A powerful engine for education

Standards Based Map

7th Grade Math

Timeline	NxG Standard(s)	$\begin{gathered} \text { Student I Can } \\ \text { Statement(s) / } \\ \text { Learning Target(s) } \end{gathered}$	Essential Questions	Academic Vocabulary	Strategies / Activities	Resources / Materials	Assessments	Notes / Self - Reflection
	M.7.NS. 1 apply and extend previous understandings of addition and subtraction to add and subtract rational numbers; represent addition and subtraction on a horizontal or vertical number line diagram. a. describe situations in which opposite quantities combine to make 0 b. understand $p+q$ as the number located a	I can express rational numbers as fractions, decimals, and percents. I can add and subtract rational numbers using the properties of operations. I can describe situations in which opposite quantities combine to make 0 . I can represent addition of rational numbers on a vertical or horizontal	How can a number line be used to demonstrate the properties and processes of addition and subtraction of rational numbers?	rational numbers properties (associative, commutative, distributive, identity, inverse) number line integers opposite quantities additive inverse	Please record any strategies or activities that you find beneficial. Teach 21 Strategy Bank: http://wvde.state.wv .us/strategybank/	Please record any resources or materials that you find beneficial. Teacher Websites: http://www.smarterbalanc ed.org/ (practice tests, sample items, etc.) http://www.opusmath.com $\frac{1}{\text { (free math problem bank }}$ aligned to CCSS) http://donnayoung.org/ind ex.htm (free math printables) http://www.math-	http://www.smarterbalanc ed.org/ (practice tests, sample items, etc.) http://www.map.mathshell org/materials/index.php (Mathematics Assessment Project) Various assessments may be used (selected response, short answer, performance-based tasks, etc.). Please record any assessments you utilize and find effective.	

answers using mental computation and estimation strategies.

M.7.EE. 1

apply properties of operations as strategies to add, subtract, factor and expand linear expressions with rational coefficients.

M.7.EE. 2

understand that rewriting an expression in different forms in a problem context can shed light on the problem and how the quantities in it are related.

M.7.EE. 4

use variables to represent quantities in a real-world or mathematical problem and construct simple equations and inequalities o solve problems by reasoning about the quantities.
a. solve word problems leading to equations of the form $p x+q=r$ and $p(x+q)=r$, where p, q, and r are specific rationa numbers Solve equations of these forms fluently.
Compare an algebraic
properties of
operations as strategies to add, subtract, factor, and expand linear expressions with rational coefficients

I can manipulate expressions to make equivalent expressions while problem solving.

I can solve word problems leading to equations of the form $p x+q=r$ and $p(x+q)=r$, where p, q, and r are specific rational numbers.

I can compare an algebraic solution to an arithmetic solution.

I can solve word problems leading to inequalities of the form $p x+q>r$ or $p x+q<r$, where p, q, and r are specific rational numbers.

I can graph the solution set of the inequality.
properties of inequality
(CCSS -
algebraic solution arithmetic solution solution set

Teach 21

(Expressions):

http://wveis.k12.wv
us/Teach21/public/ ng unit plans/UPvi ew.cfm?action=V\&t sele1=2\&tsele2=23 \&upid=605

M.7.SP. 5
understand that the probability of a chance event is a number between 0 and 1 that expresses the likelihood of the event occurring. Larger numbers indicate greater likelihood. A probability near 0 indicates an unlikely event, a probability around $1 / 2$ indicates an event that is neither unlikely nor likely and a probability near 1
indicates a likely event.

M.7.SP. 6

approximate the probability of a chance event by collecting data on the chance process that produces it and observing its long-run relative frequency, and predict the approximate relative frequency given the probability. For example, when rolling a number cube 600 times, predict that a 3 or 6 would be rolled roughly 200 times, but probably not exactly 200 times.

M.7.SP. 7

develop a probability

I can recognize that probability of a chance event is a number between 0 and 1.

I can recognize the likelihood of an event occurring based on the probability between 0 and 1.

I can recognize that probability may be expressed as a decimal, percent, or ratio.

I can collect data from an experiment.

I can predict the number of times an event will occur given a specific number of trials.

I can explain why theoretical probability will not always be equal to the experimental probability.

I can recognize that as the number of trials increase the experimental probability

How is the
likelihood of an event expressed as a probability?
probab
event
likely event
unlikely event
relative
frequency
theoretical probability
experimental probability
outcome
simple event
compound
event
tree diagram
simulation
sample space

How can
probability be used to make predictions about uncertain events?
probability

How can probability be used to approximate the frequency of a chance event?
,

what is the probability that
it will take at least 4 donors to find one with type A blood?

M.7.SP. 1

understand that statistics can be used to gain information about a population by examining a sample of the population; generalizations about a population from a sample are valid only if the sample is representative of that population. Understand that random sampling tends to produce representative samples and support valid inferences.

M.7.SP. 2

use data from a random sample to draw inferences about a population with an unknown characteristic of interest. Generate multiple samples (or simulated samples) of the same size to gauge the variation in estimates or predictions. For example, estimate the mean word length in a book by

I can recognize

 generalizations about a population from a sample are valid only if the sample is representative of that population.
I can produce

 representative samples by using random sampling to support valid inferences of the population.I can use data from a random sample to draw inferences about a population with an unknown characteristic of interest.

I can generate multiple samples (or simulated samples) of the same size to gauge the variation in estimates or predictions.

I can compare the centers (mean and median) or mode of two different data

How can data distributions be used to measure variability?

How can the

 measures of center and variability be used to compare two populations?| deviation |
| :--- |
| range |
| spread |
| interquartile |
| range |

randomly sampling words from the book; predict the winner of a school election based on randomly sampled survey data. Gauge how far off the estimate or prediction might be.

M.7.SP. 3

informally assess the degree of visual overlap of two numerical data distributions with similar variabilities, measuring the difference between the centers by expressing it as a multiple of a measure of variability.

M.7.SP. 4

use measures of center and measures of variability for numerical data from random samples to draw informa comparative inferences about two populations.
For example, decide
sets.
I can assess the similarities and differences between two data sets.

I can compare differences related to the mean absolute deviation or interquartile range of two data sets.

I can compare two populations by using the centers (means and/or medians) of data collected from random samples.

I can compare two populations by using the measures of variability (mean absolute deviation and/or interquartile range) of data collected from random samples.

