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Abstract Standing wave solutions of coupled nonlinear Hartree equations with nonlocal
interaction are considered. Such systems arises from mathematical models in Bose–Einstein
condensates theory and nonlinear optics. The existence and non-existence of positive ground
state solutions are proved under optimal conditions on parameters, and various qualitative
properties of ground state solutions are shown. The uniqueness of the positive solution or the
positive ground state solution are also obtained in some cases.
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1 Introduction and main results

In the present paper we study the coupled nonlinear Hartree equations with nonlocal inter-
action in the following form:

⎧
⎪⎪⎪⎪⎪⎨

⎪⎪⎪⎪⎪⎩

−�u + λ1u = μ

(∫

R3

u2(y)

|x − y|dy
)

u + β

(∫

R3

v2(y)

|x − y|dy
)

u, x ∈ R
3,

−�v + λ2v = ν

(∫

R3

v2(y)

|x − y|dy
)

v + β

(∫

R3

u2(y)

|x − y|dy
)

v, x ∈ R
3,

u, v ∈ H1(R3),

(1.1)
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where λ1, λ2, μ, ν > 0, and β ∈ R is a coupling constant describing attractive or repulsive
interactions.

The consideration of (1.1) is motivated by recent studies on the nonlinear Schrödinger
equation (NLSE)

i
∂ψ

∂t
= −1

2
�ψ + Vψ − χ |ψ |2ψ. (1.2)

The NLSE is a canonical way of studying the nonlinear wave propagation in various physical
situations such as nonlinear optics and quantum physics. But in many situations the nonlinear
interaction can be of nonlocal nature.

For example, for identical and non-relativistic basic particles (such as bosons or electrons)
under the influence of an external potential and also two-body attractive interaction between
two particles, the condensate in the mean field regime is governed by the nonlinear Hartree
equation (see [16,17,19,20])

i
∂ψ

∂t
= −1

2
�ψ + Vψ − χ

(
C(x) ∗ |ψ |2)ψ, x ∈ R

3. (1.3)

Here ψ is a radially symmetric two-body potential function defined in R
3 and ∗ denotes the

convolution inR3. The most typical external potential is the Coulomb functionC(x) = |x |−1.
(1.3) is also used in the description of the Bose–Einstein condensates, in which V is the
trapping potential and the nonlocal term describes the interaction between the bosons in the
condensate [13,45,49]. When V = 0, (1.3) is also known as nonlinear Choquard equation
[27,32,37], and the Eq. (1.3) with V = 0 also arises from the model of wave propagation in
a media with a large response length [1,23].

With the recent experimental advances in multi-component Bose–Einstein condensates
[4], systems of coupled nonlinear Schrödinger equations or Hartree equations have been
the focus of many recent theoretical studies. The two-component nonlinear Schrödinger
system with nonlocal Hartree type interaction can be written in the following form(see
[62]):

⎧
⎪⎪⎪⎪⎨

⎪⎪⎪⎪⎩

−i
∂	1

∂t
+ V1(x)	1 = h̄2

2m
�	1 + μ(C(x) ∗ |	1|2)	1 + β(C(x) ∗ |	2|2)	1, x ∈ R

3,

−i
∂	2

∂t
+ V2(x)	2 = h̄2

2m
�	2 + ν(C(x) ∗ |	2|2)	2 + β(C(x) ∗ |	1|2)	2, x ∈ R

3,

	 j = 	 j (x, t) ∈ C, 	 j (x, t) → 0, as |x | → ∞, t > 0, j = 1, 2,

(1.4)
where i is the imaginary unit, m is the mass of the particles, h̄ is the Plank constant,
μ, ν > 0, and β �= 0 is a coupling constant which describes the scattering length of the
attractive or repulsive interaction, V1(x) and V2(x) are the external potentials, and C(x) is
the response function which possesses information on the mutual interaction between the
particles.

The system (1.4) can also arise from the studies of nonlinear optics. Physically, the solution
	i denotes the i-th component of the beam in Kerr-like photorefractive media. Experiments
have showed the existence of self-trapping of incoherent beam in a nonlinear medium [40,41].
Such findings are significant since optical pulses propagating in a linear medium have a natural
tendency to broaden in time (dispersion) and space (diffraction). In the context of optical
propagation, 	i in (1.4) denotes the i-th component of the beam in Kerr-like photorefractive
media; the positive constants μ, ν indicate the self-focusing strength in the component of the
beam; and the coupling constant β measures the interaction between the two components
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of the beam. The sign of β determines whether the interactions of states are repulsive or
attractive.

A standing wave solution of (1.4) is a solution of the form

(	1(x, t),	2(x, t)) =
(
e−i Et u(x), e−i Etv(x)

)
, u, v ∈ H1(R3). (1.5)

Substituting (1.5) into (1.4), and renaming the parameters by

ε =
√

h̄2

2m
, λ1(x) = V1(x) − E and λ1(x) = V2(x) − E, (1.6)

we obtain the following semilinear elliptic system with nonlocal nonlinearities:
⎧
⎪⎨

⎪⎩

−ε2�u + λ1(x)u = μ(C ∗ u2)u + β(C ∗ v2)u, x ∈ R
3,

−ε2�v + λ2(x)v = ν(C ∗ v2)v + β(C ∗ u2)v, x ∈ R
3,

u, v ∈ H1(R3).

(1.7)

Similar systems of equations are also considered in the basic quantum chemistry model
of small number of electrons interacting with static nucleii which can be approximated
by Hartree or Hartree–Fock minimization problems (see [24,29,34]). The Euler–Lagrange
equations corresponding to such Hartree problem are

− �ui + V (x)ui +
∑

j �=i

(∫

R3

u2
j (y)

|x − y|dy
)

ui + εi ui = 0, x ∈ R
3, 1 ≤ i ≤ k, (1.8)

where k ∈ N, V (x) describes the attractive interaction between the electrons and the nucleii,
the integral term shows the repulsive Coulomb interaction between the electrons, and −εi
are the Lagrange multipliers. As pointed out in [34], very often restricted Hartree equations
are considered where some of the ui are taken to be equal. For example, when k = 2 and
u1 = u2, then (1.8) is reduced to a scalar equation

− �u + V (x)u +
(∫

R3

u2(y)

|x − y|dy
)

u + εu = 0, x ∈ R
3. (1.9)

The solutions of (1.9) were considered in, for example, [18,33,34]. We notice that in (1.8),
the interaction between electrons is repulsive while the one in (1.3) is attractive. When k = 4,
u1 = u2 and u3 = u4, then we also obtain (1.7) with Coulomb potential.

If the response function is a Dirac-delta function, i.e. C(x) = δ(x), then the nonlinear
response is local and it has been more extensively considered in recent years. In this case, the
system (1.4) arises in the theory of Bose–Einstein condensates in two different hyperfine states
|1〉 and |2〉 (see [15,53]), where 	1 and 	2 are the corresponding condensate amplitudes.
The standing waves corresponding to (1.7) in this case becomes a semilinear elliptic system
with local nonlinearities:

⎧
⎪⎨

⎪⎩

−ε2�u + λ1(x)u = μu3 + βv2u, x ∈ R
3,

−ε2�v + λ2(x)v = νv3 + βu2v, x ∈ R
3,

u, v ∈ H1(R3).

(1.10)

The existence, multiplicity and concentration of positive solutions of (1.10) have been the
subject of extensive mathematical studies in recent years, for example, [3,5,6,11,12,14,22,
30,31,35,36,38,42,48,50–52,56,58] and references therein.
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In this paper we consider the system (1.7) with a response function of Coulomb type
C(x) = |x |−1. That is

⎧
⎪⎪⎨

⎪⎪⎩

−ε2�u + λ1(x)u = μ

(∫

R3

u2(y)

|x − y|dy
)

u + β

(∫

R3

v2(y)

|x − y|dy
)

u, x ∈ R
3,

−ε2�v + λ2(x)v = ν

(∫

R3

v2(y)

|x − y|dy
)

v + β

(∫

R3

u2(y)

|x − y|dy
)

v, x ∈ R
3.

(1.11)

The system (1.11) was recently considered in [62]. Under some conditions for the potential
function λi (x), i = 1, 2, the existence of a ground state solution of (1.11) for ε > 0 small
and β > 0 sufficiently large was proved. Here we are concerned with the case λi (x) = λi =
constant. Without loss of generality we assume that ε = 1, then (1.11) reduces to (1.1). Our
goal here is to prove the existence of positive ground state solutions of (1.1) for all possible
range of coupling constant β, and our work is mainly motivated by [51] for the corresponding
results in the local case with C(x) = δ(x).

For any β ∈ R, the system (1.1) possesses a trivial solution (0, 0) and a pair of semi-trivial
solutions with one component being zero. These solutions have the form (U, 0) or (0, V ),
where each of U and V is the positive radial solution of

− �w + σw = τ

(∫

R3

w2(y)

|x − y|dy
)

w, w ∈ H1(R3), (1.12)

with (σ, τ ) = (λ1, μ) for U , and (σ, τ ) = (λ2, ν) for V respectively. It is well known
that (1.12) is related to the stationary solution of Choquard equation (see [27,29,32,37]).
Also (1.12) was introduced by Penrose in his discussion on the self gravitational collapse
of a quantum mechanical wave-function (see [46,47]). The Eq. (1.12) is also called the
Schrödinger–Newton equation [54,59]. According to [27,37], we know that (1.12) has a
unique positive solution wσ,τ ∈ H1(R3) that is radially symmetric for any σ, τ > 0.

We look for solutions of (1.1) which are different from the preceding ones. A solution
(u, v) of (1.1) is nontrivial if u �= 0 and v �= 0. A solution (u, v) with u > 0 and v > 0
is called a positive solution. A solution is called a ground state solution (or positive ground
state solution) if its energy is minimal among all the nontrivial solutions (or all the positive
solutions) of (1.1). Here the energy functional corresponding to (1.1) is defined by

Lλ1λ2(u, v) = 1

2

∫

R3

[|∇u(x)|2 + λ1u
2(x) + |∇v(x)|2 + λ2v

2(x)
]
dx

− 1

4

∫

R3

∫

R3

μu2(x)u2(y) + 2βu2(x)v2(y) + νv2(x)v2(y)

|x − y| dxdy,

(1.13)

for (u, v) ∈ E ≡ H1(R3) × H1(R3). Note that if we consider our problem in the subspace
of radially symmetric functions Er ≡ H1

r (R3) × H1
r (R3), where H1

r (R3) = {u ∈ H1(R3) :
u is radially symmetric}, then we say that (u, v) ∈ Er is a radial ground state solution (or
positive radial ground state solution) if its energy is minimal among all the nontrivial radial
solutions (or all the positive radial solutions) of (1.1).

First we state that when the coupling constant β is positive, then a positive solution of
(1.1) is necessarily radially symmetric.

Theorem 1.1 Assume thatμ, ν, λ1, λ2 > 0, and β ≥ 0, then every positive solution of (1.1)
is radially symmetric and decreasing in radial direction.
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The proof of Theorem 1.1 is based on the celebrated moving plane method for cooperative
integral-differential equations (see [10,37]). For the local interaction case (1.10), this property
is well-known (also for the cooperative case β ≥ 0), see [7]. On the other hand, it is also
known that when β < 0, a positive solution of (1.10) may not be radially symmetric, see
[5,36]. For the existence and nonexistence of positive (ground state) solutions of (1.1), we
have the following main results.

Theorem 1.2 Assume that μ, ν > 0 and λ2 ≥ λ1 > 0 are fixed.

(i) Let χ0 be the smaller root of the equation

λ− 5
4 (2 − λ− 5

4 )y2 − (μ1 + ν1)y + μ1ν1 = 0, (1.14)

where

μ1 = λ
3
4 μ, ν1 = λ− 3

4 ν, and λ = λ2

λ1
. (1.15)

If −∞ < β < χ0, then (1.1) possesses a positive radial ground state solution z ∈ Er .
Moreover, if 0 < β < χ0, then z is also a positive ground state solution.

(ii) Ifβ > max{λ2μ, λ
1
2 ν} = λ

5
4 max{μ1, ν1}, then (1.1)possesses a positive radial ground

state solution which is also a positive ground state solution.
(iii) If β ∈ [ν, μ] and ν < μ, then (1.1) has no positive solution.

(iv) For β ∈ (−∞, χ0) ∪ (max{λ2μ, λ
1
2 ν},∞), there exists M = M(μ, ν, λ1, λ2, β) such

that any positive ground state solution (u, v) of (1.1) satisfies ‖u‖∞ + ‖v‖∞ ≤ M.

In part (i) of Theorem 1.2, the existence of positive radial ground state solution is shown
for β < χ0. Indeed we can prove the existence of positive radial ground state solution
for β ∈ (−∞, χ1) where χ1 > χ0 defined above (see Lemma 2.7), but the expression
of χ1 is more complicated so it is deferred to Sect. 2. In Sect. 2, we will also show that
χ0 < χ1 < min{μ1, ν1}. Note that β ∈ (−∞, χ1) covers all negative β value, which
corresponds to the repulsive interaction case. For the repulsive case, whether the ground
state solution is radially symmetric is still not known as the method in Theorem 1.1 requires
β > 0. On the other hand, for the attractive case β > 0, any positive solution is necessarily
radially symmetric from Theorem 1.1, hence any ground state solution must be radial.

In the special case of λ1 = λ2, the ground state solution of (1.1) can be constructed
from the solution of the scalar equation (1.12), and a more explicit expression of the positive
ground state solutions can be obtained as follows.

Theorem 1.3 Let w ∈ H1(R3) be the unique positive solution of (1.12) with σ = τ = 1.
Assume that λ1 = λ2.

(i) If β ∈ (0, min{μ, ν}) ∪ (max{μ, ν},∞), then (
√

κw,
√

�w) is a positive ground state
solution of (1.1), where κ > 0 and � > 0 satisfy

μκ + β� = 1, βκ + ν� = 1. (1.16)

(ii) If β ∈ [min{μ, ν}, max{μ, ν}] and μ �= ν, then (1.1) does not have a positive solution.

Some remarks on these results are in order:

1. It is easy to see that the conditions in Theorem 1.2 reduce to the ones in Theorem 1.3
when λ = λ2/λ1 = 1. While there is a gap between the existence and nonexistence
ranges of β for λ �= 1 in Theorem 1.2, the β-range for the existence and nonexistence
of solution when λ = 1 is optimal.
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2. In the proof of Theorems 1.2–1.3, the main difficulty is to exclude the semitrivial solu-
tions of (1.1). In the local case, many work overcome this difficulty by using different
variational methods, for instance, see [3,5,6,11,12,14,22,30,31,35,36,38,42,48,50–
52,58] and references therein. In the nonlocal case, some ideas of the papers [30,31,51]
can still be adapted to our case. However, many difficulties arise due to the presence of
the non-local terms, some new techniques and a more careful analysis of the interaction
depending on parameter β are required for the proof given here.

3. To the best of our knowledge, Theorems 1.2–1.3 are the first rigorous results for the
existence of nontrivial solution of (1.1). These existence results of (1.1) could play an
important role in studying singular perturbation problem of (1.1) as in [62]. Results in
this nature for the local case (1.10) have been proved in [30,51]. For example, in [51,
Theorem 2], the existence of a positive radial ground state solution was also shown
under a similar assumption as in Theorem 1.2 (i).

For the uniqueness of positive solution or positive ground state solution of (1.1), we have
the following results.

Theorem 1.4 Suppose that λ1, λ2, μ, ν > 0 are fixed.

(i) There exists β0 > 0 such that if 0 < β < β0, up to a translation, (1.1) has a unique
positive solution (uβ, vβ), which is radially symmetric and decreasing in the radial
direction, and is non-degenerate in Er . Moreover as β → 0+, (uβ, vβ) → (u0, v0)

strongly in Er , where (u0, v0) is the positive ground state solution of (1.1) with β = 0
and same center.

(ii) When λ1 = λ2, if 0 < β < min{μ, ν} or β > max{μ, ν}, then (
√

κw,
√

�w) is the
unique positive ground state solution of (1.1) up to a translation.

The first uniqueness result in Theorem 1.4 is of perturbation nature. At β = 0, the non-
degeneracy of the positive ground state solution is reduced to that of the scalar equation
(1.12), and we follow the approach in [21,43,55] to prove the non-degeneracy. Together with
the a priori estimate in Theorem 1.2 part (iv), the uniqueness of the positive solution can
be shown. The second uniqueness result in Theorem 1.4 takes advantage of λ1 = λ2. The
uniqueness of positive solution or positive ground state solution for other cases is still open.
For the local interaction case, the uniqueness of positive solution of (1.10) when λ1 = λ2

and β > max{μ, ν} was proved in [60]. More partial uniqueness results for the case that
β ∈ (0, min{μ, ν}) and λ1 = λ2 in the local interaction situation were also proved in
[11,12,60]. On the other hand, the uniqueness of positive solution of (1.12) was proved in
[27,37]. We conjecture that under the conditions of (i i) of Theorem 1.4, (

√
κw,

√
�w) is the

unique positive solution to (1.1). The uniqueness of positive solution of (1.1) when β < 0
is not expected, as for the local interaction case (1.10), multiple positive solutions have been
found via bifurcation methods [5]. Showing the existence of multiple positive solutions of
(1.1) is another interesting open question.

Our last result concerns with the limiting behavior of the positive ground state solutions
of (1.1) as β → −∞.

Theorem 1.5 Assume that μ, ν, λ1, λ2 > 0 are fixed. Let {βn} be a sequence satisfying
βn < 0 and βn → −∞ as n → ∞, and let (uβn , vβn ) be any nonnegative nontrivial radial
ground state solution of (1.1) with β = βn. Then as n → ∞, at least one of ‖uβn‖2

λ1
and

‖vβn‖2
λ2

goes to infinity, and Cβn
r → ∞ as n → ∞ where Cβn

r is the least energy level of
(1.1) with β = βn.
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Our result here implies that when β goes to negative infinity, at least one of component
of the ground state solution blow up, hence the separation of phases does not occur in the
case of nonlocal interaction. For the Eq. (1.10) with local interaction, the phase separation
behavior when β → −∞ has been proved in, for example, [39,44,57,58]. In that case, the
profile of components of solution of the limiting equation tend to separate in different regions
of the underlying domain.

The paper is structured this way: In Sect. 2, we provide preliminary results, including the
proof of Theorem 1.3; we prove the existence of positive ground state when β < χ0 (part (i)
of Theorem 1.2) in Sect. 3, and we prove the existence of positive ground state for large β

(part (i i) of Theorem 1.2) and nonexistence for intermediate β (part (i i i) of Theorem 1.2) in
Sect. 4; the a priori estimate of the positive ground state solutions (part (iv) of Theorem 1.2)
and the asymptotic behavior of the ground state solutions as β → −∞ (Theorem 1.5) are
proved in Sect. 5, and the uniqueness of positive solution (Theorem 1.4) is shown in Sect. 6.
The proof of the radial symmetry property in Theorem 1.1 is not directly related to other
parts, so we prove it in Sect. 7.

2 Preliminary results

Throughout the paper, we use the following notation:

• ‖ · ‖ is the norm of H1(R3) defined by ‖u‖2 =
∫

R3
(|∇u|2 + u2);

• ‖ · ‖M is an equivalent norm of H1(R3) defined by ‖u‖2
M =

∫

R3
(|∇u|2 + M |u|2), for a

positive function or constant M ;
• E = H1(R3)×H1(R3), and Er = H1

r (R3)×H1
r (R3) where H1

r (R3) = {u ∈ H1(R3) :
u(x) = u(|x |)};

• For z = (u, v) ∈ E = H1(R3) × H1(R3), ‖z‖2
E = ‖u‖2

λ1
+ ‖v‖2

λ2
, where λ1, λ2 > 0

are the parameters in (1.1);

• | · |p is the norm of L p(R3) defined by |u|p =
(∫

R3
|u|p

)1/p

for 0 < p ≤ ∞.

• S = inf
u∈H1(R3)\{0}

|∇u|22
|u|22∗

where 2∗ = 6 here as N = 3.

We first recall the following classical Hardy–Littlewood–Sobolev inequality (see [28,
Theorem 4.3]).

Lemma 2.1 Assume that f ∈ L p(R3) and g ∈ Lq(R3). Then one has

∫

R3

∫

R3

f (x)g(y)

|x − y|t dxdy ≤ c(p, q, t)| f |p|g|q ,

where 1 < p, q < ∞, 0 < t < 3 and
1

p
+ 1

q
+ t

3
= 2.

The following basic inequality is of fundamental importance for considering (1.1). It is
well-known but we include a proof here for reader’s convenience.
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Lemma 2.2 For u, v ∈ L
12
5 (R3), we have that

∫

R3

∫

R3

u2(x)v2(y)

|x − y| dxdy≤
(∫

R3

∫

R3

u2(x)u2(y)

|x − y| dxdy

) 1
2
(∫

R3

∫

R3

v2(x)v2(y)

|x − y| dxdy

) 1
2

.

(2.1)
In particular, if u, v ∈ H1(R3), then (2.1) holds.

Proof From Lemma 2.1, when u, v ∈ L
12
5 (R3), the integrals in (2.1) are all convergent. First

we claim that for any x, y ∈ R
3, there exists a constant K > 0 independent of x, y such that

1

|x − y| = K
∫

R3

1

|x − z|2 · 1

|y − z|2 dz. (2.2)

Indeed the right hand side of (2.2) can be considered as a function h(x, y). Then h is trans-
lation and rotation invariant in (x, y), it follows that h depends only on |x − y|. Furthermore
h(s|x − y|) = s−1|x − y| and the left hand side of (2.2) satisfies the same scaling. Therefore
they must agree up to a constant factor.

From (2.2), Fubini’s theorem and the Cauchy–Schwarz inequality, we obtain that
∫

R3

∫

R3

u2(x)v2(y)

|x − y| dxdy

= K
∫

R3

(∫

R3

u2(x)

|x − z|2 dx
)(∫

R3

v2(y)

|y − z|2 dy
)

dz

≤
[

K
∫

R3

(∫

R3

u2(x)

|x − z|2 dx
)2

dz

] 1
2
[

K
∫

R3

(∫

R3

v2(y)

|y − z|2 dy
)2

dz

] 1
2

=
[

K
∫

R3

(∫

R3

u2(x)

|x − z|2 dx
)(∫

R3

u2(y)

|y − z|2 dy
)

dz

] 1
2

×
[

K
∫

R3

(∫

R3

v2(x)

|x − z|2 dx
)(∫

R3

v2(y)

|y − z|2 dy
)

dz

] 1
2

=
(∫

R3

∫

R3

u2(x)u2(y)

|x − y| dxdy

) 1
2
(∫

R3

∫

R3

v2(x)v2(y)

|x − y| dxdy

) 1
2

.

��
In the following, to simplify our notation, we define

φ f (x) =
∫

R3

f 2(y)

|x − y|dy, for f ∈ H1(R3). (2.3)

Apparently we have the following symmetry property of φ f for u, v ∈ H1(R3):
∫

R3
φu(x)v

2(x)dx =
∫

R3

∫

R3

u2(x)v2(y)

|x − y| dxdy =
∫

R3
φv(x)u

2(x)dx . (2.4)

To study the solutions of (1.1) in a variational framework, we consider the following two
cases: (1) β is negative or β is positive and small; (2) β is positive and large.

For the case (1) we consider the energy functional Lλ1λ2 on the set

Nλ1λ2 = {z = (u, v) ∈ E : u �≡ 0, v �≡ 0, F1(z) = 0 and F2(z) = 0}, (2.5)
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where

F1(z) =
∫

R3
(|∇u|2 + λ1u

2)dx − μ

∫

R3
φuu

2dx − β

∫

R3
φuv

2dx,

F2(z) =
∫

R3
(|∇v|2 + λ2v

2)dx − ν

∫

R3
φvv

2dx − β

∫

R3
φvu

2dx .
(2.6)

We define
C = inf

z∈Nλ1λ2

Lλ1λ2(z) and Cr = inf
z∈N r

λ1λ2

Lλ1λ2(z), (2.7)

where N r
λ1λ2

= Nλ1λ2 ∩ Er .
For the case (2), we also consider the problem on the entire Nehari manifold

Mλ1λ2 = {z = (u, v) ∈ E \ {(0, 0)} : L ′
λ1λ2

(z)[z] = F1(z) + F2(z) = 0}, (2.8)

and corresponding critical values are

C0 = inf
z∈M λ1λ2

Lλ1λ2(z), and C0
r = inf

z∈M r
λ1λ2

Lλ1λ2(z), (2.9)

where M r
λ1λ2

= Mλ1λ2 ∩ Er . Some standard arguments show that any nontrivial solution
of (1.1) is on both the sets Nλ1λ2 and Mλ1λ2 . Following the idea of [30,51], we shall prove
the infimums C and C0 are attained by a nontrivial solution of (1.1). It is also clear that
Nλ1λ2 ⊂ Mλ1λ2 and N r

λ1λ2
⊂ M r

λ1λ2
, which imply that C0 ≤ C and C0

r ≤ Cr . From the
above definitions, we know that if z = (u, v) ∈ Nλ1λ2 (or ∈ Mλ1λ2 , and u �= 0 and v �= 0)
satisfies Lλ1λ2(z) = C (or = C0), and z is a solution of (1.1), then z is a ground state
solution of (1.1). Similarly if z = (u, v) ∈ N r

λ1λ2
(or ∈ M r

λ1λ2
, and u �= 0, v �= 0) satisfies

Lλ1λ2(z) = Cr (or = C0
r ), and z is a solution of (1.1), then z is a radial ground state solution

of (1.1).
If C0 or C0

r is attained by z ∈ Mλ1λ2 , then z is a solution of (1.1) (see, for example, [51,
Proposition 3.5] or [61, Chapter 4]). The following lemma shows that when β <

√
μν, if C

or Cr is attained by z ∈ Nλ1λ2 , then z is also a solution of (1.1).

Lemma 2.3 Suppose that −∞ < β <
√

μν. If C (or Cr ) is attained by z = (u, v) ∈ Nλ1λ2

(or ∈ N r
λ1λ2

), then z is a solution of (1.1).

Proof We only show that if C is attained by z = (u, v) ∈ Nλ1λ2 , then z is a solution of (1.1).
One needs to prove that any minimizer of Lλ1λ2 restricted to Nλ1λ2 satisfies L ′

λ1λ2
(z)[φ] = 0

for any φ ∈ E .
Let Fi (i = 1, 2) be defined as in (2.6). We claim that if z ∈ Nλ1λ2 satisfying Lλ1λ2(z) =

C , then F ′
1(z) and F ′

2(z) are linear independent. Assume that for K1, K2 ∈ R such that
K1F ′

1(z)+K2F ′
2(z) = 0. Since F1(z) = 0, it follows from (K1F ′

1(z)+K2F ′
2(z))[(u, 0)] = 0

that

K1μ

∫

R3
φuu

2dx + K2β

∫

R3
φuv

2dx = 0. (2.10)

Similarly it follows from F2(z) = 0 and (K1F ′
1(z) + K2F ′

2(z))[(0, v)] = 0 that

K1β

∫

R3
φvu

2dx + K2ν

∫

R3
φvv

2dx = 0. (2.11)

Set

A =
⎛

⎜
⎝

μ

∫

R3
φuu

2dx β

∫

R3
φuv

2dx

β

∫

R3
φvu

2dx ν

∫

R3
φvv

2dx

⎞

⎟
⎠ . (2.12)
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It follows from Lemma 2.2 and 0 < β <
√

μν that

det (A) = μν

∫

R3
φuu

2dx
∫

R3
φvv

2dx − β2
(∫

R3
φuv

2dx

)2

> 0. (2.13)

That is, A is positively definite, which implies that K1 = K2 = 0. Thus F ′
1(z) and F ′

2(z) are
linear independent. Since z is a minimizer of Lλ1λ2 restricted on Nλ1λ2 , then according to
[8, Corollary 4.1.2], there exist two Lagrange multipliers H1, H2 ∈ R such that

L ′
λ1λ2

(z) + H1F
′
1(z) + H2F

′
2(z) = 0. (2.14)

So, by using the same arguments as in (2.10)–(2.13), one can prove that H1 = H2 = 0.
For the case of β < 0 we can use the idea of the proof of [31, Lemma 2.1] to prove the
conclusion. Here we omit the details. ��

It follows from Lemma 2.3 that in order to prove the conclusion (i) of Theorem 1.2, we
need to show that Cr is attained by a positive z ∈ N r

λ1λ2
for −∞ < β < χ0, and C = Cr

is attained by a positive z ∈ N r
λ1λ2

for 0 < β < χ0, where χ0 is given in Theorem 1.2. For
this purpose we shall make good use of the unique positive solution of (1.12). Let w be the
unique positive solution of (1.12) with σ = τ = 1. Define

wσ,τ (x) = σ√
τ

w(
√

σ x), wσ (x) = wσ,1(x). (2.15)

Then wσ,τ is the unique positive solution of (1.12).
Since wσ,τ is the unique positive solution of (1.12), one can verify the following facts

(see [37, Theorem 2], and [51, Section 3.4] or [30, Lemma 2]).

Lemma 2.4 Consider the the minimization problems

Sσ,τ = inf
u∈H1(R3)\{0}

‖u‖2
σ

(
∫

R3 τφuu2)
1
2

and Tσ,τ = inf
u∈M0

{
1

2
‖u‖2

σ − 1

4

∫

R3
τφuu

2
}

, (2.16)

where M0 = {
u ∈ H1(R3) : u �= 0, ‖u‖2

σ = ∫

R3 τφuu2
}
. Then the function wσ,τ (x) is a

minimizer of Tσ,τ and the unique positive solution of (1.12). Moreover, we have

Tσ,τ = 1

4
S 2

σ,τ and Sσ,τ = σ
3
4√
τ
S1,1 = σ

3
4√
τ
S1, (2.17)

where S1,1 = S1 =
(∫

R3
φww2

) 1
2

.

We introduce a function θ : [1,∞) → R
+ defined by

θ(λ) =

∫

R3
φw(x)w2

λ(x)dx
∫

R3
φw(x)w2(x)dx

, (2.18)

The following lemma gives some estimates of θ(λ).

Lemma 2.5 Let θ(λ) be defined as in (2.18). Then for any λ ≥ 1 we have

λ− 1
2 ≤ θ(λ) ≤ λ

3
4 . (2.19)
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Proof Since w ∈ H1
r (R3) is radial and is strictly decreasing in r = |x |, it follows that

w(x) ≥ w(
√

λx) for λ ≥ 1, x ∈ R
3.

So we infer from Lemma 2.2 and change of variables that

∫

R3
φw(x)w2

λ(x)dx = λ2
∫

R3

∫

R3

w2(x)w2(
√

λy)

|x − y| dxdy

≤ λ2
(∫

R3

∫

R3

w2(x)w2(y)

|x − y| dxdy

) 1
2
(∫

R3

∫

R3

w2(
√

λx)w2(
√

λy)

|x − y| dxdy

) 1
2

= λ
3
4

(∫

R3

∫

R3

w2(x)w2(y)

|x − y| dxdy

) 1
2
(∫

R3

∫

R3

w2(x)w2(y)

|x − y| dxdy

) 1
2

= λ
3
4

∫

R3

∫

R3

w2(x)w2(y)

|x − y| dxdy.

That is, θ(λ) ≤ λ
3
4 . Furthermore we see that

∫

R3
φw(x)w2

λ(x)dx = λ2
∫

R3

∫

R3

w2(y)w2(
√

λx)

|x − y| dxdy

= λ− 1
2

∫

R3

∫

R3

w2( h√
λ
)w2(z)

|h − z| dhdz

≥ λ− 1
2

∫

R3

∫

R3

w2(h)w2(z)

|h − z| dhdz = λ− 1
2

∫

R3
φw(x)w2(x)dx,

(2.20)
which implies the lower bound of θ(λ). ��

Next we use the function w to provide some estimates for C and Cr .

Lemma 2.6 Let θ(λ) be defined as in (2.18). If κ, � > 0 satisfy
{

μκ + βθ(λ)� = 1,

βθ(λ)κ + λ
3
2 ν� = λ

3
2 ,

(2.21)

then we have (
√

κwλ1 ,
√

�wλ2) ∈ N r
λ1λ2

. That is, N r
λ1λ2

�= ∅ and Nλ1λ2 �= ∅. Moreover,
there exists ρ0 > 0 such that

0 < ρ0 ≤ C ≤ Cr ≤ Lλ1λ2(
√

κwλ1 ,
√

�wλ2) = 1

4

(

κλ
3
2
1 + �λ

3
2
2

)

‖w‖2

= 1

4

(

κλ
3
2
1 + �λ

3
2
2

)∫

R3
φww2dx .

(2.22)

Proof To prove (
√

κwλ1 ,
√

�wλ2) ∈ N r
λ1λ2

, it suffices to show that (u, v)=(
√

κwλ1 ,
√

�wλ2)

satisfy

‖u‖2
λ1

= μ

∫

R3
φuu

2 + β

∫

R3
φvu

2, ‖v‖2
λ2

= ν

∫

R3
φvv

2 + β

∫

R3
φuv

2. (2.23)
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A direct computation shows that

‖√κwλ1‖2
λ1

= κ

(

λ3
1

∫

R3
|∇w(

√
λ1x)|2dx + λ3

1

∫

R3
w2(

√
λ1x)dx

)

= κλ
3
2
1

(∫

R3
|∇w(y)|2dy +

∫

R3
w2(y)dy

)

= κλ
3
2
1

∫

R3
φww2dx .

(2.24)

On the other hand, by the changes of variables x �→ x√
λ1

and y �→ y√
λ1

, one sees that

μ

∫

R3
φ√

κwλ1
(
√

κwλ1 )
2 + β

∫

R3
φ√

�wλ2
(
√

κwλ1 )
2

= μκ2λ4
1

∫

R3

∫

R3

w2(
√

λ1x)w2(
√

λ1y)

|x − y| dydx + βκ�λ2
1λ

2
2

∫

R3

∫

R3

w2(
√

λ1x)w2(
√

λ2y)

|x − y| dydx

= μκ2λ
3
2
1

∫

R3

∫

R3

w2(x)w2(y)

|x − y| dydx + βκ�
λ2

2√
λ1

∫

R3

∫

R3

w2(x)w2(

√
λ2
λ1
y)

|x − y| dydx

= κλ
3
2
1 [μκ + β�θ(λ)]

∫

R3
φww2dx .

(2.25)
So if μκ + βθ(λ)� = 1, then one has that the quantity in (2.24) equals to the one in (2.25).

That is, the first equality in (2.23) is satisfied. Similarly, by using βθ(λ)λ− 3
2 κ + ν� = 1, the

second equality in (2.23) is also satisfied.
Next we prove the second part of the lemma. Since for each z = (u, v) ∈ Nλ1λ2 , we have

∫

R3
(|∇u|2 + λ1u

2 + |∇v|2 + λ2v
2) =

∫

R3
(μφuu

2 + βφuv
2 + βφvu

2 + νφvv
2). (2.26)

By Lemma 2.1, for some c1 > 0 independent of u, v, one has that

∫

R3
φu(x)u

2dx =
∫

R3

∫

R3

u2(y)u2(x)

|x − y| dydx ≤ c1

(∫

R3
u

12
5

) 5
3 = c1|u|412

5
. (2.27)

Similarly, one can also prove that

∫

R3
φv(x)v

2dx ≤ c1|u|412
5

and
∫

R3

∫

R3

u2(x)v2(y)

|x − y| dydx ≤ c1|u|212
5
|v|212

5
. (2.28)

Substituting (2.27)–(2.28) into (2.26) and using Sobolev embedding, we obtain

‖u‖2
λ1

+ ‖v‖2
λ2

≤ c1μ|u|412
5

+ c1ν|v|412
5

+ 2c1β|u|212
5
|v|212

5

≤ c2(‖u‖4
λ1

+ ‖v‖4
λ2

+ 2‖u‖2
λ1

‖v‖2
λ2

),
(2.29)

for some c2 > 0. Furthermore, for each z = (u, v) ∈ Nλ1λ2 , one has

Lλ1λ2(u, v) = 1

4

∫

R3

(|∇u|2 + λ1u
2 + |∇v|2 + λ2v

2) = 1

4
(‖u‖2

λ1
+ ‖v‖2

λ2
) ≥ 1

4c2
,

(2.30)
which implies that C ≥ ρ0 > 0 for some ρ0 > 0.
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Finally, since κ, � > 0 satisfy (2.21), we have that (
√

κwλ1 ,
√

�wλ2) ∈ Nλ1λ2 , and

Cr ≤ Lλ1λ2(
√

κwλ1 ,
√

�wλ2)

= κ

4

∫

R3
(|∇wλ1 |2 + λ1w

2
λ1

) + �

4

∫

R3
(|∇wλ2 |2 + λ2w

2
λ2

)

= 1

4
(κλ

3
2
1 + �λ

3
2
2 )‖w‖2 = 1

4
(κλ

3
2
1 + �λ

3
2
2 )

∫

R3
φww2.

(2.31)

This finishes the proof of lemma. ��
In the following we shall discuss the solvability of (2.21). From elementary calculation,

we know that κ > 0 and � > 0 if either

det (Aλ) = λ
3
2 μν − β2θ2(λ) > 0 and βθ(λ) < min{ν, λ

3
2 μ}, (2.32)

or
det (Aλ) = λ

3
2 μν − β2θ2(λ) < 0 and βθ(λ) > max{ν, λ

3
2 μ}, (2.33)

where

Aλ =
(

μ βθ(λ)

βθ(λ) λ
3
2 ν

)

.

By Lemma 2.5 and further direct computation, we have that (2.32) is satisfied if

− √
μν < β < λ− 3

4 min{ν, λ
3
2 μ} = min{ν1, μ1}, (2.34)

where μ1 and ν1 are defined in (1.15). Similarly (2.33) is satisfied if

β > max{λμ, λ− 1
2 ν} = λ

1
4 max{ν1, μ1}. (2.35)

When (2.34) or (2.35) is satisfied, we can solve that

κ = λ
3
2 (ν − βθ(λ))

λ
3
2 μν − β2θ2(λ)

and � = λ
3
2 μ − βθ(λ)

λ
3
2 μν − β2θ2(λ)

(2.36)

Define
a(λ) = h(λ)(2 − h(λ)) where h(λ) = λ− 3

4 θ(λ). (2.37)

From Lemma 2.5 we obtain that

λ− 5
4 ≤ h(λ) ≤ 1, and λ− 5

4 (2 − λ− 5
4 ) ≤ a(λ) ≤ 1 for λ ≥ 1. (2.38)

Now we are ready to study the behaviour of minimizing sequences of Lλ1λ2 on Nλ1λ2 by
using some ideas from [51].

Lemma 2.7 Suppose that λ = λ2/λ1 ≥ 1. Let θ(λ), h(λ) and a(λ) be defined as in (2.18)
and (2.37) respectively, and let χ1 be the smaller root of the quadratic equation

a(λ)y2 − (μ1 + ν1)y + μ1ν1 = 0,

where μ1 and ν1 are defined in (1.15). Suppose that

− ∞ < β < χ1. (2.39)

Let {zn = (un, vn)} ⊂ Nλ1λ2 be a sequence such that

Lλ1λ2(zn) → C, as n → ∞. (2.40)
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Then there exists a constant δ > 0 such that for all n ∈ N,
∫

R3
φun u

2
n ≥ δ, and

∫

R3
φvnv

2
n ≥ δ.

Proof Let {zn} ⊂ Nλ1λ2 be a sequence satisfying (2.40). First, it follows from zn =
(un, vn) ∈ Nλ1λ2 that L ′

λ1λ2
(zn)[(un, 0)] = 0 and L ′

λ1λ2
(zn)[(0, vn)] = 0. That is,

λ
3
4
1 S1

(∫

R3
φun u

2
n

) 1
2 ≤ ‖un‖2

λ1
= μ

∫

R3
φun u

2
n + β

∫

R3
φunv

2
n, (2.41)

and

λ
3
4
2 S1

(∫

R3
φvnv

2
n

) 1
2 ≤ ‖vn‖2

λ2
= ν

∫

R3
φvnv

2
n + β

∫

R3
φvn u

2
n . (2.42)

So one infers from Lemma 2.2 to obtain that
∫

R3
φunv

2
n =

∫

R3
φvn u

2
n =

∫

R3

∫

R3

u2
n(x)v

2
n(y)

|x − y| dxdy ≤ yn,1yn,2, (2.43)

where

yn,1 =
(∫

R3
φun u

2
n

) 1
2

and yn,2 =
(∫

R3
φvnv

2
n

) 1
2

. (2.44)

Substituting (2.43) into (2.40)–(2.41), we have

λ
3
4
1 S1yn,1 ≤ ‖un‖2

λ1
≤ μy2

n,1 + β+yn,1yn,2,

λ
3
4
2 S1yn,2 ≤ ‖vn‖2

λ2
≤ νy2

n,2 + β+yn,1yn,2.

(2.45)

where β+ = {β, 0}. Thus the conclusion of this lemma for β ≤ 0 follows from (2.45).
Next we shall consider the case of β > 0. It follows from (2.22), (2.41) and (2.42) that

S1(λ
3
4
1 yn,1 + λ

3
4
2 yn,2) ≤ μ

∫

R3
φun u

2
n + ν

∫

R3
φvnv

2
n + 2β

∫

R3
φunv

2
n

= 4C + o(1) ≤ (κλ
3
2
1 + �λ

3
2
2 )S 2

1 + o(1),

(2.46)

where (κ, �) is the root of (2.21). Let

hn,1 = yn,1

λ
3
4
1 S1

, hn,2 = yn,2

λ
3
4
1 S1

.

Then it follows from (2.45) and (2.46) that (hn,1, hn,2) satisfies the system of inequalities:

⎧
⎪⎨

⎪⎩

hn,1 + λ
3
4 hn,2 ≤ κ + �λ

3
2 + o(1),

1 ≤ μhn,1 + βhn,2,

λ
3
4 ≤ βhn,1 + νhn,2.

(2.47)

Define a triangular region by

� = {(h1, h2) ∈ R
2 : h1 + λ

3
4 h2 ≤ κ + �λ

3
2 , 1 ≤ μh1 + βh2, λ

3
4 ≤ βh1 + νh2}.
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To prove the two sequences {hn,1} and {hn,2} staying uniformly away from zero, we only
need to show that the triangular region � is entirely in the interior of the first quadrant of R2.
This can be achieved if the following set of conditions are met:

⎧
⎪⎪⎪⎪⎨

⎪⎪⎪⎪⎩

β < λ
3
4 μ = μ1 and β < λ− 3

4 ν = ν1, (2.48)

μ(κ + λ
3
2 �) > 1, (2.49)

ν(κ + λ
3
2 �) > λ

3
2 , (2.50)

β(κ + λ
3
2 �) < λ

3
4 . (2.51)

First, (2.48) holds if (2.34) is satisfied. Secondly substituting the expression of (κ, �) in
(2.36), one has

μ(κ + λ
3
2 �) − 1 = (λ

3
2 μ − βθ(λ))2

λ
3
2 μν − β2θ2(λ)

> 0 (2.52)

from (2.32), and this implies that (2.49) holds. Similarly (2.50) also holds. Finally (2.51) is
equivalent to [

2θ(λ)λ
3
4 − θ2(λ)

λ
3
2

]

β2 −
(
λ

3
4 μ + λ− 3

4 ν
)

β + μν > 0. (2.53)

That is,
a(λ)β2 − (μ1 + ν1)β + μ1ν1 > 0. (2.54)

where μ1 and ν1 are defined in (1.15), and a(λ) is defined in (2.37). Therefore by the definition
of χ1, one sees that (2.48)-(2.51) are satisfied if 0 < β < min{χ1, μ1, ν1}. From the estimate
in (2.38), we know that a(λ) ≤ 1 so χ1 < min{μ1, ν1}. Hence the conclusion of the lemma
holds if 0 < β < χ1. This finishes the proof of this lemma. ��

Remark 2.8 Recall the constant χ0 defined in Theorem 1.2 and (1.14). We can see that
χ1 ≥ χ0 from (2.38). Indeed in the next section we shall show results in Theorem 1.2 part
(i) hold when β < χ1. We can also see that for all λ ≥ 1,

χ1 ∈
(

μ1ν1

μ1 + ν1
, min{μ1, ν1}

]

. (2.55)

When λ = 1 (λ1 = λ2), we have χ1 = min{μ, ν}. Indeed in this case, a sharper result can
be obtained as follows.

Lemma 2.9 Suppose that λ1 = λ2. Let {zn = (un, vn)} ⊂ Nλ1λ1 be a sequence satisfying
(2.40). If β satisfies

− ∞ < β < min{μ, ν} or β > max{μ, ν}, (2.56)

then

lim
n→∞

(∫

R3
φun u

2
n

) 1
2 = λ

3
4
1 S1κ, and lim

n→∞

(∫

R3
φvnv

2
n

) 1
2 = λ

3
4
1 S1�, (2.57)

where (κ, �) satisfies (1.16).
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Proof We infer from λ = λ2/λ1 = 1 that (2.21) and (2.47) are now (1.16) and
⎧
⎪⎨

⎪⎩

hn,1 + hn,2 ≤ κ + � + o(1),

1 ≤ μhn,1 + βhn,2,

1 ≤ βhn,1 + νhn,2.

(2.58)

We set wn,1 = hn,1 − κ and wn,2 = hn,2 − �. Then from (1.16) and (2.58), we obtain that
⎧
⎪⎨

⎪⎩

wn,1 + wn,2 ≤ o(1),

μwn,1 + βwn,2 ≥ 0,

βwn,1 + νwn,2 ≥ 0.

(2.59)

Note that the region

�′
n = {(wn,1, wn,2) : wn,1 + wn,2 ≤ o(1), μwn,1 + βwn,2 ≥ 0, βwn,1 + νwn,2 ≥ 0}

represented by (2.59) is a triangle with vertex (0, 0) and it is of diameter o(1) as n → ∞.
Thus when (2.56) is satisfied, we have κ > 0 and � > 0, so we have hn,1 → κ and hn,2 → �

as n → ∞ which implies (2.57). ��
The convergence result in Lemma 2.9 enables us to give the proof of Theorem 1.3.

Proof of Theorem 1.3 Passing the limit in (2.46) and using Lemma 2.9, we obtain that for
λ1 = λ2,

C ≥ 1

4
S 2

1 λ
3
2
1 (κ + �). (2.60)

On the other hand, it follows from Lemma 2.4 and Lemma 2.6 that for λ1 = λ2,

C ≤ 1

4
S 2

1 λ
3
2
1 (κ + �). (2.61)

This implies that

C = 1

4
S 2

1 λ
3
2
1 (κ + �) = Lλ1λ1(

√
κwλ1 ,

√
�wλ1), (2.62)

and this proves part (i). For part (i i), multiplying the u-equation in (1.1) by v, the v-equation
by u, subtracting and integrating over R3, we get

(μ − β)

∫

R3
φuuv + (β − ν)

∫

R3
φvuv = 0. (2.63)

Thus, any non-negative solution (u, v) for β ∈ [min{μ, ν}, max{μ, ν}] satisfies u(x)v(x) ≡
0 for x ∈ R

3. From the strong maximum principle, we must have u ≡ 0 or v ≡ 0. This
proves part (i i). ��

3 Existence of positive ground state for negative and small positive β

In this section we prove the existence of positive ground state solution for negative or small
positive β, that is, part (i) of Theorem 1.2. For that propose, for ϑ,ω > 0, we set

	(u) = 1

4
‖u‖2

ϑ = 1

4

∫

R3
(|∇u|2 + ϑu2),
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and

Mϑ,ω =
{

u ∈ H1(R3) : ‖u‖2
ϑ = ω

∫

R3
φuu

2
}

,

M̃ϑ,ω =
{

u ∈ H1(R3) : ‖u‖2
ϑ ≤ ω

∫

R3
φuu

2
}

.

Motivated by [30, Lemmas 2 and 3], we prove the following result on the infimum of 	(u).

Lemma 3.1 Let ϑ,ω > 0 and recall that wϑ,ω is defined in Lemma 2.4. Then

(i) B1 = inf
u∈Mϑ,ω

	(u) is attained only by wϑ,ω;

(ii) B2 = inf
u∈M̃ϑ,ω

	(u) = B1 is also attained only by wϑ,ω.

Proof The conclusion (i) follows from Lemma 2.4 and that w is the unique positive solution
of (1.12) with σ = τ = 1. For part (i i), let un be a minimizing sequence for B2. Observing
that 	(un) = 	(|un |) and {|un |} ⊂ Mϑ,ω, so without loss of generality we can assume that
{un} is a nonnegative minimizing sequence. Let u∗

n be the Schwartz symmetrization of un .
Then by the property of Schwartz symmetrization (see [28, Theorem 3.7]), we have

∫

R3
(|∇u∗

n |2 + ϑ(u∗
n)

2) ≤
∫

R3
(|∇un |2 + ϑu2

n) ≤ ω

∫

R3
φun u

2
ndx ≤ ω

∫

R3
φu∗

n
(u∗

n)
2dx

and
	(u∗

n) ≤ 	(un).

So we may also assume that un is radially symmetric and decreasing in the radial direction.
Since B2 ≤ B1, it follows that {un} is bounded in H1(R3). We assume that (up to a subse-
quence) un ⇀ u in H1

r (R3), and un → u in L p
r (R3) for p ∈ (2, 6), and the limit u is also

radially symmetric and decreasing in the radial direction. Moreover one can check that as

n → ∞,
∫

R3
φun u

2
ndx →

∫

R3
φuu

2dx . So we infer from Fatou’s Lemma that u ∈ M̃ϑ,ω

and B2 can be attained by u. We then claim that u ∈ Mϑ,ω. Suppose that to the contrary, u
is in the interior of M̃ϑ,ω, we have

∫

R3
(|∇u|2 + ϑu2) < ω

∫

R3
φuu

2. (3.1)

Since u is a minimizer of 	 in the interior, then u is a critical point of 	, i.e. ∇	(u) = 0,
and it implies that

0 = 2〈∇	(u), u〉 =
∫

R3
(|∇u|2 + ϑu2).

Thus u ≡ 0, and it contradicts with (3.1). Hence u ∈ Mϑ,ω. By the conclusion (i), we must
have u = wϑ,ω. ��

Now we are ready to give the proof of part (i) of Theorem 1.2. From Lemma 2.3, it can be
accomplished by the following lemma. Indeed the following result is stronger as χ0 ≤ χ1.

Lemma 3.2 Suppose that λ1 ≤ λ2.

(i) If −∞ < β < χ1 where χ1 is defined in Lemma 2.7, then Cr is attained by some positive
z = (u, v) ∈ N r

λ1λ2
.

(ii) If 0 < β < χ1, then C is attained by some positive z = (u, v) ∈ Nλ1λ2 .
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Proof We first prove part (i). Let {z̃n = (ũn, ṽn)} ⊂ N r
λ1λ2

be a minimizing sequence such
that Lλ1λ2(z̃n) → Cr as n → ∞. By applying the Ekeland’s variational principle (see [61])
on N r

λ1λ2
, one obtains a sequence {zn = (un, vn)} ⊂ N r

λ1λ2
satisfying

1. Lλ1λ2(un, vn) ≤ Cr + 1

n
, (3.2)

2. Lλ1λ2(u, v) ≥ Lλ1λ2(un, vn) − 1

n
‖(un, vn) − (u, v)‖E , ∀(u, v) ∈ N r

λ1λ2
, (3.3)

3. ‖(ũn, ṽn) − (un, vn)‖E → 0, as n → ∞. (3.4)

We claim that
L ′

λ1λ2
(un, vn) → 0 as n → ∞. (3.5)

First one deduces from (un, vn) ∈ N r
λ1λ2

and (3.2) that

Cr + 1

n
≥ Lλ1λ2(un, vn) = 1

4
(‖un‖2

λ1
+ ‖vn‖2

λ2
). (3.6)

So the sequence {(un, vn)} is bounded. Moreover, as in Lemma 2.6 one has that ‖(un, vn)‖E ≥
δ > 0 for some δ > 0. For a fixed (ϕ, φ) ∈ E and ‖ϕ‖, ‖φ‖ ≤ 1, we define

Gn(t, ω, s) = (G1
n(t, ω, s),G2

n(t, ω, s))

=
(
F1

(
un + tϕ + ω

2
un, vn + tφ + s

2
vn

)
, F2

(
un + tϕ + ω

2
un, vn + tφ + s

2
vn

))
,

(3.7)
where F1 and F2 are defined in (2.6). Clearly, Gn(�) = (0, 0) and Gn ∈ C1(R3,R2), where
� = (0, 0, 0). A direct computation shows that

Bn =
⎛

⎜
⎝

∂G1
n

∂ω
(�)

∂G1
n

∂s
(�)

∂G2
n

∂ω
(�)

∂G2
n

∂s
(�)

⎞

⎟
⎠ ≡

⎛

⎜
⎝

−μ

∫

R3
φun u

2
n −β

∫

R3
φunv

2
n

−β

∫

R3
φvn u

2
n −ν

∫

R3
φvnv

2
n

⎞

⎟
⎠ . (3.8)

When 0 ≤ β < χ1, from Lemmas 2.2 and 2.7 one deduces that

det (Bn) ≥ (μν − β2)

∫

R3
φun u

2
n

∫

R3
φvnv

2
n ≥ c > 0, (3.9)

where c is independent of n. For β ≤ 0, since (un, vn) ∈ Nλ1λ2 , we infer from (2.25),
Lemmas 2.4 and 2.7 that

det (Bn) = (|β|In + ‖un‖2
λ1

) (|β|In + ‖vn‖2
λ2

) − β2 I 2
n

≥ ‖un‖2
λ1

‖vn‖2
λ2

≥ Sλ1,1Sλ2,1

(∫

R3
φun u

2
n

) 1
2
(∫

R3
φvnv

2
n

) 1
2 ≥ c > 0,

(3.10)

where In =
∫

R3

∫

R3

u2
n(x)v

2
n(y)

|x − y| dxdy and c is independent of n.

So det (Bn) ≥ c > 0 for −∞ < β < χ1, and by the implicit function theorem, there
exist C1 functions ωn(t) and sn(t) defined on some interval (−τn, τn) where τn > 0, such
that sn(0) = ωn(0) = 0 and

Gn(t, ωn(t), sn(t)) = 0, t ∈ (−τn, τn). (3.11)
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Differentiating (3.11) in t at t = 0, we obtain

∂Gi
n

∂t
(�) + ∂Gi

n

∂ω
(�)ω′

n(0) + ∂Gi
n

∂s
(�)s′

n(0) = 0, i = 1, 2, (3.12)

which together with (3.8) implies that

ω′
n(0) =

∂G1
n

∂s
(�)

∂G2
n

∂t
(�) − ∂G1

n

∂t
(�)

∂G2
n

∂s
(�)

det (Bn)
,

s′
n(0) =

∂G1
n

∂t
(�)

∂G2
n

∂ω
(�) − ∂G1

n

∂ω
(�)

∂G2
n

∂t
(�)

det (Bn)
.

(3.13)

It follows from the boundedness of {zn = (un, vn)} and (ϕ, φ) that
∣
∣
∣
∣
∂G1

n

∂t
(�)

∣
∣
∣
∣ = 2

∣
∣
∣
∣

∫

R3
(∇un∇ϕ + λ1unϕ) −

∫

R3
(2μφun unϕ − βφvn unϕ − βφunvnφ)

∣
∣
∣
∣ ≤ c,

where c is independent of n. Similarly, we also have that
∣
∣
∣
∣
∂G1

n

∂s
(�)

∣
∣
∣
∣ ,

∣
∣
∣
∣
∂G1

n

∂ω
(�)

∣
∣
∣
∣ ,

∣
∣
∣
∣
∂G2

n

∂t
(�)

∣
∣
∣
∣ ,

∣
∣
∣
∣
∂G2

n

∂s
(�)

∣
∣
∣
∣ ,

∣
∣
∣
∣
∂G2

n

∂ω
(�)

∣
∣
∣
∣ ≤ c. (3.14)

Hence together with det (Bn) ≥ c > 0 and (3.13), we obtain that

|s′
n(0)|, |ω′

n(0)| ≤ c. (3.15)

Let

ϕ̄n,t = tϕ + ωn(t)

2
un, φ̄n,t = tφ + sn(t)

2
vn, ϕn,t = un + ϕ̄n,t , φn,t = vn + φ̄n,t .

Then it follows from (3.11) that (ϕn,t , φn,t ) ∈ N r
λ1λ2

for t ∈ (−τn, τn). Furthermore, we
deduce from (3.3) that

Lλ1λ2(ϕn,t , φn,t ) − Lλ1λ2(un, vn) ≥ − 1

n

∥
∥
(
ϕ̄n,t , φ̄n,t

)∥
∥
E . (3.16)

Note that L ′
λ1λ2

(un, vn)[(un, 0)] = L ′
λ1λ2

(un, vn)[(0, vn)] = 0. From Taylor expansion we
have that

Lλ1λ2(ϕn,t , φn,t ) − Lλ1λ2(un, vn)

=L ′
λ1λ2

(un, vn)[(ϕ̄n,t , φ̄n,t )] + K (n, t) = tL ′
λ1λ2

(un, vn)[(ϕ, φ)] + K (n, t),
(3.17)

where K (n, t) = o(‖(ϕ̄n,t , φ̄n,t )E‖) = o(t) as t → 0. It follows from (3.15) that

lim sup
n→∞

‖(ϕ̄n,t , φ̄n,t )‖E ≤ c, (3.18)

where c is independent of n. Thus, K (n, t) = o(t) as t → 0. One can deduce from (3.16)–
(3.18) that

|L ′
λ1λ2

(un, vn)[(ϕ, φ)]| ≤ c

n
, n → ∞. (3.19)

That is, the claim (3.5) holds.
Since {(un, vn)} is bounded in E , we may assume that (un, vn) ⇀ (u, v) weakly in

E . By the compact embedding H1
r (R3) ↪→ L p(R3) for p ∈ (2, 6), we may also assume
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that the sequence {(un, vn)} converges (up to a subsequence) weakly in Er and strongly in
L p(R3) × L p(R3) to a function (u, v). From (3.5) one can conclude that that

L ′
λ1λ2

(u, v) = 0. (3.20)

On the other hand, from Lemma 2.7 and Hölder inequality we infer that

0 < δ ≤
∫

R3
φun u

2
n ≤ c

(∫

R3
u

12
5
n

) 5
6

, (3.21)

and it follows from Brezis–Lieb lemma (see [61]) that
∫

R3
u

12
5
n →

∫

R3
u

12
5 as n → ∞, and

u �= 0 on R
3. Similarly one can prove that v �= 0. These together with (3.21) imply that

(u, v) ∈ N r
λ1λ2

and Cr ≤ Lλ1λ2(u, v). Furthermore, we have

Cr = lim
n→∞Lλ1λ2(un, vn) = lim

n→∞

[

Lλ1λ2(un, vn) − 1

4
L ′

λ1λ2
(un, vn)[(un, vn)]

]

= lim
n→∞(‖un‖2

λ1
+ ‖vn‖2

λ2
) ≥ lim

n→∞(‖u‖2
λ1

+ ‖v‖2
λ2

) = Lλ1λ2(u, v).

(3.22)

Finally we can choose (u, v) to be nonnegative sinceLλ1λ2(|u|, |v|) = Lλ1λ2(u, v) = Cr and
(|u|, |v|) ∈ N r

λ1λ2
. Moreover from the strong maximum principle we infer that |u|, |v| > 0.

Thus (u, v) = (|u|, |v|) is a positive solution of (1.1) which attains Cr .
Next we prove part (i i) and assume that 0 < β < χ1. Let {zn = (un, vn)} ⊂ Nλ1λ2 be a

minimizing sequence such thatLλ1λ2(zn) → C as n → ∞. Again we may assume that {zn} is
a nonnegative minimizing sequence as Lλ1λ2(|un |, |vn |) = Lλ1λ2(un, vn). Let z∗n = (u∗

n, v
∗
n)

be the Schwartz symmetrization of (un, vn). Then by the property of symmetrization (see
[28]), we have that

∫

R3
φun u

2
n ≤

∫

R3
φu∗

n
(u∗

n)
2,

∫

R3
φvnv

2
n ≤

∫

R3
φv∗

n
(v∗

n)
2,

∫

R3
φunv

2
n ≤

∫

R3
φu∗

n
(v∗

n)
2,

‖u∗
n‖λ1 ≤ ‖un‖λ1 , ‖v∗

n‖λ1 ≤ ‖vn‖λ1 ,

So we have that
∫

R3
(|∇u∗

n |2 + λ1(u
∗
n)

2) ≤ μ

∫

R3
φun u

2
n + β

∫

R3
φu∗

n
(v∗

n)
2,

∫

R3
(|∇v∗

n |2 + λ2(v
∗
n)

2) ≤ ν

∫

R3
φvnv

2
n + β

∫

R3
φv∗

n
(u∗

n)
2.

Therefore, one sees that

C = inf
(u,v)∈Nλ1λ2

Lλ1λ2(u, v) = inf
(u,v)∈Nλ1λ2

	λ1λ2(u, v) ≥ C̃ = inf
(u,v)∈ ˜Nλ1λ2

	λ1λ2(u, v),

where

	λ1λ2(u, v) = 1

4

∫

R3
(|∇u|2 + λ1u

2) + 1

4

∫

R3
(|∇v|2 + λ2v

2),

˜Nλ1λ2 = {z = (u, v) ∈ E : u �≡ 0, v �≡ 0, F1(z) ≤ 0, F2(z) ≤ 0},
where F1, F2 are defined in (2.6).

Let {z̃n = (ũn, ṽn)} ⊂ ˜Nλ1λ2 be a minimizing sequence such that Lλ1λ2(z̃n) → C̃ as
n → ∞. From the argument above, we may assume that ũn, ṽn are radially symmetric
and decreasing in radial direction. By using the proof of Lemma 3.1, we conclude that
up to a subsequence, (ũn, ṽn) converges weakly in Er and strongly in L p(R3) × L p(R3)
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for p ∈ (2, 6), to a minimizer (u, v) for C̃ . Clearly (u, v) is also radially symmetric and
decreasing in radial direction. Since 0 < β < χ1, it follows from Lemma 2.7 that there exists
δ > 0 such that ∫

R3
φuu

2 ≥ δ,

∫

R3
φvv

2 ≥ δ.

In the following we shall prove that (u, v) ∈ Nλ1λ2 . First, we prove that if 0 < β <

χ1 ≤ min{μ1, ν1} ≤ √
μ1ν1 = √

μν, there exists a unique pair point (t1, t2) such that
(
√
t1u,

√
t2v) ∈ Nλ1λ2 . Set

L(s, t) = Lλ1λ2(
√
su,

√
tv)

= s

2
‖u‖2

λ1
+ t

2
‖v‖2

λ1
− μs2

4

∫

R3
φuu

2 − νt2

4

∫

R3
φvv

2 − βst

2

∫

R3
φuv

2,

for s, t ≥ 0. If 0 < β <
√

μν, then we know that the matrix A is positively definite, where
A is given in (2.12). Hence, the quadratic form

K (s, t) = μs2

4

∫

R3
φuu

2 + νt2

4

∫

R3
φvv

2 + βst

2

∫

R3
φuv

2.

is positively definite, which implies that L(s, t) is concave inR2+ = {(s, t) : s ≥ 0, t ≥ 0} and
L(s, t) → −∞ as |s|+|t | → ∞. Hence it has a unique (local) maximum point (t1, t2) ∈ R

2+
such that (

√
t1u,

√
t2v) ∈ Nλ1λ2 . Thus, it follows that
∫

R3
(|∇u|2 + λ1u

2) = t1μ
∫

R3
φuu

2 + t1β
∫

R3
φuv

2dx,
∫

R3
(|∇v|2 + λ2v

2) = t2ν
∫

R3
φvv

2 + t2β
∫

R3
φvu

2dx .
(3.23)

Furthermore, since (
√
t1u,

√
t2v) ∈ Nλ1λ2 ⊂ ˜Nλ1λ2 , one has that

C̃ ≤ 	λ1λ2(
√
t1u,

√
t2v),

and hence
∫

R3
(|∇u|2 +λ1u

2 +|∇v|2 +λ2v
2) ≤ t1

∫

R3
(|∇u|2 +λ1u

2)+ t2

∫

R3
(|∇v|2 +λ2v

2). (3.24)

Substituting (3.23) into (3.24) we obtain that

t1F1(u, v) + t2F2(u, v) ≥ 0. (3.25)

Since (u, v) ∈ ˜Nλ1λ2 and t1, t2 > 0, then we must have F1(u, v) = 0 and F2(u, v) = 0
thus (u, v) ∈ Nλ1λ2 , Therefore C̃ = C = Cr = Lλ1λ2(u, v). According to Lemma 2.3 we
know that (u, v) is a critical point of Lλ1λ2 . By using the same argument as in the case of
−∞ < β < χ1, we can prove (u, v) is a positive radial ground state solution of (1.1). ��

4 Existence of positive ground state for large β

In order to prove part (i i) of Theorem 1.2, we consider our problem on the entire Nehari
manifold given by (2.8). First we show that when β ≥ 0, the critical value C0 is attained by
a radially symmetric solution of (1.1) .
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Lemma 4.1 Suppose that β ≥ 0, and let C0 and C0
r be defined as in (2.8) and (2.9). Then

C0 = C0
r > 0 is attained by a nonnegative (possibly semi-trivial) radially symmetric solution

of (1.1).

Proof Let {zn = (un, vn)} ⊂ Mλ1λ2 be a minimizing sequence such that Lλ1λ2(zn) → C0

as n → ∞. It is easy to check that {zn} is bounded in E , and as in the proof of Lemma 3.2
we may assume that zn is nonnegative. Let z∗n = (u∗

n, v
∗
n) be the Schwartz symmetrization of

zn , and clearly {z∗n} is also bounded in E . Hence we may assume that (up to a subsequence)
z∗n ⇀ z∗ = (u∗, v∗) converges weakly in E and strongly in L p(R3)×L p(R3) for p ∈ (2, 6).
By using the fact that zn ∈ Mλ1λ2 and the property of Schwartz symmetrization functions
we have that

‖z∗‖2
E ≤ lim inf

n→∞ ‖z∗n‖2
E ≤ lim inf

n→∞ ‖zn‖2
E

≤ lim
n→∞

∫

R3
(μφun u

2
n + 2βφunv

2
n + νφvnvn)dx

≤ lim
n→∞

∫

R3
[μφu∗

n
(u∗

n)
2 + 2βφu∗

n
(v∗

n)
2 + νφv∗

n
(v∗

n)
2]dx

≤
∫

R3
[μφu∗(u∗)2 + 2βφu∗(v∗)2 + νφv∗(v∗)2]dx,

(4.1)

and
Lλ1λ2(z

∗) ≤ lim inf
n→∞ Lλ1λ2(z

∗
n) ≤ lim

n→∞Lλ1λ2(zn) = C0.

Thus, by the Sobolev’s inequality, Lemma 2.2 and zn ∈ Mλ1λ2 , we have

‖z∗n‖2
E ≤

∫

R3
[μφu∗

n
(u∗

n)
2 + 2βφu∗

n
(v∗

n)
2 + νφv∗

n
(v∗

n)
2]dx

≤C1

∫

R3
[φu∗

n
(u∗

n)
2 + φv∗

n
(v∗

n)
2]dx,

(4.2)

for some constant C1 > 0. Moreover we infer from Lemma 2.4 that there exists a constant
C2 > 0 such that

‖z∗n‖2
E ≥ C2

(∫

R3
[φu∗

n
(u∗

n)
2 + φv∗

n
(v∗

n)
2]dx

) 1
2

. (4.3)

So one deduces from (4.2) and (4.3) that ‖z∗‖E > 0 hence z∗ �= (0, 0). From (4.1) we can
take s ∈ (0, 1] such that z̃ = sz∗ ∈ Mλ1λ2 . If s < 1, then we infer from zn ∈ Mλ1λ2 that

Lλ1λ2(z̃) = 1

4
‖z̃‖2

E <
1

4
‖z∗‖2

E ≤ 1

4
lim inf
n→∞ ‖z∗n‖2

E ≤ 1

4
lim inf
n→∞ ‖zn‖2

E = C0.

This contradicts with the definition of C0. Thus s = 1 and z∗ is a minimizer achieving C0,
and there exists a Lagrange multiplier L ∈ R such that

L ′
λ1λ2

(z∗) + LG ′
λ1λ2

(z∗) = 0, (4.4)

where Gλ1λ2(z
∗) = L ′

λ1λ2
(z∗)z∗. Multiplying the Eq. (4.4) by z∗ and integrating over R3,

we obtain that L = 0 hence z∗ �= (0, 0) is a solution of (1.1). By using the same argument
as in Lemma 3.2, one can prove that z∗ is nonnegative. Clearly one has C0 = C0

r . This ends
the proof of the lemma. ��

Now we are ready to prove part (i i) of Theorem 1.2.
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Proof of part (ii) of Theorem 1.2 From Lemma 4.1, we know that C0 = Lλ1λ2(u, v) for
some z = (u, v) ∈ Mλ1λ2 . So, in the following we only need to check that u �= 0 and v �= 0.
In order to prove this result, it is sufficient to prove that

C0 < min{Lλ1λ2(wλ1,μ, 0),Lλ1λ2(0, wλ2,ν)}, (4.5)

where wσ,τ is defined in (2.15).
In the following we use an approach similar to the one in [51] to prove that (4.5) holds.

Define

Jλ1λ2(z) = Jλ1λ2(u, v) =
(‖u‖2

λ1
+ ‖v‖2

λ2

)2

4
∫

R3
(μφuu

2 + 2βφuv
2 + νφvv

2)dx
(4.6)

As in Lemma 3.3 of [51], one can check that

C0 = inf
z∈E\{(0,0)}Jλ1λ2(z) = inf

z∈Er \{(0,0)}Jλ1λ2(z). (4.7)

We define a function

g1(s, t) = Jλ1λ2(
√
swλ1 ,

√
twλ2) = (S 2

1 sλ
3
2
1 + S 2

1 tλ
3
2
2 )2

4S 2
1 (s2μλ

3
2
1 + t2νλ

3
2
2 + 2stβλ

3
2
1 θ(λ))

, (4.8)

where (s, t) ∈ D = {(s, t) : s ≥ 0, t ≥ 0, (s, t) �= (0, 0)}, and wσ and θ(λ) are defined in
(2.15) and (2.18). It is easy to verify that

g1(s, 0) = S 2
1 λ

3
2
1

4μ
= Lλ1λ2(wλ1,μ, 0) and g1(0, t) = S 2

1 λ
3
2
2

4ν
= Lλ1λ2(0, wλ2,ν). (4.9)

To prove (4.2), it is sufficient to show that g does not attain its minimum over D on the lines
s = 0 or t = 0. For this purpose we define the quadratic form

k(s, t) = (as + bt)2

cs2 + 2dst + et2 . (4.10)

The quadratic form k(s, t) does not attain its minimum in D on the axes if and only if

ad − bc > 0 and bd − ae > 0. (4.11)

Applying this to g1(s, t), we have

βθ(λ) > λ
3
2 μ and βθ(λ) > ν, (4.12)

which is true provided that

β > λ
5
4 max{μ1, ν1}. (4.13)

from Lemma 2.5. This completes the proof of part (i i) of Theorem 1.2. ��
As in [51], one can also find other conditions to guarantee (4.3) holds. We omit the details

and leave it for interested readers.

Proof of part (iii) of Theorem 1.2 Assume that ν < μ and β ∈ [ν, μ], and (1.1) has a positive
solution (u, v). Multiplying the u-equation by v, the v-equation by u, and integrating over
R

3, we find ∫

R3
[λ2 − λ1 + (μ − β)φu + (β − ν)φv]uv = 0. (4.14)
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If β ∈ [ν, μ], then we have that λ2−λ1 ≥ 0, while μ−β and β−ν are all positive. This implies
that u = v ≡ 0. Moreover, for β <

√
μν, if C or Cr is attained, then according to Lemma

2.3, there is a positive solution of (1.1). This gives a contradiction with the nonexistence
result above when β ∈ [ν,

√
μν] is satisfied. ��

5 A priori estimate and asymptotic behavior of ground states

In this section we first prove the a priori estimates for the positive ground state solutions of
(1.1).

Proof of part (iv) of Theorem 1.2 Let (u, v) be a positive ground state solution of (1.1) for
a fixed set of parameters (λ1, λ2, μ, ν, β). Then

C = Lλ1λ2(u, v) = 1

4
(‖u‖2

λ1
+ ‖v‖2

λ2
),

which implies that (u, v) is bounded in E by a constant only depending on the parameter set.
We prove that φu and φv are bounded. Indeed, it follows from Hölder and Hardy–Littlewood–
Sobolev inequalities that for any x ∈ R

3,

φu(x) =
∫

R3

u2(y)

|x − y|dy =
∫

R3

u2(t + x)

|t | dt ≤
(∫

R3
u2(t + x)dt

) 1
2
(∫

R3

u2(t + x)

|t |2 dt

) 1
2

≤ C1|u|2
(∫

R3
|∇u(t + x)|2dt

) 1
2 = C1|u|2|∇u|2 ≤ C2,

(5.1)
where C2 > 0 is independent of x . Similarly one can prove the boundedness of φv . Since
φu, φv ∈ L∞(R3), and

−�u + (λ1 − μφu − βφv)u = 0, in R
3,

then by using standard elliptic regularity results, we know that there exists a C3 > 0 only
depending on the parameter set such that ‖u‖∞ ≤ C3. Similarly we have ‖v‖∞ ≤ C3. ��

Next we study the asymptotic behavior of positive ground state solutions of (1.1) as
β → −∞. To emphasize the dependence on β, in the following we use Cβ,Cβ

r , L β
λ1λ2

,

N
β

λ1λ2
and N

r,β
λ1λ2

to denote the same meaning of C,Cr , Lλ1λ2 , Nλ1λ2 and N r
λ1λ2

(see (1.13),
(2.5)–(2.7)).

Proof of Theorem 1.5 Let {βn} be a sequence satisfying βn < 0 and βn → −∞ as n → ∞.
Let (uβn , vβn ) ∈ N

r,βn
λ1λ2

be a nonnegative nontrivial ground state solution of (1.1) with β =
βn . We use the contradiction arguments. Assume that ‖(uβn , vβn )‖Er is bounded. Without
loss of generality we may assume that (uβn , vβn ) ⇀ (u0, v0) in Er and (uβn , vβn ) → (u0, v0)

in L p
r (R3)× L p

r (R3) for p ∈ (2, 6). Here u0, v0 ≥ 0 in R
3. It follows from the boundedness

of {(uβn , vβn )} that

∫

R3

∫

R3

u2
0(x)v

2
0(y)

|x − y| dxdy = lim
n→∞

∫

R3
φvβn

u2
βn

= lim
n→∞ β−1

n

(

‖uβn‖2
λ1

− μ

∫

R3
φuβn

u2
βn

)

= 0.

(5.2)
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Hence we have u0(x) ≡ 0 or v0(y) ≡ 0. On the other hand, we deduce from (uβn , vβn ) ∈
N

r,βn
λ1λ2

and βn < 0 that

‖uβn‖2
λ1

= μ

∫

R3
φuβn

u2
βn

+ βn

∫

R3
φvβn

u2
βn

≤ μ

∫

R3
φuβn

u2
βn

‖vβn‖2
λ2

= ν

∫

R3
φvβn

v2
βn

+ βn

∫

R3
φvβn

u2
βn

≤ ν

∫

R3
φvβn

v2
βn

.

(5.3)

Similar to (2.45), one infers that
∫

R3
φuβn

u2
βn

,

∫

R3
φvβn

v2
βn

≥ c > 0. (5.4)

Then we deduce that ∫

R3
φu0u

2
0,

∫

R3
φv0v

2
0 ≥ c > 0. (5.5)

This contradicts u0(x) ≡ 0 or v0(y) ≡ 0. So, we get ‖(uβn , vβn )‖Er → ∞ as n → ∞.

That is, at least one of ‖uβn‖2
λ1

and ‖vβn )‖2
λ2

goes to infinity, as n → ∞. Moreover, Cβn
r =

1
4

(
‖uβn‖2

λ1
+ ‖vβn‖2

λ2

)
→ ∞ as n → ∞. This ends the proof of Theorem 1.5. ��

6 Uniqueness of positive solution

In this section we give the proof of Theorem 1.4. We first prove the following Liouville type
result.

Lemma 6.1 The elliptic inequality

− �u ≥ φuu (6.1)

does not posses any positive solution u ∈ H1(R3).

Proof Suppose that u ∈ H1(R3) and u ≥ 0 is a solution of (6.1). Let η(x) be a cutoff
function satisfying η ∈ C∞(R3), 0 ≤ η(x) ≤ 1 for x ∈ R

3, and η(x) = 1 for |x | ≤ 1/2.
Define ψR(x) = [η(x/R)]3 for R > 0. From

−�ψR(x) = 3R−2 [η2�η + 2η|∇η|2]
( x

R

)
,

we have

|�ψR | ≤ cR−2ηχ{|x |> R
2 } = cR−2ψ

1
3
Rχ{|x |> R

2 },

for some constant c > 0. Multiplying (6.1) by ψR one gets

∫

R3
φuuψR ≤ −

∫

R3
u�ψR ≤ cR−2

∫

R
2 <|x |<R

uψ
1
3
R ≤ c

(∫

R
2 <|x |<R

u3ψR

) 1
3

. (6.2)

Since u ∈ H1(R3), it follows that
∫

R3
φuu = 0 as R → ∞ in (6.2). That is, u ≡ 0. ��

Next we show that for β ∈ (0, βM ] with any fixed βM > 0, all positive solutions of (1.1)
are a priori bounded. Note that the a priori estimate in part (iv) of Theorem 1.2 is only for
ground state solutions.
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Lemma 6.2 For any βM > 0 there exists a constant CβM > 0 such that, if (u, v) is a positive
solution of (1.1) with β ∈ (0, βM ], then

|u|∞ + |v|∞ ≤ CβM . (6.3)

Proof We argue by contradiction. Assume that there exist a sequence of positive solutions
of (1.1) {zn = (un, vn)} with βn ∈ (0, βM ] such that βn → β̃ and |vn |∞ ≤ |un |∞ → ∞ as
n → ∞. We set

κn = 1

|un |∞ , (wn(x), hn(x)) = (κnun(
√

κnx), κnvn(
√

κnx)). (6.4)

From Theorem 1.1 and βn > 0, we know that un and vn are radially symmetric and decreasing
in the radial direction. Hence |hn |∞ ≤ |wn |∞ = wn(0) = 1. It is easy to verify that (wn, hn)
satisfies {

−�wn + λ1κnwn = μφwnwn + βnφhnwn,

−�hn + λ2κnhn = νφhn hn + βnφwn hn .
(6.5)

By the standard elliptic argument, we may assume that, subject to a subsequence, (wn, hn) →
(w0, h0) in C2

loc(R
3) as n → ∞, where (w0, h0) is a nonnegative solution of

{
−�w0 = μφw0w0 + β̃φh0w0,

−�h0 = νφh0h0 + β̃φw0h0.
(6.6)

Since w0(0) = 1, then w0 �≡ 0, and by the strong maximum principle, we have w0(x) > 0
for x ∈ R

3. So, it follows from the first equation of (6.6) that w0 satisfies

− �w0 ≥ μφw0w0, x ∈ R
3. (6.7)

This contradicts to Lemma 6.1, so the conclusion holds. ��

Let (u, v) be a positive solution of (1.1) with β > 0. Then from Theorem 1.1, (u, v) is
radially symmetric thus it satisfies:

⎧
⎪⎪⎪⎪⎨

⎪⎪⎪⎪⎩

−u′′(r) − 2

r
u′(r) + λ1u(r) = μφu(r)u(r) + βφv(r)u(r), r ∈ (0,∞),

−v′′(r) − 2

r
v′(r) + λ1v(r) = νφv(r)v(r) + βφu(r)v(r), r ∈ (0,∞),

u′(0) = v′(0) = 0, u(0) > 0, v(0) > 0.

(6.8)

Clearly u(r), v(r) → 0 as r → ∞. Furthermore, as shown in [27,37], by using Newton’s
theorem we have that φu(r), φv(r) → 0 as r → ∞. To be more precise, one has the following
result on the exponential decay of u and v.

Lemma 6.3 For any βM > 0 there exist constants C1,C2 > 0 only depending on βM such
that, if (u, v) is a positive solution of (1.1) with β ∈ (0, βM ], then

|u(r)| + |v(r)|, |u′(r)| + |v′(r)| ≤ C1e
−C2r . (6.9)

Moreover if {zn = (un, vn)} is a sequence of positive solutions of (1.1) with β = βn ∈
(0, βM ], then it possesses a subsequence {znk } converges strongly in Er .
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Proof Define SβM := {(u, v) : (u, v) is a radial positive solution of (1.1) with β ∈ (0, βM ]}.
Assume that (u, v) ∈ SβM , then (u, v) satisfies (6.8). By using the Newton’s theorem, we
know that

φu(r) = 4πr−1
∫ r

0
u2(s)s2ds − 4π

∫ ∞

r
u2(s)sds. (6.10)

From (6.3) we also have
|u|2 + |v|2 ≤ CβM . (6.11)

Then (6.10) and (6.11) together imply that φu(r) → 0 as r → ∞, and the convergence is
uniform for any (u, v) ∈ SβM . Similarly, one has φv(r) → 0 as r → ∞ uniformly for any
(u, v) ∈ SβM . Hence, there exists R0 = R0(βM ) > 0 such that for r ≥ R0,

u(r), v(r) ≤ 1, and 0 <
λ1

2
≤ λ1 − μ1φu(r) − βφv(r). (6.12)

So we infer from (6.8) that for r ≥ R0,

0 = −u′′(r) − 2

r
u′(r) + (λ1 − μφu(r) − βφv(r))u(r) ≥ −u′′(r) − 2

r
u′(r) + λ1

2
u(r).

(6.13)
Fix a σ > 0 satisfying max{σ 2, 2σ } < λ1/4 and set

hR,σ (r) = e−σ(r−R0) + e−σ(R−r), , r > R0, (6.14)

where R > R0. Then for R0 ≤ r ≤ R, we have

− h′′
R,σ (r) − 2

r
h′
R,σ (r) + λ1

2
hR,σ (r) ≥ 0. (6.15)

By the Sturm comparison lemma, we infer from hR,σ (R0) ≥ 1, hR,σ (R) ≥ 1 and (6.13)–
(6.15) that

u(r) ≤ hR,σ (r) for all r ∈ [R0, R]. (6.16)

Since R > R0 is arbitrary, taking R → ∞, then we have

u(r) ≤ e−σ(r−R0) for all r ≥ R0. (6.17)

Hence u(r) decays exponentially with C1 = eσ R0 and C2 = σ which only depend on βM

and λ1. Furthermore, by (6.8) we conclude that

r2u′(r) =
∫ r

0
(s2u′(s))′ds =

∫ r

0
s2u(r)(λ1 − φu(s) − φv(s))ds (6.18)

Since the integrand of right-hand side of (6.18) decays exponentially, then we conclude that
u′(r) also decays exponentially. Similarly, we can show that v(r) and v′(r) decay exponen-
tially.

Finally, the existmate in (6.9) implies that {zn} is bounded in Er , then by using some
standard arguments (see for example [21, Corollary 2.4]), one can prove that {zn = (un, vn)}
possesses a subsequence {znk } converges strongly in Er . ��

Next we state a nondegeneracy result for the positive solution of (1.1) when β = 0.
Recall the scalar equation (1.12). We say that a radially symmetric solution wσ,τ of (1.12) is
non-degenerate in H1

r (R3) if the following linearized equation has only the trivial solution
ψ = 0:

− �ψ + σψ = τφwσ,τ ψ + 2τ

(∫

R3

wσ,τ (y)ψ(y)

|x − y| dy

)

wσ,τ , ψ ∈ H1
r (R3). (6.19)
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We have the following nondegeneracy result for the unique positive solution wσ,τ of (1.12)
and corresponding positive solution for (1.1) when β = 0.

Lemma 6.4 For σ, τ > 0, let wσ,τ (x) be the unique positive radially symmetric solution of
(1.12). Then wσ,τ is nondegenerate in H1

r (R3). Moreover z = (wλ1,μ, wλ2,ν) ∈ Er is the
unique positive solution of (1.1) with β = 0 centered at 0, and z is nondegenerate in Er .

Proof The non-degeneracy of wσ,τ is proved in Wei and Winter [59, Theorem III.1] for the
case that σ = τ = 1, and their proof is still valid for σ, τ > 0. Another proof is given in
[25]. For the system (1.1), z(x) = (wλ1,μ(x), wλ2,ν(x)) ∈ Er is the unique positive solution
centered at 0 with β = 0. Linearizing (1.1) at z and β = 0, we obtain that

⎧
⎪⎪⎪⎪⎪⎨

⎪⎪⎪⎪⎪⎩

−�ϕ + λ1ϕ = μφwλ1,μϕ + 2μ

(∫

R3

wλ1,μ(y)ϕ(y)

|x − y| dy

)

wλ1,μ, x ∈ R
3,

−�ψ + λ2ψ = νφwλ2,ν ψ + 2ν

(∫

R3

wλ2,ν(y)ψ(y)

|x − y| dy

)

wλ2,ν , x ∈ R
3,

ϕ, ψ ∈ H1
r (R3).

(6.20)

Then z is non-degenerate if (6.20) has only the trivial solution. Since (6.20) can be reduced
to two separate equations in form of (6.19), then the non-degeneracy of z follows from the
non-degeneracy of wσ,τ . ��

Now we are ready to prove the uniqueness of positive solution of (1.1) for small β > 0.

Proof of part (i) of Theorem 1.4 We first prove that if β > 0 is small enough, then any
positive solution (u, v) of (1.1) is close to (wλ1,μ, wλ2,ν). Let {zβn = (uβn , vβn )} be a
sequence of positive solutions of (1.1) with β = βn > 0 and β → 0 as n → ∞. We
assume that uβn (0) = maxx∈R3 uβn (x) and vβn (0) = maxx∈R3 vβn (x). By Lemma 6.3, we
may assume that (uβn , vβn ) → z0 = (u0, v0) in Er and u0, v0 ≥ 0. Since x = 0 is the
maximum point of zβn , it follows from the maximum principle that

0 < λ1 ≤ μφuβn
(0) + βnφvβn

(0), 0 < λ2 ≤ νφvβn
(0) + βnφuβn

(0). (6.21)

From βn → 0 and (uβn , vβn ) → (u0, v0) in Er , we obtain that

φu0(0) =
∫

R3

u2
0(y)

|y| dy ≥ λ1

μ
> 0, φv0(0) =

∫

R3

v2
0(y)

|y| dy ≥ λ2

ν
> 0.

So u0, v0 �≡ 0, and by the strong maximum principle, we have u0, v0 > 0 in R
3 and

u0(0) = maxx∈R3 u0(x), v0(0) = maxx∈R3 v0(x). Thus from Lemma 6.4, we must have
(u0, v0) = (wλ1,μ, wλ2,ν) and (uβn , vβn ) → (wλ1,μ, wλ2,ν) in Er as n → ∞. Since the
above argument holds for any sequence {(uβn , vβn )}, then we conclude that for any ε > 0,
there exists β̄ = β̄(ε) > 0 such that for any (0, β̄] and any nontrivial positive solution
zβ = (uβ, vβ) of (1.1) with β ∈ (0, β̄) satisfies

‖(uβ, vβ) − (wλ1,μ, wλ2,ν)‖E < ε. (6.22)

Now we define a mapping

F(β, z) = (L
β
λ1λ2

)′(z) : R × Er → E∗
r , (6.23)

where E∗
r is the dual space of Er . Let z0 = (wλ1,μ, wλ2,ν). Clearly F(0, z0) = 0. Moreover

from Lemma 6.4, we have that Fz(0, z0) = (L 0
λ1λ2

)′′(z0) is invertible. Then by the implicit
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function theorem, there exist β̃ > 0, k0 > 0 and θ : (−β̃, β̃) → Bk0(z0) ≡ {z ∈ Er :
‖z − z0‖E ≤ k0} such that the solution set of F(β, z) = 0 in (−β̃, β̃) × Bk0(z0) is exactly
a smooth curve {(β, θ(β)) : |β| < β̃}. This implies that for any β ∈ (−β̃, β̃), (1.1) has
a unique positive solution near z0. Together with the property (6.22) shown above for β ∈
(0, β̄), we conclude that (1.1) has a unique positive solution for β ∈ (0, β0) where β0 =
min{β̄, β̃}. The nondegeneracy of the unique positive solution for β ∈ (0, β0) follows from
the nondegeneracy of z0 in Lemma 6.4. ��

Finally we give the proof of the uniqueness of positive ground state solution when λ1 = λ2.

Proof of part (ii) of Theorem 1.4 Assume that λ1 = λ2 > 0. In the proof of Theorem 1.3,
we have obtained that (see (2.62)):

C = 1

4
(κ + �)λ

3
2
1

∫

R3
φww2, κ = λ

3
2
1 (ν − β)

λ
3
2
1 μν − β2

, � = λ
3
2
1 (μ − β)

λ
3
2
1 μν − β2

, (6.24)

where w is the unique positive solution of (1.12) with σ = τ = 1. Let (u0, v0) be a positive
ground state solution of (1.1). By using the same arguments as in [11], one can prove that

∫

R3
φu0u

2
0 = κ2

∫

R3
φww2,

∫

R3
φv0v

2
0 = �2

∫

R3
φww2,

∫

R3
φu0v

2
0 = �κ

∫

R3
φww2,

∫

R3
φu0v

2
0 = �

κ

∫

R3
φu0u

2
0 = κ

�

∫

R3
φv0v

2
0 .

(6.25)
Set (û, v̂) = (κ−1/2u0, �

−1/2v0). We deduce from (6.24) and (u0, v0) being a positive ground
state solution of (1.1) that

∫

R3
(|∇û|2 + λ1û

2) =
∫

R3
φû û

2,

∫

R3
(|∇v̂|2 + λ1v̂

2) =
∫

R3
φv̂v̂

2. (6.26)

Since w is the unique positive ground state solution of (1.12), it follows that
∫

R3
(|∇û|2 + λ1û

2) ≥ λ
3
2
1 S

2
1 ,

∫

R3
(|∇v̂|2 + λ1v̂

2) ≥ λ
3
2
1 S

2
1 (6.27)

and

C = 1

4
(κ + �)λ

3
2
1 S

2
1 = 1

4

∫

R3
(|∇u0|2 + λ1u

2
0 + |∇v0|2 + λ1v

2
0)

= κ

4

∫

R3
(|∇û|2 + λ1û

2) + �

4

∫

R3
(|∇v̂|2 + λ1v̂

2) ≥ 1

4
(κ + �)λ

3
2
1 S

2
1 .

(6.28)

Thus, we have ∫

R3
(|∇û|2 + λ1û

2) = λ
3
2
1 S

2
1 = λ

3
2
1

∫

R3
φww2,

∫

R3
(|∇v̂|2 + λ1v̂

2) = λ
3
2
1 S

2
1 = λ

3
2
1

∫

R3
φww2.

(6.29)

So, it follows from (6.26) and (6.29) that û and v̂ are positive ground state solutions of (1.1).
As in [37], we know that w is the unique positive solution of (1.12). So, û = v̂ = w up to a
translation. That is, (u0, v0) = (

√
κ û,

√
�v̂) = (

√
κw,

√
�w) up to a translation. ��
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7 Radial symmetry

In this section we prove Theorem 1.1. We shall use the moving plane method introduced by
Chen et. al. [10], see also [9,26,27,37] for related results. We point out that the system (1.1)
is quite different from the system studied by [9,10], but related to the Schrödinger systems
considered in the papers [26,37].

For the convenience of the readers, we first prepare some basic properties of Yukawa
potential [28]. The Yukawa potential is given by

G
γ
y (x) = G γ (x − y) =

∫ ∞

0
(4π t)−

3
2 exp

{

−|x − y|2
4t

− γ t

}

dt, (7.1)

where γ > 0. Moreover, G λ
y (x) satisfies the equation

(−� + γ )G
γ
y = δy, x ∈ R

3,

where δy is Dirac’s delta measure at y [often written as δ(x − y)]. Let Iγ = (−�+γ )−1 be
the inverse operator of the positive operator −�+γ in the Sobolev space H1(R3). Obviously,
for f ∈ H1(R3), one sees that

Iγ ( f ) = G γ ∗ f,

where ∗ denotes the convolution in R
3. In addition, by the Sobolev embedding theorem (see

[2]), we obtain the estimate

|Iγ ( f )|r ≤ Cr,s,3| f |s, f ∈ Ls(R3), (7.2)

where 0 ≤ 1

s
− 2

3
≤ 1

r
≤ 1

s
(see [28]). The estimate (7.2) will play a key role in our

arguments below.
From the above arguments, we can transform the system (1.1) of differential equations

into a system of integral equations involving the Yukawa potential:
⎧
⎪⎪⎨

⎪⎪⎩

u = G λ1 ∗ (μuu1 + βuv1),

v = G λ2 ∗ (νvu1 + βvv1),

u1 = 1

|x | ∗ u2, v1 = 1

|x | ∗ v2.

(7.3)

In the following, we only deal with the system (7.3) of integral equations. For a given real
number t , we define

�t = {x = (x1, x2, x3) ∈ R
3 : x1 ≥ t},

�u
t = {x ∈ �t : ut (x) > u(x)}, �v

t = {x ∈ �t : vt (x) > v(x)}, (7.4)

where
xt = (2t − x1, x2, x3), ut (x) = u(xt ) and vt (x) = v(xt ). (7.5)

Then we have the following lemma concerns with the decomposition of ut − u.

Lemma 7.1 Let z = (u, v) denote a positive solution of (1.1). Then for any x ∈ R
3, we

have

ut (x) − u(x) =
∫

�t

(G λ1(x − y) − G λ1(xt − y))[μ(ut (y)u1,t (y) − u(y)u1(y))

+ β(ut (y)v1,t (y) − u(y)v1(y))]dy,
(7.6)
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and

vt (x) − v(x) =
∫

�t

(G λ2(x − y) − G λ2(xt − y))[μ(vt (y)v1,t (y) − v(y)v1(y))

+ β(vt (y)u1,t (y) − v(y)u1(y))]dy,
(7.7)

where u1,t (y) = u1(yt ) and v1,t (y) = v1(yt ).

Proof Since |xt − y| = |x − yt |, it follows from (7.3) and (7.4) that

u(x) =
∫

�t

G λ1(x − y)[μu(y)u1(y) + βu(y)v1(y)]dy

+
∫

R3\�t

G λ1(x − y)[μu(y)u1(y) + βu(y)v1(y)]dy

=
∫

�t

G λ1(x − y)[μu(y)u1(y) + βu(y)v1(y)]dy

+
∫

�t

G λ1(xt − y)[μut (y)u1,t (y) + βut (y)v1,t (y)]dy.

(7.8)

Substituting x by xt , one has that

ut (x) =
∫

�t

G λ1(xt − y)[μu(y)u1(y) + βu(y)v1(y)]dy

+
∫

�t

G λ1(x − y)[μut (y)u1,t (y) + βut (y)v1,t (y)]dy.
(7.9)

From (7.8) and (7.9), we obtain (7.6). Similarly, one can prove the equality (7.7). ��

Similarly, one can obtain the decomposition of u1,t − u1 and v1,t − v1 below.

Lemma 7.2 Let z = (u, v) be a positive solution of (1.1), and let u1, v1 be defined as in
(7.3). Then for x ∈ R

3, we have

u1,t (x) − u1(x) =
∫

�t

(
1

|x − y| − 1

|xt − y|
)

(u2
t (y) − u2(y))dy, (7.10)

v1,t (x) − v1(x) =
∫

�t

(
1

|x − y| − 1

|xt − y|
)

(v2
t (y) − v2(y))dy. (7.11)

Next we prove the following result for the sets �u
t and �v

t which initiate the process of
moving plane.

Lemma 7.3 There exists T > 0 sufficiently large such that for all t ≤ −T , �u
t = �v

t = ∅.

Proof In order to obtain the conclusion, we prove some more precise estimates for the
quantities in (7.6)–(7.7) and (7.10)–(7.11). Since |x − y| ≤ |xt − y| for all x, y ∈ �t , it
follows from the expression of G λ1 that

G λ1(|x − y|) − G λ1(|xt − y|) ≥ 0. (7.12)
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So we derive from Lemma 7.1 that

ut (x) − u(x)

=
∫

�t

(G λ1 (x − y) − G λ1 (xt − y))

· [μ(ut (y)u1,t (y) − u(y)u1(y)) + β(ut (y)v1,t (y) − u(y)v1(y))]dy
≤

∫

�t∩{ut u1,t>u(y)u1}
G λ1 (x − y)[μ(ut (y)u1,t (y) − u(y)u1(y))]dy

+
∫

�t∩{utv1,t>u(y)v1}
G λ1 (x − y)[β(ut (y)v1,t (y) − u(y)v1(y))]dy

≤ μ

∫

�u
t

G λ1 (x − y)u1,t (y)(ut (y) − u(y))dy + μ

∫

�
u1
t

G λ1 (x − y)u(y)(u1,t (y) − u1(y))dy

+ β

∫

�u
t

G λ1 (x − y)v1,t (y)(ut (y) − u(y))dy + β

∫

�
v1
t

G λ1 (x − y)u(y)(v1,t (y) − v1(y))dy.

(7.13)
We infer from (7.2) and Hölder inequality that

|ut (x) − u(x)|L2(�u
t )

≤ cμ|u1,t (y)(ut (y) − u(y))|
L

3
2 (�u

t )
+ cμ|u(y)(u1,t (y) − u1(y))|

L
3
2 (�

u1
t )

+ cβ|v1,t (y)(ut (y) − u(y))|
L

3
2 (�u

t )
+ cβ|u(y)(v1,t (y) − v1(y))|

L
3
2 (�

v1
t )

≤ c|u1,t |L6(�u
t )|ut (x) − u(x)|L2(�u

t ) + c|u|L2(�
u1
t )

|u1,t (x) − u1(x)|L6(�
u1
t )

+ c|v1,t |L6(�u
t )|ut (x) − u(x)|L2(�u

t ) + c|u|L2(�
v1
t )

|v1,t (x) − v1(x)|L6(�
v1
t )

.

(7.14)

Similarly, we deduce from (7.2), (7.7) and Hölder inequality that

vt (x) − v(x)

≤ ν

∫

�v
t

G λ2 (x − y)v1,t (y)(vt (y) − v(y))dy + ν

∫

�
v1
t

G λ2 (x − y)v(y)(v1,t (y) − v1(y))dy

+ β

∫

�v
t

G λ2 (x − y)u1,t (y)(vt (y) − (y))dy + β

∫

�
u1
t

G λ2 (x − y)v(y)(u1,t (y) − u1(y))dy.

(7.15)
and

|vt (x) − v(x)|L2(�v
t )

≤ c|v1,t |L6(�v
t )|vt (x) − v(x)|L2(�v

t ) + c|v|L2(�
v1
t )

|v1,t (x) − v1(x)|L6(�
v1
t )

+ c|u1,t |L6(�v
t )|vt (x) − v(x)|L2(�v

t ) + c|v|L2(�
u1
t )

|u1,t (x) − u1(x)|L6(�
u1
t )

.

(7.16)

On the other hand, a direct computation shows that (7.10) equals to

u1,t (x) − u1(x) ≤ 2
∫

�u
t

(
1

|x − y| )ut (y)(ut (y) − u(y))dy, (7.17)

So we have that

|u1,t − u1|L6(�
u1
t )

≤ c|ut (ut (x) − u(x))|
L

6
5 (�u

t )

≤ c|ut |L3(�u
t )|ut (x) − u(x)|L2(�u

t ).
(7.18)
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Similarly we have that

|v1,t − v1|L6(�
v1
t )

≤ c|vt |L3(�v
t )|vt − v|L2(�v

t ). (7.19)

Substituting (7.18) and (7.19) into (7.14) and (7.16), we obtain that

|ut − u|L2(�u
t )

≤c|u1,t |L6(�u
t )|ut − u|L2(�u

t ) + c|u|L2(�
u1
t )

|ut |L3(�u
t )|ut − u|L2(�u

t )

+ c|v1,t |L6(�u
t )|ut − u|L2(�u

t ) + c|u|L2(�
v1
t )

|vt |L3(�v
t )|vt − v|L2(�v

t ).

(7.20)

and

|vt − v|L2(�v
t )

≤c|v1,t |L6(�v
t )|vt − v|L2(�v

t ) + c|v|L2(�
v1
t )

|vt |L3(�v
t )|vt − v|L2(�v

t )

+ c|u1,t |L6(�v
t )|vt − v|L2(�v

t ) + c|v|L2(�
u1
t )

|ut |L3(�u
t )|ut − u|L2(�u

t ).

(7.21)

Accordingly, we can choose T > 0 sufficiently large such that for t ≤ −T , we have

c|u1,t |L6(�u
t ), c|u|L2(�

u1
t )

|ut |L3(�u
t ), c|v1,t |L6(�u

t ), c|u|L2(�
v1
t )

|vt |L3(�v
t ) ≤ 1

8
,

c|v1,t |L6(�v
t ), c|v|L2(�

v1
t )

|vt |L3(�v
t ), c|u1,t |L6(�v

t ), c|v|L2(�
u1
t )

|ut |L3(�u
t ) ≤ 1

8
.

(7.22)

Then (7.20) and (7.21) reduce to

|ut − u|L2(�u
t ) ≤ 3

8
|ut − u|L2(�u

t ) + 1

8
|vt − v|L2(�v

t ),

|vt − v|L2(�v
t ) ≤ 3

8
|vt − v|L2(�v

t ) + 1

8
|ut − u|L2(�u

t ).

(7.23)

These imply that |ut − u|L2(�u
t ) = 0 and |vt − v|L2(�v

t ) = 0. Therefore, �u
t and �v

t must be
measure zero and hence empty. ��

Now we are ready to prove Theorem 1.1.

Proof of Theorem 1.1 First, from Lemma 7.2, we infer that for t ≤ −T ,

ut (x) ≤ u(x) and vt (x) ≤ v(x), ∀x ∈ �t . (7.24)

Starting from such a t < −T , one can move the plane x1 = t to the right as long as (7.24)
holds. Suppose that there exists a t0 < 0 such that, for x ∈ �t0 , we have

ut0(x) ≤ u(x) and vt0(x) ≤ v(x), but ut0(x) �≡ u(x) or vt0(x) �≡ v(x), (7.25)

then we can continue this process further to the right. More precisely, we prove that if (7.25)
holds, then there exists an ε > 0 such that

ut (x) ≤ u(x) and vt (x) ≤ v(x), x ∈ �t for all t ∈ [t0, t0 + ε). (7.26)

Without loss of generality we assume that

ut0(x) �≡ u(x), x ∈ �t0 . (7.27)

From (7.10) we infer that u1 > u1,t0 . This together with (7.7) imply that v > vt0 in the
interior of �t0 . Set

�û
t0 = {x ∈ �t0 : u(x) ≤ ut0(x)} and �v̂

t0 = {x ∈ �t0 : v(x) ≤ vt0(x)}. (7.28)
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Thus, �û
t0 has measure zero, and limt→t0 �u

t0 ⊂ �û
t0 . Similarly, we deduce from (7.11) and

(7.6) that v1 > v1,t0 , and u > ut0 in the interior of �t0 . So, the above conclusion is still true
for that of v. Let �∗ be the reflection of the set � about the plane x1 = t . From (7.20), we
deduce that

|ut − u|L2(�u
t )

≤c|u1|L6((�u
t )∗)|ut − u|L2(�u

t ) + c|u|L2(�
u1
t )

|u|L3((�u
t )∗)|ut − u|L2(�u

t )

+ c|v1|L6((�u
t )∗)|ut − u|L2(�u

t ) + c|u|L2(�
v1
t )

|v|L3((�u
t )∗)|vt − v|L2(�v

t ).

(7.29)

Since u, v ∈ L3(R3) and u1, v1 ∈ L6(R3), it follows that

c|u1|L6((�u
t )∗), c|u|L2(�

u1
t )

|u|L3((�u
t )∗), c|v1|L6((�u

t )∗), c|u|L2(�
v1
t )

|v|L3((�u
t )∗) ≤ 1

8
.

(7.30)
Substituting (7.30) into (7.29), we obtain that

|ut − u|L2(�u
t ) ≤ 3

8
|ut − u|L2(�u

t ) + 1

8
|vt − v|L2(�v

t ). (7.31)

By using the same arguments as in (7.29) and (7.30) one has

|vt − v|L2(�v
t ) ≤ 3

8
|vt − v|L2(�v

t ) + 1

8
|ut − u|L2(�u

t ). (7.32)

We deduce from (7.31) and (7.32) that |ut −u|L2(�u
t ) = 0 and |vt −v|L2(�v

t ) = 0. Therefore,
�u

t and �v
t must be of measure zero and hence empty. This verifies (7.26). Thus, we have

proved that when the moving plane process stops, we must have u ≡ ut0 , and ut ≤ u in �t

when t < t0.
By a translation, we may assume that u(0) = max

x∈R3
u(x) and v(0) = max

x∈R3
u(x). Then it

follows that the moving plane process from any direction must stop at the origin. Hence u
and v must be radially symmetric and monotone decreasing in the radial direction. This ends
the proof of Theorem 1.1. ��
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