
CS193p

Fall 2017-18

Stanford CS193p
Developing Applications for iOS

Fall 2017-18

CS193p

Fall 2017-18

Today
Multithreading
How to handle long-running/blocking activity (like accessing the network)
Cassini Demo

Autolayout
Review
Size Classes
Concentration Demo

CS193p

Fall 2017-18

Multithreading
Queues

Multithreading is mostly about “queues” in iOS.
Functions (usually closures) are simply lined up in a queue (like at the movies!).
Then those functions are pulled off the queue and executed on an associated thread(s).
Queues can be “serial” (one closure a time) or “concurrent” (multiple threads servicing it).

Main Queue
There is a very special serial queue called the “main queue.”
All UI activity MUST occur on this queue and this queue only.
And, conversely, non-UI activity that is at all time consuming must NOT occur on that queue.
We do this because we want our UI to be highly responsive!
And also because we want things that happen in the UI to happen predictably (serially).
Functions are pulled off and worked on in the main queue only when it is “quiet”.

Global Queues
For non-main-queue work, you’re usually going to use a shared, global, concurrent queue.

CS193p

Fall 2017-18

Multithreading
Getting a queue

Getting the main queue (where all UI activity must occur).
let mainQueue = DispatchQueue.main

Getting a global, shared, concurrent “background” queue.
This is almost always what you will use to get activity off the main queue.
let backgroundQueue = DispatchQueue.global(qos: DispatchQoS)
DispatchQoS.userInteractive // high priority, only do something short and quick
DispatchQoS.userInitiated // high priority, but might take a little bit of time
DispatchQoS.background // not directly initiated by user, so can run as slow as needed
DispatchQoS.utility // long-running background processes, low priority

CS193p

Fall 2017-18

Multithreading
Putting a block of code on the queue

Multithreading is simply the process of putting closures into these queues.
There are two primary ways of putting a closure onto a queue.
You can just plop a closure onto a queue and keep running on the current queue …
queue.async { . . . }

… or you can block the current queue waiting until the closure finishes on that other queue …
queue.sync { . . . }

We almost always do the former.

CS193p

Fall 2017-18

Multithreading
Getting a non-global queue

Very rarely you might need a queue other than main or global.
Your own serial queue (use this only if you have multiple, serially dependent activities) …
let serialQueue = DispatchQueue(label: “MySerialQ”)

Your own concurrent queue (rare that you would do this versus global queues) …
let concurrentQueue = DispatchQueue(label: “MyConcurrentQ”, attributes: .concurrent)

CS193p

Fall 2017-18

Multithreading
We are only seeing the tip of the iceberg

There is a lot more to GCD (Grand Central Dispatch)
You can do locking, protect critical sections, readers and writers, synchronous dispatch, etc.
Check out the documentation if you are interested

There is also another API to all of this
OperationQueue and Operation
Usually we use the DispatchQueue API, however.
This is because the “nesting” of dispatching reads very well in the code
But the Operation API is also quite useful (especially for more complicated multithreading)

CS193p

Fall 2017-18

Multithreading
Multithreaded iOS API

Quite a few places in iOS will do what they do off the main queue
They might even afford you the opportunity to do something off the main queue
iOS might ask you for a function (a closure, usually) that executes off the main thread
Don’t forget that if you want to do UI stuff there, you must dispatch back to the main queue!

CS193p

Fall 2017-18

Multithreading
Example of a multithreaded iOS API

This API lets you fetch the contents of an http URL into a Data off the main queue!
let session = URLSession(configuration: .default)
if let url = URL(string: “http://stanford.edu/...”) {

let task = session.dataTask(with: url) { (data: Data?, response, error) in

}
task.resume()

}

CS193p

Fall 2017-18

Multithreading
Example of a multithreaded iOS API

This API lets you fetch the contents of an http URL into a Data off the main queue!

let session = URLSession(configuration: .default)
if let url = URL(string: “http://stanford.edu/...”) {
 let task = session.dataTask(with: url) { (data: Data?, response, error) in
 // I want to do UI things here

 // with the data of the download

 // can I?
 }
 task.resume()
}
NO. That’s because that code will be run off the main queue.
How do we deal with this?
One way is to use a variant of this API that lets you specify the queue to run on (main queue).
Here’s another way using GCD …

CS193p

Fall 2017-18

Multithreading
Example of a multithreaded iOS API

This API lets you fetch the contents of an http URL into a Data off the main queue!

let session = URLSession(configuration: .default)
if let url = URL(string: “http://stanford.edu/...”) {
 let task = session.dataTask(with: url) { (data: Data?, response, error) in
 DispatchQueue.main.async {
 // do UI stuff here
 }
 }
 task.resume()
}
Now we can legally do UI stuff in there.
That’s because the UI code you want to do has been dispatched back to the main queue.

CS193p

Fall 2017-18

Multithreading
Timing

Let’s look at when each of these lines of code executes …

a: if let url = URL(string: “http://stanford.edu/...”) {
b: let task = session.dataTask(with: url) { (data: Data?, response, error) in
c: // do something with the data
d: DispatchQueue.main.async {
e: // do UI stuff here
 }

f: print(“did some stuff with the data, but UI part hasn’t happened yet”)
 }
g: task.resume()
 }
h: print(“done firing off the request for the url’s contents”)

Line a is obviously first.

CS193p

Fall 2017-18

Multithreading
Timing

Let’s look at when each of these lines of code executes …

a: if let url = URL(string: “http://stanford.edu/...”) {
b: let task = session.dataTask(with: url) { (data: Data?, response, error) in
c: // do something with the data
d: DispatchQueue.main.async {
e: // do UI stuff here
 }

f: print(“did some stuff with the data, but UI part hasn’t happened yet”)
 }
g: task.resume()
 }
h: print(“done firing off the request for the url’s contents”)
Line b is next.
It returns immediately. It does nothing but create a dataTask and assign it to task.
Obviously its closure argument has yet to execute (it needs the data to be retrieved first).

CS193p

Fall 2017-18

Multithreading
Timing

Let’s look at when each of these lines of code executes …

a: if let url = URL(string: “http://stanford.edu/...”) {
b: let task = session.dataTask(with: url) { (data: Data?, response, error) in
c: // do something with the data
d: DispatchQueue.main.async {
e: // do UI stuff here
 }

f: print(“did some stuff with the data, but UI part hasn’t happened yet”)
 }
g: task.resume()
 }
h: print(“done firing off the request for the url’s contents”)
Line g happens immediately after line b. It also returns immediately.
All it does is fire off the url fetch (to get the data) on some other (unknown) queue.
The code on lines c, d, e and f will eventually execute on some other (unknown) queue.

CS193p

Fall 2017-18

Multithreading
Timing

Let’s look at when each of these lines of code executes …

a: if let url = URL(string: “http://stanford.edu/...”) {
b: let task = session.dataTask(with: url) { (data: Data?, response, error) in
c: // do something with the data
d: DispatchQueue.main.async {
e: // do UI stuff here
 }

f: print(“did some stuff with the data, but UI part hasn’t happened yet”)
 }
g: task.resume()
 }
h: print(“done firing off the request for the url’s contents”)
Line h happens immediately after line g.
The url fetching task has now begun on some other queue (executing on some other thread).

CS193p

Fall 2017-18

Multithreading
Timing

Let’s look at when each of these lines of code executes …

a: if let url = URL(string: “http://stanford.edu/...”) {
b: let task = session.dataTask(with: url) { (data: Data?, response, error) in
c: // do something with the data
d: DispatchQueue.main.async {
e: // do UI stuff here
 }

f: print(“did some stuff with the data, but UI part hasn’t happened yet”)
 }
g: task.resume()
 }
h: print(“done firing off the request for the url’s contents”)
The first four lines of code (a, b, g, h) all ran back-to-back with no delay.
But line c will not get executed until sometime later (because it was waiting for the data).
It could be moments after line g or it could be minutes (e.g., if over cellular).

CS193p

Fall 2017-18

Multithreading
Timing

Let’s look at when each of these lines of code executes …

a: if let url = URL(string: “http://stanford.edu/...”) {
b: let task = session.dataTask(with: url) { (data: Data?, response, error) in
c: // do something with the data
d: DispatchQueue.main.async {
e: // do UI stuff here
 }

f: print(“did some stuff with the data, but UI part hasn’t happened yet”)
 }
g: task.resume()
 }
h: print(“done firing off the request for the url’s contents”)
Then line d gets executed.
Since it is dispatching its closure to the main queue async, line d will return immediately.

CS193p

Fall 2017-18

Multithreading
Timing

Let’s look at when each of these lines of code executes …

a: if let url = URL(string: “http://stanford.edu/...”) {
b: let task = session.dataTask(with: url) { (data: Data?, response, error) in
c: // do something with the data
d: DispatchQueue.main.async {
e: // do UI stuff here
 }

f: print(“did some stuff with the data, but UI part hasn’t happened yet”)
 }
g: task.resume()
 }
h: print(“done firing off the request for the url’s contents”)
Line f gets executed immediately after line d.
Line e has not happened yet!
Again, line d did nothing but asynchronously dispatch line e onto the (main) queue.

CS193p

Fall 2017-18

Multithreading
Timing

Let’s look at when each of these lines of code executes …

a: if let url = URL(string: “http://stanford.edu/...”) {
b: let task = session.dataTask(with: url) { (data: Data?, response, error) in
c: // do something with the data
d: DispatchQueue.main.async {
e: // do UI stuff here
 }

f: print(“did some stuff with the data, but UI part hasn’t happened yet”)
 }
g: task.resume()
 }
h: print(“done firing off the request for the url’s contents”)
Finally, sometime later, line e gets executed.
Just like with line c, it’s probably best to imagine this happens minutes after line g.
What’s going on in our program might have changed dramatically in that time.

CS193p

Fall 2017-18

Multithreading
Timing

Let’s look at when each of these lines of code executes …

a: if let url = URL(string: “http://stanford.edu/...”) {
b: let task = session.dataTask(with: url) { (data: Data?, response, error) in
c: // do something with the data
d: DispatchQueue.main.async {
e: // do UI stuff here
 }

f: print(“did some stuff with the data, but UI part hasn’t happened yet”)
 }
g: task.resume()
 }
h: print(“done firing off the request for the url’s contents”)
Summary: a b g h c d f e
This is the “most likely” order.
It’s not impossible that line e could happen before line f, for example.

CS193p

Fall 2017-18

Demo
Multithreaded Cassini

Let’s get that URL network fetch off the main queue!

CS193p

Fall 2017-18

Autolayout
You’ve seen a lot of Autolayout already …

Using the dashed blue lines to try to tell Xcode what you intend
Reset to Suggested Constraints in lower right corner if blue lines were good enough
Ctrl-dragging to the edges and to other views
Size Inspector to look at and edit simple details of the constraints on a view
Clicking on a constraint directly in the storyboard and inspecting it
The “pin” menu in the lower right corner (there’s an “arrange” button there too)
The Document Outline is an awesome place to view/edit and resolve problem constraints

Mastering Autolayout requires experience
There’s no substitute. You just have to do it to learn it well.

Autolayout can be done from code as well
Search for the words “anchor” and “auto layout” in the UIView documentation.

CS193p

Fall 2017-18

Autolayout
All that is not always enough

Sometimes the geometry changes so drastically that simple autolayout cannot cope.
You actually need to reposition the views entirely to make them fit properly.

Concentration
For example, what if we had 20 buttons in Concentration?
It would be a lot nicer in tight vertical environments to go 5 across and 4 down.
But in regular vertical environments, we’d be much better off with 5 down and 4 across.
No combination of “pinning to the edges or other views” is going to accomplish this.

Solution? We can vary our UI based on its “size class”
A view controller’s current size class says what sort of room it has to lay out in.
It’s not an exact number or dimension, it’s just either “compact” or “regular” width or height.

CS193p

Fall 2017-18

Autolayout
iPhone

All iPhones in portrait are compact in width and regular in height
All non-Plus iPhones in landscape are compact in both dimensions

iPhone Plus
iPhone Plus is also compact in width and regular in height in portrait
But in landscape, the iPhone Plus is only compact in height (i.e. it’s regular in width)

iPad
Always regular in both dimensions
But depending on the environment an MVC is in, it might be compact (e.g. split view master)

CS193p

Fall 2017-18

Size Classes
Compact Width

Compact Height

Regular Width

Regular Height

iPhones (non-Plus)

 in Landscape

iPhone Plus

in Landscape

iPhones

in Portrait

or

Split View Master

iPads

Portrait

or

Landscape

CS193p

Fall 2017-18

Size Classes
Compact Width

Compact Height

Regular Width

Regular Height

CS193p

Fall 2017-18

Autolayout
What can we do based on our size class?

You can vary many properties in UIView …
Fonts, background color, isHidden, even whether a view is installed in the view hierarchy.
Most importantly though, you can also include or exclude any constraint based on size class.
By doing this, we can rearrange our UI completely differently in different size class situations.
InterfaceBuilder has full support for doing this.

Using Size Class information
You can find out your current “size class” in code using this method in UIViewController …
let myHorizSizeClass: UIUserInterfaceSizeClass = traitCollection.horizontalSizeClass
The return value is an enum … either .compact or .regular (or .unspecified).

However, it is rare to look at our size class in code.
Again, we’re almost always going to do this in InterfaceBuilder.

CS193p

Fall 2017-18

Demo Code
Download the Cassini demo code from today’s lecture.

