#### Standard Form v. Vertex Form

The **Standard Form** of a quadratic equation is:  $y = ax^2 + bx + c$ .

The **Vertex Form** of a quadratic equation is  $y = a(x - h)^2 + k$  where (h, k) represents the vertex of an equation and a is the same a value used in the Standard Form equation.

**Converting from Standard Form to Vertex Form:** Determine the vertex (h, k) of your original Standard Form equation and substitute the a, h, and k into the Vertex Form of the equation.

You can find the vertex of an equation by finding the axis of symmetry  $x = \frac{-b}{2a}$  and substituting this x value into the original equation to find the y coordinate of the vertex.

**Example:** Convert  $y = 2x^2 - 4x + 5$  to Vertex Form.

1) Find the vertex

$$x = \frac{-b}{2a} = \frac{-(-4)}{2(2)} = \frac{4}{4} = 1$$
$$y = 2(1)^2 - 4(1) + 5 = 2 - 4 + 5 = 3$$

Vertex: (1, 3)

**2)** Substitute a, h, and k into  $y = a(x - h)^2 + k$ 

$$y = a(x - h)^2 + k$$

$$y = 2(x - 1)^2 + 3$$

Converting from Vertex Form to Standard Form: Use the FOIL Method to find the product of the squared polynomial. Simplify using order of operations and arrange in descending order of power.

**Example:** Convert  $y = 2(x-1)^2 + 3$  to Standard Form.

1) FOIL Method

$$y = 2(x - 1)^2 + 3$$

2) Simplify using order of operations

$$y = 2(x^{2} - 2x + 1) + 3$$

$$y = 2x^{2} - 4x + 2 + 3$$

$$y = 2x^{2} - 4x + 5$$



The vertex form of a quadratic function is given by  $f(x) = a(x - h)^2 + k$ , where (h, k) is the vertex of the parabola.





Definition:

The vertex form of a quadratic function  $f(x) = a(x - h)^2 + k$ , where (h, k) is the vertex of the parabola.

### **Guided Practice:**

Convert the following Standard Form equations into Vertex Form.

**1.** 
$$y = x^2 - 4x + 6$$

**2.** 
$$y = 4x^2 + 8x - 5$$

**2.** 
$$y = 4x^2 + 8x - 5$$
 \*3.  $y = 2x^2 - 2x + 7$ 

**4.** 
$$y = -x^2 + 6x + 2$$

**5.** 
$$y = -2x^2 + 4x - 5$$

**5.** 
$$y = -2x^2 + 4x - 5$$
 **6.**  $y = 5x^2 + 10x - 12$ 

**7.** 
$$y = 2x^2 + 8x - 7$$

**8.** 
$$y = x^2 - 8x + 15$$

**8.** 
$$y = x^2 - 8x + 15$$
 **\*9.**  $y = 0.5x^2 + 2x + 7$ 

### **Guided Practice:**

Convert the following Vertex Form equations into Standard Form.

**1.** 
$$y = 3(x-4)^2 + 5$$

\***2.** 
$$y = -(x+5)^2 - 3$$
 **3.**  $y = (x-2)^2 - 7$ 

3. 
$$v = (x-2)^2 - 7$$

\***4.** 
$$y = 0.5(x+6)^2 - 11$$

**5.** 
$$y = -2(x+1)^2 + 2$$
 **6.**  $y = (x-4)^2 - 20$ 

3

**6.** 
$$y = (x-4)^2 - 20$$

## **Independent Practice:**

Convert the following Standard Form equations into Vertex Form.

**1.** 
$$y = 3x^2 - 6x + 5$$

**2.** 
$$y = x^2 + 10x - 8$$

**2.** 
$$y = x^2 + 10x - 8$$
 \*3.  $y = -x^2 + 2x + 6$ 

**4.** 
$$y = x^2 + 2x + 11$$

**5.** 
$$y = -2x^2 + 8x + 1$$
 **6.**  $y = 3x^2 + 12x - 13$ 

**6.** 
$$y = 3x^2 + 12x - 13$$

**7.** 
$$y = -x^2 - 6x + 1$$

**8.** 
$$y = -5x^2 - 10x + 12$$
 **\*9.**  $y = 0.5x^2 - 4x + 2$ 

\*9. 
$$y = 0.5x^2 - 4x + 2$$

# **Independent Practice:**

Convert the following Vertex Form equations into Standard Form.

**1.** 
$$y = -3(x-1)^2 + 6$$

\***2.** 
$$y = (x-2)^2 + 3$$

\***2.** 
$$y = (x-2)^2 + 3$$
 **3.**  $y = 2(x+7)^2 - 12$ 

\***4.** 
$$y = 0.5(x+8)^2 - 1$$

**5.** 
$$y = -(x+4)^2 + 7$$
 **6.**  $y = (x-9)^2 + 10$ 

4

**6.** 
$$y = (x - 9)^2 + 10$$

# 9.3 Graphing Quadratic Functions ~ Tech Lab

Let us look at the graph of  $y = x^2$ 

We can analyze the "parent function" for special points and behavior.

$$y = x^2$$

Domain:

Range:

Y-Intercept:

Vertex:

X-Intercepts (Zeros/Roots/Solutions):

Increasing/Decreasing:





In these notes, we will learn a new technique for graphing a function- shifting it up, down, left, or right. So we can eventually graph any function knowing given parent shape.

**Exploration of Transformations - Vertical Shifts** 

- 1) Graph on your calculator in  $Y_1$ .
  - a. Sketch a graph of the function  $y = x^2$
  - b. What is the vertex of the graph? \_\_\_\_\_



- 2) Graph  $y = x^2 + 2$  on your calculator in Y<sub>2</sub>.
  - a. Sketch a graph of the function.
  - b. What is the vertex of the graph? \_\_\_\_\_
  - c. How has the graph moved? (up or down) \_\_\_\_\_



- 3) Clear your previous  $Y_2$  and graph  $y = x^2 5$  on your calculator in  $Y_2$ .
  - a. Sketch a graph of the function and the function.
  - b. What is the vertex of the graph? \_\_\_\_\_
  - c. How has the graph moved? (up or down)



#### Rule:

Given that  $y = a(x - h)^2 + k$  is the symbolic form of a quadratic function, how does changing value of k change the graph of the function?

If **k** is **positive**, what direction will the function move? If **k** is **negative**, what direction will it move?

### **Exploration of Transformations – Horizontal Shifts**

- 1) Graph  $y = x^2$  on your calculator in  $Y_1$ .
  - a. Sketch a graph of the function.
  - b. What is the vertex of the graph?



- 2) Graph  $y = (x 2)^2$  on your calculator in  $Y_2$ .
  - a. Sketch a graph of the function and the function.
  - b. What is the vertex of the graph? \_\_\_\_\_
  - c. How has the graph moved? (left or right) \_\_\_\_\_



- 3) Graph  $y = (x + 5)^2$  on your calculator in  $Y_2$ .
  - a. Sketch a graph of the function.
  - b. What is the vertex of the graph? \_\_\_\_\_
  - c. How has the graph moved? (left or right)



#### Rule:

Given that  $y = a(x - h)^2 + k$  is the symbolic form of a quadratic function, how does changing value of h change the graph of the function?

When we have (x - h) what direction does the graph move?

When we have (x + h) what direction does the graph move?

## **Exploration of Transformations – Vertical Stretch or Shrink / Narrower or Wider Graphs**

- 1) Graph  $y = x^2$  on your calculator in  $Y_1$ .
  - a. What direction does the graph open? \_\_\_\_\_
  - b. What is the vertex of the graph? \_\_\_\_\_
  - c. Fill in the table to the right. These coordinates are the basic ordered pairs of the absolute value function.

| Х  | У |
|----|---|
| -2 |   |
| -1 |   |
| 0  |   |
| 1  |   |
| 2  |   |

- 2) Graph  $y = 2x^2$  on your calculator in Y<sub>2</sub>.
  - a. What direction does the graph open? \_\_\_\_\_
  - b. What is the vertex of the graph? \_\_\_\_\_
  - c. Fill in the table to the right. How do these y-coordinates compare with the y-coordinates in question #1?Is the graph wider or narrower?

| X  | У |
|----|---|
| -2 |   |
| -1 |   |
| 0  |   |
| 1  |   |
| 2  |   |

- 3) Graph  $y = \frac{1}{2}x^2$  on your calculator in Y<sub>2</sub>.
  - a. What direction does the graph open? \_\_\_\_\_
  - b. What is the vertex of the graph? \_\_\_\_\_
  - c. Fill in the table to the right. How do these y-coordinates compare with the y-coordinates in question #1?Is the graph wider or narrower?

| X  | У |
|----|---|
| -2 |   |
| -1 |   |
| 0  |   |
| 1  |   |
| 2  |   |

- 4) Graph  $y = -2x^2$  on your calculator in Y<sub>2</sub>.
  - a. Sketch the graph of the function and the function in #1.
  - b. How has the graph of the function changed?



#### Rule:

Given that  $y = a(x-h)^2 + k$  is the symbolic form of the vertex function, how does changing value of **a** change the graph of the function?

If **a** is positive, the graph \_\_\_\_\_

If 0< **a**<1, the graph is \_\_\_\_\_

If **a** is negative, the graph \_\_\_\_\_

If **a**>1, the graph is \_\_\_\_\_

# **2.5a** Exploration of ALL Transformations (Homework)

- 1) Graph  $y = x^2$  on your calculator in  $Y_1$ .
- 2) Graph  $y = (x-3)^2 4$  on your calculator in  $Y_2$ .
  - a. What direction does the graph open?
  - b. How does the graph move? (left/right, up/down) \_\_\_\_\_
  - c. Does the graph become narrower or wider? \_\_\_\_\_
  - d. What is the vertex of the graph? \_\_\_\_\_
- 3) Graph  $y = -\frac{1}{2}(x-2)^2 3$  on your calculator in Y<sub>2</sub>.
  - a. What direction does the graph open? \_\_\_\_\_
  - b. How does the graph move? (left/right, up/down) \_\_\_\_\_
  - c. Does the graph become narrower or wider? \_\_\_\_\_
  - d. What is the vertex of the graph? \_\_\_\_\_
- 4) Graph  $y = -2(x+5)^2 + 8$  your calculator in Y<sub>2</sub>.
  - a. What direction does the graph open? \_\_\_\_\_
  - b. How does the graph move? (left/right, up/down) \_\_\_\_\_
  - c. Does the graph become narrower or wider? \_\_\_\_\_
  - d. What is the vertex of the graph? \_\_\_\_\_
- 5) Graph  $y = (x+6)^2 4$  on your calculator in  $Y_2$ .
  - a. What direction does the graph open? \_\_\_\_\_
  - b. How does the graph move? (left/right, up/down) \_\_\_\_\_
  - c. Does the graph become narrower or wider?
  - d. What is the vertex of the graph? \_\_\_\_\_

| Review:  |                                                                                         |
|----------|-----------------------------------------------------------------------------------------|
| Given th | e vertex function is $y = a(x-h)^2 + k$                                                 |
| 6)       | If a>0, does the graph open up or down?                                                 |
| 7)       | If a<0, does the graph open up or down?                                                 |
| 8)       | If $a > 1$ , does the graph become narrower or wider?                                   |
| 9)       | If 0 <a<1, become="" does="" graph="" narrower="" or="" td="" the="" wider?<=""></a<1,> |
| 10)      | How does changing value of <b>k</b> change the graph of the function?                   |
| 11)      | How does changing value of <b>h</b> change the graph of the function?                   |

#### **Translations:**

A **translation** is a change in the position of a figure either up, down, left, right, or diagonal. Adding or subtracting constants in the equations of functions translates the graphs of the functions.

When written in vertex form: (h, k) is the vertex of the parabola, and x = h is the axis of symmetry.

The graph of  $g(x) = x^2 + k$  translates the graph of  $f(x) = x^2$  vertically.

If k > 0, the graph of  $f(x) = x^2$  is translated k units up.

If k < 0, the graph of  $f(x) = x^2$  is translated |k| units down.

The graph of  $g(x) = (x - h)^2$  is the graph of  $f(x) = x^2$  translated horizontally.

If h > 0, the graph of  $f(x) = x^2$  is translated h units to the right.

If h < 0, the graph of  $f(x) = x^2$  is translated |h| units to the left.

Notice that the h value is subtracted in this form, and that the k value is added.

If the equation is  $y = 2(x-1)^2 + 5$ , the value of h is 1, and k is 5.

If the equation is  $y = 3(x + 4)^2 - 6$ , the value of h is -4, and k is -6.

## **Examples:**

Describe how the graph of each function is related to the graph of  $f(x) = x^2$ .

a. 
$$g(x) = x^2 + 4$$



The value of k is 4, and 4 > 0. Therefore, the graph of  $g(x) = x^2 + 4$  is a translation of the graph of  $f(x) = x^2$  up 4 units

**b.** 
$$g(x) = (x + 3)^2$$



The value of h is -3, and -3 < 0. Thus, the graph of  $g(x) = (x + 3)^2$  is a translation of the graph of  $f(x) = x^2$  to the left 3 units.

#### **Dilations and Reflections:**

A **dilation** is a transformation that makes the graph narrower or wider than the parent graph. A **reflection** flips a figure over the *x*- or *y*-axis.

The graph of  $f(x) = ax^2$  stretches or compresses the graph of  $f(x) = x^2$ . If |a| > 1, the graph of  $f(x) = x^2$  is stretched vertically. If 0 < |a| < 1, the graph of  $f(x) = x^2$  is compressed vertically.



The graph of the function -f(x) flips the graph of  $f(x) = x^2$  across the x-axis. The graph of the function f(-x) flips the graph of  $f(x) = x^2$  across the y-axis.



Example: Describe how the graph of each function is related to the graph of  $f(x) = x^2$ .

a. 
$$g(x) = 2x^2$$

The function can be written as  $f(x) = ax^2$  where a = 2. Because |a| > 1, the graph of  $y = 2x^2$  is the graph of  $y = x^2$  that is stretched vertically.



b. 
$$g(x) = -\frac{1}{2}x^2 - 3$$

The negative sign causes a reflection across the *x*-axis.

Then a dilation occurs in which  $a = \frac{1}{2}$  and a translation in which k = -3. So the graph of  $g(x) = -\frac{1}{2}x^2 - 3$  is reflected across the *x*-axis, dilated wider than the graph of  $f(x) = x^2$ , and translated down 3 units.



### **Guided Practice:**

Describe how the graph of each function is related to the graph of  $f(x) = x^2$ . Also draw a sketch to illustrate the translation.

1. 
$$g(x) = x^2 + 1$$

**2.** 
$$g(x) = (x - 6)^2$$

**3.** 
$$g(x) = (x + 1)^2$$

**4.** 
$$g(x) = 20 + x^2$$

**5.** 
$$g(x) = (-2 + x)^2$$

**6.** 
$$g(x) = -\frac{1}{2} + x^2$$

7. 
$$g(x) = x^2 + \frac{8}{9}$$

**8.** 
$$g(x) = x^2 - 0.3$$

**9.** 
$$g(x) = (x + 4)^2$$

# **Independent Practice:**

Describe how the graph of each function is related to the graph of  $f(x) = x^2$ .

**1.** 
$$g(x) = -5x^2$$

**2.** 
$$g(x) = -(x+1)^2$$

3. 
$$g(x) = -\frac{1}{4}x^2 - 1$$

**4.** 
$$g(x) = (x + 10)^2$$

\*\***5.** 
$$g(x) = -\frac{2}{5} + x^2$$

\***6.** 
$$g(x) = 9 - x^2$$

7. 
$$g(x) = 2x^2 + 2$$

**8.** 
$$g(x) = -\frac{3}{4}x^2 - \frac{1}{2}$$

**9.** 
$$g(x) = -3(x-4)^2$$

**10.** 
$$g(x) = x^2 + 2$$

**11.** 
$$g(x) = (x-1)^2$$

**12.** 
$$g(x) = x^2 - 8$$

**13.** 
$$g(x) = 7x^2$$

**14.** 
$$g(x) = \frac{1}{5}x^2$$

**15.** 
$$g(x) = -6x^2$$

**16.** 
$$g(x) = -x^2 + 3$$

**17.** 
$$g(x) = 5 - \frac{1}{5}x^2$$

**18.** 
$$g(x) = 4(x-1)^2$$

## Match each equation to its graph.

A.



В.



C.



**20.** 
$$y = -3x^2 - 1$$

**21.** 
$$y = \frac{1}{3}x^2 - 1$$

**22.** 
$$y = 3x^2 + 1$$

## Match each equation to its graph.

**23.** 
$$y = 2x^2 - 2$$

A.



C.



**24.** 
$$y = \frac{1}{2}x^2 - 2$$

**25.** 
$$y = -\frac{1}{2}x^2 + 2$$

**26.**  $y = -2x^2 + 2$ 

В.



D.



List the functions in order from the most vertically stretched to the least vertically stretched graph.

**27.** 
$$f(x) = 3x^2$$
,  $g(x) = \frac{1}{2}x^2$ ,  $h(x) = -2x^2$  **28.**  $f(x) = \frac{1}{2}x^2$ ,  $g(x) = -\frac{1}{6}x^2$ ,  $h(x) = 4x^2$ 

**28.** 
$$f(x) = \frac{1}{2}x^2$$
,  $g(x) = -\frac{1}{6}x^2$ ,  $h(x) = 4x^2$ 

## 9-3 Word Problem Practice ~ Transformations of Quadratic Functions

**29. SPRINGS** The potential energy stored in a spring is given by  $U_s = \frac{1}{2}kx^2$  where k is a constant known as the spring constant, and x is the distance the spring is stretched or compressed from its initial position. How is the graph of the function for a spring where k = 2 newtons/meter related to the graph of the function for a spring where k = 110 newtons/meter?

**30. PHYSICS** A ball is dropped from a height of 20 feet. The function  $h = -16t^2 + 20$ models the height of the ball in feet after t seconds. Graph the function and compare this graph to the graph of its parent function.



- **31. ACCELERATION** The distance d in feet a car accelerating at 6 ft/s<sup>2</sup> travels after t seconds is modeled by the function  $d = 3t^2$ . Suppose that at the same time the first car begins accelerating, a second car begins accelerating at 4 ft/s<sup>2</sup> exactly 100 feet down the road from the first car. The distance traveled by second car is modeled by the function  $d = 2t^2 + 100$ .
  - **a.** Graph and label each function on the same coordinate plane.



- **b.** Explain how each graph is related to the graph of  $d = t^2$ .
- c. After how many seconds will the first car pass the second car?
- **32. PARACHUTING** Two parachutists jump at the same time from two different planes as part of an aerial show. The height  $h_1$  of the first parachutist in feet after t seconds is modeled by the function  $h_1 = -16t^2 + 5000$ . The height  $h_2$  of the second parachutist in feet after t seconds is modeled by the function  $h_2 = -16t^2 + 4000$ .
  - **a.** What is the parent function of the two functions given?
  - **b.** Describe the transformations needed to obtain the graph of  $h_1$  from the parent function.
  - c. Which parachutist will reach the ground first?