

Starduino: 8-Bit Super Mario Tree Topper

Created by John Park

https://learn.adafruit.com/starduino-neopixel-8-bit-mario-star-tree-topper

Last updated on 2022-12-01 02:39:44 PM EST

©Adafruit Industries Page 1 of 19

3

4

8

11

15

17

Table of Contents

Overview

Print the Star

Make the Blinky Electronics

Arduino Code

CircuitPython Code

• Installing Libraries

Assemble the Awesome Starduino

©Adafruit Industries Page 2 of 19

Overview

Let's build an 8-bit tree topper! This project uses the GEMMA to run a NeoPixel ring

stuffed inside a 3D printed Mario star. You start out by printing four star model parts.

Then, you'll build and program the circuit. Next comes assembly, and finally you'll

power it up and place it atop your tree! (Thanks to Artie Beavis () / AtmelMakes () for

the name!)

Before you start, you should be familiar with using your 3D printer, and read up on

these guides:

Introducing GEMMA () or Adafruit Gemma M0 ()

NeoPixel Uberguide ()

Adafruit Guide to Excellent Soldering ()

 You'll need:

3D printer, such as Printrbot (http://adafru.it/1760)

Translucent filament (http://adafru.it/2451) and black filament (http://adafru.it/

2060) for 3D printer

Adafruit Gemma M0 () or Adafruit GEMMA v2 ()

RGB NeoPixel (http://adafru.it/1463) LEDs 16 x ring

Soldering iron and solder

Solid core (http://adafru.it/1311) or stranded (http://adafru.it/1970) wire (20 to 26

gauge)

This guide was written for the Gemma v2 boards. It can also be done with the

Gemma M0. We recommend the Gemma M0 as it is easier to use and is more

compatible with modern computers! The wiring is the same.

•

•

•

•

•

•

•

•

•

©Adafruit Industries Page 3 of 19

https://twitter.com/ArtieBeavis
https://twitter.com/AtmelMakes
file:///home/deploy/introducing-gemma
https://learn.adafruit.com/adafruit-gemma-m0/overview
file:///home/deploy/adafruit-neopixel-uberguide
file:///home/deploy/adafruit-guide-excellent-soldering
https://www.adafruit.com/products/1760
https://www.adafruit.com/products/2451
https://www.adafruit.com/products/2060
https://www.adafruit.com/product/3501
https://www.adafruit.com/product/1222
https://www.adafruit.com/products/1463
https://www.adafruit.com/products/1311
https://www.adafruit.com/products/1970

Helping third hand tool

Wire strippers

Flush diagonal cutters

USB cable (http://adafru.it/260) - A/MiniB - 3ft

5V 1A USB port power supply (http://adafru.it/501) or USB battery pack (http://

adafru.it/1959)

Print the Star

Time to heat and squeeze a length of humble, nondescript plastic filament into a

delightful, three dimensional object! The model was built in Rhino using NURBS

curves, extrusions, and solid booleans. The star has a cylindrical section designed to

fit the GEMMA and NeoPixel ring, as well as a slot for the USB cable. The rectangular

base piece has a complimentary section as well as posts to snap into the holes in the

star once the electronics are in place, and a tubular section that to slide over the top

of your tree.

•

•

•

•

•

©Adafruit Industries Page 4 of 19

https://www.adafruit.com/products/260
https://www.adafruit.com/products/501
https://www.adafruit.com/products/1959

First, you'll need to download the model files from the link below.

Download STL files

Once downloaded, load the first model, StarduinoBody.stl, into CURA or another 3D

printer slicer package.

Adjust the settings to suit your printer -- a fairly low resolution print with 5-10% infill

works well. Then, load natural/translucent filament into your printer and print!

©Adafruit Industries Page 5 of 19

http://www.thingiverse.com/thing:1217163

Next, load the StarduinoBase.stl model and print it with the same settings as the body.

©Adafruit Industries Page 6 of 19

The final parts to print are the eyes. You may want to switch to black filament for

these prints. Or, you may print with the same filament as before and then simply ink

the eyes with black permanent marker. You can choose to print one eye at a time or

both in one print job.

©Adafruit Industries Page 7 of 19

Once you've completed making the eyes, go ahead and press fit them into the star.

Make the Blinky Electronics

Controlling the NeoPixel ring's individual LEDs from the GEMMA is quite simple. Since

the NeoPixels are individually addressable, the only connections needed between the

ring and the GEMMA are for voltage, ground, and control signal. That's just three

wires!

©Adafruit Industries Page 8 of 19

Cut three short lengths of wire (enamel covered motor wire is used here, but you can

use any type that you have handy). Strip a bit off their ends, then solder these

connections:

GEMMA GND -> NeoPixel Gnd

GEMMA Vout -> NeoPixel Vcc

GEMMA D0 -> NeoPixel IN

This guide was written for the Gemma v2 board. The pins used are the same for

the Gemma M0. We recommend the Gemma M0 as it is easier to use and is more

compatible with modern computers!

•

•

•

©Adafruit Industries Page 9 of 19

Once sodering is completed, bend and tuck the wiring so that the GEMMA fits neatly

inside the NeoPixel ring.

©Adafruit Industries Page 10 of 19

Arduino Code

To program GEMMA, make sure you have followed the instructions found in the

"Introducing GEMMA" guide ().

Once you've got the GEMMA working, you can play with different example sketches,

or code your own blinky pattern.

If you'd like an exciting, fiery pattern to run, download and install the FastLED Arduino

library found here (), and then copy the following Arduino sketch.

Plug the GEMMA into a USB cable connected to your computer, press and release the

reset button on the GEMMA (the red LED on the GEMMA will blink) and then use the

Arduino software IDE to upload the sketch to the board.

// SPDX-FileCopyrightText: 2018 Mikey Sklar for Adafruit Industries

//

// SPDX-License-Identifier: MIT

#include <FastLED.h>

#define LED_PIN 0

#define COLOR_ORDER GRB

#define CHIPSET WS2811

#define NUM_LEDS 30

The Arduino code presented below works equally well on GEMMA: v2 and M0.

But if you have an M0 board, consider using the CircuitPython code on the next

page of this guide, no Arduino IDE required!

©Adafruit Industries Page 11 of 19

http://learn.adafruit.com/introducing-gemma/setting-up-with-arduino-ide
http://learn.adafruit.com/introducing-gemma/setting-up-with-arduino-ide
http://fastled.io

#define BRIGHTNESS 200

#define FRAMES_PER_SECOND 60

bool gReverseDirection = false;

CRGB leds[NUM_LEDS];

void setup() {

 delay(3000); // sanity delay

 FastLED.addLeds<CHIPSET, LED_PIN, COLOR_ORDER>(leds, NUM_LEDS).setCorrection(

TypicalLEDStrip);

 FastLED.setBrightness(BRIGHTNESS);

}

void loop()

{

 // Add entropy to random number generator; we use a lot of it.

 // random16_add_entropy(random());

 Fire2012(); // run simulation frame

 FastLED.show(); // display this frame

 FastLED.delay(1000 / FRAMES_PER_SECOND);

}

// Fire2012 by Mark Kriegsman, July 2012

// as part of "Five Elements" shown here: http://youtu.be/knWiGsmgycY

////

// This basic one-dimensional 'fire' simulation works roughly as follows:

// There's a underlying array of 'heat' cells, that model the temperature

// at each point along the line. Every cycle through the simulation,

// four steps are performed:

// 1) All cells cool down a little bit, losing heat to the air

// 2) The heat from each cell drifts 'up' and diffuses a little

// 3) Sometimes randomly new 'sparks' of heat are added at the bottom

// 4) The heat from each cell is rendered as a color into the leds array

// The heat-to-color mapping uses a black-body radiation approximation.

//

// Temperature is in arbitrary units from 0 (cold black) to 255 (white hot).

//

// This simulation scales it self a bit depending on NUM_LEDS; it should look

// "OK" on anywhere from 20 to 100 LEDs without too much tweaking.

//

// I recommend running this simulation at anywhere from 30-100 frames per second,

// meaning an interframe delay of about 10-35 milliseconds.

//

// Looks best on a high-density LED setup (60+ pixels/meter).

//

//

// There are two main parameters you can play with to control the look and

// feel of your fire: COOLING (used in step 1 above), and SPARKING (used

// in step 3 above).

//

// COOLING: How much does the air cool as it rises?

// Less cooling = taller flames. More cooling = shorter flames.

// Default 50, suggested range 20-100

#define COOLING 55

// SPARKING: What chance (out of 255) is there that a new spark will be lit?

// Higher chance = more roaring fire. Lower chance = more flickery fire.

// Default 120, suggested range 50-200.

#define SPARKING 120

void Fire2012()

{

// Array of temperature readings at each simulation cell

©Adafruit Industries Page 12 of 19

 static byte heat[NUM_LEDS];

 // Step 1. Cool down every cell a little

 for(int i = 0; i < NUM_LEDS; i++) {

 heat[i] = qsub8(heat[i], random8(0, ((COOLING * 10) / NUM_LEDS) + 2));

 }

 // Step 2. Heat from each cell drifts 'up' and diffuses a little

 for(int k= NUM_LEDS - 1; k >= 2; k--) {

 heat[k] = (heat[k - 1] + heat[k - 2] + heat[k - 2]) / 3;

 }

 // Step 3. Randomly ignite new 'sparks' of heat near the bottom

 if(random8() < SPARKING) {

 int y = random8(7);

 heat[y] = qadd8(heat[y], random8(160,255));

 }

 // Step 4. Map from heat cells to LED colors

 for(int j = 0; j < NUM_LEDS; j++) {

 CRGB color = HeatColor(heat[j]);

 int pixelnumber;

 if(gReverseDirection) {

 pixelnumber = (NUM_LEDS-1) - j;

 } else {

 pixelnumber = j;

 }

 leds[pixelnumber] = color;

 }

}

©Adafruit Industries Page 13 of 19

©Adafruit Industries Page 14 of 19

CircuitPython Code

GEMMA M0 boards can run CircuitPython — a different approach to programming

compared to Arduino sketches. In fact, CircuitPython comes factory pre-loaded on

GEMMA M0. If you’ve overwritten it with an Arduino sketch, or just want to learn the

basics of setting up and using CircuitPython, this is explained in the Adafruit

GEMMA M0 guide ().

Below is CircuitPython code that works similarly (though not exactly the same) as the

Arduino sketch shown on a prior page. To use this, plug the GEMMA M0 into USB…it

should show up on your computer as a small flash drive…then edit the file “code.py”

with your text editor of choice. Select and copy the code below and paste it into that

file, entirely replacing its contents (don’t mix it in with lingering bits of old code). When

you save the file, the code should start running almost immediately (if not, see notes

at the bottom of this page).

If GEMMA M0 doesn’t show up as a drive, follow the GEMMA M0 guide link above to

prepare the board for CircuitPython.

SPDX-FileCopyrightText: 2018 Mikey Sklar for Adafruit Industries

#

SPDX-License-Identifier: MIT

import board

import neopixel

import adafruit_fancyled.adafruit_fancyled as fancy

These directions are specific to the “M0” GEMMA board. The GEMMA v2 with an

8-bit AVR microcontroller doesn’t run CircuitPython…for those boards, use the

Arduino sketch on the “Arduino code” page of this guide.

©Adafruit Industries Page 15 of 19

https://learn.adafruit.com/adafruit-gemma-m0/circuitpython-setup-1
https://learn.adafruit.com/adafruit-gemma-m0/circuitpython-setup-1
https://learn.adafruit.com/adafruit-gemma-m0/circuitpython-setup-1
https://learn.adafruit.com/adafruit-gemma-m0/circuitpython-setup-1

num_leds = 16 # number of LEDs per strip

saturation = 255 # 0-255, 0 is pure white, 255 is fully saturated color

blend = True # color blending between palette indices

brightness = 0.8 # brightness the range is 0.0 - 1.0

flicker = 0 # flame flicker

NeoPixel objects using

leds = neopixel.NeoPixel(board.D0, num_leds)

Inspired by Fire2012() by Mark Kriegsman and his use of FastLED

to create a one-dimensional 'fire' simulation

the heat colors are from the heat palette that FastLED provides

def fire_2018(strip, offset):

 # heat colors

 palette = [0x330000, 0x660000, 0x990000, 0xCC0000, 0xFF0000,

 0xFF3300, 0xFF6600, 0xFF9900, 0xFFCC00, 0xFFFF00,

 0xFFFF33, 0xFFFF66, 0xFFFF99, 0xFFFFCC]

 for i in range(num_leds):

 # FancyLED can handle the gamma adjustment, brightness and RGB settings

 color = fancy.palette_lookup(palette, offset + i / num_leds)

 color = fancy.gamma_adjust(color, brightness=brightness)

 strip[i] = color.pack()

while True:

 fire_2018(leds, flicker)

 flicker += 0.3 # flame flicker, adjust value to control speed

Installing Libraries

This code requires two libraries be installed:

neopixel

adafruit_fancyled

 A factory-fresh board will have the neopixel library already installed. If you’ve just

reloaded the board with CircuitPython, create the “lib” directory and then copy in the

neopixel.mpy and adafruit_fancyled folder from the latest release of the

Adafruit_CircuitPython_Bundle ().

The FancyLED library () being using in this CircuitPython example is not the same as

the FastLED ()used for Arduino. FancyLED has a subset of FastLED features and some

different syntax. The FancyLED tutorial provides an excellent overview ().

The file system layout on your gemma M0 should look like this:

$ pwd

/Volumes/CIRCUITPY

$ find .

.

./boot_out.txt

./.fseventsd

•

•

©Adafruit Industries Page 16 of 19

https://github.com/adafruit/Adafruit_CircuitPython_Bundle/releases/tag/20180213
https://github.com/adafruit/Adafruit_CircuitPython_Bundle/releases/tag/20180213
https://github.com/adafruit/Adafruit_CircuitPython_FancyLED
https://github.com/FastLED/FastLED
https://learn.adafruit.com/fancyled-library-for-circuitpython/overview

./.fseventsd/fseventsd-uuid

./lib

./lib/neopixel.mpy

./lib/adafruit_fancyled

./lib/adafruit_fancyled/adafruit_fancyled.mpy

./lib/adafruit_fancyled/fastled_helpers.mpy

./main.py

Assemble the Awesome Starduino

The final step is to put the electronics into the star. Simply place the NeoPixel/GEMMA

bundle into the cylindrical recess in the star with the LEDs facing forward, plug in the

USB cable, and then place the base model onto the backside, snapping the four posts

into place. It should all hold together nicely via friction.

©Adafruit Industries Page 17 of 19

Plug the USB cable into a power source -- either a wall adapter or a battery -- and

watch it sparkle!

All that's left is to top your tree with your rad 8-bit Super Mario star!

©Adafruit Industries Page 18 of 19

©Adafruit Industries Page 19 of 19

	Starduino: 8-Bit Super Mario Tree Topper
	Table of Contents
	Overview
	Print the Star
	Make the Blinky Electronics
	Arduino Code
	CircuitPython Code
	Assemble the Awesome Starduino

	Overview
	Print the Star
	Make the Blinky Electronics
	Arduino Code
	CircuitPython Code
	Installing Libraries
	Assemble the Awesome Starduino

