu31-27-4	1.4563	N08028	OK 92.45	OK Autrod 19.81
EN 10088-1	-	1.4562	S32654	OK 92.59	OK Autrod 19.81
HEAT RESISTANT AUST	ENITIC				
EN 10095	X15CrNi23-13	1.4833	309S	OK 67.70, OK 67.75	OK Autrod 309LSi, OK Autrod 309MoL
EN 10095	X8CrNi25-21	1.4845	310S24	OK 67.13, OK 67.15	OK Autrod 310
EN 10095	X9CrNiSiNCe21-11-2	1.4835	S30815	OK 62.53	
AUSTENITIC-FERRITIC					
EN 10088-1	-	1.4162	S32101	OK 67.50, OK 67.53, OK 67.55	OK Autrod 2209
EN 10088-1	X2CrNiN23-4	1.4362	S32304	OK 67.50, OK 67.53, OK 67.55	OK Autrod 2209
EN 10088-1	X2CrNiMoN22-5-3	1.4462	S31803	OK 67.50, OK 67.53, OK 67.55	OK Autrod 2209
EN 10088-1	X2CrNiMoN25-7-4	1.4410	S32750	OK 68.53, OK 68.55	OK Autrod 2509
EN 10088-1	X2CrNiMoCuWN25-7-4	1.4501	S32760	OK 68.53, OK 68.55	OK Autrod 2509

William Con TIO worlding	The desired desired for MICANA	William Con OA worlding
Wires for TIG welding	Tubular cored wires for MIG/MAG	Wires for SA welding
OK Tigrod 308L, OK Tigrod 308LSi	Shield-Bright 308L, Shield-Bright 308L X-tra, OK Tubrod 15.30	OK Autrod 308L
OK Tigrod 308L, OK Tigrod 308LSi	Shield-Bright 308L, Shield-Bright 308L X-tra, OK Tubrod 15.30	OK Autrod 308L
OK Tigrod 308L, OK Tigrod 308LSi	Shield-Bright 308L, Shield-Bright 308L X-tra, OK Tubrod 15.30	OK Autrod 308L
OK Tigrod 308L, OK Tigrod 308LSi	Shield-Bright 308L, Shield-Bright 308L X-tra, OK Tubrod 15.30	OK Autrod 308L
OK Tigrod 310		OK Autrod 310
OK Tigrod 308L, OK Tigrod 308LSi	Shield-Bright 308L, Shield-Bright 308L X-tra, OK Tubrod 15.30	OK Autrod 308L
OK Tigrod 308L, OK Tigrod 308LSi	Shield-Bright 308L, Shield-Bright 308L X-tra, OK Tubrod 15.30	OK Autrod 308L
OK Tigrod 308L, OK Tigrod 308LSi	Shield-Bright 308L, Shield-Bright 308L X-tra, OK Tubrod 15.30	OK Autrod 308L
OK Tigrod 308L, OK Tigrod 308LSi	Shield-Bright 308L, Shield-Bright 308L X-tra, OK Tubrod 15.30	OK Autrod 308L
OK Tigrod 312		OK Autrod 312
OK Tigrod 347Si	Shield-Bright 347	OK Autrod 347
OK Tigrod 347Si	Shield-Bright 347	OK Autrod 347
OK Tigrod 316L, OK Tigrod 316LSi	Shield-Bright 316L, Shield-Bright 316L X-tra, OK Tubrod 15.31	OK Autrod 316L
OK Tigrod 316L, OK Tigrod 316LSi	Shield-Bright 316L, Shield-Bright 316L X-tra, OK Tubrod 15.31	OK Autrod 316L
OK Tigrod 316L, OK Tigrod 316LSi	Shield-Bright 316L, Shield-Bright 316L X-tra, OK Tubrod 15.31	OK Autrod 316L
OK Tigrod 316L, OK Tigrod 316LSi	Shield-Bright 316L, Shield-Bright 316L X-tra, OK Tubrod 15.31	OK Autrod 316L
OK Tigrod 316L, OK Tigrod 316LSi	Shield-Bright 316L, Shield-Bright 316L X-tra, OK Tubrod 15.31	OK Autrod 316L
OK Tigrod 318Si		OK Autrod 318
OK Tigrod 318Si		OK Autrod 318
OK Tigrod 16.95		OK Autrod 16.97
OK Tigrod 310		OK Autrod 310MoL
OK Tigrod 385, OK Tigrod 19.82		OK Autrod 385, OK Autrod 19.82
OK Tigrod 385, OK Tigrod 19.82	Shield-Bright 317L, Shield-Bright 317L X-tra	OK Autrod 385, OK Autrod 19.82
OK Tigrod 19.82		OK Autrod 19.82
OK Tigrod 19.81		OK Autrod 19.81
OK Tigrod 19.81		OK Autrod 19.81
-		
OK Tigrod 309LSi, OK Tigrod 309MoL	Shield-Bright 309L, Shield-Bright 309L X-tra	OK Autrod 309L
OK Tigrod 310	<u> </u>	OK Autrod 310
OK Tigrod 2209	OK Tubrod 14.27, OK Tubrod 14.37	
OK Tigrod 2209	OK Tubrod 14.27, OK Tubrod 14.37	OK Autrod 2209
OK Tigrod 2209	OK Tubrod 14.27, OK Tubrod 14.37	OK Autrod 2209
OK Tigrod 2509	,	OK Autrod 2509
OK Tigrod 2509		OK Autrod 2509
OK rigidu 2009		ON AUTOU 2009

Principle of manual metal arc werlding.

Over the last few decades a significant amount of applications that were traditionally welded with covered electrodes have been transferred to more productive methods such as submerged arc welding and flux cored arc welding. However, for applications where flexibility is essential, the covered electrode is often the best solution.

The covered electrode consists of a core wire and a coating which in combination fulfil several functions:

All weld metal

The core wire provides the weld metal and the coating provides the weld with additional alloying elements or iron powder.

Slag

Several components in the coating help form and control the slag, which protects, shapes and supports the weld pool during welding.

Gas shielding

Components in the coating generate a gas shield which protects the weld deposit from the surrounding atmosphere.

Deoxidants

These components in the coating are responsible for removing oxygen from the weld metal and are often added as ferro alloys such as ferro manganese and ferro silicon.

Arc stabilisers

Components in the coating that create ionisation in the arc, stabilising the arc.

Electrode types

Covered electrodes for stainless steel welding are catagorised according to their coating composition into rutile, basic and high deposition types.

Many welders prefer rutile types. They are easier to use, due to a smooth and stable arc on both AC and DC, minimal spatter and a very fine spray metal transfer. Striking properties are very good and the bead appearance and slag removal are excellent.

Basic types are usually used in more demanding applications e.g. high impact toughness at cryogenic temperatures and high restraint. The quick freezing weld metal offers exceptional good welding performance in all positions. Basic components in the coating provide a clean weld metal. Therefore, these types give the best protection against porosity and hot cracking.

High deposition electrodes are those containing high amounts of iron powder in the coating and are used to obtain high productivity. Deposition rates increase with the amount of iron powder in the coating. High deposition types have a recovery exceeding 130%. The weld pools are larger and welding is conducted only in a down hand or flat position.

Vertical down welding requires a specially coated electrode. A thin rutile coating provides excellent welding characteristics in vertical down welding of thin plate, with minimum distortion due to the high welding speed.

Packaging

VacPac

All ESAB stainless and nickel-based covered electrodes are supplied in VacPac vacuum packaging.

• ≤ 2.5mm: packed in quarter packs containing about 0.7kg each. Each carton contains 6 packages.

- 3.2mm: packed in half packs containing about 2kg each. Each carton contains 3 packages
- ≥ 4.0mm: packed in half packs containing about 2kg each. Each carton contains 3 packages

Plastic capsules

The main stainless types are also supplied in plastic capsules.

- ≤ 2.5mm: packed in quarter packs containing about 0.7kg each. Each carton contains 9 packages.
- ≥ 3.2mm: packed in half packs containing about 2kg each. Each carton contains 6 packages

	Classifications & approvals	Typical c	hemical	composi	tion all w	eld metal	(%)			
OK 61.20		С	Si	Mn	Cr	Ni	Мо	N	Other	FN
Type of coating Acid Rutile Recovery 105-108%	EN 1600 E 19 9 L R 1 1 AWS/SFA 5.4 E308L-16	0.026	0.7	0.7	19.2	9.6		0.10		5
Redrying 350°C/2h	Rutile coated electrode for wel sition, except when the full cre- welding thin walled pipes. Dian	ep resistan	ice of the	base ma	terial is to	be met.	The electro	ode is es	pecially desi	•

	Classifications & approvals	Typical	chemica	l compos	sition all w	eld meta	l (%)			
OK 61.25		С	Si	Mn	Cr	Ni	Мо	N	Other	FN
Type of coating Basic	EN 1600 E 19 9 H B 2 2 AWS/SFA 5.4	0.06	0.3	1.7	18.8	9.8		0.05		4
Recovery 104%	E308H-15 Seproz									
Redrying 200°C/2h	Basic coated stainless electro	de of the	308H-typ	e especia	ally design	ed for hig	h tempera	ture appl	ications.	

	Classifications & approvals	Typical	chemica	l compos	sition all w	eld metal	(%)			
OK 61.30		С	Si	Mn	Cr	Ni	Мо	N	Other	FN
Type of coating Acid Rutile Recovery 105%	EN 1600 E 19 9 L R 1 2 AWS/SFA 5.4 E308L-17 CSA W48 E308L-17	0.03	0.9	0.7	19.3	10.0		0.09		4
Redrying 350°C/2h	ABS, CE, CWB, DB, DNV, Seproz, TÜV									

Extra low carbon stainless steel electrode for welding steels of the 19 Cr 10 Ni-type. Also suitable for welding stabilised stainless steels of similar composition, except when the full creep resistance of the base material is to be met.

	Classifications & approvals	Typica	l chemica	l compos	sition all w	eld meta	l (%)				
OK 61.35		С	Si	Mn	Cr	Ni	Мо	N	Other	FN	
Type of coating Basic	EN 1600 E 19 9 L B 2 2 AWS/SFA 5.4	0.04	0.3	1.6	19.5	9.8		0.05		6	
Recovery 100%	E308L-15 Seproz, TÜV										
Redrying 200°C/2h	Basic stainless electrode of applications where requirem min. 0.38 mm is met down t	nents cor	ncerning r								

Typical mechanica	al properties all	weld metal		Diameter x length	Current	Welding positions
R _{p 0.2} (MPa)	Rm (MPa)	A4 (%)	CVN (°C/J)	(mm x mm)	(A)	
430	560	45	+20/70	1.6 x 300 2.0 x 300 2.5 x 300	23 - 40 25 - 60 28 - 85 DC+/AC/min. OCV: 50V	1 2 3 4 5 6 1 2 3 4 5 6 1 2 3 4 5 6
Typical mechanica	al properties all Rm (MPa)	weld metal	CVN (°C/J)	Diameter x length (mm x mm)	Current (A)	Welding positions
430	600	45	+20/95	2.5 x 300 3.2 x 350 4.0 x 350	55 - 85 75 - 110 80 - 160 DC+	1 2 3 4 6 1 2 3 4 6 1 2 3 4 6
Typical mechanica			CVAL (oC / I)	Diameter x length	Current	Welding positions
Typical mechanica	al properties all Rm (MPa)	weld metal	CVN (°C/J)	Diameter x length (mm x mm)	Current (A)	Welding positions
			CVN (°C/J) +20/70 -60/49			Welding positions 1 2 3 4 6 1 2 3 4 6 1 2 3 4 6 1 2 3 4 6 1 2 3 4 6 1 2 3 4 6 1 2 3 4 6
R _{p 0.2} (MPa)	Rm (MPa) 560	A5 (%) 43	+20/70	(mm x mm) 1.6 x 300 2.0 x 300 2.5 x 300 3.2 x 350 4.0 x 350	(A) 35 - 45 35 - 65 50 - 90 70 - 130 90 - 180 140 - 250	1 2 3 4 6 1 2 3 4 6 1 2 3 4 6 1 2 3 4 6 1 2 3 4 6
R _{p 0.2} (MPa) 430	Rm (MPa) 560	A5 (%) 43	+20/70	(mm x mm) 1.6 x 300 2.0 x 300 2.5 x 300 3.2 x 350 4.0 x 350 5.0 x 350	(A) 35 - 45 35 - 65 50 - 90 70 - 130 90 - 180 140 - 250 DC+/AC/min. OCV: 50V	1 2 3 4 6 1 2 3 4 6

	Classifications & approvals	Typica	l chemica	l compos	sition all w	veld metal	(%)			
OK 61.35 Cryo		С	Si	Mn	Cr	Ni	Мо	N	Other	FN
Type of coating Basic	EN 1600 E 19 9 L B 2 2 AWS/SFA 5.4	0.04	0.3	1.6	18.7	10.5		0.06		3
Recovery 100%	E308L-15 TÜV									
Redrying 200°C/2h	A basic stainless stick electro						genic app	lications.	Provides a	controlled

	Classifications & approvals	Typical	chemica	l compos	ition all w	eld meta	l (%)				
OK 61.50		С	Si	Mn	Cr	Ni	Мо	N	Other	FN	
Type of coating Acid Rutile	EN 1600 E 19 9 H R 1 2 AWS/SFA 5.4 E308H-17	0.05	0.7	0.7	19.8	10		0.10		4	
Recovery 101% Redrying 350°C/2h	OK 61.50 is a stainless steel e Especially designed for high to				li austenit	ic stainles	ss steels w	rith a cart	oon content	>0.04%.	

	Classifications & approvals	Typical	l chemica	l compos	sition all w	eld meta	ıl (%)				
OK 61.80		С	Si	Mn	Cr	Ni	Мо	N	Nb	FN	
Type of coating Acid Rutile Recovery 103%	EN 1600 E 19 9 Nb R 1 2 AWS/SFA 5.4 E347-17 CE, GL, TÜV	0.03	0.7	0.6	19.5	10		0.09	0.29	7	
Redrying 350°C/2h	OK 61.80 is a niobium-stabilis 321 and 347. It is resistant to it					a low ca	ırbon conte	ent for we	elding stainle	ess types	

	Classifications & approvals	Typical	chemica	i compos	ition all w	eld metal	(%)			
OK 61.81		С	Si	Mn	Cr	Ni	Мо	N	Nb	FN
Type of coating Rutile	EN 1600 E 19 9 Nb R 3 2 AWS/SFA 5.4	0.06	0.7	1.7	20.2	9.7		0.08	0.72	5
lecovery 04 - 106%	E347-16									
	CE, DNV									

Typical mechanica				Diameter x length	Current	Welding positions
R _{p 0.2} (MPa)	Rm (MPa)	A4 (%)	CVN (°C/J)	(mm x mm)	(A)	
460	580	43	+20/100 -120/70 -196/50	2.5 x 300 3.2 x 350 4.0 x 350 5.0 x 350	55 - 85 80 - 120 80 - 180 160 - 210 DC+	1 2 3 4 6 1 2 3 4 6 1 2 3 4 6 1 2 3
Typical mechanica	ıl properties all <mark>Rm (MPa)</mark>	weld metal A4 (%)	CVN (°C/J)	Diameter x length (mm x mm)	Current (A)	Welding positions
430	600	45	+20/60	2.5 x 300 3.2 x 350 4.0 x 350	50 - 85 70 - 110 110 - 165 DC+/AC/min. OCV: 55V	1 2 3 4 6 1 2 3 4 6 1 2
Typical mechanica	al properties all v	weld metal	CVN (°C/J)	Diameter x length	Current (A)	Welding positions
R _{p 0.2} (MPa)	Rm (MPa)	A5 (%)		(mm x mm)	(A)	
			CVN (°C/J) +20/60 -80/40			Welding positions 1 2 3 4 6 1 2 3 4 6 1 2 3 1 2
R _{p0.2} (MPa) 480 Typical mechanica	Rm (MPa) 620 al properties all	40 40 weld metal	+20/60 -80/40	(mm x mm) 2.5 x 300 3.2 x 350 4.0 x 350 5.0 x 350	(A) 55 - 90 70 - 130 90 - 180 140 - 250 DC+/AC/min. OCV: 50V	1 2 3 4 6 1 2 3 4 6 1 2 3
R _{p.0.2} (MPa) 480	Rm (MPa) 620	A5 (%) 40	+20/60	(mm x mm) 2.5 x 300 3.2 x 350 4.0 x 350 5.0 x 350	(A) 55 - 90 70 - 130 90 - 180 140 - 250 DC+/AC/min. OCV: 50V	1 2 3 4 6 1 2 3 4 6 1 2 3 1 2

	Classifications & approvals	Typical cl	hemical c	ompositi	on all wel	d metal (9	6)			
OK 61.85		С	Si	Mn	Cr	Ni	Мо	N	Nb	FN
Type of coating Basic	EN 1600 E 19 9 Nb B 2 2 AWS/SFA 5.4	0.04	0.4	1.7	19.5	10.2		0.07	0.61	5
Recovery 100 - 107%	E347-15 Seproz, TÜV									
Redrying 200°C/2h	OK 61.85 is a basic coated, nio titanium stabilised steels. OK 6 particularly suited for pipe weld	1.85 has ou			,		, ,		•	

	Classifications & approvals	Typical	chemica	l compos	sition all w	eld metal	(%)			
OK 61.86		С	Si	Mn	Cr	Ni	Мо	N	Nb	FN
Type of coating Acid Rutile	EN 1600 E 19 9 Nb R 1 2 AWS/SFA 5.4	<0.03	0.8	0.7	19.0	10.4		0.09	0.50	4
Recovery 98 - 101%	E347-17 Seproz									
Redrying 350°C/2h	Low carbon inflichium stabilis	ad stainla	ee etaal e	lectrode f	or welding	niobium	or titaniun	n etahilie	ad stable of	the 19Cr

Low carbon, nßiobium stabilised stainless steel electrode for welding niobium or titanium stabilised steels of the 19Cr 10Ni-type. Specially designed for use in applications where heat treatment is required.

	Classifications & approvals	Typical	chemica	l compos	ition all w	eld metal	(%)			
OK 62.53		С	Si	Mn	Cr	Ni	Мо	N	Other	FN
Type of coating Rutile	Seproz	0.07	1.6	0.6	23.1	10.4	0.12	0.16		8
Recovery	Niebium stabilieed staisless of	tool alaatu	ada far	مامام مام	hirmo ov tit	tanium ata	biliand ata	ala af th	- 100× 10Ni	t ma

Recovery 100%	Niobium stabilised stainless steel electrode for welding niobium or titanium stabilised steels of the 19Cr 10Ni-type. Specially designed for use in applications where heat treatment is required.
Redrying 300°C/2h	

	Classifications & approvals	Typical	chemica	l compos	ition all w	eld metal	(%)			
OK 63.20		С	Si	Mn	Cr	Ni	Мо	N	Nb	FN
Type of coating Acid Rutile	EN 1600 E 19 12 3 L R 1 1 AWS/SFA 5.4	0.02	0.7	0.7	18.4	11.5	2.8	0.11		4
Recovery 100%	E316L-16 CSA W48 E316L-16									
Redrying 350°C/2h	CE, CWB, Seproz, TÜV									

Rutile coated electrode for welding 18Cr12Ni3Mo-type steels. Also suitable for welding stabilised steels of similar composition. The electrode is especially designed for welding thin walled pipes. Diameters 1.6-2.5mm. can be used in all positions including vertical down.

Typical mechanic				Diameter x length	Current	Welding positions
R _{p 0.2} (MPa)	Rm (MPa)	A5 (%)	CVN (°C/J)	(mm x mm)	(A)	
500	620	40	+20/100	2.5 x 300	55 - 85	1234 6
			-60/70	3.2 x 350	75 - 110	1 2 3 4 6
600°C/16h: 500	640	40	+20/80 -60/40	4.0 x 350 5.0 x 350	80 - 150 150 - 200	1 2 3 4 1 2
			-00/40	0.0 X 000	DC+	1 2
Typical mechanic			0/0/ (0/1)	Diameter x length	Current	Welding positions
R _{p 0.2} (MPa)	Rm (MPa)	A5 (%)	CVN (°C/J)	(mm x mm)	(A)	
520	660	35	+20/55	2.5 x 300	60 - 90	1234 6
			30	3.2 x 350	70 - 120	1234 6
				4.0 x 350	120 - 170 DC+/AC/min. OCV: 50V	1 2
Typical mechanio	cal properties al	l weld metal		Diameter x length	Current	Welding positions
Typical mechanio R _{po2} (MPa)	cal properties al Rm (MPa)	l weld metal A5 (%)	CVN (°C/J)	Diameter x length	Current (A)	Welding positions
R _{p 0.2} (MPa)	Rm (MPa)	A5 (%)		(mm x mm)	(A)	
			CVN (°C/J) +20/60	(mm x mm) 2.5 x 300 3.2 x 350	(A) 50 - 90 70 - 110	1 2 3 4 6 1 2 3
R _{p 0.2} (MPa)	Rm (MPa)	A5 (%)		(mm x mm) 2.5 x 300	(A) 50 - 90 70 - 110 85 - 150	1234 6
R _{p 0.2} (MPa)	Rm (MPa)	A5 (%)		(mm x mm) 2.5 x 300 3.2 x 350	(A) 50 - 90 70 - 110	1 2 3 4 6 1 2 3
R _{p 0.2} (MPa)	Rm (MPa)	A5 (%)		(mm x mm) 2.5 x 300 3.2 x 350	(A) 50 - 90 70 - 110 85 - 150	1 2 3 4 6 1 2 3
R _{p 0.2} (MPa)	Rm (MPa)	A5 (%)		(mm x mm) 2.5 x 300 3.2 x 350	(A) 50 - 90 70 - 110 85 - 150	1 2 3 4 6 1 2 3
R _{p 0.2} (MPa)	Rm (MPa)	A5 (%)		(mm x mm) 2.5 x 300 3.2 x 350	(A) 50 - 90 70 - 110 85 - 150	1 2 3 4 6 1 2 3
R _{p 0.2} (MPa)	Rm (MPa)	A5 (%)		(mm x mm) 2.5 x 300 3.2 x 350	(A) 50 - 90 70 - 110 85 - 150	1 2 3 4 6 1 2 3
R _{p 0.2} (MPa)	Rm (MPa)	A5 (%)		(mm x mm) 2.5 x 300 3.2 x 350	(A) 50 - 90 70 - 110 85 - 150	1 2 3 4 6 1 2 3
R _{p 0.2} (MPa)	Rm (MPa)	A5 (%)		(mm x mm) 2.5 x 300 3.2 x 350	(A) 50 - 90 70 - 110 85 - 150	1 2 3 4 6 1 2 3
R _{p 0.2} (MPa)	Rm (MPa)	A5 (%)		(mm x mm) 2.5 x 300 3.2 x 350	(A) 50 - 90 70 - 110 85 - 150	1 2 3 4 6 1 2 3
R _{p 0.2} (MPa)	Rm (MPa) 730 cal properties al	A5 (%) 35	+20/60	(mm x mm) 2.5 x 300 3.2 x 350	(A) 50 - 90 70 - 110 85 - 150 DC+/AC/min. OCV: 65V Current	1 2 3 4 6 1 2 3 1 2
R _{p 0.2} (MPa)	Rm (MPa) 730	A5 (%) 35		(mm x mm) 2.5 x 300 3.2 x 350 4.0 x 350	(A) 50 - 90 70 - 110 85 - 150 DC+/AC/min. OCV: 65V	1 2 3 4 6 1 2 3 1 2
Typical mechanic R _{p0.2} (MPa)	Rm (MPa) 730 cal properties al	A5 (%) 35 I weld metal A5 (%)	+20/60	(mm x mm) 2.5 x 300 3.2 x 350 4.0 x 350 Diameter x length (mm x mm)	(A) 50 - 90 70 - 110 85 - 150 DC+/AC/min. OCV: 65V Current (A)	1 2 3 4 6 1 2 3 1 2 Welding positions
R _{p 0.2} (MPa) 550 Typical mechanic	Rm (MPa) 730 cal properties al	A5 (%) 35	+20/60	(mm x mm) 2.5 x 300 3.2 x 350 4.0 x 350	(A) 50 - 90 70 - 110 85 - 150 DC+/AC/min. OCV: 65V Current	1 2 3 4 6 1 2 3 1 2 Welding positions
Typical mechanic R _{p0.2} (MPa)	Rm (MPa) 730 cal properties al	A5 (%) 35 I weld metal A5 (%)	+20/60 CVN (°C/J) +20/56	(mm x mm) 2.5 x 300 3.2 x 350 4.0 x 350 Diameter x length (mm x mm) 1.6 x 300	(A) 50 - 90 70 - 110 85 - 150 DC+/AC/min. OCV: 65V Current (A) 15 - 40	1 2 3 4 6 1 2 3 1 2 Welding positions

OK 63.30		71	oncinioa	compos	ition all w	eld metal	(%)			
		С	Si	Mn	Cr	Ni	Мо	N	Other	FN
Type of coating Acid Rutile Recovery 102%	EN 1600 E 19 12 3 L R 1 2 AWS/SFA 5.4 E316L-17 CSA W48 E316L-17	0.02	0.8	0.6	18.1	11.0	2.7	0.10		6
Redrying 350°C/2h	ABS, BV, CE, CWB, DB, DNV, GL, LR, Seproz, TÜV									
	Extra low carbon stainless ste stabilised stainless steels of si									
	Classifications & approvals	Typical	chemica	compos	ition all w	eld metal	(%)			
OK 63.34		С	Si	Mn	Cr	Ni	Мо	N	Other	FN
Type of coating Acid Rutile Recovery 100%	EN 1600 E 19 12 3 L R 1 1 AWS/SFA 5.4 E316L-16 CSA W48	0.02	0.8	0.8	18.7	11.8	2.8	0.13		6
Redrying	E316L-16									
350°C/2h	CWB, Seproz, TÜV									
	OK 63.34 is a stainless electrocomposition. OK 63.34 production volume is fairly small and is early classifications & approvals	ces beads sy to mar	s with a ve nipulate ar	ery good f nd easy to	inish and remove.	a smooth	transition			
OK 63.35	composition. OK 63.34 produc	ces beads sy to mar	s with a ve nipulate ar	ery good f nd easy to	inish and remove.		transition			
OK 63.35 Type of coating Basic Recovery 105%	composition. OK 63.34 production volume is fairly small and is ea	ces beads sy to mar Typical	s with a venipulate an	ery good f nd easy to compos	inish and remove.	a smooth	transition (%)	to the joi	nt edges. Th	ne slag
Type of coating Basic Recovery 105% Redrying	composition. OK 63.34 production volume is fairly small and is ear Classifications & approvals EN 1600 E 19 12 3 L B 2 2 AWS/SFA 5.4 E316L-15 CSA W48	ces beads isy to mar Typical C	s with a venipulate an chemica	ery good find easy to	inish and premove. ition all w	a smooth eld metal Ni	transition (%) Mo	to the joi	nt edges. Th	ne slag
Type of coating Basic Recovery 105%	composition. OK 63.34 production volume is fairly small and is ear Classifications & approvals EN 1600 E 19 12 3 L B 2 2 AWS/SFA 5.4 E316L-15 CSA W48 E316L-15 ABS, CWB, Seproz, TÜV Stainless steel electrode for whardening steels, e.g. armour 0.38mm at -196 C can be production.	ces beads sy to mar Typical C 0.04 velding st steels. Veduced or	s with a venipulate and chemica Si 0.4 deels of the ery suitable in request.	ery good find easy to compose Mn 1.6	inish and premove. ition all w Cr 18.3	eld metal Ni 12.6 ype. It can plications.	transition (%) Mo 2.7 also be u Requirer	N 0.06	nt edges. The Other Other welding cert	FN 4
Type of coating Basic Recovery 105% Redrying 200°C/2h	composition. OK 63.34 production volume is fairly small and is ear Classifications & approvals EN 1600 E 19 12 3 L B 2 2 AWS/SFA 5.4 E316L-15 CSA W48 E316L-15 ABS, CWB, Seproz, TÜV Stainless steel electrode for volume hardening steels, e.g. armour	Typical velding st steels. Veduced or	s with a venipulate and chemica Si 0.4 Deels of the ery suitable in request.	ery good indeasy to compose Min 1.6 e CrNiMo le for cryo	ition all working the control of the	eld metal Ni 12.6 ype. It can plications.	(%) Mo 2.7 also be a Requirer	N 0.06	nt edges. The Other Other welding cert	FN 4 cain air
Type of coating Basic Recovery 105% Redrying	composition. OK 63.34 production volume is fairly small and is ear Classifications & approvals EN 1600 E 19 12 3 L B 2 2 AWS/SFA 5.4 E316L-15 CSA W48 E316L-15 ABS, CWB, Seproz, TÜV Stainless steel electrode for whardening steels, e.g. armour 0.38mm at -196 C can be production.	ces beads sy to mar Typical C 0.04 velding st steels. Veduced or	s with a venipulate and chemica Si 0.4 deels of the ery suitable in request.	ery good find easy to compose Mn 1.6	inish and premove. ition all w Cr 18.3	eld metal Ni 12.6 ype. It can plications.	transition (%) Mo 2.7 also be u Requirer	N 0.06	nt edges. The Other Other welding cert	FN 4

High-efficiency low carbon stainless steel electrode for welding steels of the type 18 Cr 12 Ni 2-3 Mo.

Recovery

Redrying

150%

E316L-26

CE, DNV, LR, TÜV

Typical mechanical	properties all v	veld metal		Diameter x length	Current	Welding positions
R _{p 0.2} (MPa)	Rm (MPa)	A5 (%)	CVN (°C/J)	(mm x mm)	(A)	
460	570	40	+20/60 -20/55 -60/43	1.6 x 300 2.0 x 300 2.5 x 300 3.2 x 350 4.0 x 350 5.0 x 350	30 - 45 45 - 65 45 - 90 60 - 125 70 - 190 100 - 280 DC+/AC/min. OCV: 50V	1 2 3 4 6 1 2 3 4 6
Typical mechanical R _{p.o.2} (MPa)	properties all v	veld metal	CVN (°C/J)	Diameter x length	Current (A)	Welding positions
p 0.2 (****	2,000		2313 (272)	(control control		
440	600	40	+20/65 -120/38	2.5 x 300 3.2 x 350	70 - 90 80 - 130 DC+/AC/min. OCV: 60V	1 2 3 4 5 6 1 2 3 4 5 6
Typical mechanical	properties all v	veld metal		Diameter x length	Current	Welding positions
R _{p 0.2} (MPa)	Rm (MPa)	A4 (%)	CVN (°C/J)	(mm x mm)	(A)	Treatming promises
430	560	40	+20/95 -60/75 -120/60 -196/35	2.5 x 300 3.2 x 350 4.0 x 350	55 - 85 80 - 120 80 - 180 DC+	1 2 3 4 6 1 2 3 4 6 1 2 3 4 6
Typical mechanical	· · · · · · · · · · · · · · · · · · ·			Diameter x length	Current	Welding positions
R _{p 0.2} (MPa)	Rm (MPa)	A5 (%)	CVN (°C/J)	(mm x mm)	(A)	
470	570	35	+20/60 -60/52	2.5 x 300 3.2 x 350 4.0 x 450 5.0 x 450	60 - 90 80 - 130 110 - 180 170 - 240 DC+/AC/min. OCV: 55V	1 2 3 4 6 1 2 3 1 2 3 1 2

	Classifications & approvals	Typical chemical composition all weld metal (%)									
OK 63.80		С	Si	Mn	Cr	Ni	Мо	N	Nb	FN	
Type of coating Acid Rutile	EN 1600: E 19 12 3 Nb R 3 2 AWS/SFA 5.4: E318-17	0.02	0.8	0.6	18.2	11.5	2.9	0.08	0.31	7	
Recovery 110%	CE, Seproz, TÜV										
Redrying 350°C/2h	Acid rutile covered MMA-elec	trode for v	welding N	b or Ti sta	abilised ste	eels of the	CrNiMo 1	8-12-3 ty	rpe.		

	Classifications & approvals Typical chemical composition all weld metal (%)										
OK 63.85		С	Si	Mn	Cr	Ni	Мо	N	Nb	FN	
Type of coating Basic	EN 1600 E 19 12 3 Nb B 4 2 AWS/SFA 5.4	0.04	0.5	1.6	17.9	13.0	2.7	0.06	0.55	4	
Recovery 115%	E318-15 Seproz, TÜV										
Redrying 200°C/2h	Basic MMA-electrode for well	dina Nh-s	tabilised s	stainless s	steels of 18	BCr 12Ni 3	Mo-type				_

	Classifications & approvals	Typical	chemica	l compos	ition all w	eld metal	(%)			
OK 64.30		С	Si	Mn	Cr	Ni	Мо	N	FN	
Type of coating Acid Rutile	EN 1600: E 19 13 4 N L R 3 2 AWS/SFA 5.4: E317L-17	0.02	0.7	0.7	18.4	13.1	3.6	0.08	8	
Recovery 103 - 110%	Seproz, TÜV									
Redrying 350°C/2h	OK 64.30 is an acid-rutile ele- steels. The high Mo content p OK 64.30 is easy to weld in a	provides b	etter resis	tance to a	acid and p	itting corre	osion com		ith 316L types.	

	Classifications & approvals	Typical	chemica	l compos	sition all w	eld metal	(%)		
OK 64.63		С	Si	Mn	Cr	Ni	Мо	N	FN
Type of coating	EN 1600: E 18 16 5 N L R 3 2	0.04	0.4	0.5	47.0	10.4	4.7	0.17	0
Acid Rutile	TÜV	0.04	0.4	2.5	17.8	16.4	4.7	0.17	0
Recovery 114- 116%	OK 64.63 is a stainless electro								
Redrying 350°C/2h	very good corrosion resistance	e. It has e	xcellent w	elding ch	aracterist	ics in all po	ositions ap	oart from	ı vertical down.

Typical mech	nanical properties al	l weld metal		Diameter x length	Current	Welding positions
R _{p 0.2} (MPa)	Rm (MPa)	A5 (%)	CVN (°C/J)	(mm x mm)	(A)	
507	614	38	+20/55 -60/41	2.0 x 300 2.5 x 300 3.2 x 350 4.0 x 350	45 - 65 60 - 90 80 - 120 120 - 170 DC+/AC/min. OCV: 55V	1 2 3 4 6 1 2 3 4 6 1 2 3 4 6 1 2 3 4

-	Typical mechanical	properties all w	eld metal		Diameter x length	Current	Welding positions
- 1	R _{p 0.2} (MPa)	Rm (MPa)	A4 (%)	CVN (°C/J)	(mm x mm)	(A)	
	490	640	35	+20/65	2.5 x 300	50 - 80	1234 6
•	490	040	33	-120/45	3.2 x 350	65 - 120	1 2 3 4 6
					4.0 x 350 5.0 x 350	75 - 160 145 - 210	1234 6
						DC+	0

Typical mechanical	l properties all w	eld metal		Diameter x length	Current	Welding positions
R _{p 0.2} (MPa)	Rm (MPa)	A5 (%)	CVN (°C/J)	(mm x mm)	(A)	
480	600	30	+20/45	2.5 x 300 3.2 x 350 4.0 x 350	50 - 80 60 - 120 80 - 170 DC+/AC/min. OCV: 55V	1 2 3 4 6 1 2 3 4 6 1 2 3 4 6

Typical mechanical	l properties all w	veld metal		Diameter x length	Current	Welding positions		
R _{p 0.2} (MPa)	Rm (MPa)	A5 (%)	CVN (°C/J)	(mm x mm)	(A)			
480	640	35	+20/75	3.2 x 350 4.0 x 350	80 - 110 110 - 150 DC+/AC/min. OCV: 60V	1 2 3 4 6 1 2 3		

Typical chemical composition all weld metal (%)

FN

FΝ

0

Classifications & approvals

Classifications & approvals

EN 1600: E 18 8 Mn B 1 2

AWS/SFA 5.4: (E307-16)

CE, DB, Seproz, TÜV

EN 14 700: EFe10

С

0.08

8.0

steels to other steels. Also suitable for welding other steels with very poor weldability.

OK 67.13

Recovery 95 - 100%	EN 1600: E 25 20 R 1 2 AWS/SFA 5.4: E310-16	0.12	0.5	1.9	25.6	20.5			0
Redrying 250°C/2h	OK 67.13 is an austenitic, stair temperature of 1100-1150°C a air-hardening steels such as a	nd does r	not contair	n any mea	asureable '	ferrite. OK	67.13 can		
OK 67.15	Classifications & approvals	Typical C	chemical	compos	ition all w	reld metal ((%) Mo	N	FN
Type of coating	EN 1600: E 25 20 B 2 2								
Basic	AWS/SFA 5.4: E310-15	0.10	0.4	2.0	25.7	20.0			0
Recovery 100 - 105%	CE, DB, Seproz, TÜV								
Redrying 200°C/2h	Basic coated MMA-electrode manganese steels and for join				. Also suit	able for we	lding arm	our stee	els, austenitic
	Classifications & approvals					eld metal ((%)		
OK 67.20		С	Si	Mn	Cr	Ni	Мо	N	FN
Type of coating Acid Rutile	EN 1600: E 23 12 2 L R 1 1 AWS/SFA 5.4: (E309LMo-16)	0.02	1.1	0.8	22.9	13.1	2.9	0.13	15
	Austonitia atainlaas ataal alaat								veld metal has excellent 6 manganese steel to

Typical chemical composition all weld metal (%)

Cr

18.4

Austenitic stainless steel MMA-electrode giving a weld metal of the CrNiMn-type. The weld metal, which contains a small amount of uniformly distributed ferrite, is tough and has an excellent crack resistance. Suitable for joining 13%Mn type

9.1

Mn

5.4

OK 67.43

Rutile Basic

Recovery 95 - 100%

Redrying

Type of coating

	nical properties a			Diameter x length	Current	Welding positions
R _{p 0.2} (MPa)	Rm (MPa)	A4 (%)	CVN (°C/J)	(mm x mm)	(A)	
560	600	35	+20/60	2.5 x 300 3.2 x 350 4.0 x 350 5.0 x 350	50 - 85 65 - 120 70 - 160 150 - 220 DC+/AC/min. OCV: 65V	1 2 3 4 6 1 2 3 4 6 1 2 3 4 6 1 2 3
Typical mechan R _{po2} (MPa)	nical properties al	l weld metal A5 (%)	CVN (°C/J)	Diameter x length (mm x mm)	Current (A)	Welding positions
410	590	35	+20/100	2.0 x 300 2.5 x 300 3.2 x 350 4.0 x 350 5.0 x 350	45 - 55 50 - 85 60 - 115 70 - 160 130 - 200 DC+	1 2 3 4 6 1 2 3 4 6 1 2 3 4 6 1 2 3 1 2 3 1 2 3
	nical properties a	l weld metal	CVN (°C/J)	Diameter x length	Current (A)	Welding positions
Typical mechan R _{p02} (MPa) 480			CVN (°C/J) +20/60			Welding positions 1 2 3 4 5 6 1 2 3 4 5 6 1 2 3 4 6
R _{p 0.2} (MPa) 480	Rm (MPa)	A4 (%) 35		(mm x mm) 2.0 x 300 2.5 x 300	(A) 30 - 60 50 - 80 75 - 110	1 2 3 4 5 6 1 2 3 4 5 6

	Classifications & approvals	Typical of	chemical	compos	ition all w	eld metal	(%)		
OK 67.45		С	Si	Mn	Cr	Ni	Мо	N	FN
Type of coating Lime Basic	EN 1600: E 18 8 Mn B 4 2 AWS/SFA 5.4: (E307-15)	0.09	0.3	6.3	18.8	9.1			< 5
Recovery 100%	ABS, Seproz, TÜV								
Redrying 200°C/2h	Austenitic stainless steel elect crack resistance, even when w or other steels. Also suitable for	elding ste	els with v	ery poor	weldability	y. Suitable		_	

	Classifications & approvals	Typical chemical composition all weld metal (%)									
OK 67.50		С	Si	Mn	Cr	Ni	Мо	N	FN		
Type of coating Acid Rutile	EN 1600: E 22 9 3 N L R 3 2 AWS/SFA 5.4: E2209-17 CSA W48:E2209-17	0.03	0.9	1.0	22.6	9.0	3.0	0.16	35		
Recovery 103 - 108%	ABS, BV, CE, CWB, DNV, GL, RINA, Seproz, TÜV										
Redrying 350°C/2h	Acid rutile coated MMA electr	ode for w	relding of a	austenitic	-ferritic sta	ainless ste	els of CrN	liMoN 22	5 3 and CrNiN		

	Classifications & approvals	Typical chemical composition all weld metal (%)								
OK 67.51		С	Si	Mn	Cr	Ni	Мо	N	FN	
Type of coating Acid Rutile Recovery	EN 1600: E 22 9 3 N L R 5 3 AWS/SFA 5.4: E2209-26 DNV	0.03	0.8	0.7	22.7	8.9	3.0	0.16	40	
142% Redrying	High recovery stainless electro		0	itic-auste	nitic (duple	ex) stainle	ss steels, o	e.g. UNS	S31803 or similar. Also	
350°C/2h	excellent for joining duplex to	Civili Stee	15.							

OK 67.52		С	Si	Mn	Cr	Ni	Мо	N	FN
Type of coating Zirconium Basic	EN 1600: E 18 8 Mn B 8 3 AWS/SFA 5.4: (E307-25) EN 14 700: E Fe10	0.09	0.9	7.0	17.7	8.5			< 3
Recovery 170 - 190%	Seproz								

Typical mechanic				Diameter x length	Current	Welding positions
R _{p 0.2} (MPa)	Rm (MPa)	A5 (%)	CVN (°C/J)	(mm x mm)	(A)	
470	605	35	+20/85	2.5 x 300 3.2 x 350 4.0 x 350 5.0 x 450	50 - 80 70 - 100 80 - 140 150 - 200 DC+	1 2 3 4 6 1 2 3 4 6 1 2 3 4 6 1 2 3 4
Typical mechanic	cal properties al	I weld metal	CVN (°C/J)	Diameter x length (mm x mm)	Current (A)	Welding positions
690	857	25	+20/50 -30/41	2.0 x 300 2.5 x 300 3.2 x 350 4.0 x 350 5.0 x 350	30 - 65 50 - 90 80 - 120 90 - 160 150 - 220 DC+/AC/min. OCV: 60V	1 2 3 4 6 1 2 3 4 6 1 2 3 4 6 1 2 3 4 6 1 2 3 4
Typical mechanic	cal properties al	l weld metal		Diameter x length	Current	Welding positions
Typical mechanic	cal properties al	I weld metal	CVN (°C/J)	Diameter x length (mm x mm)	Current (A)	Welding positions
			CVN (°C/J) +20/50			Welding positions 1 2 3 4 6 1 2
R _{p 0.2} (MPa)	Rm (MPa) 800	A4 (%) 25		(mm x mm) 2.5 x 300	(A) 60 - 100 80 - 130	1234 6

	Classifications & approvals	Typical chemical composition all weld metal (%)							
OK 67.53		С	Si	Mn	Cr	Ni	Мо	N	FN
Type of coating Rutile	EN 1600: E 22 9 3 N L R 1 2 AWS/SFA 5.4: (E2209-16)	0.03	1.0	0.7	23.7	9.3	3.4	0.16	35
Recovery 97 - 105%	DNV, TÜV								
Redrying 350°C/2h	OK 67.53 is a rutile coated elecand 1.4462. The electrode has		0				•		l pipes, e g UNS 31803

	Classifications & approvals	s Typical chemical composition all weld metal (%)							
OK 67.55		С	Si	Mn	Cr	Ni	Мо	N	FN
Type of coating Basic	EN 1600: E 22 9 3 N L B 2 2 AWS/SFA 5.4: E2209-15	0.03	0.7	1.0	23.2	9.4	3.2	0.17	40
Recovery 102 - 106%	DNV, Seproz, TÜV								
Redrying 200°C/2h	OK 67.55 is a basic coated ele deposited weld metal gives ve shore applications.		,	0				,	9

	Classifications & approvals	s Typical chemical composition all weld metal (%)							
OK 67.60		С	Si	Mn	Cr	Ni	Мо	N	FN
Type of coating Acid Rutile	EN 1600: E 23 12 L R 3 2 AWS/SFA 5.4: E309L-17 CSA W48: E309L-17	0.03	0.8	0.9	23.7	12.4		0.09	15
Recovery 115%	CE, CWB, Seproz, TÜV								
Redrying 350°C/2h	Acid-rutile coated MMA electralloyed steels. Also suitable fo	0 0	,	,					

	Classifications & approvals									
OK 67.62		С	Si	Mn	Cr	Ni	Мо	N	FN	
Type of coating Rutile	EN 1600: E Z 23 12 L R 7 3 AWS/SFA 5.4: E309-26	0.04	0.8	0.6	23.7	12.7		0.09	15	
Recovery 170 - 175%	BV, DNV, GL, LR, Seproz, TÜV									
Redrying 350°C/2h	OK 67.62 is a synthetic, stainle steel. The composition is bala bead appearance is outstandi	nced to p	roduce go	ood crack	resistance					

Typical mechanica	al proportion all v	uold motal		Diameter x length	Current	Welding positions
R _{p 0.2} (MPa)	Rm (MPa)	A5 (%)	CVN (°C/J)	(mm x mm)	(A)	Welding positions
660	840	25	+20/56	2.0 x 300 2.5 x 300 3.2 x 350	25 - 60 30 - 80 70 - 110 DC+/AC/min. OCV: 55V	1 2 3 4 5 6 1 2 3 4 5 6 1 2 3 4
Typical mechanica	ıl properties all v Rm (MPa)	veld metal	CVN (°C/J)	Diameter x length (mm x mm)	Current (A)	Welding positions
650	800	28	+20/100 -20/85 -60/65	2.5 x 300 3.2 x 350 4.0 x 350	50 - 80 60 - 100 80 - 140 DC+	1 2 3 4 6 1 2 3 4 6 1 2 3 4 6
Typical mechanica	al properties all v Rm (MPa)	veld metal A5 (%)	CVN (°C/J)	Diameter x length	Current	Welding positions
R _{p 0.2} (MPa)	Rm (MPa)	A5 (%)	CVN (°C/J)	(mm x mm)	(A)	
470	580	32	+20/50 -10/40	2.0 x 300 2.5 x 300 3.2 x 350 4.0 x 350 5.0 x 350	45 - 65 45 - 90 65 - 120 85 - 180 110 - 250 DC+/AC/min. OCV: 55V	1 2 3 4 6 1 2 3 4 6 1 2 3 4 6 1 2 3 4 6 1 2 3 4
Typical mechanica	ıl properties all v Rm (MPa)	veld metal A5 (%)	CVN (°C/J)	Diameter x length	Current (A)	Welding positions
440	560	36	+20/60 -60/42	3.2 x 450 4.0 x 450 5.0 x 450	110 - 165 150 - 230 200 - 310 DC+/AC/min. OCV: 55V	1 2 3 1 2 3 1 2 3

	Classifications & approvals	Typical chemical composition all weld metal (%)							
OK 67.70		С	Si	Mn	Cr	Ni	Мо	N	FN
Type of coating Acid Rutile	EN 1600: E 23 12 2 L R 3 2 AWS/SFA 5.4: E309LMo-17 CSA W48: E309LMo-17	0.02	0.8	0.6	22.5	13.4	2.8	0.08	18
Recovery 106 - 110%	ABS, BV, CE, CWB, DNV, LR, RINA, Seproz, TÜV								
Redrying 350°C/2h	Acid rutile MMA electrode giving and low-alloyed steels. Also surveid metal.								

	Classifications & approvals	Typical	chemica	l compos	ition all w	eld metal	(%)		
OK 67.71		С	Si	Mn	Cr	Ni	Мо	N	FN
Type of coating Acid Rutile Recovery	EN 1600: E 23 12 2 L R 5 3 AWS/SFA 5.4: E309LMo-26 DNV, TÜV	0.04	0.9	0.9	22.9	13.3	2.6	0.08	15
150% Redrying 350°C/2h	OK 67.71 is an over-alloyed, hi and joining stainless steel to o	0	,		_	,		_	

	Classifications & approvals	Typical	chemica	l compos	ition all w	eld metal	(%)		
OK 67.75		С	Si	Mn	Cr	Ni	Мо	N	FN
Type of coating Basic	EN 1600: E 23 12 L B 4 2 AWS/SFA 5.4: E309L-15	0.04	0.3	0.2	23.5	12.9		0.06	15
Recovery 120%	ABS, DNV, LR, Seproz, TÜV								
Redrying 200°C/2h	OK 67.75 is a basic coated, sta surfacing mild steel with stain						, , ,		,

	Classifications & approvals	турісаі	CHETHICA	Compos	ition all w	elu IIIela	1 (70)		
OK 68.15		С	Si	Mn	Cr	Ni	Мо	N	FN
ype of coating imeBasic	EN 1600: E 13 B 4 2 EN14 700: E Fe7 AWS/SFA 5.4: E410-15	0.04	0.4	0.3	12.9				
ecovery 08-118%	Seproz								
Redrying 200°C/2h	OK 68.15 is a stainless steel e of similar composition, when aggressive sulphuric gases. Deptries of untreated weld met	CrNi-alloy epending	ed austen on the we	itic stainle elding par	ess steel e ameters, t	electrodes	cannot be	used,	e.g. when exposed to

Typical mechanic				Diameter x length	Current	Welding positions
R _{p 0.2} (MPa)	Rm (MPa)	A5 (%)	CVN (°C/J)	(mm x mm)	(A)	
510	610	32	+20/50 -20/35	2.0 x 300 2.5 x 300 3.2 x 350 4.0 x 350 5.0 x 350	40 - 60 50 - 90 60 - 120 85 - 180 110 - 250 DC+/AC/min. OCV: 55V	1 2 3 4 6 1 2 3 4 6 1 2 3 4 6 1 2 3 4 6 1 2 3 4 6
Typical mechanic	al properties al	I weld metal A5 (%)	CVN (°C/J)	Diameter x length	Current (A)	Welding positions
500	620	35	+20/55 -60/30	3.2 x 350 4.0 x 450 5.0 x 450	60 - 130 110 - 170 170 - 230 DC+/AC/min. OCV: 70V	1 2 3 1 2 3 1 2 3
Typical mechanic				Diameter x length	Current	Welding positions
R _{p 0.2} (MPa)	Rm (MPa)	A4 (%)	CVN (°C/J)	(mm x mm)	(A)	
470	600	35	+20/75 -80/55	2.5 x 300 3.2 x 350 4.0 x 350	50 - 80 80 - 110 80 - 150 DC+	1 2 3 1 2 3 1 2 3
Typical mechanic R _{p.0.2} (MPa)	al properties al	l weld metal A4 (%)	CVN (°C/J)	Diameter x length (mm x mm)	Current (A)	Welding positions

	Classifications & approvals Typical chemical composition all weld metal (%)										
OK 68.17		С	Si	Mn	Cr	Ni	Мо	N	FN		
Type of coating Rutile Basic	EN 1600: E 13 4 R 3 2 EN 14 700: E Fe7 AWS/SFA 5.4: E410NiMo-16	0.02	0.4	0.6	12.0	4.6	0.6				
Recovery 115 -118%	Seproz										
Redrying 350°C/2h	A rutile-basic electrode for we	elding mar	tensitic 10	3Cr4Ni-M	o type ste	els					

	Classifications & approvals	Typical	chemica	l compos	sition all w	reld metal	(%)		
OK 68.25		С	Si	Mn	Cr	Ni	Мо	N	FN
Type of coating Basic	EN 1600: E 13 4 B 4 2 EN 14 700: E Fe7 AWS/SFA 5.4: E410NiMo-15	0.04	0.4	0.6	12.2	4.5	0.6		
Recovery 117 -121%	Seproz								
Redrying 350°C/2h	Basic coated electrode for we for example castings of 13Cr4	-		sistant ma	rtensitic a	and marter	nsitic-ferrit	ic rolled	d, forged and cast steels,

	Classifications & approvals	Typical	Typical chemical composition all weld metal (%)							
OK 68.37		С	Si	Mn	Cr	Ni	Мо	N	FN	
Type of coating Basic	NF A 81-383: E Z 17.4.1.B 20	0.05	0.16	1.1	16.0	5.0	0.43			
Recovery 120%	Basic coated electrode for joir example hydro turbine runners	0			n resistan	t martens	itic rolled, t	forged a	and cast steels, for	
Redrying 250°C/2h										

OK 68.53						eld metal	(70)		
JK 00.00		С	Si	Mn	Cr	Ni	Мо	N	FN
Type of coating Basic Rutile	EN 1600: E 25 9 4 N L R 3 2 AWS/SFA 5.4: E2594-16	0.03	0.6	0.7	25.2	10.3	4.0	0.25	39
Recovery	DNV, Seproz, TÜV								

	hanical properties a	ll weld metal		Diameter x length	Current	Welding positions
R _{p 0.2} (MPa)	Rm (MPa)	A5 (%)	CVN (°C/J)	(mm x mm)	(A)	
650 (PWHT: 600°C 600°C/8h)	870 C/2h +	17	+20/45 -10/45 -40/40	2.5 x 350 3.2 x 350 4.0 x 450	55 - 100 65 - 135 90 - 190 DC+/AC/min. OCV: 55V	1 2 3 4 6 1 2 3 4 6 1 2 3 4 6
Typical mec R _{p.o.2} (MPa)	chanical properties a	ll weld metal A5 (%)	CVN (°C/J)	Diameter x length (mm x mm)	Current (A)	Welding positions
680 (PWHT: 600°C	900 C/8h)	17	+20/65 0/60 -20/55	3.2 x 450 4.0 x 450 5.0 x 450	90 - 150 110 - 190 140 - 250 DC+	1 2 3 4 6 1 2 3 4 6 1 2
• • •	chanical properties a		CVN (°C/J)	Diameter x length	Current (A)	Welding positions
Typical mec R _{p 0.2} (MPa) 710 (PWHT: 600°C	Rm (MPa) 950	II weld metal A5 (%) 14	CVN (°C/J)		Current (A) 55 - 80 100 - 120 135 - 170 DC+	Welding positions 1 2 3 4 6 1 2 3 4 6 1 2 3 4
R _{p 0.2} (MPa)	Rm (MPa) 950	A5 (%)	CVN (°C/J)	(mm x mm) 2.5 x 350 3.2 x 450	(A) 55 - 80 100 - 120 135 - 170	1 2 3 4 6 1 2 3 4 6

55 - 85 70 - 110 80 - 150 DC+/AC/min. OCV: 60V

2.5 x 300 3.2 x 350 4.0 x 350

700

850

30

-40/40

1 2 3 4 1 2 3 4 1 2 3 4

6 6 6

	Classifications & approvals	Typical of	chemical	compos	ition all w	eld metal ((%)		
OK 68.55		С	Si	Mn	Cr	Ni	Мо	N	FN
Type of coating Basic	EN 1600: E 25 9 4 N L B 4 2 AWS/SFA 5.4: E2594-15	0.03	0.6	0.9	25.2	10.4	4.3	0.24	45
Recovery 107 - 109%	DNV								

	Classifications & approvals	Typical	chemica	l compos	sition all w	eld metal	(%)		
OK 68.81		С	Si	Mn	Cr	Ni	Мо	N	FN
Type of coating Acid Rutile	EN 1600: E 29 9 R 3 2 EN 14 700: E Fe11 AWS/SFA 5.4: E312-17	0.13	0.7	0.9	28.9	10.2			50
Recovery 125%	Seproz								
Redrying 350°C/2h	High recovery, high alloy stain approximate ferrite content of from the parent metal. Good surfacing rails, rolls, alforging	FN 50. The caling res	ne weld m sistance u	etal is res p to 1150	sistant to s °C. Typica	tress corre al applicati	osion atta	ck and I	highly insensitive to dilution

	Classifications & approvals	Typical	chemica	l compos	ition all w	eld metal	(%)		
OK 68.82		С	Si	Mn	Cr	Ni	Мо	N	FN
Type of coating Acid Rutile	EN 1600: E 29 9 R 3 2 EN 14 700: E Fe11 AWS/SFA 5.4: (E312-17)	0.13	1.1	0.6	29.1	9.9			50
Recovery 105%	Seproz								
Redrying 300°C/2h	High alloy stainless electrode of ferrite content of FN 50. The war parent metal. Good scaling resof poor weldability eg spring s	eld metal sistance u	is resista p to 1150	int to stres O°C. Appli	ss, corrosi cations: jo	on attack pining of H	and highly IWT steels	insens , dissim	itive to dilution from the ilar steels, welding steels

OK 69.25 C Si Mn Cr Ni Mo N FN
Type of coating EN 1600: E 20 16 3 Mn N L B 4 2 Basic AWS/SFA 5.4: E316LMn-15 0.04 0.5 6.5 19.0 16.0 3.0 0.15 < 0.5
Basic coated stainless electrode for welding corrosion resistant, non-magnetic and cryogenic stainless stee The electrode gives a fully austenitic Cr-Ni-Mo weld metal with increased Mn- and N-content.

Typical mechanica	al properties all	weld metal		Diameter x length	Current	Welding positions
R _{p 0.2} (MPa)	Rm (MPa)	A5 (%)	CVN (°C/J)	(mm x mm)	(A)	
700	900	28	+20/90 -40/55 -60/45	2.5 x 300 3.2 x 350 4.0 x 350	50 - 80 60 - 100 100 - 140 DC+	1 2 3 4 6 1 2 3 4 6 1 2 3 4 6

Typical mechanica			Diameter x length	Current	Welding positions		
R _{p 0.2} (MPa)	Rm (MPa)	A5 (%)	CVN (°C/J)	(mm x mm)	(A)		
610	790	22	+20/30	2.0 x 300 2.5 x 300 3.2 x 350 4.0 x 350 5.0 x 350	40 - 60 50 - 85 60 - 125 80 - 175 150 - 240 DC+/AC/min. OCV: 60V	1 2 3 4	6 6 6

Typical mechanic	al properties all	weld metal		Diameter x length	Current	Welding positions
R _{p 0.2} (MPa)	Rm (MPa)	A5 (%)	CVN (°C/J)	(mm x mm)	(A)	
500	750	23	+20/40	2.0 × 300	40 - 60	1234 6
300	750	23	+20/40	2.5 x 300	50 - 85	1 2 3 4 6
						1234 6 123
				5.0 x 350	140 - 230 DC+/AC/min. OCV: 55V	1 2
	7.	R _{p 0.2} (MPa) Rm (MPa)	puz	R _{p 0.2} (MPa) Rm (MPa) A5 (%) CVN (°C/J)	R _{p 0.2} (MPa) Rm (MPa) A5 (%) CVN (°C/J) (mm x mm) 500 750 23 +20/40 2.0 x 300 2.5 x 300 3.2 x 350 4.0 x 350	R _{p 0.2} (MPa) Rm (MPa) A5 (%) CVN (°C/J) (mm x mm) (A) 500 750 23 +20/40 2.0 x 300 40 - 60 2.5 x 300 50 - 85 3.2 x 350 55 - 120 4.0 x 350 75 - 170

Typical mechanica	ıl properties all v	veld metal		Diameter x length	Current	Welding positions
R _{p 0.2} (MPa)	Rm (MPa)	A5 (%)	CVN (°C/J)	(mm x mm)	(A)	
450	650	35	+20/90	2.5 x 300	50 - 80	1234 6
			-196/50	3.2 x 350	70 - 100	1 2 3 4 6
				4.0 x 350	100 - 140	1 2 3 4 6
					DC+	

	Classifications & approvals	Typical chemical composition all weld metal (%)									
OK 69.33		С	Si	Mn	Cr	Ni	Мо	N	Cu	FN	
Type of coating Basic-Rutile	EN 1600: E 20 25 5 Cu N L R 3 2 AWS/SFA 5.4: E385-16	0.03	0.5	1.0	20.5	25.5	4.8	0.08	1.7	0	
Recovery 110 - 120%	OK 69.33 is a stainless steel el- sulphuric acid. The weld metal										
Redrying 250°C/2h	·			J		3		. 0			

	Classifications & approvals Typical chemical composition all weld metal (%)									
OK 310Mo-L		С	Si	Mn	Cr	Ni	Мо	N	FN	
Type of coating Acid Rutile	EN 1600: E 25 22 2 N L R 1 2 AWS/SFA 5.4: (E310Mo-16)	0.038	0.4	4.4	24.2	21.7	2.4	0.14	0	
Recovery 100% Redrying 200°C/2h	Rutile-basic electrode for the The weld metal has an excelle The fully austenitic weld meta repair of urea plants using the 316L in urea plants to gain su	ent resistar I is insensi stamicarb	nce to ver tive to ho oon proce	y agressi t cracking ss. The e	ve corrosiv j. OK 310N lectrode is	ve media, s No-L is ap	such as ir proved fo	n urea pla r the con	struction and	

	Classifications & approvals	Typical	chemica	l compos	ition all v	veld meta	l (%)			
OK 92.05		С	Si	Mn	Cr	Ni	Ti	Al	Fe	
Type of coating Lime Basic	EN ISO 14 172: E Ni 2061 (NiTi3) AWS/SFA 5.11: ENi-1	0.04	0.7	0.4		96	1.5	0.10	0.4	_
Recovery 90%	A stick electrode for joining co such as nickel to steel, nickel t									
Redrying 250°C/2h										

	Classifications & approvals	Typical	chemical	compos	ition all w	eld meta	l (%)		
OK 92.15		С	Si	Mn	Cr	Ni	Мо	Nb	Fe
Type of coating Basic	EN ISO 14 172: E Ni 6133 (NiCr16Fe12NbMo) AWS/SFA 5.11: ENiCrFe-2	0.03	0.45	2.7	16.1	69	1.9	1.9	7.7
Recovery 110%	ABS, Seproz								
Redrying 250°C/2h	Nickel based electrode for we martensitic to austenitic steels weldability in all positions, incl	s, dissimil	ar steels, h						

Typical mechanica	l properties all v	veld metal		Diameter x length	Current	Welding positions
R _{p 0.2} (MPa)	Rm (MPa)	A4 (%)	CVN (°C/J)	(mm x mm)	(A)	
400	575	35	+20/80 -140/45	2.5 x 300 3.2 x 350 4.0 x 350 5.0 x 350	60 - 85 85 - 130 95 - 180 160 - 240 DC+/AC/min. OCV: 65V	1 2 3 4 6 1 2 3 4 1 2 1 2
Typical mechanica	l properties all v	veld metal	CVN (°C/J)	Diameter x length	Current (A)	Welding positions
p 0.2						
442	623	34	+20/54	2.5 x 300 3.2 x 300 4.0 x 300	55 - 70 70 - 100 100-140 DC+	1 2 3 4 6 1 2 3 4 6 1 2 3 4
Typical mechanica	<u> </u>			Diameter x length	Current	Welding positions
R _{p 0.2} (MPa)	Rm (MPa)	A5 (%)	CAN (_o C/ _l)	(mm x mm)	(A)	
330	470	30		2.5 x 300 3.2 x 350	70 - 95 90 - 135 DC+	1 2 3 4 6 1 2 3 4 6
Typical mechanica	l properties all v	veld metal		Diameter x length	Current	Welding positions
R _{p 0.2} (MPa)	Rm (MPa)	A4 (%)	CVN (°C/J)	(mm x mm)	(A)	
420	660	45	+20/110 -196/90	2.5 x 300 3.2 x 350	50 - 80 70 <i>-</i> 105	1 2 3 4 6 1 2 3 4 6

	Classifications & approvals Typical chemical composition all weld metal (%)										
OK 92.18		С	Si	Mn	Ni	Fe					
Type of coating Basic Special	EN ISO 1071: E C Ni-Cl 3 AWS/SFA 5.15: ENi-Cl	1.0	0.6	0.8	94	4					
Recovery 105 - 107%	Seproz										
Redrying 200°C/2h	A nickel-cored electrode for jo suitable for the rectification an slightly preheated cast iron. W	d repair c	of these gr	ades and	for joining	as grey, ductile and malleable irons. It is also g them to steel. Deposition is done on cold or					

	Classifications & approvals — Typical chemical composition all weld metal (%)							
OK 92.26		С	Si	Mn	Cr	Ni	Nb	Fe
Type of coating Basic	EN ISO 14 172: E Ni 6182 (NiCr15Fe6Mn) AWS/SFA 5.11: ENiCrFe-3	0.03	0.5	6.6	15.8	66.9	1.7	8.8
Recovery 110%	ABS, Seproz							
Redrying 200°C/2h	Basic nickel-based electrode f austenitic steels, dissimilar ste							ic steels, martensitic to

	Classifications & approvals	Typical chemical composition all weld metal (%)							
OK 92.35		С	Si	Mn	Cr	Ni	Мо	W	Fe
Type of coating Rutile basic	EN 14 700: E Z Ni2 AWS/SFA 5.11: (ENiCrMo-5)	0.05	0.5	0.9	15.5	57.5	16.4	3.5	5.5
Recovery 185-190%		Nickel-based electrode for welding Inconel 600 and similar Inconel alloys, cryogenic steels, martensitic to austenitic steels, dissimilar steels, heat resisting steel castings of limited weldability.							
Redrying 350°C/2h									

	Classifications & approvals	Typical chemical composition all weld metal (%)							
OK 92.45		С	Si	Mn	Cr	Ni	Мо	Nb	Fe
Type of coating Basic	EN ISO 14 172: E Ni 6625 (NiCr22 Mo9Nb AWS/SFA 5.11: ENiCrMo-3	0.03	0.4	0.2	21.7	63	9.3	3.3	2.0
Recovery 94 - 105%	Seproz, TÜV								

Typical mecha	anical properties all	weld metal		Diameter x length	Current	Welding positions
R _{p 0.2} (MPa)	Rm (MPa)	A4 (%)	CVN (°C/J)	(mm x mm)	(A)	
	300			2.5 x 300 3.2 x 350 4.0 x 350	55 - 110 80 - 140 100 - 190 AC/DC+/min. OCV: 50V	1 2 3 4 6 1 2 3 4 6 1 2 3
Typical mech	anical properties al	l weld metal		Diameter x length	Current	Welding positions
R _{p 0.2} (MPa)	Rm (MPa)	A4 (%)	CVN (°C/J)	(mm x mm)	(A)	
410	640	40	+20/100 -196/80	2.5 × 300 3.2 × 350 4.0 × 350 5.0 × 350	50 - 70 65 - 105 75 - 150 120 - 170 DC+	1 2 3 4 6 1 2 3 4 6 1 2 3 4 6 1 2 3
Typical mecha R _{p.0.2} (MPa)	anical properties al	l weld metal A5 (%)	CVN (°C/J)	Diameter x length	Current (A)	Welding positions
•			()			
515	750	17		2.5 x 300 3.2 x 350 4.0 x 350 5.0 x 350	65 - 110 110 - 150 160 - 200 190 - 250 DC+/AC/min. OCV: 70V	1 2 1 2 1 2 1 2
	anical properties al		200/62/0	Diameter x length	Current	Welding positions
R _{p 0.2} (MPa)	Rm (MPa)	A5 (%)	CVN (°C/J)	(mm x mm)	(A)	
500	780	35	+20/70 -196/50	2.5 x 350 3.2 x 350 4.0 x 350 5.0 x 350	55-75 65-100 80-140 120-170 DC+	1 2 3 4 6 1 2 3 4 6 1 2 3 4 6 1 2 3 4

Covered electrodes for MMA welding

	Classifications & approvals	Typical chemical composition all weld metal (%)									
OK 92.55		С	Si	Mn	Cr	Ni	Мо	W	Nb	Fe	
Type of coating Basic	EN ISO 14 172: E Ni 6620 (NiCr14Mo7Fe) AWS/SFA 5.11: ENiCrMo-6	0.05	0.3	3.0	12.9	69.4	6.2	1.6	1.3	5.0	
Recovery 136%	ABS, BV, DNV										
Redrying 300°C/1-2h	OK 92.55 is an all-positional, basic coated electrode which deposits a NiCr-based alloy with additions of Mo, W and Nb. The electrode is specifically designed for welding 9%Ni steels for cryogenic applications down to -196°C.										

	Classifications & approvals Typical chemical composition all weld metal (%)							
OK 92.58		С	Si	Mn	Ni	Al	Fe	
Type of coating Basic Special	EN ISO 1071: E C NiFe-CI-A 1 AWS/SFA 5.15: ENiFe-CI-A	1.5	0.7	0.8	51	1.4	46	
Recovery 105%	Seproz							
Redrying 200°C/2h	A nickel-iron cored electrode f also suitable for the rectification or slightly preheated cast iron. more resistant to solidification Because of this, it is specially contents of sulphur and phosp	on and rep Weld me cracking used for h	air of thes tal is well than that	se grades machinat of the nic	and for journal of the color of	oining ther lectrode p ode type, a	n to steel. Deposition is or roduces a weld metal stralso used for welding of o	done on cold conger and cast iron.

	Classifications & approvals	Typical chemical composition all weld metal (%)							
OK 92.59		С	Si	Mn	Cr	Ni	Мо	W	Fe
Type of coating Basic	EN ISO 14 172: E Ni 6059 (NiCr23Mo16) AWS/SFA 5.11: ENiCrMo-13	0.01	0.2	0.2	22	61	15.2	0.25	0.8
Recovery 100%	OK 92.59 is designed for welding of Alloy 59, C-276 and 625 Ni-base materials. Also for welding superaustenitic								
Redrying 200°C/2h	steels type AISI/ASTM S31254 and S32654.								

	Classifications & approvals	Typical chemical composition all weld metal (%)						
OK 92.60		С	Si	Mn	Ni	Fe	Cu	Al
Type of coating Basic Special Recovery 110%	EN ISO 1071: E C NiFe-1 3 AWS/SFA 5.15: ENiFe-Cl Seproz	0.9	0.5	0.6	53	4.4	0.9	0.4
Redrying 200°C/2h	A nickel-iron electrode for welding normal grades of cast iron and for joining these to steel. A special iron jacketed Ni-core wire gives the electrode a good current carrying capacity. The weld metal is stronger and more resistant to solidification cracking than pure nickel electrode types.							

Typical mechanica	ıl properties all v	veld metal		Diameter x length	Current	Welding positions
R _{p 0.2} (MPa)	Rm (MPa)	A4 (%)	CVN (°C/J)	(mm x mm)	(A)	
	>690	>35	-196/>70	2.5 x 350 3.2 x 350 4.0 x 350 5.0 x 350	65-115 70-150 120-200 150-240 DC+/AC/min. OCV: 55V	1 2 3 4 6 1 2 3 4 6 1 2 3 1 2 3
Typical mechanica				Diameter x length	Current	Welding positions
R _{p 0.2} (MPa)	Rm (MPa)	A4 (%)	CVN (°C/J)	(mm x mm)	(A)	
	375			2.5 x 300 3.2 x 350 4.0 x 350	55 - 75 70 - 100 85 - 160 DC+/AC/min. OCV: 50V	1 2 3 4 5 6 1 2 3 4 5 6 1 2 3
Typical mechanica	l properties all v Rm (MPa)	veld metal A5 (%)	CVN (°C/J)	Diameter x length (mm x mm)	Current (A)	Welding positions
430	770	40	-60/70 -196/60	2.5 x 300 3.2 x 350 4.0 x 350	50 - 70 60 - 90 80 -120 DC+	1 2 3 4 6 1 2 3 4 6 1 2 3 4 6
Typical mechanica	l properties all v	veld metal		Diameter x length	Current	Welding positions
R _{p 0.2} (MPa)	Rm (MPa)	A5 (%)	CVN (°C/J)	(mm x mm)	(A)	
380	560	>15		2.5 x 300 3.2 x 350 4.0 x 350 5.0 x 350	60 - 100 80 - 150 100 -200 150 - 250 DC+/AC/min. OCV: 45V	1 2 3 4 5 6 1 2 3 4 5 6 1 2 3 1 2 3

Covered electrodes for MMA welding

Typical chemical composition all weld metal (%)

Classifications & approvals

OK 92.78		С	Mn	Ni	Cu	Fe				
Type of coating Basic Special	EN ISO 1071: E C NiCu 1	0.35	0.9	65	32	2.2				
Recovery 95% Redrying 80°C/2h	A nickel-copper cored electroc malleable irons. Deposition is of the colour is very similar to that	done on c	old or slig							
	Classifications & approvals	Typical	chemica	l compos	ition all v	veld metal	(%)			
OK 92.86		С	Si	Mn	Cr	Ni	Мо	Cu	Fe	Ti
Type of coating Basic	EN ISO 14 172: E Ni 4060 (NiCu30Mn3Ti) AWS/SFA 5.11:ENiCu7	0.01	0.3	2.1		66		29	1.6	0.2
Recovery 105%	Seproz									
Redrying 200°C/2h	A nickel-copper electrode for the weld metal of OK 92.86 is resistance in sea water and in alloys within the petroleum and	crack res	istant and and oxidi	d ductile a sing acids	and meets s. OK 92.8	s rigorous i 36 is used i	requireme for welding	nts relat	ing to co	rrosion
	Classifications & approvals					veld metal	` '			
OK 94.25		С	Si	Mn	Cr	Ni	Мо	Cu	Sn	
Type of coating Basic	DIN 1733: EL-CuSn7 Seproz			0.35				93	6.5	
Recovery 95% Redrying 300°C/2h	Electrode for welding copper a repair work on weldable cast in		es, espec	cially tin br	onzes. It	is also suit	ed for cla	dding st	eels and	for smaller

ESAB MMA electrodes for positional welding of thin stainless pipe and sheet

ESAB introduces three new rutile MMA electrodes with excellent all-positions arc control at very low welding currents - OK 61.20, OK 63.20 and OK 67.53.

They have been developed in co-operation with the petrochemical and paper and pulp industry - in response to the increasing use of thin-walled stainless pipe and sheet to extend the lifecycle of installations. They are

also applied in the petrochemical, energy and food processing industries.

Stable arc at low currents

A stable, soft arc at very low current and voltage makes them suitable for both up-

- Productive welding
- Reduced post weld cleaning
- Good corrosion resistance in demanding environments


Typical mechanical	properties all w	eld metal		Diameter x length	Current	Welding positions
R _{p 0.2} (MPa)	Rm (MPa)	A5 (%)	CVN (°C/J)	(mm x mm)	(A)	
	325	15		2.5 x 300 3.2 x 350 4.0 x 350	50 - 100 60 - 125 90 -140 DC+/AC/min. OCV: 45V	1 2 3 4 5 6 1 2 3 4 5 6 1 2 3 4 5 6

Typical mechanical	l properties all w	eld metal		Diameter x length	Current	Welding p	ositions
R _{p 0.2} (MPa)	Rm (MPa)	A4 (%)	CVN (°C/J)	(mm x mm)	(A)		
410	640	40	+20/100 -196/80	2.5 x 300 3.2 x 350 4.0 x 350	50 - 70 70 - 120 120-140 DC+/AC/min. OCV: 70V	1 2 3 4 1 2 3 4 1 2 3	6

Typical mechanical	l properties all w	veld metal		Diameter x length	Current	Welding positions
R _{p 0.2} (MPa)	Rm (MPa)	A5 (%)	CVN (°C/J)	(mm x mm)	(A)	
235	360	25	+20/25	2.5 x 350 3.2 x 350 4.0 x 350	60 - 90 90 - 125 125-170 DC+	1 2 3 4 1 2 3 4 1 2 3 4

and downhill welding of pipes with a wall thickness in the region of 2 mm. The slag system allows a long pull-out length, reducing electrode change time loss.

Low spatter, good slag release and good wetting minimise time loss in post-weld cleaning. Corrosion resistance meets the requirements of demanding environments found in, for example, the petrochemical and shipbuilding industries.

OK 61.20 used for the vertical down welding of water supply piping in the pipeshop at a paper and pulp plant (AISI 304, 2.5 mm wall thickness). The remote control on the CaddyArc portable inverter is used to prevent burn-through by controlling the arc which is directed at the root of the joint. Welding is carried out in the two o'clock position while the pipe is rotated upwards, manually.

Solid wires for MIG Welding

MIG welding can be performed with three techniques; short arc (dip transfer), spray arc and pulsed welding. Short arc welding is used for thin materials, for root runs in thicker materials and for positional welding.

Short arc welds are made with lower voltage and current settings than spray arc welds. Metal is transferred across a short arc to the molten pool by short-circuiting droplets.

In spray arc welding, metal transfer occurs as a fine spray of droplets, which do not short-circuit the arc. This technique is more productive and is best suited for downhand welding of material with thickness of 3 mm and upward.

In pulsed arc welding, the metal transfer is controlled by a suitable voltage pulse, which is super-imposed onto the constant base voltage. This creates an artificial spray arc with one drop of metal per pulse within the normal short arc range. The average current is significantly lower than in ordinary spray arc welding; an obvious benefit when welding many types of stainless steels. Pulsed arc welding can be used in all positions and controls the heat input.

In addition to general shielding of the arc and weld pool, the shielding gas performs a number of important functions:

• forms the arc plasma

Diam, mm	Arc voltage, V	Current, A
0.8	16-22	50-140
1.0	16-24	80-190
1.2	20-28	180-280
1.6	24-28	250-350

- stabilises the arc root on the material surface
- ensures smooth transfer of molten droplets from the wire to the weld pool

Thus, the shielding gas will have a substantial effect on the stability of the arc and metal transfer and the behaviour of the weld pool, in particular, its penetration. General purpose shielding gases for MIG welding are mixtures of argon, oxygen and carbon dioxide, and special gas mixtures may contain helium. The gases, which are normally used for stainless, are:

- argon + 1 2% oxygen
- argon + 2 3% carbon dioxide
- argon + helium + carbon dioxide + hydrogen

An inert gas alone, argon or an argon + helium mixture is only recommended for welding high nickel-alloyed steels and nickel-based alloys.

When MIG welding stainless steel, the arc is very unstable with inert gas alone. A small quantity of oxygen or carbon dioxide in the argon shield improves the arc stability as well as the fluidity and wetting of the weld metal. The addition also minimises undercut, which is a problem when welding with argon alone.

In the case of welding ELC steels (steels with a maximum of 0.03 % carbon) an increase in the carbon content is not permitted. Generally, argon with up to 5% CO₂ behaves in a neutral manner, but a possible increase in carbon content when welding ELC steels should be taken into account. Argon with 2% carbon dioxide adds about 0.01% carbon to the weld metal when welding with spray arc transfer. A four gas mixture can offer advantages in

short arc welding. Helium in the gas mixture can give better shielding in positional welding and also improves penetration. However, hydrogen in the shielding gas must be avoided when welding a non austenitic stainless steel.

Delivery forms

Most OK Autrod wires are available on standard spools, No. 98-0 (EN 759: BS 300) with an outer diameter of 300 mm. Net weight of the spool is 15 kg. The wire is precision wound and the spool is used without adapter. Some grades in smaller diameters are also available in 5 kg spools, No. 46 (EN 759: S200), a plastic spool with an outer diameter of 200 mm.

The majority of wires are also available in ESAB bulk wire system, Marathon Pac[™]. This package promotes lean manufacturing through reduced downtime, process stability and efficient consumables handling. It saves on handling time and spool disposal costs. Marathon Pac has built in lifting straps and a range of accessories that simplify on-site handling from goods-in to workstation. Once empty, the octagonal drum packs flat to save space and ease disposal. The Pac is also 100% recyclable. The table on this page reviews the complete Marathon Pac family.

Marathon Pac can also be delivered in Endless Pac, this is two standard, or two Jumbo Pacs, joined together. Before the Marathon Pac finishes, the wire from a second Pac is joined to the first, using a special butt welding device. The clever changeover mechanism then automatically transfers the feed from the first drum into the second drum while the robot continues to weld faultlessly.

Wire diameters available are 0.8, 0.9, 1.0, 1.2 and 1.6 mm.

Matt wire

The most common grades are produced with a matt wire surface, due to a special manufacturing process. This technique produce wires that give a better welding quality, greater arc stability and higher production output. Because the manufacturing process produces a wire with improved stiffness, a more constant current flow without voltage fluctuations is obtained. The matt surface is finished with a special feed-aid that does not accumulate within the feeding system or welding gun.

ESAB matt stainless steel MIG wire

The Marathon Pac family

Description	Weight	WxH
Mini Marathon Pac	100 kg,	513 x 500 mm
Standard Marathon Pac	250 kg,	513 x 830 mm
Jumbo Marathon Pac	475 kg,	595 x 935 mm

Solid wires for MIG/MAG welding

	Classifications & approvals	Typica	al chen	nical co	ompos	ition a	ll weld	metal (9	6)		Typical mec	hanical prop	erties all wel	d metal
OK Autrod 308H		С	Si	Mn	Cr	Ni	Мо	N	Other	FN	R _{p 0.2} (MPa)	Rm (MPa)	A4/A5 (%)	CVN (°C/J
	EN ISO 14343 G 19 9 H AWS/SFA A5.9 ER308H	0.04	0.4	1.8	19.5	9			Tot <0.5	5-10	Min 350	Min 550	Min 30	
	A continuous, solid, corro type. OK Autrod 308H has used at higher temperatur	s good	gene	ral cor	rosion	resis	tance.	The all	oy has a h	nigh carl	bon content,	making it s	uitable for a	pplications
	Classifications & approvals	Typica	al chen	nical co	ompos	ition a	ll weld	metal (9	6)		Typical med	chanical prop	oerties all we	eld metal
OK Autrod 308L		С	Si	Mn	Cr	Ni	Мо	N	Other	FN	R _{p 0.2} (MPa)	Rm (MPa)	A4/A5 (%)	CVN (°C/
	EN ISO 14343 G 19 9 L AWS/SFA 5.9 ER308L	0.02 Cu 0.05	0.4	1.6	20	10	0.05	<0.08	Tot <0.5	5-10	450	620	36	-20/110 -60/90 -196/60
	A continuous solid corros low carbon content which used in the chemical and 8% Ni-type and Nb-stabil	makes	s this a	alloy p sing in	articul dustri	arly re	ecomn well as	nended for pip	when the	ere is a r and bo	isk of intergra ilers. For join	anular corro	sion. The a	lloy is wide
	Classifications & approvals	Typica	al chen	nical co	ompos	ition a	ll weld	metal (9	6)		Typical med	hanical prop	erties all wel	d metal
OK Autrod 308LSi		С	Si	Mn	Cr	Ni	Мо	N	Other	FN	R _{p 0.2} (MPa)	Rm (MPa)	A4/A5 (%)	CVN (°C/
	EN ISO 14343 G 19 9 LSi AWS/SFA A5.9 ER308LSi	0.01	8.0	1.8	20	10	0.1	<0.08	Tot <0.5	8	370	620	36	+20/110 -60/90 -196/60
	CE, DB, DNV, TÜV													
	A continuous, solid, corro OK Autrod 308LSi has go when there is a risk of inte widely used in the chemic	od gen ergranu	eral c lar co	orrosio rrosior	on resi n. The	istanc highe	e. The r silico	alloy h	as a low o	carbon over the v	content, maki welding prop	ing it particu	ularly recom	mended
	Classifications & approvals	Typica	al chen	nical co	ompos	ition a	ll weld	metal (9	6)		Typical med	hanical prop	erties all wel	d metal
OK Autrod 309L		С	Si	Mn	Cr	Ni	Мо	N	Other	FN	R _{p 0,2} (MPa)	Rm (MPa)	A4/A5 (%)	CVN (°C/
	EN ISO 14343 G 23 12 L AWS/SFA 5.9 ER309L	0.03	0.4	1.5	23.5	13	0.1	<0.11	Tot <0.5	9	440	600	41	+20/160 -60/130 -110/90
	CE A continuous solid corros types. The alloy is also us for buffer layers and dissir resistance. When used for Classifications & approvals	ed for t milar jo r joining	the we ints, it g dissi	elding is ned imilar i	of buff cessar materi	fer lay y to c als, th	ers on ontrol e corr	CMn s the dilu osion re	teels and tion of the esistance	the wel e weld. (ding of dissir OK Autrod 30 condary impo	nilar joints. \ 09L has a go ortance.	When using	the wire I corrosion
OK Autrod 309LSi	Oldoomodiono d'approvalo	С	Si	Mn	Cr	Ni	Mo	`	Other	FN	R _{p 0.2} (MPa)		A4/A5 (%)	
	EN ISO 14343 G 23 12 LSi AWS/SFA 5.9 ER309LSi	0.02	0.8	1.8	24	13	0.1		Tot <0.5		440	600	41	+20/160 -60/130 -110/90
	DB, CE, TÜV													
	A continuous, solid, corro	sion re	sistan						•		similar comp		ought and c	ast steels

of the 23% Cr -12% Ni types. The alloy is also used for welding buffer layers on CMn steels and welding dissimilar joints. When using the wire for buffer layers and dissimilar joints, it is necessary to control the dilution of the weld. OK Autrod 309LSi has good general

corrosion resistance. The higher silicon content improves the welding properties such as wetting.

	Classifications & approvals	Typica	al chem	nical co	mposi	tion all	weld	metal (%)		Typical mecl	nanical prop	erties all weld	d metal
OK Autrod 309MoL		С	Si	Mn	Cr	Ni	Мо	N	Other	FN	R _{p 0.2} (MPa)	Rm (MPa)	A4/A5 (%)	CVN (°C/J)
	EN ISO 14343 G 23 12 2 L TÜV	0.01	0.3	1.8	21.5	14.5	2.6		Tot <0.5	8	400	600	31	+20/110

A continuous, solid, corrosion resistant wire of the 309LMo type. OK Autrod 309MoL is used for the overlay welding of unalloyed and low-alloyed steels and for welding dissimilar steels, such as 316L, to unalloyed and low-alloyed steels when Mo is essential.

	Classifications & approvals	Typic	al chen	nical co	ompos	sition a	ıll weld	metal	(%)		Typical mec	hanical prop	erties all weld	d metal
OK Autrod 310		С	Si	Mn	Cr	Ni	Мо	N	Other	FN	R _{p 0.2} (MPa)	Rm (MPa)	A4/A5 (%)	CVN (°C/J)
	EN ISO 14343 G 25 20 AWS/SFA 5.9 FR310	0.1	0.4	1.7	25	20			Tot < 0.5		390	590	43	+20/175 -196/60

A continuous, solid, corrosion resistant, chromium-nickel wire for welding heat resistant austenitic steels of the 25% Cr, 20% Ni type. OK Autrod 310 has good overall oxidation resistance, especially at high temperatures, due to its high Cr content. The alloy is fully austenitic and is therefore sensitive to hot cracking. Common applications include industrial furnaces and boiler parts, as well as heat exchangers.

	Classifications & approvals	lypica	al chen	nicai co	mpos	sition ai	ii wela	metai	(%)		iypicai mec	nanicai prop	erties all Weid	metal
OK Autrod 312		С	Si	Mn	Cr	Ni	Мо	N	Other	FN	R _{p 0.2} (MPa)	Rm (MPa)	A4/A5 (%)	CVN (°C/J)
	EN ISO 14343 G 29 9 AWS/SFA 5.9 ER312	0.1	0.5	1.7	29	8.5			Tot <0.5		610	770	20	+20/50

A continuous, solid, corrosion resistant, chromium-nickel wire for welding stainless steels of the 29% Cr, 9% Ni type. OK Autrod 312 has good oxidation resistance at high temperatures due to its high content of Cr. The alloy is widely used for joining dissimilar steels, especially if one of the components is fully austenitic, and steels that are difficult to weld, i.e. machine components, tools and austenitic-manganese steels.

	Ciassifications & approvais	ТУРІС	a chen	iicai co	mposi	uona	ii weia	metai (%	(o)		Typicai mec	nanicai prop	erties all weit	ı metai
OK Autrod 316L		С	Si	Mn	Cr	Ni	Мо	N	Other	FN	R _{p 0.2} (MPa)	Rm (MPa)	A4/A5 (%)	CVN (°C/J)
	EN ISO 14343 G19 12 3 L AWS/SFA A5.9 ER316L	0.02	0.4	1.8	18.5	12	2.5	<0.08	Tot < 0.5	8	440	620	37	+20/120 -60/95 -196/55

A continuous solid corrosion resistant chromium-nickel-molybdenum wire for welding of austenitic stainless alloys of 18% Cr, 8% Ni and 18% Cr - 10% Ni - 3% Mo-type. OK Autrod 316L has good overall corrosion resistance, particularly against corrosion in acid and chlorinated environments. The alloy has a low carbon content which makes it particularly recommended when there is a risk of intergranular corrosion. The alloy is widely used in the chemical and food processing industries as well as in shipbuilding and various types of architectual structures.

	Classifications & approvals	Typica	al chen	nicai co	ompos	ilion a	ıı wela	metal (S	⁄o)		Typical mec	nanicai prop	erties all well	a metai
OK Autrod 316LSi		С	Si	Mn	Cr	Ni	Мо	N	Other	FN	R _{p 0.2} (MPa)	Rm (MPa)	A4/A5 (%)	CVN (°C/J)
	EN ISO 14343 G 19 12 3 LSi AWS/SFA A5.9 ER316LSi	0.02	0.8	1.8	18.5	12	2.5	<0.08	Tot <0.5	7	440	620	37	+20/120 -60/95 -196/55
	CE, DB, DNV, TÜV													

A continuous, solid, corrosion resistant, chromium-nickel-molybdenum wire for welding austenitic stainless alloys of the 18% Cr -8% Ni and 18% Cr -10% Ni -3% Mo type. OK Autrod 316LSi has good overall corrosion resistance; in particular, the alloy has very good resistance to corrosion in acid and chlorinated environments. The alloy has a low carbon content which makes it particularly recommended when there is a risk of intergranular corrosion. The higher silicon content improves the welding properties such as wetting. The alloy is widely used in the chemical and food.

Solid wires for MIG/MAG welding

	Classifications & approvals	Typica	al chem	nical co	ompos	ition al	l weld	metal (%	%)		Typical mec	hanical prop	erties all weld	d metal
OK Autrod 318Si		С	Si	Mn	Cr	Ni	Мо	N	Other	FN	R _{p 0.2} (MPa)	Rm (MPa)	A4/A5 (%)	CVN (°C/J)
	EN ISO 14343 G 19 12 3 NbSi AWS/SFA 5.4 E316L-16	0.08 Cu	0.8 Nb	1.5	19	12	2.7	<0.08	Tot <0.5	7	460	615	35	+20/100 -60/70
	DB, TÜV	0.1	0.7											
	A continuous, solid corros or non-stabilised steels. C resistance against intergra wetting. Due to stabilisation	K Autr anular (od 318 corrosi	Si ha	s a go the we	od ove	erall c tal. T	orrosion	n resistan er silicon	ce. The content	alloy is stabil improves the	ised with ni welding pr	obium to im	prove the
	Classifications & approvals	Typica	al chem	nical co	ompos	ition al	l weld	metal (%	%)		Typical med	hanical prop	erties all wel	d metal
OK Autrod 347Si		С	Si	Mn	Cr	Ni	Мо	N	Other	FN	R _{p 0.2} (MPa)	Rm (MPa)	A4/A5 (%)	CVN (°C/J)
	EN ISO 14343 G 19 9 NbSi AWS/SFA A5.9 ER347Si	0.04 Cu	0.7 Nb	1.7	19	9.8	0.1	<0.08	Tot <0.5	7	440	640	37	+20/110 -60/80
	DB. TÜV	0.1	0.6											
	OK Autrod 347Si has good corrosion of the weld met this alloy is recommended. Classifications & approvals	al. The I for us	highei e at hi	r silicc gher t	n con empe	tent in ratures	nprov S.		velding pr		such as wet	ting. Due to		n content,
OK Autrod 385	Olacomodilorio di approvale	C	Si	Mn	Cr	Ni	Мо	Cu	Other	FN	R _{p 0.2} (MPa)		A4/A5 (%)	
OK Autiou 363	EN ISO 14343	0.01	0.3	1.6	20	25	4.7	1.4	Tot < 0.5		340	540	37	+20/120
	G 20 25 5 CuL AWS/SFA 5.9 ER385													
	AWS/SFA 5.9													
	AWS/SFA 5.9 ER385 TÜV A continuous, solid, corro Cr, 25% Ni, 5% Mo, 1.5% rosion and shows very go nary 18% Cr, 8% Ni, Mo s	Cu, lo od res steels.	w C ty istance The all	pes. (e to at	OK Au tack ir widely	trod 3 n non- used	85 we oxidis in ma	eld meta sing acid ny appl	al has goods. The reications re	d resista sistance	ance to stres to crevice of the process	s corrosion orrosion is l industry.	and intergra	anular cor- hat of ordi-
OK Auto-1 440MMs	AWS/SFA 5.9 ER385 TÜV A continuous, solid, corro Cr, 25% Ni, 5% Mo, 1.5% rosion and shows very go	Cu, lo od res steels.	w C ty istance The all	pes. (e to at oy is v	OK Au tack ir widely ompos	trod 3a n non- used sition al	85 we oxidis in ma	eld meta sing acid ny appl metal (9	al has goods. The reications re	od resista sistance elated to	ance to stres to crevice c the process	s corrosion orrosion is l industry. chanical prop	and intergra better than to perties all well	anular cor- hat of ordi- d metal
OK Autrod 410NiMo	AWS/SFA 5.9 ER385 TÜV A continuous, solid, corro Cr, 25% Ni, 5% Mo, 1.5% rosion and shows very go nary 18% Cr, 8% Ni, Mo s Classifications & approvals EN ISO 14343	Cu, lo od res steels. Typica	w C ty istance The all al chem	rpes. (e to at oy is v	OK Au tack ir widely	trod 36 n non- used sition al	85 we oxidis in ma I weld Mo	eld meta sing aciony appl metal (9	al has goods. The reications re	d resista sistance	ance to stress to crevice conthe process Typical med	s corrosion orrosion is l industry. chanical prop Rm (MPa)	and intergra	anular cor- hat of ordi- d metal CVN (°C/J)
OK Autrod 410NiMo	AWS/SFA 5.9 ER385 TÜV A continuous, solid, corro Cr, 25% Ni, 5% Mo, 1.5% rosion and shows very go nary 18% Cr, 8% Ni, Mo s Classifications & approvals	Cu, lo od res steels. Typica C 0.015 g wire	w C ty istance The all al chem Si 0.4 of the	pes. (e to at oy is voical common output of the output of	OK Aurtack ir videly ompose Cr 12 Cr, 4.5	n non- used sition al Ni 4.2	85 we oxidis in ma	eld metaling acid ny appl metal (9 N <0.3	Al has goods. The reications residues to the reications residues to the reications reication re	od resista sistance elated to	ance to stress to crevice of the process Typical med R _{p 0.2} (MPa)	s corrosion orrosion is I industry. hanical prop Rm (MPa)	and intergrapher than to be tier than the tier tha	anular cor- hat of ordi- d metal CVN (°C/J

A continuous ferritic, stainless, solid wire with a low carbon content, 18% Cr and stabilised with Nb, for welding similar and matching steels. OK Autrod 430 LNb has been developed and designed for the automotive industry and is used in the production of exhaust systems. The wire should be used when very good resistance to corrosion and thermal fatigue is required. Comments: Typical mechanical properties of weld assembly, base material AISI (EN 1.4512) 1.5mm.

18.5 0.2 0.06 0.01 Tot < 0.5

Si Mn Cr Ni Mo N Other

FN R_{p 0.2} (MPa) Rm (MPa) A4/A5 (%) CVN (°C/J)

275

OK Autrod 430LNb

EN ISO 14343 G Z 17 L Nb

0.015

Nb>12xC

0.5

	Classifications & approvals	Typica	l chem	ical co	mpos	ition al	l weld	metal (%)		Typical mecl	hanical prop	erties all weld	d metal
OK Autrod 430Ti		С	Si	Mn	Cr	Ni	Мо	Ti	Other	FN	R _{p 0.2} (MPa)	Rm (MPa)	A4/A5 (%)	CVN (°C/J)
	EN 12072 G Z 17 Ti	0.09	0.9	0.4	18	0.3	0.1	0.3	Tot < 0.5		390	600	24	
	A ferritic, stainless, solid wis also used for cladding owelding of manifolds, cata	n unall	oyed a	and lov	w-allo	yed st	eels.							

	Classifications & approvals	Typica	al chem	nical co	mpos	ition a	ll weld	metal (%	6)		Typical mec	hanical prop	erties all weld	d metal
OK Autrod 16.95		С	Si	Mn	Cr	Ni	Мо	N	Other	FN	R _{p 0.2} (MPa)	Rm (MPa)	A4/A5 (%)	CVN (°C/J)
	EN ISO 14343 G 18 8 Mn	0.1	1.0	6.5	18.5	8.5	0.1	<0.08	Tot < 0.5		450	640	41	+20/130
	CE DB TÜV													

A continuous solid, corrosion resistant chromium-nickel-manganese wire for welding austenitic stainless alloys of 18% Cr, 8% Ni, 7% Mn types. OK Autrod 16.95 has an overall corrosion resistance similar to that of the corresponding parent metal. The higher silicon content improves the welding properties, such as wetting. The product is a modified variant of ER307, basically with a higher Mn content to make the weld less sensitive to hot cracking. When used for joining dissimilar materials, the corrosion resistance is of secondary importance. The alloy is used in a wide range of applications across the industry, such as the joining of austenitic, manganese, work hardenable steels as well as armourplate and heat resistant steels.

	Classifications & approvals	lypica	al chen	nical co	ompos	sition a	ll weld	metal	(%)		Typical med	hanical prop	erties all weld	d metal
OK Autrod 2209		С	Si	Mn	Cr	Ni	Мо	N	Other	FN	R _{p 0.2} (MPa)	Rm (MPa)	A4/A5 (%)	CVN (°C/J)
	EN ISO 14343 G 22 9 3 NL AWS/SFA 5.9 ER2209	0.01	0.6	1.6	23	9	3	0.1		45	600	765	28	+20/100 -20/85 -60/60
	DNV. TÜV													

A continuous, solid, corrosion resistant, duplex wire for welding austenitic-ferritic stainless alloys of the 22% Cr, 5% Ni, 3% Mo type. OK Autrod 2209 has high overall corrosion resistance. In media containing chloride and hydrogen sulphide, the alloy has a high resistance to intergranular corrosion, pitting and especially to stress corrosion. The alloy is used in a variety of applications across all industrial segments.

	Classifications & approvals	Typica	al chem	nical co	mpos	ition a	ll weld me	etal (%)			Typical mec	hanical prop	erties all weld	d metal
OK Autrod 2307		С	Si	Mn	Cr	Ni	Мо	N	Other	FN	R _{p 0.2} (MPa)	Rm (MPa)	A4/A5 (%)	CVN (°C/J)
	EN ISO 14343 G 18 8 Mn	0.02	0.4	0.5	23	7.0	<0.08	<0.5		40	515	700	30	+20/155 -40/115

A continous, solid, corrosion resistant duplex wire for welding austenitic-ferritic stainless alloys of the 21% Cr 1% Ni or 23% Cr, 4% Ni type. This lean duplex type is used for civil engineering, storage tanks, containers, etc. Welding should be done as for ordinary austenitic steels, but high amperages should be avoided and the interpass temperature should not exceed 150°C.

	Classifications & approvals	Typica	l chem	nical co	mpos	ition al	ll weld	metal (%)		Typical mec	hanical prop	erties all wel	d metal
OK Autrod 2509		С	Si	Mn	Cr	Ni	Мо	N	Other	FN	R _{p 0.2} (MPa)	Rm (MPa)	A4/A5 (%)	CVN (°C/J)
	EN ISO 14343 G 25 9 4 NL	0.01	0.35	0.4	25	9.8	4	0.25		40	670	850	30	+20/150

A continuous, solid, corrosion resistant, super duplex wire for welding austenitic-ferritic, stainless alloys of the 25% Cr, 7% Ni, 4% Mo, low C type. OK Autrod 2509 has high intergranular-corrosion, pitting and stress-corrosion resistance. The alloy is widely used in applications in which corrosion resistance is of the utmost importance, such as the pulp & paper, the offshore and gas industries.

Solid wires for MIG/MAG welding

	Classifications & approvals	Typica	al chem	nical co	mpos	ition all v	weld me	etal (%)		Typical med	hanical prop	erties all wel	d metal
OK Autrod 19.81		С	Si	Mn	Cr	Ni	Mo N	1	Other	FN	R _{p 0.2} (MPa)	Rm (MPa)	A4/A5 (%)	CVN (°C/J
	EN 18274 S Ni 6059 (NiCr23Mo16) AWS/SFA 5.14 ERNiCrMo-13	0.002 Co	0.03 Al	0.2	22.7	bal	15.4		Tot <0.5		550	800	45	-110/120
	TÜV	0.02	0.15											
	A continuous solid Ni-Cr-20Cr-25Ni with 4-6 % Motoughness and is corrosic	type. (Can als	so be	used 1	for welc	ling ca	rbon s	teel to Ni	-based	I steel. The w	eld metal ha		
	Classifications & approvals	Typica	al chem	nical co	mpos	ition all v	weld me	etal (%)		Typical mecl	nanical prop	erties all wel	d metal
OK Autrod 19.82		С	Si	Mn	Cr	Ni	Мо	N	Other	FN	R _{p 0.2} (MPa)	Rm (MPa)	A4/A5 (%)	CVN (°C/J)
	EN 18274 S Ni 6625 (NiCr22Mo9Nb) AWS/SFA 5.14 ERNiCrMo-3	0,01 Cu	0,1 Al	0,1 Fe	22.0 Ti	Nb+Ta	9		Tot <0.5		500	780	45	-105/120 -196/110
	TÜV, DNV	<0.5	<0.4	<2	<0.4	3.65								
	A continuous, solid, corro materials, 9% Ni steels ar metals of the types menti- stance to pitting and stres exhaust systems.	nd simil oned al	lar stee bove.	els wit The w	h high eld me	notch tetal has	toughn very g	ess at	low temp	peratur al prope	es. It is also s erties at high	uitable for j and low ter	oining dissi nperatures.	milar Good resi-
	Classifications & approvals	Typica	al chem	nical co	mpos	ition all v	weld me	etal (%)		Typical mec	hanical prop	erties all wel	d metal
OK Autrod 19.85		С	Si	Mn	Cr	Ni	Мо	N	Other	FN	R _{p 0.2} (MPa)	Rm (MPa)	A4/A5 (%)	CVN (°C/J
	EN 18274 S Ni 6082 (NiCr20Mn3Nb) AWS/SFA 5.14 ERNiCr-3	0.02 Cu	0.1 Fe	3.0 Ti	20,0 Nb+	bal Ta			Tot <0.5	i				
	TÜV	<0.5	<0.7	<3	2.5									
	A nickel-based, corrosion steel, corrosion resistant of dissimilar metals of the ty welding alloy EN-ISO 182	steel, 9° pe mer	% Ni a	and sir	nilar s e. OK	teels w	ith high 19.85	notch is usu	n toughne ally welde	ess at lo	ow temperatu pure Ar as th	ıres. It is als	o suitable f	or joining
	Classifications & approvals	Typica	al chem	nical co	mpos	ition all v	weld me	etal (%)		Typical med	hanical prop	erties all wel	d metal
OK Autrod 19.92		С	Si	Mn	Cr	Ni	Mo N	1	Other	FN	R _{p 0.2} (MPa)	Rm (MPa)	A4/A5 (%)	CVN (°C/J
	EN 18274 S Ni 2061 (NiTi3) AWS/SFA 5.14 ERNi-1	0.02 Cu	0.3 Al	0.4 Ti	Fe	93			Tot <0.5		>200	>450	>25	+20/>130
		0.1	0.1	3	0.2									
	TÜV A continuous, solid nickel nickel and nickel with red													
	A continuous, solid nickel	uced C	conte	nt. Th	e welc	d metal	can be	used	in a wide			ns involving	corrosive r	nedia.
OK Autrod 19.93	A continuous, solid nickel nickel and nickel with red	uced C	conte	nt. Th	e welcompos	d metal ition all v	can be	used etal (%	in a wide		of application	ns involving hanical prop	corrosive r	nedia. d metal
OK Autrod 19.93	A continuous, solid nickel nickel and nickel with reduction of the continuous of the	uced C Typica	conte	nt. Th	e welcompos Cr	d metal ition all v	can be weld me	e used etal (%	in a wide	range	of application Typical med	ns involving hanical prop	corrosive r	nedia. d metal
OK Autrod 19.93	A continuous, solid nickel nickel and nickel with reduction classifications & approvals EN 18274 S Ni 4060 (NiCu30Mn3Ti)	Typica	conte al chem	nt. Th	e welcompos Cr Ti	d metal ition all v	can be weld me	e used etal (%	in a wide	range	of application Typical med	ns involving hanical prop	corrosive r	nedia. d metal

A continuous, solid nickel-based electrode alloyed with 30 % Cu for welding base materials of the same type. Can also be used to join these alloys to steel. The weld metal has good resistance to flowing seawater, high strength and toughness over a wide temperature range. Has also good resistance to hydrofluoric acid, sulphuric acid, alkalis etc. Can be used for welding similar types of base materials which are age-hardenable with small additions of Ti and Al. Usable for cladding on carbon steel with an intermediate layer of OK Autrod 19.92.

Welding of exhaust systems.

Today's automotive exhaust systems can be divided into two parts. The hot end includes the exhaust manifold, downpipe, flexible coupling and catalytic converter. The cold end includes the resonator, intermediate pipe, silencer and tail pipe. The ferritic 11% Cr alloys are popular choices for many exhaust components and systems. However, for the long-term durability, the higher chromium (17-20% Cr) ferritic stainless steel grades are often used. Welding stations may be designed for semiautomatic, mechanised, or fully robotic welding applications. The MIG/MAG-process using solid or metal cored stainless wires has evolved as one of the favourites for welding automotive exhaust systems.

Although today's car fuels are very low in sulphur, a certain amount of sulphur dioxide remains present in the exhaust gases.

Together with the condense water, it forms sulphurous or sulphuric acid that deposits in the exhaust system. Ferritic stainless steels resist these acids very well, and have good heat resistance. They are increasingly preferred over austenitic stainless steels for exhaust systems, table 1.

Ferritic stainless steels are sensitive to the heat cycle generated by welding. Grain growth and hardening due to martensite formation can reduce the toughness of the steel and increase the risk of cracking in the heat-affected zone of the weld. This can be avoided by using special filler materials and the correct welding procedure.

- In general, preheating is needed when the carbon content of the steel is above
 0.08% and the thickness of the steel exceeds 3mm.
- Welding should be carried out with the lowest possible heat input (pulsed arc).
- Un-stabilised steels require a post weld

- heat treatment at 700-750°C to avoid inter crystalline corrosion.
- Steels stabilised with titanium or niobium (columbium) do not need a post weld heat treatment.

Ferritic stainless steels can be welded with either austenitic or ferritic filler materials. The austenitic filler metal composition 18 8Mn (1.4370/ER 307, see table 2) is commonly applied. However, this type of welding consumable is sensitive to corrosion in sulphur containing media and can therefore only be used for exhaust systems when extremely low sulphur content fuels are used. Ferritic filler materials, such as type G13, G17 and G18 (EN440) provide the advantages of fatigue strength and corrosion resistance. The thermal expansion coefficient and the carbon content of both steel and weld metal are the same. Unfavourable stress peaks along the fusion line, and the diffusion of carbon, are therefore avoided. ESAB offers a comprehensive range of filler materials for ferritic stainless steels, see table 2.

W-Nr.	Composition	AISI/SAE
1.4002	X6CrAl13	405
1.4003	X2Cr11	-
1.4006	X12Cr13	410
1.4016	X6Cr17	430
1.4511	X3CrNb17	-
1.4512	X2Ti12	409
1.4513	X2CrMoTi17-1	_

Table 2: ESAB welding consumables for ferritic stainless steels.

ESAB	EN 12072	AWS A5.9
OK Autrod 430LNb	G Z 17 L Nb	ER430LNb
OK Autrod 430Ti	G Z 17 Ti	ER430
OK Autrod 409Nb	(G 13 Nb)	ER409Nb
OK Autrod 16.95	G 18 8 Mn	ER307
OK Tigrod 430Ti	WZ17Ti	ER430
OK Tigrod 16.95	W 18 8 Mn	ER307

Wires for TIG Welding

Welding Data

Stainless steel is TIG welded with direct current, straight polarity, i.e. with the electrode negative. Pulsed arc welding can be employed in order to obtain good control of the heat input. This is particularly advantageous for welding thin stainless steel sheet and for positional welding. A general rule for determining the arc current is 30-40 A per mm of material thickness.

TIG welding is particularly suitable for lighter materials; metals as thin as 0.3 mm can be welded successfully. For heavier materials, more than 5 to 6 mm thick, the TIG method is sometimes used to make root runs before filling with MIG or covered electrodes. The electrode used in TIG welding of stainless steel can be made of pure tungsten or tungsten alloyed with thorium-oxide or lanthanum-oxide, which gives the electrode a better current carrying capacity than a pure tungsten electrode. Electrodes alloyed with zirconium are preferably used for welding of aluminium.

Shielding gas

In TIG welding, the inert gases argon and/or helium are used. For manual TIG welding pure argon is recommended. For mechanised TIG a pure helium gas is

sometimes used in order to increase the welding speed. For the same reason argon may also be mixed with helium or even a reducing gas. However, hydrogen is only permitted when the steel is austenitic.

When pickling cannot be performed and welding is done with non-slag electrodes for root runs of single sided welds, the root side of the weld must also be shielded from the atmosphere. If the gas shield is insufficient the bead and surrounding metal will be badly oxidised and possibly porous. Here either an inert gas or a reducing gas mixture can be used. An example of a reducing gas mixture is hydrogen in nitrogen. The amount of hydrogen is small, only 5-10%. Sometimes it is practical to use the same gas for shielding and backing. It should be taken into account that nitrogen in the backing gas can affect the ferrite content in the weld. Nitrogen stabilises the austenitic structure and the ferrite content in the weld should not drop below two in order to minimise the risk for hot cracking.

Delivery forms

All OK Tigrod rods are supplied in round cardboard boxes with a net weight of 5 kg. This solution is a rigid fibre tube with a plastic lid that can be closed again after breaking the seal. The tube is PE-coated and gives very good resistance against moisture. The the bottom is octagonal to prevent the tube from rolling when stored.

Recommended current ranges.

Diam, mm	Pure tung- sten,	Alloyed tungsten
Electrode		electrode
1.6	40-130	60-150
2.4	130-230	170-250
3.2	160-310	225-330
4.0	275-450	350-480

Wires for TIG welding

	Classifications & approvals	Typica	l chem	ical co	mpos	ition al	l weld i	metal (%	b)		Typical med	hanical prop	erties all wel	d metal
OK Tigrod 308H		С	Si	Mn	Cr	Ni	Мо	Cu	Other	FN	R _{p 0.2} (MPa)	Rm (MPa)	A4/A5 (%)	CVN (°C/
	EN 12072 W 19 9 H AWS/SFA A5.9 ER308H	0.05	0.4	1.8	20	9.3	<0.3	<0.3	Tot <0.5		350	550	30	
	Bare, corrosion resistant, 308H has good general or temperatures. The alloy is	orrosior	n resis	tance.	The a	alloy h	as a h	gh carb	on conte	nt, whi	ch makes it s	uitable for a	applications	at higher
	Classifications & approvals	Typica	l chem	nical co	mpos	sition a	l weld	metal (%	ó)		Typical med	chanical prop	oerties all wel	d metal
OK Tigrod 308L		С	Si	Mn	Cr	Ni	Мо	N	Other	FN	R _{p 0.2} (MPa)	Rm (MPa)	A4/A5 (%)	CVN (°C
	EN 12072 W 19 9 L AWS/SFA A5.9 ER308L CE, DNV, TÜV	0.01 Cu 0.01	0.4	1.6	20	10	0.1	<0.08	Tot <0.5	9	480	625	37	+20/170 -80/135 -196/90
	carbon content which ma chemical and food proces Cr-8% Ni type with a low It can also be used for we	ssing in carbon Iding C	dustrie conte	es, as nt and	well a l Nb-s	s for p stabilis	ipes, t ed ste	ubes arels of the	nd boilers ne same t	. Suital	ble for the joi	ning of stair	nless steels	of the18%
	Classifications & approvals	- 71	l chem	ical co	mpos	ition al	l weld i	netal (%	n)		Typical med	hanical prop	erties all wel	d metal
OK Tigrod 308LSi		С	Si	Mn	Cr	Ni	Мо	N	Other	FN	R _{p 0.2} (MPa)	Rm (MPa)	A4/A5 (%)	CVN (°C/
K TIGFOO 3UBLSI	EN 12072 W 19 9 LSi AWS/SFA A5.9 ER308LSi	0.01	8.0	1.8	20	10	0.1	<0.08		8	480	625	37	+20/170 -60/150 -110/140
	CE, DB, DNV, TÜV													-196/100
	308LSi has good overall of there is a risk of intergrant widely used in the chemic Classifications & approvals	ular con al and t	rosion food p	. The I	nighei sing ii	r silico ndustr	n cont ies, as	ent imp	roves the for pipes	weldin	g properties and boilers.	such as we		loy is
OK Tigrod 309L		С	Si	Mn	Cr	Ni	Мо	N	Other	FN	R _{p 0.2} (MPa)	Rm (MPa)	A4/A5 (%)	CVN (°C/
	EN 12072 W 23 12 L AWS/SFA 5.9 ER309L	0.015	0.4	1.7	24	13	0.1	<0.11	Tot <0.5		430	590	40	+20/160 -60/130 -110/90
	CE, TÜV Bare, corrosion resistant, welding buffer layers on C necessary to control the c materials, the corrosion re	Mn ste	els an	d weld. weld.	ding d OK Ti	issimil grod 3	ar join 309L h	ts. Whe	n using th	ne wire	for buffer lay	ers and dis	similar joints	s, it is
	Classifications & approvals	Typica	l chem	ical co	mpos	ition al	l weld i	netal (%	b)		Typical med	hanical prop	erties all wel	d metal
OK Tigrod 309LSi		С	Si	Mn	Cr	Ni	Мо	N	Other	FN	R _{p 0.2} (MPa)	Rm (MPa)	A4/A5 (%)	CVN (°C/
	EN 12072 W 23 12 LSi AWS/SFA 5.9 ER309LSi	0.02	0.8	1.8	23	13	0.1	<0.09	Tot <0.5	9	475	635	32	+20/150 -60/150 -110/130
	CE													
	Bare, corrosion resistant, 23% Cr-12% Ni type. The wire for buffer layers and corrosion resistance. The	alloy is dissimil	also ι ar join	ised fo	or wells	ding bessary	ouffer I to cor	ayers on trol the	n CMn ste dilution o	eels an of the w	d for welding eld. OK Tigro	dissimilar j	oints. When	using the

	Classifications & approvals	Typical	chem	ical co	mposi	ition all	weld	metal (%		Typical mec	Typical mechanical properties all weld metal					
OK Tigrod 309MoL	OK Tigrod 309MoL C Si Mn Cr Ni Mo N Other FN										R _{p 0.2} (MPa)	Rm (MPa)	A4/A5 (%)	CVN (°C/J)		
	EN 12072 W 23 12 2 L DNV	0.01	0.3	1.6	22	14.5	2.7		Tot <0.5	8	400	600	40	+20/140		

Bare, corrosion resistant rod of the 309LMo type. OK Tigrod 309MoL is used for the overlay welding of unalloyed and low-alloyed steels and for welding dissimilar steels such as 316L to unalloyed and low-alloyed steels when Mo is essential.

	Classifications & approvals	Typical	l chem	ical co	mpos	ition al	l weld	metal (%	6)		Typical mec	hanical prop	erties all wel	d metal
OK Tigrod 310		С	Si	Mn	Cr	Ni	Мо	N	Other	FN	R _{p 0.2} (MPa)	Rm (MPa)	A4/A5 (%)	CVN (°C/J)
	EN 12072 W 25 20 AWS/SFA 5.9 ER310	0.1	0.4	1.7	25	20			Tot <0.5		390	590	43	+20/175 -196/60

Bare, corrosion resistant, chromium-nickel welding rod for welding heat resistant austenitic steels of the 25Cr-20Ni type. The wire has a high Cr content and provides good oxidation resistance at high temperatures. Applications include industrial furnaces and boiler parts, as well as heat exchangers.

	Classifications & approvals	Typica	i chem	ical co	mposi	tion all	weld i	metal (%		Typical mechanical properties all weld metal				
OK Tigrod 312		С	Si	Mn	Cr	Ni	Мо	N	Other	FN	R _{p 0.2} (MPa)	Rm (MPa)	A4/A5 (%)	CVN (°C/J)
	EN 12072 W 29 9 AWS/SFA 5.9 ER312	0.1	0.5	1.7	29	9	<0.3		Tot <0.5		610	770	20	+20/50

Bare, corrosion resistant, chromium-nickel welding rod for welding materials of the 29% Cr, 9% Ni type. OK Tigrod 312 has good oxidation resistance at high temperatures due to its high content of Cr. The alloy is widely used for joining dissimilar steels, especially if one of the components is fully austenitc, and for steels that are difficult to weld, i.e. machine components, tools and austenitic-manganese steels.

	Classifications & approvals	Typical	chemi	cal cor	mposit	tion al	l weld r	metal (%		Typical mechanical properties all weld metal				
OK Tigrod 316L		С	C Si Mn Cr Ni Mo N Other FN									Rm (MPa)	A4/A5 (%)	CVN (°C/J)
	EN 12072 W 19 12 3 L AWS/SFA A5.9 ER316L	0.01	0.4	1.6	18.5	12	2.5	<0.08	Tot <0.5	8	470	650	32	+20/175 -60/150 -110/120 -196/75
	CE, DNV, TÜV													

Bare, corrosion resistant, chromium-nickel-molybdenum rod for welding austenitic stainless alloys of the 18% Cr-8% Ni and 18% Cr-10% Ni-3% Mo type. OK Tigrod 316L has good overall corrosion resistance, particularly to corrosion in acid and chlorinated environments. The alloy has a low carbon content which makes it particularly recommended when there is a risk of intergranular corrosion. The alloy is widely used in the chemical and food-processing industries, as well as in shipbuilding and various architectual structures.

	Classifications & approvals	Typical	l chem	ical co	mposi	tion al	l weld	metal (%		Typical mechanical properties all weld metal				
OK Tigrod 316LSi		С	Si	Mn	Cr	Ni	Мо	N	R _{p 0.2} (MPa)	Rm (MPa)	A4/A5 (%)	CVN (°C/J)		
	EN 12072 W 19 12 3 LSi AWS/SFA A5.9 ER316LSi CE, DB, DNV, TÜV	0.01 Cu 0.1	0.8	1.7	18	12	2.5	<0.08	Tot <0.5	7	480	630	33	+20/175 -110/150 -196/110

Bare, corrosion resistant, chromium-nickel-molybdenum rod for welding austenitic stainless alloys of the 18% Cr-8% Ni and 18% Cr-10% Ni-3% Mo type. OK Tigrod 316LSi has good overall corrosion resistance, particularly to corrosion in acid and chlorinated environments. The alloy has a low carbon content which makes it particularly recommended when there is a risk of intergranular corrosion. The higher silicon content improves welding properties, such as wetting. The alloy is widely used in the chemical and food-processing industries, as well as in shipbuilding and various architectural structures.

Wires for TIG welding

	Classifications & approvals	Typica	al chem	ical co	mpos	sition a	ll weld	metal (%	6)		Typical mechanical properties all weld met					
OK Tigrod 318Si		С	Si	Mn	Cr	Ni	Мо	N	Other	FN	R _{p 0.2} (MPa)	Rm (MPa)	A4/A5 (%)	CVN (°C/		
	EN 12072 W 19 12 3 NbSi	0.04	0.8	1.5	19	12	2.5	<0.08	Tot < 0.5	7	460	615	35	+20/40		
	DB, TÜV	Cu 0.1	Nb 0.5													
	Bare, corrosion resistant, steels. OK Tigrod 318Si ha intergranular corrosion of by niobium, this alloy is re	as good the we	d overa	all con al. The	rosior e high	resis er silic	tance. on co	The allo	oy is stabi nproves w	ilised w	ith niobium to	improve re	esistance to			
	Classifications & approvals	Typica	al chem	nical co	eoamo	sition a	ll weld	metal (%	6)		Typical med	hanical prop	erties all wel	d metal		
K Tigrod 347Si		С	Si	Mn	Cr	Ni	Мо	N	Other	FN	R _{p 0.2} (MPa)		A4/A5 (%)			
	EN 12072 W 19 9 NbSi AWS/SFA A5.9	0.04	0.8	1.5	20	10	0.1	<0.08	Tot <0.5		440	640	35	+20/90		
	ER347Si TÜV	Cu 0.1	Nb 0.7													
	347Si has good overall co weld metal. The higher sili recommended for use at I	icon co higher t	ntent i tempe	mpro\ rature:	/es we s.	elding	prope	erties, su	uch as we		ue to the nio	bium conte	nt, this alloy	is		
	Classifications & approvals								-				perties all wel			
K Tigrod 385	EN 40070	С	Si	Mn	Cr	Ni	Мо	Cu	Other	FN	R _{p 0.2} (MPa)	Rm (MPa)	A4/A5 (%)	CVN (°C		
	EN 12072 W 20 25 5 CuL AWS/SFA 5.9 ER385	0.01	0.4	1.8	20	25	4.5	1.5	Tot <0.5	0	340	540	37	+20/120		
	TÜV															
	Bare, corrosion resistant of good resistance to stress resistance to pitting and control of the stress resistance to pitting a	corros	ion an	d inter	granu	ılar co	rrosio	n and sh	nows very	good i	resistance to					
	Classifications & approvals		al chem	ical co	mpos	sition a	ll weld	metal (%	6)		31		erties all wel			
K Tigrod 410NiMo		С	Si	Mn	Cr	Ni	Мо	Cu	Other	FN	R _{p 0.2} (MPa)	Rm (MPa)	A4/A5 (%)	CVN (°C		
	EN 12072 W 13 4	0.01	0.3	0.7	12.3	4.5	0.5	<0.3	Tot < 0.5		600	800	17			
	Bare welding rod of the 42 martensitic and martensit	20NiMo	type	alloye	d with	13%	Cr, 4.	5% Ni a	nd 0.5% I	Mo. Thi	is alloy is use	d for weldir		mpositior		
	Classifications & approvals	Typica	al chem	nical co	ompos	sition a	ll weld	metal (%	ó)		Typical med	hanical prop	perties all wel	d metal		
K Tigrod 430Ti		С	Si	Mn	Cr	Ni	Мо	Ti	Other	FN	R _{p 0.2} (MPa)	Rm (MPa)	A4/A5 (%)	CVN (°C/		
	EN 12072 W Z 17 Ti	0.09	0.7	0.4	17.5	0.3	0.1	0.5			>300	>450	>15			
	A ferritic stainless solid ro also used for cladding on ding of manifolds, catalyti	unalloy	ed an	d low-	alloye	ed stee	els. Ok									

	Classifications & approvals	Typica	l chemi	ical co	mposi	tion all	weld i	metal (%	b)		Typical med	hanical prop	erties all weld	d metal
OK Tigrod 16.95		С	Si	Mn	Cr	Ni	Мо	N	Other	FN	R _{p 0.2} (MPa)	Rm (MPa)	A4/A5 (%)	CVN (°C/J)
	EN 12072 W 18 8 Mn	0.08	0.7	6.5	18.5	8.5	0.1	<0.08	Tot < 0.5		450	640	41	+20/130
	DB, TÜV													
	Bare, corrosion resistant, 7% Mn type. OK Tigrod 1 improves welding propert importance. The alloy is u hardenable steels, as well	6.95 ha ies, suc sed in a	s overa h as w a wide	all cor etting range	rosion . Whe of ap	resis n use plicati	tance d for jour journe de la comme de la	similar to oining doross th	to the cori issimilar r	respon nateria	ding parent r ls, the corros	netal. The h ion resistan	igher silicor ce is of sec	ontent ondary
	Classifications & approvals	Typica	l chemi	ical co	mposi	tion all	weld i	metal (%	b)		Typical mec	hanical prop	erties all wel	d metal
OK Tigrod 2209		С	Si	Mn	Cr	Ni	Мо	N	Other	FN	R _{p 0,2} (MPa)	Rm (MPa)	A4/A5 (%)	CVN (°C/J)
	EN 12072 W 22 9 3 NL AWS/SFA 5.9 ER2209 TÜV	0.01	0.5	1.6	22.5	8.5	3.2	0.15	Tot <0.5	45	600	765	28	+20/100 -20/85 -60/60
	Bare, corrosion resistant, OK Tigrod 2209 has high resistance to intergranular industrial segments.	overall or corros	corrosi ion, pit	ion res	sistand Ind es	ce. In pecial	media ly to s	contair tress co	ning chlori orrosion. T	ide and	I hydrogen si y is used in a	ulphide, the a variety of a	alloy has hi applications	gh across all
	Classifications & approvals	Typica	l chemi	ical co	mposi	tion all	weld i	metal (%	5)		31		erties all wel	
OK Tigrod 2509		С	Si	Mn	Cr	Ni	Мо	N	Other	FN	R _{p 0.2} (MPa)	Rm (MPa)	A4/A5 (%)	CVN (°C/J)
	EN 12072 W 25 9 4 NL	0.01	0.35	0.4	25	9.8	4	0.25		40	670	850	30	+20/150 -40/115
	TÜV													-40/113
	Bare, corrosion resistant, OK Autrod 2509 has high where corrosion resistance	intergra	anular (corros	ion, p	itting a	and st	ress co	rrosion re	sistańc	e. The alloy i	s widely use		

Classifications & approvals	Typical	chemi	ical co	mposi	tion all	l weld r	netal (%	Typical mechanical properties all weld metal					
	С	Si	Mn	Cr	Ni	Мо	N	Other	FN	R _{p 0.2} (MPa)	Rm (MPa)	A4/A5 (%)	CVN (°C/J)
EN 18274 S Ni 6059 (NiCr23Mo16) AWS/SFA 5.14	0.002	0.03	0.15	22.7	bal	15.4		Tot < 0.5		550	800	45	-110/120
ERNiCrMo-13	Co 0.02	AI 0.15											
	EN 18274 S Ni 6059 (NiCr23Mo16) AWS/SFA 5.14	EN 18274 S Ni 6059 (NiCr23Mo16) 0.002 AWS/SFA 5.14 ERNiCrMo-13 Co 0.02	EN 18274 S Ni 6059 (NiCr23Mo16) 0.002 0.03 AWS/SFA 5.14 ERNiCrMo-13 Co Al 0.02 0.15	EN 18274 S Ni 6059 (NiCr23Mo16) 0.002 0.03 0.15 AWS/SFA 5.14 ERNiCrMo-13 Co Al Fe 0.02 0.15 0.5	C Si Mn Cr EN 18274 S Ni 6059 (NiCr23Mo16) AWS/SFA 5.14 ERNICrMo-13 0.002 0.03 0.15 22.7 EN 18274 S Ni 6059 (NiCr23Mo16) AWS/SFA 5.14 ERNICrMo-13 Co AI Fe 0.02 0.15 0.5	C Si Mn Cr Ni EN 18274 S Ni 6059 (NiCr23Mo16) AWS/SFA 5.14 ERNiCrMo-13 0.002 0.03 0.15 22.7 bal EN 18274 S Ni 6059 (NiCr23Mo16) AWS/SFA 5.14 ERNiCrMo-13 Co Al Fe 0.02 0.15 0.5 Fe	EN 18274 S Ni 6059 (NiCr23Mo16) 0.002 0.03 0.15 22.7 bal 15.4 AWS/SFA 5.14 ERNiCrMo-13 Co Al Fe 0.02 0.15 0.5	EN 18274 S Ni 6059 (NiCr23Mo16) 0.002 0.03 0.15 22.7 bal 15.4 AWS/SFA 5.14 ERNiCrMo-13 Co Al Fe 0.02 0.15 0.5	EN 18274 S Ni 6059 (NiCr23Mo16) 0.002 0.03 0.15 22.7 bal 15.4 Tot <0.5 AWS/SFA 5.14 ERNiCrMo-13 Co Al Fe 0.02 0.15 0.5	EN 18274 S Ni 6059 (NiCr23Mo16)	EN 18274 S Ni 6059 (NiCr23Mo16) AWS/SFA 5.14 ERNiCr/Mo-13 Co AI Fe 0.02 0.15 0.5	EN 18274 S Ni 6059 (NiCr23Mo16) AWS/SFA 5.14 ERNiCrMo-13 Co AI Fe 0.02 0.15 0.5	EN 18274 S Ni 6059 (NiCr23Mo16) AWS/SFA 5.14 ERNiCrMo-13 Co Al Fe 0.02 0.15 0.5

Bare Ni-Cr-Mo rod for welding high-alloyed materials of the 20Cr-25Ni type with 4-6% Mo and Ni-based alloys of a similar type. It can also be used for welding carbon steels to Ni base steels. The weld metal has very good corrosion resistance over a wide range of applications in oxidising and reducing media.

	Classifications & approvals												lypical mechanical properties all weld metal				
OK Tigrod 19.82		С	Si	Mn	Cr	Ni	Мо	N	Other	FN	R _{p 0.2} (MPa)	Rm (MPa)	A4/A5 (%)	CVN (°C/J)			
	EN 18274 S Ni 6625 (NiCr22Mo9Nb) AWS/SFA 5.14	0,02	0.1	0.1	22.0	bal	9		Tot < 0.5		550	780	40	-196/130			
	ERNiCrMo-3	Cu <0.5	AI <0.4	Fe <2	Ti <0.4	Nb+Ta 3.65											
	TÜV, DNV																

A nickel-based, corrosion and heat resistant 22% Cr, 9% Mo, 3.5% Nb rod for the GTAW of high-alloyed steel, heat resistant steel, corrosion resistant steel, 9% Ni steels and similar steel with high notch toughness at low temperatures. It is also suitable for joining dissimilar metals of the types mentioned above. OK Tigrod 19.82 is normally welded with pure Ar as the shielding gas.

Wires for TIG welding

	Classifications & approvals	Typica	l chem	ical co	mpos	ition all	l weld	metal (%		Typical mechanical properties all weld metal				
OK Tigrod 19.85		С	Si	Mn	Cr	Ni	Мо	N	Other	FN	R _{p 0.2} (MPa)	Rm (MPa)	A4/A5 (%)	CVN (°C/J)
	EN 18274 S Ni 6082 (NiCr20Mn3Nb) AWS/SFA 5.14	0,02	0,1	3	20	>67			Tot <0.5					
	ERNiCr-3 TÜV	Cu <0.5	Ti <0.7	Fe <3										
	A nickel-based, corrosion corrosion resistant steel, \$ dissimilar metals of the tyle	9% Ni s	teels a	and sir	nilar s	steels	with g	ood not	tch toughr	ness at	low tempera	tures. It is a	lso suitable	
	Classifications & approvals	Typica	Lohom	ical co	mnoe	ition all	lwold	motal (0/	(۵		Typical med	hanical prop	ortice all wel	d motal
OK Tigrad 19 92	Classifications & approvals							metal (%	,	FN			erties all weld	
OK Tigrod 19.92	· ·	Typica C	l chem Si	ical co M n		ition all Ni	l weld Mo	`	Ó) Other	FN	Typical mec			d metal
OK Tigrod 19.92	Classifications & approvals EN 18274 S Ni 2061 (NiTi3) AWS/SFA 5.14							`	,	FN				
OK Tigrod 19.92	EN 18274 S Ni 2061 (NiTi3) AWS/SFA 5.14 ERNi-1	С	Si	Mn		Ni		`	Other	FN	R _{p 0.2} (MPa)	Rm (MPa)	A4/A5 (%)	CVN (°C/J)
OK Tigrod 19.92	EN 18274 S Ni 2061 (NiTi3) AWS/SFA 5.14	0.02 Cu	Si 0.3 Al	Mn 0.4 Ti	Cr Fe	Ni		`	Other	FN	R _{p 0.2} (MPa)	Rm (MPa)	A4/A5 (%)	CVN (°C/J)

Classifications & approvals Typical chemical composition all weld metal (%)

Typical mechanical properties all weld metal

OK Tigrod 19.93		С	Si	Mn	Cr	Ni	Мо	N	Other	FN	R _{p 0.2} (MPa)	Rm (MPa)	A4/A5 (%)	CVN (°C/J)
	EN 18274 S Ni 4060 (NiCu30Mn3Ti) AWS/SFA 5.14	0.03	0.3	3		64			Tot <0.5					
	ERNiCu-7 TÜV	Cu 28	AI 0.03	Ti 2	Ta 0.01	Fe 2								

Bare nickel based welding rods alloyed with 30 % Cu for the welding of base materials of the same type. Can also be used to join these alloys to carbon steel. The weld metal has good resistance to flowing seawater and has high strength and good toughness over a wide temperature range. It also has good resistance to hydrofluoric acid, sulphuric acid, alkalis etc. Can be used for welding similar types of base materials which are age-hardenable with small additions of Ti and Al.

Orbital-TIG - a great way to join pipes

ESAB supplies a complete range of orbital TIG-equipment, including power, for the mechanised welding of pipes. Although pipes have been welded using mechanised systems since the 1960's, the TIG-process still accounts for a considerable amount of manual welding. Yet, there are many good reasons to explore the use of orbital TIG-welding for applications ranging from single-run welding of thin-walled stainless pipes to multi run welding of thick-walled pipes, and even narrow-gap welding:

- Young welders are difficult to recruit.
- Operator ergonomics are improved significantly.
- Remote control and video control options.
- Increased duty cycle higher productivity.
- Welding procedures repeatable resulting in a consistent weld quality.
- Good control of the heat input.

Stationary vs. Orbital.

There are two main categories of mechanised welding systems:

- Stationary: the welding head has a fixed position while the pipe rotates.
- Orbital: the pipe has a fixed horizontal or vertical position while the welding head rotates.

Orbital-TIG clamp-on welders.

Clamp-on pipe welding tools are used in orbital welding of small and medium-sized pipes. The tools can be equipped with a wire feeder. The maximum pipe diameter that can be handled is around 200 mm. Tools bigger than this are impractical and unwieldy. The same type of welding tool can be used to weld pipes within a specific diameter range. The PRB/PRC clamp-on welding tools, for example, cover the diameter ranges 17-49 mm, 33-90 mm and 60-170 mm. Normally, pipe standards are taken into consideration while designing

welding heads, in order to make the scope of a single welding tool relatively broad. The clamp-on tool is locked onto the pipe in the welding position by a single movement of the hand, using the "self-locking pliers" principle. PRC welding tools can also be provided with the AVC function (Automatic Voltage Control of the arc length) and with a weaving action mechanism - both needed in the multi-run welding of thick-walled pipes. Clamp-on pipe welding tools can be either open (open tools) or enclosed (closed tools). Enclosed heads cover the entire weld area within a space filled with shielding gas. This is to prevent the hot weld zone from oxidation. These tools are used in for welds requiring extreme purity, such as pipes used in the pharmaceutical industry or titanium pipes. ESAB's PRD 100 carriage is particularly low (75 mm), which means that it will fit into confined spaces. Welding heads for narrow-gap welding of thick-walled pipes are also available.

Narrow gap welding

Narrow-gap welding with orbital TIG welders and special welding heads is a process adopted over recent years, figure 6. By narrowing the cross section of the joint, the joint volume is reduced by a factor of 2-3, depending on the wall thickness, figure 7. The bevel angle of a conventional U-groove is 10-20°, but in narrow-gap welding it is a mere 2-6°. A narrow-gap weld is usually made by welding "bead-on-bead" - so one run per layer.

Tubular cored wires for MIG/MAG welding

Traditionally, the most popular processes for the welding of stainless steels have been manual arc followed by MIG, TIG and submerged arc. Solid wire is faster than manual arc, but can lack appeal due to spatter levels, a heavily oxidised weld deposit or fusion defects related to low current positional welding using dip transfer.

The use of TIG and submerged arc will continue due to their particular attributes for certain applications. The range of available cored wires offer the fabricator a genuine opportunity for increased quality and productivity over solid wire MAG and manual arc electrodes.

The benefits can be summarised as:

- Up to 30% increase in weld metal deposition rate over solid wire and four times that of manual arc, resulting in faster welding speeds which in turn reduce distortion.
- Wires to permit welding of all the common grades of stainless steels both for the downhand / horizontal-vertical and out of position welding.
- Moisture regain is minimal ensuring that start porosity is eliminated.
- The rutile types are designed for use with Ar/CO₂ or CO₂ shielding gas. The latter serves to reduce gas costs and radiated heat is also significantly lower giving greater operator comfort.
- Individual batch testing of weld metal composition means that the most stringent of quality standards are met.

Shield-Bright Wire Series

The range of wires within the Shield-Bright

series have been especially designed to produce superior operability for all-positional welding applications. Regardless of position, the weld deposit will be flat, which is a quality provided by the faster freezing slag. In having a rutile based slag system they always operate in the spray transfer mode and can be used at high currents and hence give high deposition rates.

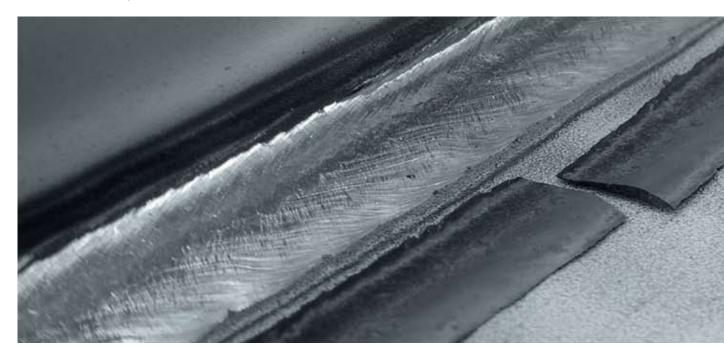
Slag release is not a problem even in V butt joints and when not totally self releasing, the slag can be removed with the very minimum of chipping. The spatter levels are almost non-existent which allows for additional savings in cleaning time. This is due to the extremely stable arc action under spray transfer conditions which ensures that the maximum possible efficiency is achieved from the wire. Typical efficiencies will be 80-85% depending on the diameter and current used.

With regard to productivity, the 1.2mm types are in excess of three times faster than 3.2mm manual arc electrodes and almost twice as fast as 0.9mm solid wires in the vertical position.

Shield-Bright X-tra Wire Series

It is not possible to produce a consumable that operates with equal performance in every position and the Shield-Bright X-tra range was introduced especially for welding in the flat and horizontal vertical positions. This range complements the Shield-Bright range by designation and composition to produce an exceptional partnership for stainless steel welding.

The Shield-Bright X-tra series can in fact be used for vertical upwards welding, but their more fluid slag, which is for optimum downhand operation, does impose certain


limitations. Single pass or narrow deposits are not possible using the vertical-up technique due to excessive heat build up. The weaving technique is excellent on thicker plate when there is greater heat sink and additional dissipation from the weaving. Single passes for fillet welding and the root areas of butt joints should be completed using the vertical downwards technique, but there is a reduction in depth of penetration. This technique is restricted to the 1.2mm sizes, and can also be used to advantage for rapid welding of sheet material.

The operability of the Shield-Bright X-tra wires is exceptional combining extreme ease of use, high performance with regard to metal deposition and a weld appearance comparable to the latest generation of manual arc electrodes. As with rutile based C/Mn types the spray transfer mode is used at all acceptable current levels even down to 100A with the 1.2mm size. Such a facility affords high welding speeds, reduced operator fatigue, better fusion and a low risk of defects when compared to solid wire.

Although normally used at higher current levels than the Shield-Bright series, spatter is still virtually non-existent and the thin slag is generally self releasing leaving a bright smooth weld finish. This is an obvious advantage on fabrications where subsequent dressing and polishing is required, especially in the case of fillet joints.

Shielding gases

A variety of shielding gases can be used with the flux cored types due to the greater tolerance available, although the higher the CO_2 content the higher the carbon content and the lower the alloy and ferrite content. However, the changes are marginal with C increasing by 0.01% and Cr decreasing by 0.1% progressively between pure Ar through to pure CO_2 . The influence of shielding gas on mechanical properties is also minimal to the extent that the changes may be disregarded. With regard to running characteristics the CO_2 content should not be less than 20% as a lower content will produce inferior arc manipulation.

Tubular cored wires for MIG/MAG welding

	Classifications & approvals			emica etal (%		ositic	n	Typical mechanical properties all weld metal							
Shield-Bright 308L X-tra		С	Si	Mn	Cr	Ni	Мо	Cu	R _{p 0.5}	₂ (MPa)	Rm (MPa)	A4/A5 (%)			
Type Rutile Polarity DC+	EN ISO 17633-A T 19 9 L R C 3 T 19 9 L R M 3 AWS/SFA A5.22 E308LT0-1 E308LT0-4	0.02	0.9	1.4	19.6	9.9	0.1	0.15	410		580	40			
Shielding gas Ar/15-25%CO ₂ or CO ₂ Size (mm) 1.2 and 1.6	ABS, DNV, LR, TÜV Shield-Bright 308L X-tra is a rutile flux-cored wire designed for the downhand and horizontal-vertical (fillet) welding of stainless steels containing 18-20%Cr/8-12%Ni. In addition to the 304L and 308L varieties, it is also suitable for welding the stabilised 321 and 347 types. Shield-Bright 308L X-tra has excellent weldabilit on conventional non-pulsing power sources, using Ar/15-25%CO ₂ or pure CO ₂ shielding gas. It is a "welde														
	friendly" wire, alway leaving clean and f solid wires, no silic provides high X-Ra supports at a very Classifications &	ys ope lat we a islan y qua high p	erating Ids winds ar Iity we produce	g in th ith goo e procelds. Cotivity	e favo od per duced One-si rate.	ourable netrati , there ded re	e spra ion an efore t oot rui	y arc d a ve ime is	mode ery sm save open j	e. The sla nooth we d on cle oints ca	ag is self-liftir etting onto the eaning the we an be welded	ling gas. It is a "welder- ng or easily detached he plate edges. Unlike elds. This cored wire on ceramic weld metal			
	approvals			etal (%											
Shield-Bright 309L X-tra	EN 100 17000 A	С	Si	Mn	Cr	N	Мо	Cu	Н _{р 0.:}	₂ (MPa)	Rm (MPa)	A4/A5 (%)			
Type Rutile Polarity DC+ Shielding gas	EN ISO 17633-A T 23 12 L R C 3 T 23 12 L R M 3 AWS/SFA A5.22 E309LT0-1 E309LT0-4	0.03	0.8	1.4	24.5	12.5	0.1	0.10	480		600	35			
Ar/15-25%CO ₂ or CO ₂	ABS, DNV, TÜV	V tro		ıtilə ə		ماند ماد		d for	tha d		d and havisar	atal vartical (fillat) walding			
Size (mm) 1.2 and 1.6	of stainless steels t Shield-Bright 309L 25%CO ₂ or pure C mode. The slag is s smooth wetting on	to carb X-tra O ₂ shi self-lift to the lds. Th	oon of has e elding ing of plate nis co	r low a excelle g gas. r easily edges ered w	alloy s nt wel It is a y deta s. Unli ire pro	teels a dabilit "welc ched ke sol ovides	and fo ty on o ler-frie leavin lid wire high I	r the f conve endly" g clea es, no X-ray	irst la ntiona wire, an and silica qualit	yer clad al non-p always d flat we i islands	Iding of carbo ulsing power operating in Ids with good are produce	ntal-vertical (fillet) welding on and low alloy steels. sources, using Ar/15- the favourable spray arc d penetration and a very d therefore time is saved root runs in open joints			
	Classifications & approvals			emica etal (%		oositic	n		Турі	ical mec	hanical prope	erties all weld metal			
Shield-Bright 309LMo X-tra		С	Si	Mn	Cr	Ni	Мо	Cu	R _{p 0.5}	₂ (MPa)	Rm (MPa)	A4/A5 (%)			
Type Rutile Polarity DC+	EN ISO 17633-A T 23 12 2 L R C 3 T 23 12 2 L R M 3 AWS/SFA A5.22 E309LMoT0-1 E309LMoT0-4	0.03	0.8	1.2	23.5	13.5	2.5	0.10	550		690	30			

Shield-Bright 309LMo Xtra is a flux-cored, tubular wire for use in the downhand and horizontal-vertical posi-

the welding of buffer layers for acid-resistant clad steels and surfacing. It is also ideally suited to the welding of

Shield-Bright 309LMo X-tra has excellent weldability on conventional non-pulsing power sources, using Ar/15-25%CO₂ or pure CO₂ shielding gas. It is a "welder-friendly" wire, always operating in the favourable spray arc mode. The slag is self-lifting or easily detached leaving clean and flat welds with good penetration and a very smooth wetting onto the plate edges. Unlike solid wires, no silica islands are produced, therefore time is saved on cleaning the welds. This cored wire provides high X-Ray quality welds. One-sided root runs in open joints

tions, producing weld metal of the 309+ MoL type composition. The austenitic-ferritic weld deposit has an exceptionally high resistance to hot cracking when welding dissimilar steels. Applications of this kind include

mild and low-alloy steels to a wide range of stainless steels.

can be welded on ceramic weld metal supports at a very high productivity rate.

Shielding gas

Size (mm)

Ar/15-25%CO, or CO,

	Classifications & approvals			emica etal (%	•	ositic	n		Typical mechanical properties all weld metal				
Shield-Bright 316L X-tra		С	Si	Mn	Cr	Ni	Мо	Cu	R _{p 0.2} (MPa)	Rm (MPa)	A4/A5 (%)		
Type Rutile Polarity DC+	EN ISO 17633-A T 19 12 3 L R C 3 T 19 12 3 L R M 3 AWS/SFA A5.22 E316LT0-1 E316LT0-4	0.03	0.6	1.3	18.5	12	2.7	0.15	450	580	36		
Shielding gas Ar/15-25%CO ₂ or CO ₂	ABS, LR, TÜV												
Size (mm) 1.2 and 1.6	welding of 316 low- types can be welden non-pulsing power always operating ir flat welds with goo islands are produc	-carbo ed with source the fad pen ed, the ed roc	on typ h equ ces, us avour etratio erefor ot runs	e 18-2 al suc sing A able s on and e time	20Cr10cess. r/15-2 pray a I a ver is saven join	0-14N Shield 5%Core me re me re smo yed or nts ca	i2-3M d-Brig O ₂ or p ode. TI both w n clear in be v	o stee ht 316 pure C he slag retting ning th	els. The comp ELX-tra has e CO_2 shielding ELX is self-lifting ELX onto the pla ELX ne welds. Thi ELX on ceramic	oosition also on excellent welco gas. It is a "vag or easily de te edges. Un so cored wire weld metal s	rizontal-vertical (fillet) ensures that the stabilised lability on conventional welder-friendly" wire, tached leaving clean and like solid wires, no silica provides high X-Ray qua- supports at a very high erties all weld metal		
Shield-Bright 317L X-tra	од рего топо	С	Si	Mn		Ni	Мо	Cu	R _{na2} (MPa)	Rm (MPa)	A4/A5 (%)		
Type Rutile Polarity	AWS/SFA A5.22 E317LT0-1 E317LT0-4	0.03	0.7	1.5		12.5		0.15	480	580	35		
DC+	Shield-Bright 317I	X-tra	is a rı	ıtile co	red w	ire de	siane	d for t	he downhan	d and horizon	ntal-vertical (fillet) welding		
Shielding gas Ar/15-25%CO ₂ or CO ₂	of 317 and 317L ste sources with Ar/15 favourable spray a	eels. S -25% rc mo	Shield- CO ₂ o de. Th	-Brigh r pure ne slac	t 317L CO ₂ s is sel	X-tra shield If-liftin	has e ing ga g or e	xcelle s. It is asily o	nt weldability a "welder-fri detached lea	on convention endly" wire, a ving clean an	onal non-pulsing power always operating in the d flat welds with good lica islands are produced		

r/15-25%CO ₂ or CO ₂	favourable spray arc mode. The slag is self-lifting or easily detached leaving clean and flat welds with good
ize (mm) .2 and 1.6	penetration and a very smooth wetting onto the plate edges. Unlike solid wires, no silica islands are produced therefore time is saved on cleaning the welds. This cored wire provides high X-ray quality welds. One-sided
<u> </u>	root runs in open joints can be welded on ceramic weld metal supports at high speeds.

	Classifications & approvals	, ,		emica etal (%		positic	n		Typical mechanical properties all weld metal				
Shield-Bright 347 X-tra		С	Si	Mn	Cr	Ni	Мо	Cu	R _{p 0.2} (MPa)	Rm (MPa)	A4/A5 (%)		
Type Rutile	EN ISO 17633-A T 19 9 Nb R M 3 AWS/SFA A5.22	0.04	0.5	1.6	19	9.6	0.1	0.04	460	610	41		
Polarity DC+	E347T0-1 E347T0-4	Nb 0.8											
Shielding gas Ar/15-25%CO ₂ or CO ₂	321 and 347 steels ces with Ar/15-259	s. Shiel	ld-Briq or pur	ght 34 e CO	7 X-tr	a has ding g	excell gas. It	ent we	eldability on o welder-friendl	conventional r y" wire, alway	s operating in the favoura-		
Size (mm) 1.2	321 and 347 steels. Shield-Bright 347 X-tra has excellent weldability on conventional non-pulsing power sources with Ar/15-25%CO ₂ or pure CO ₂ shielding gas. It is a "welder-friendly" wire, always operating in the favourable spray arc mode. The slag is self-lifting or easily detached leaving clean and flat welds with good penetration and a very smooth wetting onto the plate edges. Unlike solid wires, no silica islands are produced therefore time is saved on cleaning the welds. This cored wire provides high X-ray quality welds. One-sided root runs in open joints can be welded on ceramic weld metal supports at high speeds.												

Tubular cored wires for MIG/MAG welding

	Classifications & approvals	,,		emica etal (%		positio	on		Typical mechanical properties all weld metal					
Shield-Bright 308L		С	Si	Mn	Cr	Ni	Мо	Cu	R _{p 0.2} (MPa)	Rm (MPa)	A4/A5 (%)			
Type Rutile	EN ISO 17633-A T 19 9 L P M 2 / T 19 9 L P C 2	0.03	0.9	1.2	19	10	0.1	0.15	410	580	44			
Polarity DC+	AWS/SFA A5.22 E308LT1-1 E308LT1-4													
Shielding gas Ar/15-25%CO ₂ or CO ₂	ABS, CWB, TÜV													
Size (mm) 1.2	ning 18-20%Cr/8-	Shield-Bright 308L is a rutile flux-cored wire designed for the all-positional welding of stainless steels containing 18-20%Cr/8-12%Ni. In addition to the 304L and 308L varieties, it is also suitable for welding the stabilised 321 and 347 types. Shield-Bright 308L has excellent weldability on conventional non-pulsing power sources,												
	welding, allowing of PF, 3F position). It	ning 18-20%Cr/8-12%Ni. In addition to the 304L and 308L varieties, it is also suitable for welding the stabilised												

welding, allowing deposition rates that can not be equaled by stick electrodes or solid wires (up to 4kg/h in PF, 3F position). It is a "welder-friendly" wire, always operating in the favourable spray arc mode. The slag is self-lifting or easily detached leaving clean and flat welds with good penetration and a very smooth wetting onto the plate edges. Unlike solid wires, no silica islands are produced, therefore time is saved on cleaning the welds. This cored wire provides high X-Ray quality welds. One-sided root runs in open joints can be welded on ceramic weld metal supports at a very high productivity rate.

Classifications & Typical chemical composition Typical mechanical properties all weld metal

all weld metal (%) approvals Shield-Bright 309L Мо Cu R_{no.2} (MPa) Rm (MPa) A4/A5 (%) Type EN ISO 17633-A Rutile T 23 12 L P C 2 0.03 0.9 1.3 12.5 0.1 0.10 480 600 35 T 23 12 I P M 2 AWS/SFA A5.22 **Polarity** E309LT1-1 E309LT1-4

Shielding gas

Ar/15-25%CO₂ or CO₂

Size (mm)

ABS, GL, TÜV

A flux-cored, tubular wire depositing weld metal of the 309L type for use in all welding positions. Apart from joining these steels, the weld metal ferrite content ensures that it is suitable for dissimilar applications, as well as joining difficult-to-weld steels. Shield-Bright 309L has excellent weldability on conventional non-pulsing power sources, using Ar/15-25%CO₂ or pure CO₂ shielding gas. The fast freezing slag supports the weld metal in positional welding, allowing deposition rates that can not be equaled by stick electrodes or solid wires (up to 4kg/h in PF, 3F position). It is a "welder-friendly" wire, always operating in the favourable spray arc mode. The slag is self-lifting or easily detached leaving clean and flat welds with good penetration and a very smooth wetting onto the plate edges. Unlike solid wires, no silica islands are produced, therefore time is saved on cleaning the welds. This cored wire provides high X-Ray quality welds. One-sided root runs in open joints can be welded on ceramic weld metal supports at a very high productivity rate.

	Classifications & approvals	, ,	Typical chemical composition all weld metal (%)						Typical mechanical properties all weld metal			
Shield-Bright 309LMo		С	Si	Mn	Cr	Ni	Мо	Cu	R _{p 0.2} (MPa)	Rm (MPa)	A4/A5 (%)	
Type Rutile	AWS/SFA A5.22 E309LMoT1-1 E309LMoT1-4	0.03	0.8	1.2	23.5	13.5	2.5	0.10	480	620	30	

Polarity DC+

Shielding gas Ar/15-25%CO, or CO,

Size (mm)

1.2

Shield-Bright 309LMo is a rutile cored wire designed for the all-positional welding of 316 clad steels on the first pass in cladding steels or for welding dissimilar steels such as Mo containing austenitic steels to carbon steels. Shield-Bright 309LMo has excellent weldability on conventional non-pulsing power sources with Ar/15-25%CO2 or pure CO2 shielding gas. The fast freezing slag supports the weld metal in positional welding allowing deposition rates that can not be equaled by stick electrodes or solid wires (up to 4kg/h in PF, 3F position). It is a "welder-friendly" wire, always operating in the favourable spray arc mode. The slag is self-lifting or easily detached leaving clean and flat welds with good penetration and a very smooth wetting onto the plate edges. Unlike solid wires, no silica islands are produced therefore time is saved on cleaning the welds. This cored wire provides high X-ray quality welds. One-sided root runs in open joints can be welded on ceramic weld metal supports at high speeds.

	Classifications & approvals	,,		emica etal (%	l comp 6)	oositic	on		Typical mechanical properties all weld metal				
Shield-Bright 316L		С	Si	Mn	Cr	Ni	Мо	Cu	R _{p 0.2} (MPa)	Rm (MPa)	A4/A5 (%)		
Type Rutile	EN ISO 17633-A T 19 12 3 L P M 2 / T 19 12 3 L P C 2	0.03	0.6	1.3	18.5	12	2.7	0.15	450	580	40		
Polarity DC+	AWS/SFA A5.22 E316LT1-1 E316LT1-4												
Shielding gas Ar/15-25%CO ₂ or CO ₂	ABS, CWB, TÜV												
Size (mm) 1.2	Shield-Bright 316L is a rutile flux-cored wire designed for the all-positional welding of 316 low-carbon type 18-20Cr10-14Ni2-3Mo steels. The composition also ensures that the stabilised types can be welded with equal success. Shield-Bright 316L has excellent weldability on conventional non-pulsing power sources,												
		%CO ₂ or pure CO ₂ shielding gas. The fast freezing slag supports the weld metal in positional											

welding, allowing deposition rates that can not be equaled by stick electrodes or solid wires (up to 4kg/h in PF, 3F position). It is a "welder-friendly" wire, always operating in the favourable spray arc mode. The slag is self-lifting or easily detached leaving clean and flat welds with good penetration and a very smooth wetting onto the plate edges. Unlike solid wires, no silica islands are produced, therefore time is saved on cleaning the welds. This cored wire provides high X-Ray quality welds. One-sided root runs in open joints can be welded on ceramic weld metal supports at a very high productivity rate.

	Classifications & approvals	, ,	Typical chemical composition all weld metal (%)						Typical mechanical properties all weld metal			
Shield-Bright 317L		C Si Mn Cr Ni Mo Cu							R _{p 0.2} (MPa)	Rm (MPa)	A4/A5 (%)	
Type Rutile	AWS/SFA A5.22 E317LT1-1 E317LT1-4	0.03 0.9 1.2 19.5 13.0 3.5 0.15						0.15	480	620	35	
Polarity												

Shielding gas Ar/15-25%CO, or CO,

Size (mm)

Shield-Bright 317L is a rutile cored wire designed for the all-positional welding of 317 and 317L stainless steels. Shield-Bright 317L has excellent weldability on conventional non-pulsing power sources with Ar/15-25%CO₂ or pure CO₂ shielding gas. The fast freezing slag supports the weld metal in positional welding allowing deposition rates that can not be equaled by stick electrodes or solid wires (up to 4kg/h in PF, 3F position). It is a "welder-friendly" wire, always operating in the favourable spray arc mode. The slag is self-lifting or easily detached leaving clean and flat welds with good penetration and a very smooth wetting onto the plate edges. Unlike solid wires no silica islands are produced, therefore time is saved on cleaning the welds. This cored wire provides high X-ray quality welds. One-sided root runs in open joints can be welded on ceramic weld metal supports at high speeds.

	Classifications & approvals	,,		emica etal (%		oositio	n		Typical med	chanical prope	erties all weld metal
Shield-Bright 347		С	Si	Mn	Cr	Ni	Мо	Cu	R _{p 0.2} (MPa)	Rm (MPa)	A4/A5 (%)
Type Rutile	AWS/SFA A5.22 E347LT1-1 E347LT1-4	0.03	0.9	1.2	19.5	10.0	0.1	0.10	520	650	35
Polarity DC+	Chield Dright 247		ده ده		40 dos		l fou th	، اله مد	nacitional wa	lding of 201	and 247 atainless atasl

Shielding gas Ar/15-25%CO₂ or CO₂

Size (mm)

1.2

Shield-Bright 347 is a rutile cored wire designed for the all-positional welding of 321 and 347 stainless steel. It can also be used for the welding of 302, 304 and sometimes 304L grades. Shield-Bright 347 has excellent weldability on conventional non-pulsing power sources with Ar/15-25%CO, or pure CO, shielding gas. The fast freezing slag supports the weld metal in positional welding allowing deposition rates that can not be equaled by stick electrodes or solid wires (up to 4kg/h in PF, 3F position). It is a "welder-friendly" wire, always operating in the favourable spray arc mode. The slag is self-lifting or easily detached leaving clean and flat welds with good penetration and a very smooth wetting onto the plate edges. Unlike solid wires no silica islands are produced therefore time is saved on cleaning the welds. This cored wire provides high X-ray quality welds. One-sided root runs in open joints can be welded on ceramic weld metal supports at high speeds.

Tubular cored wires for MIG/MAG welding

	Classifications & approvals	, ,		emica etal (%		oositio	on			Typical mechanical properties all weld metal				
OK Tubrod 14.27		С	Si	Mn	Cr	Ni	Мо	Cu	N	R _{p 0.2} (MPa)	Rm (MPa)	A4/A5 (%)		
Type Rutile Polarity DC+	EN ISO 17633-A T 22 9 3 N L P M 2 T 22 9 3 N L P C 2 AWS/SFA A5.22 E2209LT1-4 / E2209LT1-1	0.03	0.9	1.0	22.6	9	3	0.15	0.15	637	828	26		
Shielding gas Ar/15-25%CO	ABS, DNV, LR, TÜV													
Size (mm) 1.2	suited for the all-po Tubrod 14.27 has e	osition excelle	al we ent we	lding o	of SAF ity on	2208 conve	5, FAL: ention	223, A al non	\F22, I -pulsii	NK Cr22. and	I HY Resist 2 urces, using /	stainless steels. Ideally 22/5 duplex steels. OK Ar/15-25%CO ₂ shielding on rates that can not be		

OK Tubrod 14.27 is a rutile flux-cored wire designed for the all-positional welding of duplex stainless steels. Ideally suited for the all-positional welding of SAF 2205, FAL223, AF22, NK Cr22. and HY Resist 22/5 duplex steels. OK Tubrod 14.27 has excellent weldability on conventional non-pulsing power sources, using Ar/15-25%CO₂ shielding gas. The fast freezing slag supports the weld metal in positional welding, allowing deposition rates that can not be equaled by stick electrodes or solid wires (up to 4kg/h in PF, 3F position). It is a "welder-friendly" wire, always operating in the favourable spray arc mode. The slag is self-lifting or easily detached leaving clean and flat welds with good penetration and a very smooth wetting onto the plate edges. Unlike solid wires, no silica islands are produced, therefore time is saved on cleaning the welds. This cored wire provides high X-Ray quality welds. One-sided root runs in open joints can be welded on ceramic weld metal supports at a very high productivity rate.

	Classifications & approvals	, ,		emical etal (%	comp (6)	ositio	n			Typical mechanical properties all weld metal				
OK Tubrod 14.28		С	Si	Mn	Cr	Ni	Мо	Cu	N	R _{p 0.2} (MPa)	Rm (MPa)	A4/A5 (%)		
Type Rutile		0.03	0.6	0.9	25.2	9.2	3.9	0.15	0.25	700	870	18		

Shielding gas Ar/15-25%CO₂

Size (mm)

Polarity

OK Tubrod 14.28 is a rutile flux-cored wire designed for the all-positional welding of super duplex stainless steels. The weld metal composition gives a high resistance to pitting corrosion. OK Tubrod 14.28 has excellent weldability on conventional non-pulsing power sources, using Ar/15-25%CO₂ shielding gas. The fast freezing slag supports the weld metal in positional welding, allowing deposition rates that can not be equaled by stick electrodes or solid wires (up to 4kg/h in PF, 3F position). It is a "welder-friendly" wire, always operating in the favourable spray arc mode. The slag is self-lifting or easily detached leaving clean and flat welds with good penetration and a very smooth wetting onto the plate edges. Unlike solid wires, no silica islands are produced, therefore time is saved on cleaning the welds. This cored wire provides high X-Ray quality welds. One-sided root runs in open joints can be welded on ceramic weld metal supports at a very high productivity rate.

	Classifications & approvals	, ,	Typical chemical composition all weld metal (%)							Typical mechanical properties all weld metal				
OK Tubrod 14.37		С	Si	Mn	Cr	Ni	Мо	N	R _{p 0.2} (MPa)	Rm (MPa)	A4/A5 (%)			
Type Rutile	EN ISO 17633-A T 22 9 3 N L R C 3 T 22 9 3 N L R M 3	0.03	0.7	0.9	22.6	8,9	3.1	0.13	556	735	32			
Polarity DC+	AWS/SFA A5.22 E2209T0-1 / E2209T0-4													
Shielding gas Ar/15-25%CO ₂ or CO ₂	stainless steels. It	has ex	celler	nt wel	dability	y on c	onver	ntional	non-pulsing	power sourc	ertical (fillet) welding of duplex es, using Ar/15-25%CO ₂ or			
Size (mm) 1.2	self-lifting or easily	g gas. It is a «welder-friendly» wire, always operating in the favourable spray arc mode. The slac y detached leaving clean and flat welds with good penetration and a very smooth wetting onto be solid wires, no silica islands are produced, therefore time is saved on cleaning the welds.												

	Classifications & approvals	٠.		emica etal (%	l comp 6)	oositio	on		Typical med	hanical prop	erties all weld metal
Shield-Bright 410 NiMo		С	Si	Mn	Cr	Ni	Мо	Cu	R _{p 0.2} (MPa)	Rm (MPa)	A4/A5 (%)
Type Rutile	AWS/SFA A5.22 E410NiMoT1-4	0.01	0.7	0.5	11.3	4.1	0.5	0.03	760	900	17
Polarity	0										

DC+ Shielding gas Ar/15-25%CO₂

Size (mm) 1.2 and 1.6

Shield-Bright 410 NiMo is an all-positional cored wire designed for the fabrication and repair welding of pelton wheels and other hydro turbine components. It is for the welding of UNS S41 500 wrought stainless steel and other similar 13Cr4NiMo type castings. To be used with Ar/15-25%CO₂ shielding gas. The fast freezing slag supports the weld metal in positional welding allowing deposition rates that can not be equaled by stick electrodes or solid wires (up to 4kg/h in PF, 3F position). It is a "welder-friendly" wire, always operating in the favourable spray arc mode. The slag is self-lifting or easily detached leaving clean and flat welds with good penetration and a very smooth wetting onto the plate edges. Unlike solid wires no silica islands are produced therefore time is saved on cleaning the welds.

	Classifications & approvals	,,		emica etal (%		oositic	on		Typical mechanical properties all weld metal					
OK Tubrod 15.30		С	Si	Mn	Cr	Ni	Мо	Cu	R _{p 0.2} (MPa)	Rm (MPa)	A4/A5 (%)			
Type Metal cored	EN ISO 17633-A T 19 9 L M M 2	0.02	0.7	1.3	18.8	9.8	0.1	0.10	340	550	45			
Polarity DC+	DB, TÜV													
Shielding gas Ar/2%O ₂	304 and 304L grad	des. Th	ne wir	e proc	luces	no sla	ag, on	ly sma	all silica island	ds, and little s	sition welding of 301, 302 spatter making it suitable ith with Ar/2%O ₂ shiel-			
Size (mm) 1.2	ding gas.													

	Classifications & approvals	,,		emica etal (%		oositio	n		Typical mechanical properties all weld metal					
OK Tubrod 15.31		С	Si	Mn	Cr	N	Мо	Cu	R _{p 0.2} (MPa)	Rm (MPa)	A4/A5 (%)			
Type Metal cored	EN ISO 17633-A T 19 12 3 L M M 2	0.02	0.7	1.2	17.6	11.6	2.7	0.10	416	575	37			
Polarity DC+	DB, DNV, LR, TÜV													
Shielding gas Ar/2%O ₂		only s	mall s	ilica is	slands	, and	little s	patter	making it su	itable for me	ition welding. The wire chanised and robotic as.			
Size (mm) 1.2										-				

	Classifications & approvals	, ,		emica etal (%		oositic	on		Typical med	chanical prope	erties all weld metal		
OK Tubrod 15.34		С	Si	Mn	Cr	N	Мо	Cu	R _{p 0.2} (MPa)	Rm (MPa)	A4/A5 (%)		
Type Metal cored	EN ISO 17633-A T 18 8 Mn M M 2	0.10	0.7	6.7	18.5	8.7	0.1	0.10	430	635	39		
Polarity DC+	DB, TÜV												
Shielding gas Ar/2%O ₂	steel, austenitic-m	5.34 is a stainless 307 grade metal cored wire designed for the high deposition welding of armounitic-manganese steels and dissimilar steels. The wire produces no slag, only small silica islands, atter making it suitable for mechanised and robotic welding. For welding in the spray mode of arc											
Size (mm)	transfer with with	Ar/2%	O ₂ shi	ielding	gas.				_				

Construction of chemical tankers with cored wires

Position: PA/IG Root & 1st pass: FCAW with OK Tubrod 14.37, welded manually onto ceramic backing strip. Filling: SAW with OK Autrod 2209/OK Flux 10.93

Connection between tank floor and carbon steel hull

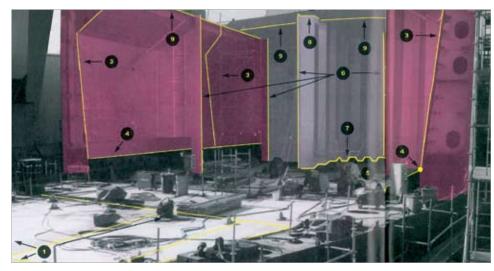
Position: PA/IG Root & 1st pass: PCAW with OK Tubrod 14.22, welded manually onto ceramic backing strip. Filling: SAW with OK Aurod 309L/OK Flux 10.93

Connection between corrugated bulkheads and between tank side walls

Position: PP/3G Root: FCAW with OK Tubrod 14.27, welded manually onto ceramic backing strip Filling: FCAW with OK Tubrod 14.27, welded manually.

Connection between vertical tank wall and angled side

Position: PC2G
Root: FCAW with
OK Tubrod 14.27,
welded manually
onto ceramic
backing strip.
Filling: FCAW with
OK Tubrod 14.27,
welded manually.


Connection between angle side wall and tank floor

Position: PC2G Multi-layer T-joint; full penetration FCAW with OK Tubrod 14.27, manually. Sealing: SMAW with OK67.50

Connection between corrugated bulkheads and tank floor

Position: PC/2G Root: FCAW with OK Tubrod 14.27, manually welled onto cylindric ceramic backing. Filling: FCAW with OK Tubrod 14.27, welded manually.

The ESAB series of cored wires for standard duplex stainless steel consist of the all-position type, OK Tubrod 14.27 and the downhand type, OK Tubrod 14.37.

They both provide fabricators with optimal welding characteristics and productivity for manual or mechanised welding.

OK Tubrod 14.27 is a very versatile consumable, suited for all welding positions, including pipe welding in combination with the TIG process for rooting. Very fast vertical down welding of fillet welds is possible for parts that allow to be attached without secure root penetration. Many fabricators will

standardise on this type, when the majority of the work involves positional welding. Both types have very clear advantages compared with MMA and GMAW, reviewed below.

Advantages over MMA

- Higher productivity in general due to higher duty cycle
- Deposition rate in positional welding almost 3 times higher.
- Very economic deposition of root passes, with less welder skill needed
- No stub-end waste.

Advantages over GMAW

- Up to 150% higher productivity in positional welding
- Excellent performance with conventional power sources; no expensive pulsed arc equipment needed.
- Use of normal 80%Ar/20%CO2 shielding gas; use of expensive high Ar mixtures is avoided. Fabricators have an option to standardise on one gas when welding both unalloyed and stainless steels.
- Less oxidation of weld surface due to protective action of slag
- No grinding or sealing needed for the reverse side of the root

Connection between corrugated bulkheads and tank

Position: PC/2G Root: FC/AW with OK Tubrod 14.27, manually welded onto cylindric ceramic backing. Filling: FC/AW with OK Tubrod 14.27, welded reactable.

Connection between tank cover and between tank

Position: PA/IG Root & 1st pass: FCAW with OK Tubrod 14.37, manually welded onto ceramic backing strip. Filling: FCAW with OK Tubrod 14.37

Fluxes for submerged arc welding

Definition

Submerged are welding (SAW) is a method in which the heat required to fuse the metal is generated by an arc formed by an electric current passing between the electrode and the work-piece. A layer of granulated mineral material, known as submerged arc welding flux, covers the tip of the welding wire, the arc and the work-piece. There is no visible arc and no sparks, spatter or fume. The electrode may be a solid or cored wire or a strip.

SAW is normally a mechanised process. The welding current,

arc voltage, and travel speed all affect the bead shape, depth of penetration and chemical composition of the deposited weld metal. Since the operator cannot observe the weld pool, great reliance is placed on parameter setting and positioning of the electrode.

Flux wire and strip packages

ESAB delivers fluxes in 25 kg paper bags, some types in 20 kg paper bags. Each bag has a polyethylene inlay in order to prevent the flux from moisture pick-up from the surrounding atmosphere. The palettes with flux bags again are protected against moisture by wrap or shrink foil.

For a more robust package ESAB can supply fluxes in steel buckets with 25 to 30 kg flux. Buckets have a soft rubber band in the lid which makes them moisture tight.

The packing material is fully recyclable and thus environmentally friendly. The majority of the bag packing material is recycled as paper.

Stainless and Ni based SAW welding wires are usually delivered on 25 kg wire baskets.

The SAW welding wires up 2.0 mm can also be delivered in 475 kg octagonal cardboard drums, Marathon pac. Wire is pre-twisted for straight delivery. No decoiling stand needed. All

packaging materials are nonreturnable, but fully recyclable.

The strip electrodes are delivered in cold rolled condition in 25 kg or 50 kg and 100 – 200 kg coils with an inner diameter of 300 mm. The standard thickness is 0.5 mm with widths normally 30, 60 and 90 mm.

Other weight of coils or dimensions of strips are available on request.

Fluxes for submerged arc welding

	Classifications & approvals	Typica	pical chemical composition all weld metal (%)										
OK Flux 10.05		С	Si	Mn	Cr	Ni	Мо	N	FN	Others			
Basicity index	EN 760: SA CS 2 DC												
1.1	With OK Band 309L												
Density ~ 0.7 kg/dm³	EN 12072: S 23 12 L AWS/SFA 5.9: EQ309L												
Grain size	TÜV												
0.25-1.6mm	With OK Band 308L*	*2nd layer	on mild	steel									
Slag type	EN 12072: S 19 9 L AWS/SFA 5.9: EQ308L	0.02	0.6	1.0	19.0	10.5		0.03	6				
Slightly Basic	With OK Band 347*	*2nd layer	on mild	steel									
Polarity DC+	EN 12072: S 19 9 Nb AWS/SFA 5.9: EQ347	0.02	0.7	1.1	19.0	10.5		0.03	8	Nb=0.35			
	With OK Band 316L*	*2nd layer	on mild	steel									
Alloy transfer none	EN 12072: S 19 12 3 L AWS/SFA 5.9: EQ316L	0.02	0.7	1.1	18.0	13.0	2.5	0.02	7				
	TÜN (

OK Flux 10.05 is a aluminate basic, agglomerated flux designed for submerged strip cladding with Cr, CrNi, CrNi, Mo and stabilised stainless strips of the AWS EQ300 type. OK Flux 10.05 is ESAB's standard flux for internal overlay welding on mild or low alloyed steel. It has very good welding characteristics, gives a smooth bead appearance and easy slag removal. For chemical and petrochemical plants, pressure vessels, storage tanks, nuclear power generation, pulp and paper, civil constructions, etc.

Classifications & approvals Typical chemical composition all weld metal (%)

	Cidcomediano di approvaio	.,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,	0		00	00.00		,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,	(70)	
OK Flux 10.06,	OK Flux 10.06F	С	Si	Mn	Cr	Ni	Мо	N	FN	Others
Basicity index	EN 760: SA CS 2 CrNiMo DC									
1.0	With OK Band 309L*	*1rd layer o	ladded	with OK	Band 309	9L 0,5x60) mm and	OK Flux	10.06F.	
Density ~ 1.0 kg/dm³	EN 12072: S 23 12 L AWS/SFA 5.9: EQ309L	0.03	0.6	8.0	18.6	11.9	2.5	0.05	6.7	
Grain size	With OK Band 309L**	**1rd layer	cladded	d with OK	Band 30	9L 0,5x9	0 mm an	d OK Flux	10.06.	
0.25-1.4mm	EN 12072: S 23 12 L AWS/SFA 5.9: EQ309L	0.03	0.6	8.0	18.6	11.9	2.5	0.05	6.7	
Slag type Neutral	high welding speed with ar	AWS E	Q309	3L stri	p. The	y pro	duce:	316L o	verlay	merated fluxes designed for submerged strip cladding at weld metal in one layer e.g. for internal overlay welding of
Polarity DC+										g a clean and flat overlay. OK Flux 10.06F is especially strip. For chemical plants, paper production, storage tanks,
Alloy transfer Cr, Ni and Mo-alloying										

	Classifications & approvals	Typica	l cher	nical d	comp	ositior	n all we	eld me	al (%)	
OK Flux 10.07		С	Si	Mn	Cr	Ni	Мо	N	FN	Others
Basicity index	EN 760: SA CS 3 NiMo DC									
1.0	With OK Band 430*	*2rd layer	cladded	with OK	Band 43	0.5x60	mm.			
Density ~ 1.0 kg/dm³	EN 12072: S 17	0.05	0.6	0.15	13.0	4.0	1.0			
Grain size 0.25-1.4mm	producing an overlay weld	metal o	f 14C	r-4Ni-	1Mo a	ınd a	hardne	ess of	370-42	or submerged strip cladding with an AWS EQ430 strip 20 HB. It produces a ferritic weld metal with an enhanced bistons, continuous cast rolls and other parts of repair and
Slag type Neutral	maintenance segment.									
Polarity DC+										

Alloy transfer Ni and Mo-alloying

Classifications & approvals	Typical chemical composition all weld metal (%	2)
	Typical Gricifical Corridosition all Wold Frictal (70	ונ

		,,							. ,	
OK Flux 10.10		С	Si	Mn	Cr	Ni	Мо	N	FN	Others
Basicity index	EN 760: Not applicable									
4.0	With OK Band 309L ESW*	* 1rd layer,	welded	on 2.250	Cr1Mo ste	el				
Density ~ 1.0 kg/dm³	EN 12072: Not applicable AWS/SFA 5.9: Not applicable	0.03	0.4	1.2	19.0	10.0		0.05	4	
Grain size	With OK Band 309LNb ESW*	* 1rd layer,	welded	on 2.250	Cr1Mo ste	el				
0.2-1.0mm	EN 12072: Not applicable AWS/SFA Not applicable	0.03	0.4	1.3	19.0	10.0		0.05	4	Nb=0.4
Slag type High Basic	TÜV									
· ·	With OK Band 309LMo ESW*	* 1rd layer,	welded	on 2.250	Cr1Mo ste	el				
Polarity DC+	EN 12072: Not applicable AWS/SFA Not applicable	0.03	0.4	1.1	18.0	12.5	2.8	0.04	6	

Alloy transfer none

OK Flux 10.10 is a high basic, agglomerated flux designed for electroslag strip cladding with austenitic stainless strips. OK Flux 10.10 is the ESAB standard flux for electroslag cladding with various strips, for instance, OK Band 309L ESW. The flux, developed for high roductivity strip cladding, gives a smooth bead appearance, very good welding properties and easy slag removal. Can be used for single or multi layer cladding. However, the process requires a special welding head and a power source of at least 1600 A. For chemical and petrochemical plants, pressure vessels, storage tanks, nuclear reactor components and power generation.

Classifications & approvals Typical chemical composition all weld metal (%)

OK Flux 10.11		С	Si	Mn	Cr	Ni	Мо	N	FN	Others				
Basicity index 5.4	EN 760: SA AF 2 DC													
	OK Band NiCrMo3*	*1st layer o	1st layer on mild steel											
Density ~ 1.0 kg/dm³	EN 18274: S Ni6625 (NiCr22Mo9Nb) AWS/SFA 5.14: ER NiCrMo-3	0.025	0.45	0.07	19.6	Bal.	8.1	0.01	4	Nb+Ta=2.9, Fe=7				
Grain size	OK Band NiCrMo3**	**2nd laye	**2nd layer on mild steel											
0.2-1.0mm Slag type Very High Basic	EN 12072: 18274: S Ni6625 (NiCr22Mo9Nb) AWS/SFA 5.14: ER NiCrMo-3	0.02	0.5	0.03	21.0	Bal.	8.1	0.01	4	Nb+Ta=3.2, Fe=4				
	OK Flux 10.11 is a high basic	c, agglor	merate	ed flux	desid	ned f	or ele	ctrosla	ıq strip	cladding with stainless, fully austenitic and Ni-based strips.				

Polarity DC+ Can be used for single or multi layer cladding with higher welding speed. Ok Flux 10.11 has very good welding characteristics, gives a smooth bead appearance and easy slag removal. For the chemical processing industry, pollution control equipment, marine equipment, nuclear reactor components, pump shafts.

Alloy transfer none

Classifications & approvals Typical chemical composition all weld metal (%)

		.)							(, -)						
OK Flux 10.14		С	Si	Mn	Cr	Ni	Мо	N	FN	Others					
Basicity index	EN 760: Not applicable														
4.4	With OK Band 309LNb *	* 1rd layer	1rd layer, welded on mild steel.												
Density ~ 1.0 kg/dm³	EN 12072: S 23 12 L Nb (NiCr22Mo9Nb) AWS/SFA 5.9:	0.03	0.5	1.6	19.0	10.0		0.02	5	Nb=0.6					
Grain size 0.2-1.0mm	OK Band 309LNb. It is flux to	for very	high p	roduc	ctivity	strip c	laddir	ng, up	to abo	p cladding with austenitic stainless strips, especially out 35 cm/min. Can be used for single or multi layer cladding, ag removal. However, the process requires a water cooled					
Slag type High Basic		source c	of at le	ast 24						chemical plants, pressure vessels, storage tanks, nuclear					
Polarity															

DC+

Alloy transfer none

Fluxes for submerged arc welding

	Classifications & approvals	Туріс	cal ch	nemica	al com	positi	on all v	weld m		Typical mechanical properties all weld metal				
OK Flux 10.16		С	Si	Mn	Cr	Ni	Мо	N	Other	FN	R _{p 0.2} (MPa)	Rm (MPa)	A4/A5 (%)	CVN (°C/J)
Basicity index	EN 760: SA AF 2 DC													
2.4	With OK Autrod 19.82													
Density ~ 1.2 kg/dm³ Grain size	EN 18274: S Ni6625 (NiCr22Mo9Nb) AWS/SFA 5.14 ER NiCrMo-3	0.01	0.3	0.3	21	Bal.	9		Nb+Ta=3 Fe=3		425	700	40	+20/130 -196/80
0.25-1.6mm	With OK Autrod 19.85													
Slag type Basic	EN 18274: S Ni6082 (NiCr20Mn3Nb) AWS/SFH 5.14 ERNiCr-3	0.01	0.3	3.2	19	Bal.	0.5		Nb=2.5		360	600	35	+20/140 -196/100
Polarity DC+	With OK Band NiCrMo3*	*2nd layer on mild steel												
Alloy transfer None	EN 18274: S Ni6625 (NiCr22Mo9Nb) AWS/SFH 5.14 ER NiCrMo-3	0.01	0.2	1.1	21	Bal.	8	0.026	Nb+Ta=2.8 Fe=4					
	With OK Band NiCr3*	*2nd la	yer on n	nild steel										
	EN 18274: S Ni6082 (NiCr20Mn3Nb) AWS/SFH 5.14 ERNiCr-3	0.02	0.5	3	20	Bal.			Nb=2.5					

OK Flux 10.16 is an agglomerated, non-alloying flux for submerged arc welding specially designed for butt welding with nickel-based alloyed wire. Can also be used for overlay welding with Ni-based strips. The well-balanced flux composition minimises silicon transfer from the flux to the welding metal, provides good mechanical properties, particularly good impact properties, and reduces the risk of hot cracking. OK Flux 10.16 can only be used on DC when butt welding with nickel-based alloy wires. Has also good weldability in the 2G position. Single layer and multi-layer welding of unlimited plate thickness. Flux is suitable for strip cladding with all grades of Ni based strips. For chemical and petrochemical plants, offshore constructions, marine equipment, pressure vessels, storage tanks, etc.

Classifications & approvals	Typi	cal ch	nemica	al con	npositi	on all v	weld n	Typical mechanical properties all weld metal					
	С	Si	Mn	Cr	Ni	Мо	N	Other	FN	R _{p 0.2} (MPa)	Rm (MPa)	A4/A5 (%)	CVN (°C/J)
EN 760: SA AF 2 CrNi DC													
With OK Autrod 19.81													
EN 18274: S Ni6059 (NiCr23Mo16) AWS/SFA 5.14	0.01	0.2	3	22	Bal.	14.0		Fe=3	5-10	470	675	46	+20/65 -196/70
DNV: NV5Ni/NV8Ni													
With OK Autrod 19.82													
EN 18274: S Ni6625 (NiCr22Mo9Nb) AWS/SFA 5.14	0.01	0.2	1.5	21	Bal.	8.5		Nb+Ta=3, Fe=3		440	720	33	+20/130 -196/90
EN 18274: S Ni 6276 (NiCr15Mo16Fe6W4) AWS/SFA 5.14 NiCrMo-4	0.01	0.2	1.9	15	Bal.	14		W=3.5, Fe=7		480	700	35	+20/85 -196/75
With OK Autrod 19.85													
EN 18274: S Ni6082 (NiCr20Mn3Nb) AWS/SFA 5.14 ERNiCr-3	0.01	0.5	3.5	20	Bal.	0.5		Nb=2.5		400	600	35	
	EN 760: SA AF 2 CrNi DC With OK Autrod 19.81 EN 18274: S Ni6059 (NiCr23Mo16) AWS/SFA 5.14 ERNiCrMo-13 DNY: NV5Ni/NV8Ni With OK Autrod 19.82 EN 18274: S Ni6625 (NiCr22Mo9Nb) AWS/SFA 5.14 ER NiCrMo-3 With OK Autrod 19.83 EN 18274: S Ni 6276 (NiCr15Mo16Fe6W4) AWS/SFA 5.14 NiCrMo-4 With OK Autrod 19.85 EN 18274: S Ni6082 (NiCr20Mn3Nb) AWS/SFA 5.14 With OK Autrod 19.85 EN 18274: S Ni6082 (NiCr20Mn3Nb) AWS/SFA 5.14	EN 760: SA AF 2 CrNi DC With OK Autrod 19.81 EN 18274: S Ni6059 (NiCr23Mo16) AWS/SFA 5.14 ERNiCrMo-13 DNY: NV5Ni/NV8Ni With OK Autrod 19.82 EN 18274: S Ni6625 (NiCr22Mo9Nb) AWS/SFA 5.14 ER NiCrMo-3 With OK Autrod 19.83 EN 18274: S Ni 6276 (NiCr15Mo16Fe6W4) AWS/SFA 5.14 NiCrMo-4 With OK Autrod 19.85 EN 18274: S Ni6082 (NiCr20Mn3Nb) AWS/SFA 5.14 (NiCr20Mn3Nb) AWS/SFA 5.14	C Si EN 760: SA AF 2 CrNi DC With OK Autrod 19.81 EN 18274: S Ni6059 (NiCr23Mo16) AWS/SFA 5.14 ERNiCrMo-13 DNV: NV5Ni/NV8Ni With OK Autrod 19.82 EN 18274: S Ni6625 (NiCr22Mo9Nb) AWS/SFA 5.14 ER NiCrMo-3 With OK Autrod 19.83 EN 18274: S Ni 6276 (NiCr15Mo16Fe6W4) AWS/SFA 5.14 NiCrMo-4 With OK Autrod 19.85 EN 18274: S Ni6082 (NiCr2OMina) With OK Autrod 19.85 EN 18274: S Ni6082 (NiCr2OMina) With OK Autrod 19.85 EN 18274: S Ni6082 (NiCr2OMina) WiS/SFA 5.14 (NiCr2OMina) WiS/SFA 5.14	C Si Mn EN 760: SA AF 2 CrNi DC With OK Autrod 19.81 EN 18274: S Ni6059 (NiCr23Mo16) AWS/SFA 5.14 ERNiCrMo-13 DNV: NV5Ni/NV8Ni With OK Autrod 19.82 EN 18274: S Ni6625 (NiCr22Mo9Nb) AWS/SFA 5.14 ER NiCrMo-3 With OK Autrod 19.83 EN 18274: S Ni 6276 (NiCr15Mo16Fe6W4) AWS/SFA 5.14 NiCrMo-4 With OK Autrod 19.85 EN 18274: S Ni6082 (NiCr20Mi3Nb) AWS/SFA 5.14 (NiCr15MO-4 With OK Autrod 19.85 EN 18274: S Ni6082 (NiCr20Mi3Nb) AWS/SFA 5.14	C Si Mn Cr	C Si Mn Cr Ni EN 760: SA AF 2 CrNi DC With OK Autrod 19.81 EN 18274: S Ni6059 (NiCr23Mo16) AWS/SFA 5.14 ERNiCrMo-13 DNV: NV5Ni/NV8Ni With OK Autrod 19.82 EN 18274: S Ni6625 (NiCr22Mo9Nb) AWS/SFA 5.14 ER NiCrMo-3 With OK Autrod 19.83 EN 18274: S Ni 6276 (NiCr15Mo16Fe6W4) AWS/SFA 5.14 NiCrMo-4 With OK Autrod 19.85 EN 18274: S Ni6082 (NiCr22Mo9Nb) AWS/SFA 5.14 RER NiCrMo-3 With OK Autrod 19.83 EN 18274: S Ni 6276 (NiCr15Mo16Fe6W4) AWS/SFA 5.14 NiCrMo-4 With OK Autrod 19.85 EN 18274: S Ni6082 (NiCr20Min3Nb) AWS/SFA 5.14	C Si Mn Cr Ni Mo	C Si Mn Cr Ni Mo N EN 760: SA AF 2 CrNi DC With OK Autrod 19.81 EN 18274: S Ni6059 (NiCr23Mo16) AWS/SFA 5.14 ERNiCrMo-13 DNV: NV5Ni/NV8Ni With OK Autrod 19.82 EN 18274: S Ni6625 (NiCr22Mo9Nb) AWS/SFA 5.14 ER NiCrMo-3 With OK Autrod 19.83 EN 18274: S Ni 6276 (NiCr15Mo16Fe6W4) AWS/SFA 5.14 NiCrMo-4 With OK Autrod 19.85 EN 18274: S Ni6082 (NiCr22Mo9Nb) AWS/SFA 5.14 (NiCr15Mo16Fe6W4) AWS/SFA 5.14 (NiCr15Mo-4 With OK Autrod 19.85 EN 18274: S Ni6082 (NiCr20Min3Nb) AWS/SFA 5.14	C Si Mn Cr Ni Mo N Other EN 760: SA AF 2 CrNi DC With OK Autrod 19.81 EN 18274: S Ni6059 (NiCr23Mo16) AWS/SFA 5.14 ERNiCrMo-13 DNV: NV5Ni/NV8Ni With OK Autrod 19.82 EN 18274: S Ni6625 (NiCr22Mo9Nb) AWS/SFA 5.14 ER NiCrMo-3 With OK Autrod 19.83 EN 18274: S Ni 6276 (NiCr15Mo16Fe6W4) AWS/SFA 5.14 NiCrMo-4 With OK Autrod 19.85 EN 18274: S Ni6082 (NiCr22Mo9Nb) AWS/SFA 5.14 NiCrMo-4 With OK Autrod 19.85 EN 18274: S Ni6082 (NiCr2OMn3Nb) AWS/SFA 5.14 NiCrMo-4 With OK Autrod 19.85 EN 18274: S Ni6082 (NiCr2OMn3Nb) AWS/SFA 5.14	C Si Mn Cr Ni Mo N Other FN EN 760: SA AF 2 CrNi DC With OK Autrod 19.81 EN 18274: S Ni6059 (NiCr23Mo16) AWS/SFA 5.14 ERNiCrMo-13 DNV: NV5Ni/NV8Ni With OK Autrod 19.82 EN 18274: S Ni6625 (NiCr22Mo9Nb) AWS/SFA 5.14 ER NiCrMo-3 With OK Autrod 19.83 EN 18274: S Ni 6276 (NiCr15Mo16Fe6W4) AWS/SFA 5.14 NiCrMo-4 With OK Autrod 19.85 EN 18274: S Ni6082 (NiCr20Mn3Nb) AWS/SFA 5.14 NiCrMo-4 With OK Autrod 19.85 EN 18274: S Ni6082 (NiCr20Mn3Nb) AWS/SFA 5.14 NiCrMo-4	EN 760: SA AF 2 CrNi DC With OK Autrod 19.81 EN 18274: S Ni6059 (NiCr23Mo16) AWS/SFA 5.14 ERNiCrMo-13 DNV: NV5Ni/NV8Ni With OK Autrod 19.82 EN 18274: S Ni6625 (NiCr22Mo9Nb) AWS/SFA 5.14 ER NiCrMo-3 With OK Autrod 19.83 EN 18274: S Ni 6276 (NiCr15Mo16Fe6W4) AWS/SFA 5.14 NiCrMo-4 With OK Autrod 19.85 EN 18274: S Ni 6276 (NiCr15Mo16Fe6W4) AWS/SFA 5.14 NiCrMo-4 With OK Autrod 19.85 EN 18274: S Ni 6082 (NiCr2QMn3Nb) AWS/SFA 5.14 NiCrMo-4 With OK Autrod 19.85 EN 18274: S Ni 6082 (NiCr2QMn3Nb) AWS/SFA 5.14 NiCrMo-4	EN 760: SA AF 2 CrNi DC With OK Autrod 19.81 EN 18274: S Ni6059 (NiCr23Mo16) AWS/SFA 5.14 ERNiCrMo-13 DNV: NV5Ni/NV8Ni With OK Autrod 19.82 EN 18274: S Ni 6625 (NiCr22Mo9Nb) AWS/SFA 5.14 ER NiCrMo-3 With OK Autrod 19.83 EN 18274: S Ni 6276 (NiCr15Mo16Fe6W4) AWS/SFA 5.14 ER NiCrMo-4 With OK Autrod 19.85 EN 18274: S Ni 6276 (NiCr15Mo16Fe6W4) AWS/SFA 5.14 NiCrMo-3 With OK Autrod 19.85 EN 18274: S Ni 6082 (NiCr2Mo9Nb) AWS/SFA 5.14 NiCrMo-4 With OK Autrod 19.85 EN 18274: S Ni 6082 (NiCr2Mo9Nb) AWS/SFA 5.14 NiCrMo-4 With OK Autrod 19.85 EN 18274: S Ni 6082 (NiCr2Mo9Nb) AWS/SFA 5.14 NiCrMo-4 With OK Autrod 19.85 EN 18274: S Ni 6082 (NiCr2Mo9Nb) AWS/SFA 5.14 NiCrMo-4	EN 760: SA AF 2 CrNi DC With OK Autrod 19.81 EN 18274: S Ni6059 (NiCr23Mo16) AWS/SFA 5.14 ERNIGYMO-13 DNV: NV5Ni/NV8Ni With OK Autrod 19.82 EN 18274: S Ni6625 (NiCr22Mo9Nb) AWS/SFA 5.14 ER NiCrMo-3 With OK Autrod 19.83 EN 18274: S Ni 6276 (NiCr13Mo16) AWS/SFA 5.14 ER NiCrMo-3 With OK Autrod 19.83 EN 18274: S Ni 6276 (NiCr13Mo16) AWS/SFA 5.14 NiCrMo-4 With OK Autrod 19.83 EN 18274: S Ni 6276 (NiCr2Mo9Nb) AWS/SFA 5.14 NiCrMo-4 With OK Autrod 19.85 EN 18274: S Ni 6082 (NiCr2Mo9Nb) AWS/SFA 5.14 NiCrMo-4 With OK Autrod 19.85 EN 18274: S Ni 6082 (NiCr2Mo9Nb) AWS/SFA 5.14 NiCrMo-4 With OK Autrod 19.85 EN 18274: S Ni 6082 (NiCr2Mo9Nb) AWS/SFA 5.14 NiCrMo-4 With OK Autrod 19.85

OK Flux 10.90 is an agglomerated fluoride basic flux for the submerged arc welding of 9 % Ni steels, other high alloyed steels and Ni-based alloys, using Ni-based wires. OK Flux 10.90 is the answer to your LNG welding problems. Flux is chromium compensating, manganese and slightly nickel adding, thereby minimising the risk of hot cracking when welding with nickel-based alloys. Primarily for multi-run welding. The low Si addition during welding provides good mechanical properties, particularly good impact properties. Has good slag detachability and nice bead appearance and also very good weldability in the 2G position. Works very well on DC current. Single and multi-layer welding of unlimited plate thickness. For chemical and petrochemical plants, offshore constructions, pressure vessels, storage tanks, etc.

	Classifications & approvals	Typica	al che	mical	comp	osition	n all w	eld me	etal (%)		Typical mechanical properties all weld metal				
OK Flux 10.92		С	Si	Mn	Cr	Ni	Мо	N	FN	Others	R _{p 0.2} (MPa)	Rm (MPa)	A4/A5 (%)	CVN (°C/J)	
Basicity index	EN 760: SA CS 2 DC														
1.0	With OK Autrod 308L														
Density ~ 1.0 kg/dm³	EN 12072: S 19 9 L AWS/SFA 5.9: ER308	<0.03	0.9	1	20.0	10.0					365	580	38	-60/60 -196/50	
Grain size	TÜV	_													
0.25-1.6mm	With OK Autrod 347														
Slag type Neutral	EN 12072: S 19 9 Nb AWS/SFA 5.9: ER347	0.04	0.7	0.9	19.8	9.7			9		470	640	35	+20/65 -60/55 -110/40	
Dalanita.	TÜV	_													
Polarity DC+	With OK Autrod 316L														
Alloy transfer	EN 12072: S 19 12 3 L AWS/SFA 5.9: ER316L	0.02	0,8	1	19.1	11.9	2.7				385	590	36	-60/55	
Cr compen- sating	TÜV														
3	With OK Autrod 318														
	EN 12072: S 19 12 3 Nb AWS/SFA 5.9: ER318	<0.03	0.5	1.2	18.5	12	2.6		9	Nb=0.5	440	600	42	+20/100 -60/90	
	TÜV													-110/40	
	With OK Autrod 309MoL														
	EN 12072: S 23 12 L AWS/SFA 5.9: (ER309MoL)	0.02	8.0	1.5	21	15	3				400	600	38	+20/120	
	TÜV														
	With OK Band 308L*	* 3rd lay	er on	2.5Cr	1Mo st	eel									
	EN 12072: S 19 9 L AWS/SFA 5.9: EQ308L	0.02	1	0.7	20.6	9.8			12						
	TÜV														
	With OK Band 347*	* 3rd lay	er on	2.5Cr	1Mo st	eel									
	EN 12072: S 19 9 Nb AWS/SFA 5.9: EQ347	0.02	1.3	0.7	20.6	9.5			15	Nb=0.5					
	TÜV														
	With OK Band 316L*	* 3rd lay	er on	2.5Cr	1Mo st	eel									
	EN 12072: S 19 12 3 L AWS/SFA 5.9: EQ316L	0.02	0.9	0.7	18.5	12.3	2.8		8						
	TÜN														

OK Flux 10.92 is a neutral, agglomerated Cr-compensating flux designed for strip cladding, butt and fillet welding of stainless and corrosion resistant steel types with AWS ER300 type of wires. Works well on DC current for single and multi-layer welding of unlimited plate thickness. Good welding characteristics and easy slag removal. If used for strip cladding with austenitic stainless welding strips, OK Flux 10.92 gives a smooth bead appearance. For chemical and petrochemical plants, offshore constructions, pressure vessels, storage tanks, chemical tankers, power generation, nuclear, pulp and paper, civil constructions, transport industries, etc.

	Classifications & approvals	Typical	cher	nical d	compo	osition	all we	eld met	Typical mechanical properties all weld metal					
OK Flux 10.93		С	Si	Mn	Cr	Ni	Мо	N	FN	Others	R _{n 0.2} (MPa)	Rm (MPa)	A4/A5 (%)	CVN (°C/J)
Basicity index 1.7	EN 760: SA AF 2 DCC With OK Autrod 308L										p oil			
Density ~ 1.1 kg/dm³	EN 12072: S 19 9 L AWS/SFA 5.9: ER308L	<0.03	0.6	1.4	20	10		0.06	8		400	560	38	+20/100 -60/65 -110/55
Grain size 0.25-1.6mm	DNV 308L, TÜV, DB, CE With OK Autrod 308H													-196/40
Slag type Basic	EN 12072: S 19 9 H AWS/SFA 5.9: ER308H With OK OK Autrod 347	0.05	0.6	1.5	20	9.6			10					
Polarity DC+	EN 12072: S 19 9 Nb AWS/SFA 5.9: ER347	0.04	0.5	1.1	19	9.6			8	Nb=0.5	455	635	35	-60/85 -110/60
Alloy transfer	TÜV, DB													-196/30
none	With OK Autrod 316L													
	EN 12072: S 19 12 3 L AWS/SFA 5.9: ER316L	<0.03	0.6	1.4	18.5	11.5	2.7		8		390	565	35	-60/90 -110/75 -196/40
	DNV 316L, TÜV, DB													
	With OK Autrod 317L	-0.04	0.6	1.5	10	10 5	2.5				440	C1E	00	. 00 /00
	EN 12072: S 18 15 3 L AWS/SFA 5.9: ER317L	<0.04	0.6	1.5	19	13.5	3.5				440	615	28	+20/80 -60/50
	With OK Autrod 316H EN 12072: S 19 12 3 H AWS/SFA 5.9: ER316H	0.05	0.6	1.5	18.5	11.5	2.7							
	With OK Autrod 16.38													
	EN 12072: S 20 16 3 Mn L RINA N50M	0.02	0.7	5.4	20	15.5	2.5	0.13	0		410	600	44	-60/70 -110/60 -196/40
	With OK Autrod 318													
	EN 12072: S 19 12 3 Nb AWS/SFA 5.9: ER318 TÜV, DB	<0.04	0.6	1.2	18.5	12	2.6		9	Nb=0.5	440	600	42	+20/100 -60/90 -110/40
	With OK Autrod 309L													
	EN 12072: S 23 12 L AWS/SFA 5.9: ER309L	<0.03	0.6	1.5	24	12.5					430	570	33	+20/90 -60/70 -110/60
	DNV 309L, LR, TÜV, CE													-196/35
	With OK Autrod 309MoL													
	EN 12072: S 23 12 L AWS/SFA 5.9: (ER309MoL) With OK Autrod 385	0.02	0.5	1.5	21	15	3				400	600	38	+20/120
	EN 12072: S 20 25 5 Cu L AWS/SFA 5.9: ER385	<0.03	0.6	1.5	19	25	4			Cu=1.5	310	530	35	+20/80 -196/35
	TÜV													
	With OK Autrod 310 EN 12072: S 25 20	0.10	0.5	11	26	21					390	590	45	+20/170
	AWS/SFA 5.9: ER310 With OK Autrod 312	0.10	0.0		20	21					000	000	40	120/1/0
	EN 12072: S 29 9 AWS/SFA 5.9: ER312	0.10	0.5	1.5	29.0	9.5					530	750	20	
	With OK Autrod 2209													
	EN 12072: S 22 9 3 N L AWS/SFA 5.9: ER2209	<0.025	8.0	1.3	22	9	3	0.15	45		630	780	30	+20/140 -60/110 -110/80
	ABS, BV, DNV, GL, LR, TÜV, RINA	ı												
	With OK Autrod 310MoL EN 12072: S 25 22 2 N L AWS/SFA 5.9: (ER310MoL)	0.02	0.1	4	24.5	22	2.1	0.12			335	575	42	+20/120
	With OK Autrod 2509													
	EN 12072: S 25 9 4 N L	<0.03	0.5	0.6	24.5	9.5	3.5	0.15	40		640	840	28	+20/85
	TÜV													
	With OK Autrod 16.97													
	EN 12072: S 18 8 Mn AWS/SFA 5.9: (ER307)	0.06	1.2	6.3	18.0	18					400	600	45	+20/95 -110/40

OK Flux 10.93 is an agglomerated basic flux for the submerged arc welding of stainless steels, primarily multi-run. Designed for the butt and fillet welding of standard austenitic stainless steels and higher alloyed stainless steels. The low Si addition during welding provides good mechanical properties, particularly good impact properties. Has also very good weldability in the 2G position. Works very well on DC current. Single and multi-layer welding of unlimited plate thickness. The slag is self lifting or easily detached leaving clean and flat welds with good penetration. For chemical and petrochemical plants, offshore constructions, pressure vessels, storage tanks, chemical tankers, power generation, nuclear, pulp and paper, civil constructions, transport industries, etc. A flux specially suitable for joining duplex 2205 stainless steels, e.g. in chemical tankers.

A4/A5 (%)	CVN (°C/J)
38	+20/100 -60/70
	-110/50 -196/30
28	+20/90 -60/50
	38

OK Flux 10.94 is a basic, chromium-compensating, agglomerated flux for the butt welding of stainless steels, primarily multi-run. Low Si addition during welding provides good mechanical properties. Works well on DC current. Single and multi-layer welding of unlimited plate thickness. The slag is self lifting or easily detached, leaving clean and flat welds.

For chemical and petrochemical plants, pressure vessels, storage tanks, chemical tankers, etc. Specially recommended for joining-super duplex 2507 stainless steels, e.g. in offshore applications.

	Classifications & approvals	rypical chemical composition all weld metal (%)					Typical mechanical properties all weld metal							
OK Flux 10.95		С	Si	Mn	Cr	Ni	Мо	N	Other	FN	R _{p 0.2} (MPa)	Rm (MPa)	A4/A5 (%)	CVN (°C/J)
Basicity index 1.7	EN 760: SA AF 2 Ni DC													
	With OK Autrod 308L													
Density ~ 1.0 kg/dm3	EN 12072: S 19 9 L AWS/SFA 5.9: ER308L	<0.03	0.6	1.4	20.0	11.0		0.06		3	400	540	40	+20/88 -60/80 -110/70
Grain size 0.25-1.6mm	With OK Autrod 308H													-196/50
Slag type Basic	EN 12072: S 19 9 H AWS/SFA 5.9: ER308H	<0.08	0.4	1.8	20.5	10.0		0.05		8	270	520	55	
	With OK Autrod 347													
Polarity DC+	EN 12072: S 19 9 Nb AWS/SFA 5.9: ER347	0.04	0.5	1.0	19.0	10.0			Nb=0.5	6	455	620	38	+20/100 -60/70 -110/50
Alloy transfer														-196/40
Cr compensating	With OK Autrod 316L													
	EN 12072: S 19 12 3 L AWS/SFA 5.9: ER316L	<0.03	0.6	1.4	18.5	11.5	2.7				390	565		-60/50 -110/75 -196/40

OK Flux 10.95 is basic, nickel alloying, agglomerated flux for submerged arc butt and fillet welding of austenitic stainless steels with AWS ER 300 type of wires. A flux specially suitable for applications requiring a lower ferrite content of max. 3-8%. Specially recommended for welding stainless steels when impact strength at low temperatures is required. Primarily for multi-run welding. Works very well on DC current. The weld beads produced with OK Flux 10.95 provide neat weld surfaces, very good welding properties and easy slag removal. For chemical and petrochemical plants, offshore constructions, pressure vessels, storage tanks, civil constructions, transport industries, etc.

The stainless steel cladding process

Stainless steel strip cladding is a flexible and economical way of depositing a corrosion-resistant, protective layer on a load-bearing mild or low-alloy steel.

Two cladding processes

Submerged arc welding (SAW) is the most frequently used process, but if higher productivity and restricted dilution rates are required, electroslag welding (ESW) is recommended. Both proceses are characterised by a high deposition rate and low dilution. They are suitable for surfacing flat and curved objects such as heat exchanger tube sheets or pressure vessels of different kinds.

SAW strip cladding

The well-known SAW method has been widely used with strip electrodes since the mid-1960s. A strip electrode, normally measuring 60 x 0.5 mm or 90 x 0.5 mm, is used as the (usually positive) electrode and an electric arc is formed between the strip and the workpiece. Flux is used to form a molten slag to protect the weld pool from the atmosphere and helps to form a smooth weld bead surface.

ESW strip cladding

Electroslag strip cladding, which is a further development of submerged arc strip cladding, has quickly established itself as a reliable high deposition rate process. ESW strip cladding relates to the resistance welding processes and is based on the ohmic resistance heating in a shallow layer of liquid electroconductive slag. The heat generated by the molten slag pool

melts the surface of the base material and the strip electrode end, which is dipping in the slag and the flux. The penetration is less for ESW than for SAW since there is no arc between the strip electrode and the parent material.

Fluxes for ESW strip cladding are high basic, with a high share of fluorides. To increase the cladding speed at corresponding high welding currents, it is necessary to use fluxes producing a slag of even higher electrical conductivity and lower viscosity.

ESW features

Compared to submerged arc strip cladding the electroslag cladding process shows the following features:

- Increased deposition rate by 60% to 80%.
- Only half of the dilution from the base material due to less penetration (about 10-15% dilution).
- Lower arc voltage (24–26 V).
- Higher amperage and current density (about 1000–1250 A with strips of 60 mm width, corresponding to 33–42 A/mm²).
 Specially developed fluxes for

high productivity purposes can be welded with amperage in excess of 2000 A which corresponds to a current density about 70 A/mm².

Increased welding speed
 (50%–200% higher), resulting in a

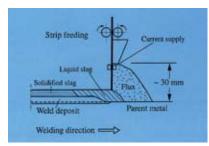


Figure 1.Principles of electroslag strip cladding.

higher area coverage in m²/h.

- Comparable heat input.
- Lower flux consumption (about 0.4-0.5 kg/kg strip).
- The solidification rate of the ESW weld metal is lower, improving the degasification and the resistance to porosity. Oxides can rise easier out of the molten pool to the surface; the overlay metal is cleaner from a metallurgical point of view and thus less sensitive to hot cracking and corrosion.

Facts about stainless steels

The large and steadily growing family of stainless steels can offer unique combinations of corrosion resistance and properties.

"Stainlessness"

"Stainless" is a term coined, early in the development of these steels for cutlery products. It was adopted as a generic name and, now, covers a wide range of steel types and grades for corrosion or oxidation resistant applications.

Stainless steels owe their corrosion resistance to the presence of a "passive", chromium-rich, oxide film that forms naturally on the surface. Although extremely thin and invisible, this protective film adheres firmly, and is chemically stable under conditions which provide sufficient oxygen to the surface. Furthermore, the protective oxide film is self-healing provided there is sufficient oxygen available. Therefore, even

when the steel is scratched, dented or cut, oxygen from the air immediately combines with the chromium to reform the protective layer. As an example, over a period of years, a stainless steel knife can literally be worn away by daily use and by being re-sharpened – but remains stainless.

Families of stainless steels

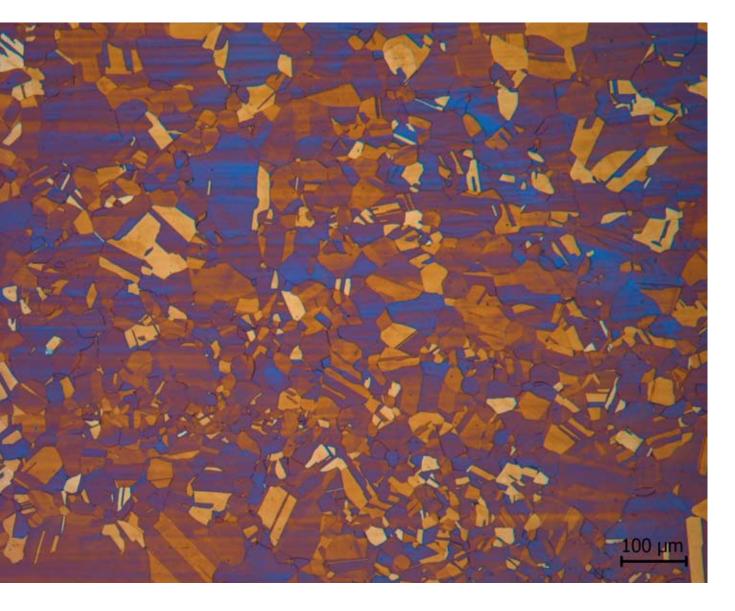
It is fortunate that corrosion resistance can be obtained in an iron-based system simply by the addition of chromium, since, by appropriate adjustment of other alloying elements such as nickel and carbon, a wide range of microstructures can be developed. Hence, stainless steels can offer a remarkable range of mechanical properties and corrosion resistance and are produced

Table 1. Main stainless steel types.

Stainless	Chemical compos	Amaliantiana			
Steel Type	Standard grades	Applications			
Ferritic	<0.08 C* 10.5-19 Cr 0-2.5 Ni 0-2.5 Mo + Ti, Nb	- increased Cr, Mo, - extra low C and N (ELI)	Household machines, automotive parts, chemical industry		
Martensitic	0.1-0.5 C 11-17 Cr 0-2.5 Ni 0-1 Mo	 increased Ni, Mo, C very low C for weldability, sometimes Nb, Ti, V precipitation hardening with e.g. Cu, Al 	Tools and machine parts, oil & gas industry, chemical industry, hydropower applications		
Austenitic	<0.08 C* (typically <0.03 C) 16-19 Cr 6-16 Ni 0-5 Mo	- increased Cr,Mo, Ni, - stabilisation with Nb, Ti, - sometimes Cu, N - improveded machinability with S	Equipment, vessels and pipelines within chemical, food, power, oil, gas, pulp and paper industries.		
Duplex (Austenitic- Ferritic)	<0.03 C* 18-30 Cr 1.5-8 Ni 1-5 Mn 0-4 Mo 0.1-0.3 N	- increased Cr, Mo, N - sometimes Cu, W	Oil, gas, chemical industry, pulp and paper industries, heat exchangers, chemical tankers.		

^{*} typically higher C-content in creep and heat resistant grades

in numerous grades. Properties such as corrosion resistance, formability, weldability, strength and cryogenic toughness are largely determined by the microstructure. Stainless steels are therefore typically classified into a number of general groups according to their microstructure. The major families of stainless steel are listed in table 1.


Super-austenitic or super-duplex grades have enhanced pitting and crevice corrosion resistance compared with the ordinary austenitic or duplex types. This is thanks to further additions of chromium, molybdenum and nitrogen. Super-martensitic steels have a very low carbon content improving weldability greatly. Heat and creep resistant versions of many steels are also available. These have

a slightly modified composition and when intended for creep applications in particular a somewhat higher carbon content.

Properties and weldability

Ferritic stainless steels

Ferritic stainless steels have properties similar to mild steels but with better corrosion resistance, due to the addition of typically 11-17% chromium. They are comparatively inexpensive due to their low Ni-content and have good resistance to chloride stress corrosion cracking. The more highly alloyed grades, in particular, show poor toughness at low temperatures and are prone to embrittlement at high temperatures.

Weldability of ferritic stainless steel varies depending upon the composition. Modern grades with controlled martensite formation and limited carbide precipitation in the heat affected zone (HAZ). are reasonably weldable. However, all ferritic stainless steels suffer from grain growth in the HAZ resulting in loss of toughness. Consequently, interpass temperature and heat input must be limited. Preheating is sometimes required to prevent cracking during cooling for thicknesses above 3 mm for grades forming some martensite.

Consumables for the welding of ferritic stainless steels can be ferritic with a composition matching the parent metal or austenitic. Ferritic stainless steels are resistant to corrosion in sulphur containing atmospheres. The use of austenitic consumables is not recommended for this kind of application.

Martensitic stainless steels

Martensitic grades can be hardened by quenching and tempering, like plain carbon steels. They have moderate corrosion resistance and contain, typically, 11-13% chromium with a higher carbon content than ferritic grades. Martensitic stainless steels are used because of their mechanical strength, hardness and corrosion resistance. The strength of precipitation hardening grades can be increased further through special heat treatments. The toughness of martensitic stainless steel is limited and decreases with increasing carbon content. However, martensitic-austenitic grades, alloyed with significant amounts of nickel, have improved toughness and weldability. Supermartensitic stainless steels with very low carbon content, improving corrosion resistance and weldability, have recently been introduced.

Weldability is comparatively poor, and becomes worse with increasing carbon content, as there is always a hard and brittle zone in the parent metal adjacent to the weld. Preheating, welding with a wellcontrolled minimum interpass temperature followed by cooling, tempering and finally slow cooling is therefore normally required. If this is ignored, there is a significant risk of cold cracking in the hard and brittle HAZ region. Martensitic-austenitic and supermartensitic grades require less or no preheating and PWHT.

Matching composition martensitic consumables are used when weld metal properties need to match those of the parent material. However, austenitic consumables are typically preferred as they decrease the risk of cracking. When complicated structures are to be welded a buttering technique can be used. The groove faces are then covered with austenitic filler metal and heat treated as necessary to restore HAZ toughness. The buttered layer is thick enough to ensure no structural change occurs in the parent metal when completing the joint.

Austenitic stainless steels

Austenitic stainless steels have a nickel content of at least 6% to stabilise the structure and provide ductility, a large range of service temperatures, non-magnetic properties and good weldability. This is the most widely used group of stainless steels found in numerous applications. A large number of steel grades have been developed starting from the classical base composition 18%Cr/8%Ni.

Some commonly used variants are those which contain Mo to provide improved pitting corrosion resistance, those with Nb or Ti to stabilise against Cr-carbide precipitation causing intergranular corrosion and higher strength N-alloyed grades. Corrosion resistance is very good to excellent, depending on alloying content and environment.

In particular the level of Cr-, Mo- and N-alloying has a large effect on corrosion resistance with the most highly alloyed grades usually termed superaustenitic. A further division into e.g. standard, stabilised, fully austenitic, nitrogen alloyed, heat resistant grades and steels with improved machinability is common.

Austenitic stainless steels have in most cases excellent weldability and any of the main welding processes can be applied. They are not hardenable, but excessive heat input and preheating should be avoided to minimise the risk of hot cracking, distortion and for non-stabilised grades with carbon levels above about 0.03% also to avoid sensitisation to intergranular corrosion. Precipitation of intermetallic phases can occur in the more highly alloyed grades.

Austenitic stainless steels are welded with consumables with a similar or over-alloyed chemical composition with respect to the parent metal. Over-alloying is required for the more highly alloyed grades to optimise corrosion resistance by compensating for segregation effects in the weld metal. Highly alloyed nickel-based consumables are generally used for superaustenitic steels.

The steels are normally supplied with a single-phase austenitic structure. However, during welding ferrite can form in the weld metal and in the HAZ. Ferrite can affect properties and weldability in a number of ways as described in more detail in "Ferrite in weld metals". On the positive side ferrite tends to prevent hot cracking, something which is more of a problem with fully austenitic stainless steels and weld metals. On the negative side ferrite can be selectively attacked in some environments and can easier than austenite transform into sigma phase at high temperatures. Filler metals for the welding of standard austenitic stainless steels are therefore generally designed to form some ferrite in the weld metal. In applications where a fully austenitic weld deposit is required hot cracking can be avoided by alloying the filler metal with Mn.

Duplex (Austenitic-Ferritic)

stainless steels

Duplex stainless steels have a mixed structure with approximately equal proportions of ferrite and austenite, hence the term "duplex". They are alloyed with a combination of nickel and nitrogen to produce a partially austenitic lattice structure and improve mechanical properties and corrosion resistance. There is a wide range of duplex grades all offering an attractive combination of high strength and good corrosion resistance. Having grown to a large family, the duplex stainless steels now range from the lean grades, that are cost efficient and compete with the standard austenitic grades, to the highly alloyed superduplex grades for more demanding applications

Generally, duplex stainless steels have good weldability and can be welded using a wide range of techniques. Welding consumables are of the duplex type but typically slightly different in composition compared to the corresponding steel grade. In particular they need to be higher in elements promoting austenite formation, usually Ni, to avoid excessively high weld metal ferrite contents that otherwise impair properties. Welding without filler metal is therefore usually not recommended. Preheat is not necessary but the heat input has to be within certain limits depending on grade. Too low a heat input leads to a high cooling rate and high ferrite levels. On the other hand, too high a heat input can result in precipitation of deleterious phases in particular in the highly alloyed superduplex grades. In both cases toughness and corrosion resistance will suffer.

Literature

EN 1011-3, 2000, Welding – Recommendations for welding of metallic materials – Part 3: Arc welding of stainless steels.

Corrosion

Stainless steels

A very thin layer of chromium-rich oxide film, which is formed spontaneously on the surface in the presence of oxygen, protects stainless steels against corrosion. However, stainless steels cannot be considered to be "indestructible". The passive state can be broken down under certain conditions and corrosion can result as briefly discussed below. It is therefore important to carefully select the appropriate grade for a particular application. Effects of welding and handling on corrosion resistance also have to be considered.

Uniform corrosion

This is a type corrosion that proceeds at more or less the same velocity over the entire surface. Attack by uniform corrosion occurs mainly in acids or in strongly alkaline solutions. The resistance against uniform corrosion is typically improved by increasing the content of Cr and Mo in the steel.

Intergranular corrosion

A localised attack at and adjacent to the grain boundaries is called intergranular corrosion. Stainless steels can become sensitive to intergranular corrosion when exposed to elevated temperatures (500-850°C). Local consumption of Cr at the grain boundaries by carbide precipitation then results in depleted regions with inferior corrosion resistance. Precipitation of chromium carbides can be prevented either by a low C-content or by adding stabilising elements like Nb or Ti.

Pitting corrosion

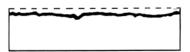
This is a type of localised corrosion, which is highly destructive, ultimately resulting in holes. Pitting attack in stainless steel is most common in neutral or acidic chloride containing environments. The resistance against pitting improves with increasing Cr-, Mo- and N-contents. A Pitting Resistance Equivalent, PREN,

is commonly used to qualitative compare the pitting resistance of different alloys:

PREN = %Cr + 3.3 %Mo + 16%N.

Care should be taken, though, when comparing steels and weld metals since the inevitable segregation of alloying elements occurring during solidification makes weld metals less resistant for comparable compositions.

Crevice corrosion


Crevice corrosion is a kind of localised corrosion,

which occurs, in narrow crevices under the

conditions as pitting. However, corrosion attacks initiates and propagates more easily in a crevice filled with a liquid, where the oxygen needed to maintain the passive layer quickly is consumed. Typical examples are under gasket surfaces, lap joints and under bolt and rivet heads. A special form of crevice corrosion is called deposit corrosion. This occurs under non-metallic deposits or coatings on the metal surface. Steels with good resistance to pitting corrosion also have good resistance to crevice corrosion.

Stress corrosion cracking

Stress corrosion cracking (SCC) is caused by the combined effect of tensile stresses and exposure to a corrosive environment. The metal surface can appear virtually unattacked while fine racks propagate through the entire thickness. In particular standard austenitic stainless steels are susceptible to SCC in solutions containing chloride. The risk goes up with increasing concentration, higher tensile stress and increasing temperature. SCC is, however, seldom found in solutions below 60°C. Ferritic and duplex stainless steels are generally very resistant to SCC and increased Ni- and Mo-contents improve the resistance of austenitic grades.


Uniform corrosion

Intergranular corrosion

Pitting corrosion

Crevice corrosion

Stress corrosion cracking

Ferrite in weld metals

Ferrite is obviously a major constituent in ferritic and duplex weld metals. Some ferrite can often also be found in martensitic and in particular in a majority of austenitic weld metals.

The weld metal ferrite content can influence a wide range of properties, including corrosion resistance, toughness, long term high temperature stability, resistance to hot cracking etc. Austenite is tougher and more ductile than ferrite, especially at low temperatures, it is not ferromagnetic and

less likely to form brittle phases at elevated temperatures. On the other hand, ferrite is highly resistant to stress corrosion cracking, it is ferromagnetic and usually has a higher yield strength than austenite.

An important aspect of ferrite in weld metals is related to the solidification behaviour. It is widely accepted that welds which initially solidify as austenite are more susceptible to hot cracking than those that initially solidify as ferrite. This is largely due to the greater solubility of ferrite for alloying and impurity elements that promote hot cracking. Most welds, including standard austenitic types such as 308 and 316, are therefore designed to solidify primarily as ferrite to improve hot cracking resistance. This means that the austenite is mainly formed when the initial ferrite is transformed during cooling. Consequently, the ferrite content at room temperature is not the same as during solidification and will depend on cooling rate.

A+M+F Ferrite М 6 8 10 12 14 16 18 20 22 24 26 28 30 32 34 36 38 40

The Schaeffler Diagram

30 28

26

24

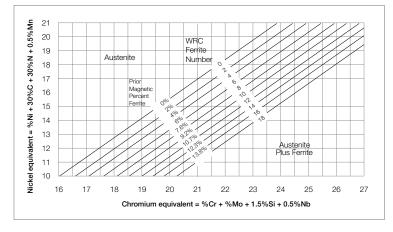
22

20 18

16

14

12


10 Nickel 8

6

4

2

equivalent = %Ni + 30%C + 0.5%Mn

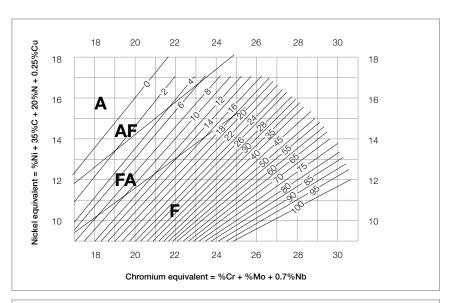
Chromium equivalent = %Cr + %Mo + 1.5%Si + 0.5%Nb

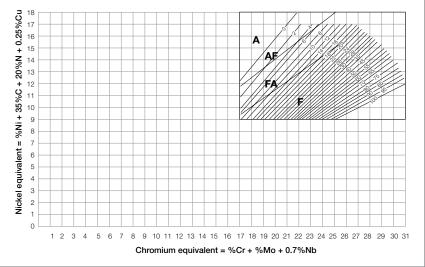
Austenite

The DeLong Diagram

Measurement and prediction of ferrite content

Ferrite determination is frequently required for weld procedure qualification and also commonly specified for filler metals. The ferrite content can either be measured by point counting techniques, magnetic methods or it can be predicted based on the chemical composition of the weld metal.


Measuring the ferrite content


There are two types of methods for measuring the ferrite content of weld metals and parent materials: (a) point counting techniques and (b) magnetic methods.

Point counting gives a ferrite content in ferrite percentage (sometimes denominated FP). Magnetic methods takes advantage of the

different magnetic properties of ferrite and austenite with ferrite being ferro-magnetic, whilst austenite is not. A Ferrite Number (FN) is assigned to a given level of magnetic attraction, defined from primary standards using a magnetic beam balance known commercially as a MagneGage instrument. It is important to realise that there is no unique correlation of Ferrite Number with ferrite percentage since the FN depends not only on the ferrite percentage but also on composition. The Ferrite Number is approximately equivalent to the percentage ferrite at low values but will be larger than the percentage ferrite at higher values.

- a) Point counting involves direct microscopic measurement on suitably prepared specimens and gives the ferrite content in ferrite percentage. This is a destructive method since a polished and etched metallographic section is required. It cannot therefore readily be used on completed welded fabrications, but can be used on representative welding procedure samples. The main advantage of the point counting technique is that it can be applied to all microstructures, including the narrow HAZ. Point counting is, however, relatively slow and labour intensive. Comparative studies have also shown a great deal of scatter between different laboratories and different operators.
- b) Instruments for magnetic measurements of ferrite content in Ferrite Number (FN) are based on one of two principles. They make either use of a permanent magnet and measure tearing-off force (e.g., a MagneGage) or utilise eddy current to measure magnetic properties (e.g., Fisher Feritscope). Both methods are in principle non-destructive although use of the

the WRC-1992 diagram (see Figures Z and W

MagneGage requires a flat polished specimen and is less suitable for field application. However, hand held equipment based on eddy current techniques is available and can be used on welds with a minimum of surface preparation. All magnetic methods require the use of appropriate primary standards (permanent magnet principle) or secondary standards (eddy current techniques) in order to calibrate the equipment and enable accurate measurements of FN to be made.

Predicting ferrite content

Prediction of weld metal ferrite content can be carried out based on the chemical composition of the weld metal. A number of predictive diagrams are available with the newer diagrams making predictions

in terms of Ferrite Number (FN) instead of ferrite percentage. The Schaeffler Diagram (see Figure X op p64), now more than fifty years old, is well out-dated for ferrite prediction in stainless steel welds and was followed by the DeLong Diagram (see Figure Y op p64) recognising the importance of nitrogen content. The today most widely used predictive diagram, and the one recognised by the ASME code since 1995 is the WRC-1992 diagram (see Figures Z and W op p65). Other systems, including some based on Neural Networks are also available. All these methods depend on an accurate chemical analysis of the actual weld deposit. When certified compositions of the welding consumable are used, it must also be recognised that these will not necessarily be the same as the deposit composition, depending on dilution by parent materials and welding parameters.

Comments

When specifying, measuring or predicting ferrite contents one should be aware of some basic facts:

 The ferrite content of real weldments is affected by a number of factors the most important typically being filler composition, dilution with parent material, nitrogen

- pickup and cooling rate.
- Ferrite is not homogeneously distributed within a weld. For example, the ferrite content is generally lower at the interface between two weld passes since heating by deposition of the subsequent adjacent pass causes some ferrite to transform to austenite.
- To require a ferrite range after post-weld heat treatment is in general irrelevant as ferrite transforms to other phases during PWHT.
- Measuring and predicting ferrite content is not an exact science:
 - It is unrealistic to require both a measured and a calculated FN for a given weld metal to be within a narrow range.
 - Chemical analysis includes variability and even the WRC-92 Diagram has a possibility of error on the order of ± 4 FN in the 0-18 FN range.
 - A study involving 17 laboratories
 in 8 countries organised within the
 International Institute of Welding
 indicated that scatter of about ± 20 %
 of the measured value should be
 expected between different laboratories
 when testing real welds.

Literature

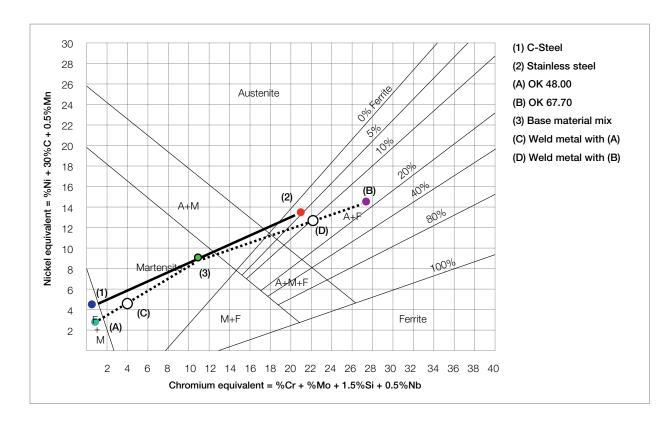
- Schaeffler A L. Constitution diagram for stainless steel weld metal, Metal Progress, 1949, vol. 56, No. 11, pp. 680 - 680B.
- DeLong W T. Ferrite in austenitic stainless steel weld metal, Welding Journal, 1974, vol.53, No. 7, pp. 273-s - 286-s.
- Kotecki D J and Siewert T A. WRC-1992 constitution diagram for stainless steel weld metals: a modification of the WRC-1988 diagram, Welding Journal, 1992, vol. 71, No. 5, pp. 171-s - 178-s.
- Lefebvre J.: Guidance on specifications of ferrite in stainless steel weld metal, Welding in the World, 1993, vol. 31, No. 6, pp. 390-407.
- ASME Boiler and Pressure Vessel Code, 1995
 Edition, Section III, Division I, Figure NB-2433.
 1-1, The American Society of Mechanical
 Engineers.
- AWS A4.2M/A4.2:1997. Standard procedures for calibrating magnetic instruments to measure the delta ferrite content of austenitic and duplex ferritic-austenitic stainless steel weld metal, American Welding Society.
- Kotecki D.J.: FN measurement Round Robin using shop and field instruments after calibration by secondary standards - Final Summary Report, Welding in the World, July-August 1999, vol. 43, No. 4, pp. 91-99.
- ISO 8249: 2000, Welding Determination of

- Ferrite Number (FN) in austenitic and duplex ferritic-austenitic Cr-Ni stainless steel weld metals, ISO, Geneva, Switzerland.
- ASTM E562-02. Standard Test Method for Determining Volume Fraction by Systematic Manual Point Count.
- ISO 9042: 2002. Steels Manual point counting method for statistically estimating the volume fraction of a constituent with a point grid.
- ISO TR 22824: 2003, Welding consumables –
 Predicted and measured FN in specifications
 A position statement of the experts of IIW
 Commission IX, ISO, Geneva, Switzerland.
- Farrar J.C.M., The measurement of Ferrite
 Number (FN) in real weldments, Welding in the
 World, November-December 2005, vol. 49,
 No. 5/6, pp. 13-21.

Joining of Dissimilar Steels

Different types of stainless steels can normally be welded to one another without difficulty. It is, however, essential that a consumable with at least the same mechanical strength and corrosion resistance as the poorest of the base materials is used and that the recommendations for welding these are followed.

Stainless steels can also be welded to mild or low-alloy steels with excellent results if the steel has a reasonable weldability and if certain straightforward guidelines for the avoidance of cracking are followed. The same basic metallurgical considerations apply also to cladding of mild or low-alloy steels with a stainless layer as well as welding of stainless steel/ mild or low-alloy steel compound material.


The main concern during welding is to avoid cracking in the weld metal and in the base material heat affected zone (HAZ). Cracking can be either hydrogen assisted cracking or

hot cracking depending on base and filler metal and on the welding procedure.

Weld metal considerations

The dilution of the filler metal by the base material must be taken into account to avoid the formation of hard and brittle or hot cracking susceptible structures. A mild steel filler metal will result in a highly alloyed brittle martensitic microstructure when deposited on a stainless steel. Using a standard stainless filler metal will usually result in the same unfavourable microstructure when welding on a mild steel. In both cases the hard and brittle regions of the welds are very likely to show extensive cracking.

There are three main approaches to produce sound crack resistant dissimilar welds between stainless and mild or low-alloy steels. Typically the first approach is preferred. The most common approach is to aim for a weld metal composition giving an austenitic

structure with some ferrite. As discussed in the "Ferrite in weld metals" section this will produce a very crack resistant and ductile weld. Typically overalloyed consumables of the (in wt.%) 23Cr 12Ni (with or without Mo) and 29Cr 9Ni types are used. A duplex filler can in most cases also be used with good result.

A similar but somewhat different approach is to use fillers depositing a more or less fully austenitic weld metal. In this case alloying with relatively high levels of Mn is needed to ensure crack resistance. A common type of filler is 18Cr 8Ni 6Mn.

Ni-base fillers should be used for service temperatures above approximately 350-400°C to minimise carbon migration into the weld.

A diagramme such as the Schaeffler Diagram or the more recent WRC-1992 Diagram can be used to predict the microstructure of the weld metal. The WRC-1992 Diagram is likely to give a more precise prediction of weld metal ferrite content but the Schaeffler Diagram has the advantage of showing the structure for any steel weld metal composition. An example is presented in the figure on page 86 illustrating the joining of mild steel and 18Cr 12Ni 3Mo type stainless steel.

Example

Prediction of weld metal microstructure of a dissimilar joint between a stainless steel (1: 18Cr 12 3Mo) and a mild steel (2) welded with either an unalloyed consumable (A: OK 48.00) or an overalloyed stainless electrode (B: OK 67.70).

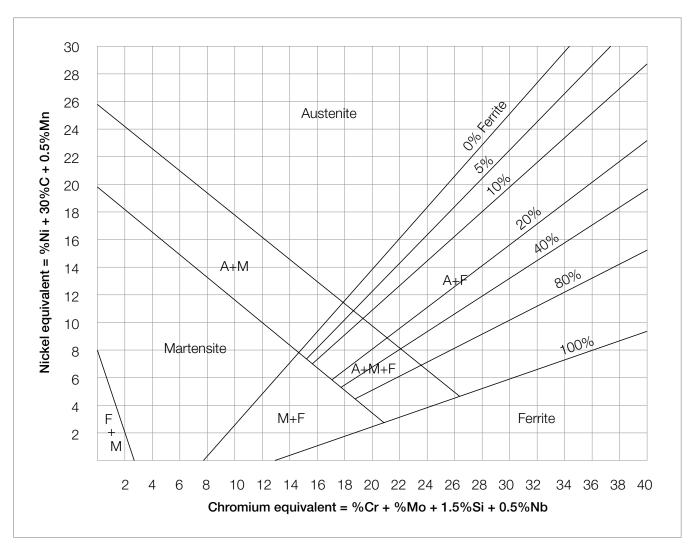
Step1: Calculate Nickel- and Chromiumequivalents from steel and consumable compositions and plot these in the diagram.

Step 2: Connect the two steel compositions with a line.

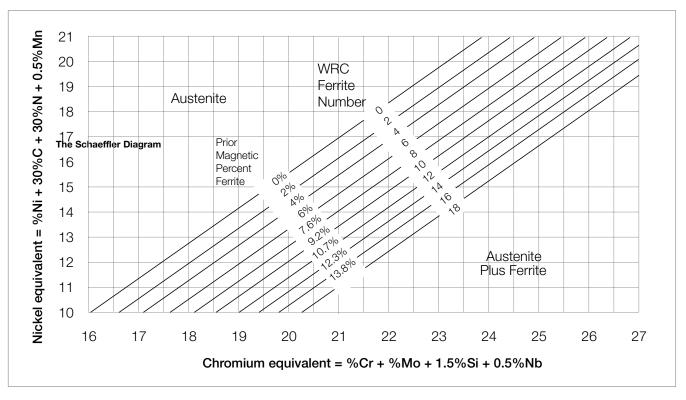
Step 3: Assume that equal amounts of the base materials will be fused. Mark the position on the line halfway between the two steel compositions (3).

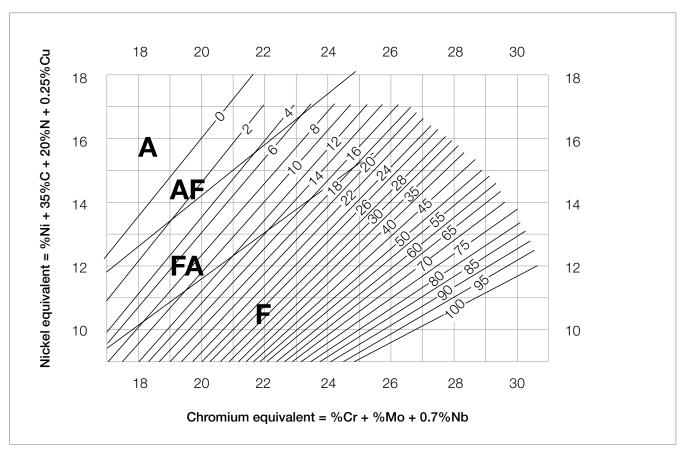
Step 4: Connect the halfway point and

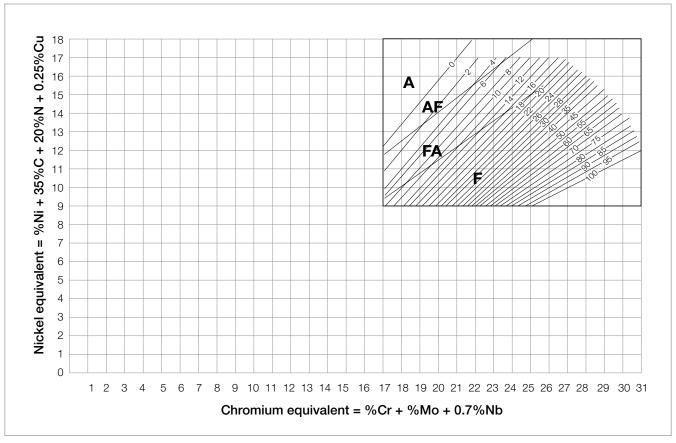
the position of the consumable compositions of interest with lines.


Step 5: The weld metal composition is given by a point located X% of the distance between the halfway point (see step 3) and the consumable composition point. X is the assumed dilution which is typically 25-40 % for MMA, 15-40% for MIG /MAG, 25-100% for TIG and 20-50% for SAW. In this example the dilution level is assumed to be 30%.

The overalloyed stainless consumable will, as shown by the example, give a desired ductile and crack resistant austenitic weld metal with some ferrite (point D). Using an unalloyed consumable will however produce a martensitic weld metal (point C) which is harder, brittle and likely to crack.


Parent metal HAZ considerations


When joining dissimilar steels it is important not only to select a consumable giving the desired weld metal structure when diluted by parent materials. The weldability of the steels must also be considered. A simple, although often overly conservative, guide is to use the same preheat, interpass temperature, post-weld heat treatment (PWHT) etc that would be used when welding the steels to themselves. However, a lower preheat can often be tolerated when an austenitic stainless or Ni-base filler is used.


A PWHT in the range 500-700°C, that is commonly used for mild or low-alloy steels, can cause sensitisation (see Corrosion Types) of a stainless steel or weld metal, in particular for unstabilised grades with a high carbon content. PWHT might also cause embrittlement due to precipitation of intermetallic phases. The effect is more pronounced for weld metals with higher ferrite contents. A restriction to maximum 8-10 FN is therefore common, for example in cladding of low-alloy steels, when a PWHT is required.

The Schaeffler Diagram

the WRC-1992 diagram (see Figures Z and W

Storage and handling

Storage

All covered electrodes are sensitive to moisture pickup, but the rate will be very slow when stored under the correct climatic conditions:

5 - 15 °C: max. 60% RH
 15 - 25 °C: max. 50% RH
 >25 °C: max. 40% RH

At low temperatures, maintain low relative humidity by keeping the storage temperature at least 10°C above the outside temperature. At high temperatures, maintain low relative humidity by air dehumidification. Ensure cold packs reach ambient temperature before opening. The plastic capsule provides some protection, although moisture permeates and is absorbed at a very slow rate. High moisture in the coating of stainless steel MMA electrodes can cause porosity. When uncertain about the moisture content, electrodes should be re-dried according to instructions. Use quivers for intermediate protection.

Handling VacPac™ electrodes

VacPac electrodes are to be stored below 50 °C and require no re-drying before use, provided that the package is undamaged. In order to protect the vacuum foil, do not use a knife or any other sharp object to open the outer package.

Before using VacPac™ electrodes. If the vacuum has been lost, then re-dry the electrodes before use. Cut open the protective foil at the indicated end. Do not take out more than one electrode at a time, while leaving the foil in place. Discard or re-dry electrodes exposed to the atmosphere in an opened Vac- Pac™ for more than 12 hours*.

Recommendations for solid and cored wires

Solid and cored wires should be stored in conditions which prevent the accelerated deterioration of products or packaging. All wires should avoid direct contact with water or moisture. Wires must be stored in dry conditions. The relative humidity and temperature should be monitored and the temperature should not fall below the dew point. To avoid condensation, the wires should be kept in

 * Valid at standard AWS test conditions of 26.7 $^{\circ}\text{C}$ and 80% RH.

the original packaging and, if necessary, left to warm up to at least the ambient temperature before opening the package. Other hydrogen-containing substances, such as oil, grease and corrosion, or hygroscopic substances must also be avoided. Storage must be adequate to prevent damage.

Recommendations for OK Flux

ESAB fluxes, agglomerated as well as fused, have a guaranteed low moisture content from production. Before transport, each pallet is shrink wrapped in plastic foil, to maintain the as-manufactured moisture content for as long as possible. Flux should never be exposed to direct wetness such as rain or snow.

Storage

Unopened flux bags must be kept under controlled storage condition as follows:

- Temperature: 20 +/- 10°C
- Relative humidity: not exceeding 60 %.
- Fluxes shall not be stored longer than 3 years.
- Remaining flux from unprotected hoppers must be placed in a drying cabinet or heated flux hopper at a temperature of 150 +/- 25°C.
- Remaining flux from open bags should be placed at a temperature of 150 +/- 25°C.

Recycling

- Moisture and oil must be removed from the pressure air used in the recycling system.
- New flux should be added in proportions of at least one part of new flux to three parts recycled flux.
- Foreign material such as millscale, dross etc. should be removed by, for instance, sieving.

Redrying

Redrying is needed when the flux has picked-up moisture during storage, handling or use or when required by material specification. Redrying shall be performed on shallow plates with a flux height not

- exceeding 50 mm, as follows:
- Agglomerated fluxes: 2-4h/300 +/- 25°C.
- Fused fluxes: 2-4h/200 +/- 50°C.

Redried flux, not immediately used, must be kept at 150 +/- 25°C before use.

Global manufacturing

OK Flux is an ESAB AB trademark and consequently the OK Flux range is fully globally managed, together with OK Autrod and OK Tubrod solid and cored SAW wires.

All ESAB plants manufacturing OK products do so based on centrally submitted specifications in terms of:

- Raw materials
- Testing methods
- Product release inspection
- Manufacturing process, process parameters and limits
- Product packaging and marking requirements
- Product 3rd party international approvals
- Product Lifecycle Management (PLM)
- Quality Management System
- ISO 14001
- OHSAS 18001

With all these measures in place, ESAB is confident that OK products have identical properties regardless of manufacturing location, worldwide.

Several OK products are made in more than one location to meet local geographical demands. Equally important, this is part of ESAB's supply contingency plan, a global effort to consistently meet the supply chain needs of our customers.

It is with this in mind that ESAB is able to supply a market from different factories, in order to provide the best possible delivery service.

26. Production facility certificates

World leader in welding and cutting technology and systems.

ESAB operates at the forefront of welding and cutting technology. Over one hundred years of continuous improvement in products and processes enables us to meet the challenges of technological advance in every sector in which ESAB operates.

Quality and environment standards

Quality, the environment and safety are three key areas of focus. ESAB is one of few international companies to have achieved the ISO 14001 and OHSAS 18001 standards in Environmental, Health & Safety Management Systems across all our global manufacturing facilities.

At ESAB, quality is an ongoing process that is at the heart of all our production processes and facilities worldwide.

Multinational manufacturing, local representation and an international network of independent distributors brings the benefits of ESAB quality and unrivalled expertise in materials and processes within reach of all our customers, wherever they are located.

^{*} Includes manufacturing facilities of ESAB North America. A wholly owned subsidiary of Anderson Group Inc.

Global solutions for local customers - everywhere.

ESAB AB

Box 8004, SE-402 77 Göteborg, Sweden. Phone: +46 31 50 90 00. Fax: +46 31 50 93 90.

E-mail: info@esab.se www.esab.com