Simplify each expression.

1. $\sqrt{24}$

SOLUTION:

$$
\begin{aligned}
\sqrt{24} & =\sqrt{2 \cdot 2 \cdot 2 \cdot 3} & & \text { Prime factorization of } 24 . \\
& =\sqrt{2^{2} \cdot 2 \cdot 3} & & \text { Group factors. } \\
& =\sqrt{2^{2}} \cdot \sqrt{2} \cdot \sqrt{3} & & \text { Product Property of Square Roots. } \\
& =2 \cdot \sqrt{2} \cdot \sqrt{3} & & \text { Simplify. } \\
& =2 \sqrt{6} & & \text { Product Property. }
\end{aligned}
$$

2. $3 \sqrt{16}$

SOLUTION:

$$
\begin{aligned}
\sqrt[3]{16} & =3 \sqrt{2 \cdot 2 \cdot 2 \cdot 2} & & \text { Prime factorization of } 16 . \\
& =3 \sqrt{2^{2} \cdot 2^{2}} & & \text { Group factors. } \\
& =3 \cdot \sqrt{2^{2}} \cdot \sqrt{2^{2}} & & \text { Product Property } \\
& =3 \cdot 2 \cdot 2 & & \text { Simplify } \\
& =12 & & \text { Simplify }
\end{aligned}
$$

3. $2 \sqrt{25}$

SOLUTION:

$2 \sqrt{25}=2 \sqrt{5 \cdot 5}$ Prime factorization of 25
$=2 \sqrt{5^{2}}$ Group factors
$=2 \cdot 5 \quad$ Simplify
$=10 \quad$ Simplify
4. $\sqrt{10} \cdot \sqrt{14}$

SOLUTION:

$$
\begin{aligned}
\sqrt{10} \cdot \sqrt{14} & =\sqrt{2} \cdot \sqrt{5} \cdot \sqrt{2} \cdot \sqrt{7} & & \text { Prime factorization of } 10 \text { and } 14 . \\
& =\sqrt{2^{2}} \cdot \sqrt{5} \cdot \sqrt{7} & & \text { Product Property } \\
& =2 \sqrt{35} & & \text { Simplify. }
\end{aligned}
$$

5. $\sqrt{3} \cdot \sqrt{18}$

SOLUTION:

$$
\begin{aligned}
\sqrt{3} \cdot \sqrt{18} & =\sqrt{3} \cdot \sqrt{3 \cdot 3 \cdot 2} & & \text { Prime factorizaiton of } 18 \\
& =\sqrt{3} \cdot \sqrt{3^{2} \cdot 2} & & \text { Group factors. } \\
& =\sqrt{3} \cdot \sqrt{3^{2}} \cdot \sqrt{2} & & \text { Product Property } \\
& =3 \sqrt{6} & & \text { Simplify. }
\end{aligned}
$$

6. $3 \sqrt{10} \cdot 4 \sqrt{10}$

SOLUTION:

$$
\begin{array}{rlrl}
\sqrt[3]{10} \cdot 4 \sqrt{10} & =3 \cdot 4 \cdot \sqrt{10} \cdot \sqrt{10} & & \text { Associative Property } \\
& =3 \cdot 4 \cdot \sqrt{10^{2}} & & \text { Product Property } \\
& =3 \cdot 4 \cdot 10 & & \text { Simplify } \\
& =120 & & \text { Simplify } \\
7 . \sqrt{60 x^{4} y^{7}} & &
\end{array}
$$

SOLUTION:

$$
\begin{aligned}
\sqrt{60 x^{4} y^{7}} & =\sqrt{2^{2} \cdot 3 \cdot 5 \cdot x^{4} \cdot y^{7}} & & \text { Prime factorization of } 60 . \\
& =\sqrt{2^{2}} \cdot \sqrt{3} \cdot \sqrt{5} \cdot \sqrt{x^{4}} \cdot \sqrt{y^{6}} \cdot \sqrt{y} & & \text { Product Property } \\
& =2 \cdot \sqrt{3} \cdot \sqrt{5} \cdot x^{2} \cdot y^{3} \cdot \sqrt{y} & & \text { Simplify. } \\
& =2 x^{2} y^{3} \sqrt{15 y} & & \text { Simplify. }
\end{aligned}
$$

8. $\sqrt{88 m^{3} p^{2} r^{5}}$

SOLUTION:

$$
\begin{aligned}
\sqrt{88 m^{3} p^{2} r^{5}} & =\sqrt{2^{3} \cdot 11 \cdot m^{3} \cdot p^{2} \cdot r^{5}} & & \text { Factor } 88 . \\
& =\sqrt{2^{2}} \cdot \sqrt{2} \cdot \sqrt{11} \cdot \sqrt{m^{2}} \cdot \sqrt{m} \cdot \sqrt{p^{2}} \cdot \sqrt{r^{4}} \cdot \sqrt{r} & & \text { Product Property } \\
& =2 \cdot \sqrt{2} \cdot \sqrt{11} \cdot|m| \cdot \sqrt{m} \cdot|p| \cdot r^{2} \cdot \sqrt{r} & & \text { Simplify. } \\
& =2 m|p| r^{2} \sqrt{22 m r} & & \text { Simplify. }
\end{aligned}
$$

9. $\sqrt{99 a b^{5} c^{2}}$

SOLUTION:

$$
\begin{aligned}
\sqrt{99 a b^{5} c^{2}} & =\sqrt{3^{2} \cdot 11 \cdot a \cdot b^{5} \cdot c^{2}} & & \text { Factor } 99 . \\
& =\sqrt{3^{2}} \cdot \sqrt{11} \cdot \sqrt{a} \cdot \sqrt{b^{4}} \cdot \sqrt{b} \cdot \sqrt{c^{2}} & & \text { Product Property } \\
& =3 \cdot \sqrt{11} \cdot \sqrt{a} \cdot b^{2} \cdot \sqrt{b} \cdot|c| & & \text { Simplify. } \\
& =3 b^{2}|c| \sqrt{11 a b} & & \text { Simplify. }
\end{aligned}
$$

10. MULTIPLE CHOICE Which expression is equivalent to $\sqrt{\frac{45}{10}}$?
A $\frac{5 \sqrt{2}}{10}$
B $\sqrt{\frac{45}{10}}$
C $\frac{\sqrt{50}}{10}$
D $\frac{3 \sqrt{2}}{2}$

SOLUTION:

$$
\begin{array}{rlrl}
\sqrt{\frac{45}{10}} & =\frac{\sqrt{45}}{\sqrt{10}} & \text { Quotient Property } \\
& =\frac{\sqrt{45}}{\sqrt{10}} \cdot \frac{\sqrt{10}}{\sqrt{10}} & \text { Multiply by } \frac{\sqrt{10}}{\sqrt{10}} \text { tor ationalize the denominator. } \\
& =\frac{\sqrt{450}}{10} & \text { Simplify. } \\
& =\frac{\sqrt{3^{2} \cdot 5 \cdot 2 \cdot 5}}{10} & \text { Factor } 10 \text { and } 45 . \\
& =\frac{\sqrt{3^{2}} \cdot \sqrt{5^{2}} \cdot \sqrt{2}}{} \text { Product Propety } \\
& =\frac{3 \cdot 5 \cdot 5 \cdot \sqrt{2}}{10} & \text { Simplify. } \\
& =\frac{3 \sqrt{2}}{2} & \text { Simplify. }
\end{array}
$$

The correct choice is D.
Simplify each expression.
11. $\frac{3}{3+\sqrt{5}}$

SOLUTION:

$$
\begin{array}{rll}
\frac{3}{3+\sqrt{5}} & =\frac{3}{3+\sqrt{5}} \cdot \frac{3-\sqrt{5}}{3-\sqrt{5}} & \text { Multiply by conjugate } 3-\sqrt{5} . \\
& =\frac{3(3-\sqrt{5})}{3^{2}-\sqrt{5^{2}}} & (a-b)(a+b)=a^{2}-b^{2} . \\
& =\frac{9-3 \sqrt{5}}{9-5} & \\
& =\frac{9-3 \sqrt{5}}{4} & \\
\text { Simplify. } \\
& \text { Simplify. }
\end{array}
$$

12. $\frac{5}{2-\sqrt{6}}$

SOLUTION:

$$
\begin{aligned}
\frac{5}{2-\sqrt{6}} & =\frac{5}{2-\sqrt{6}} \cdot \frac{2+\sqrt{6}}{2+\sqrt{6}} & \text { Multiply by the conjugate of } 2+\sqrt{6} . \\
& =\frac{5(2+\sqrt{6})}{2^{2}-\sqrt{6^{2}}} & (a-b)(a+b)=a^{2}-b^{2} . \\
& =\frac{10+5 \sqrt{6}}{4-6} & \text { Simplify. } \\
& =\frac{10+5 \sqrt{6}}{-2} & \text { Simplify. }
\end{aligned}
$$

13. $\frac{2}{1-\sqrt{10}}$

SOLUTION:

$$
\begin{array}{rlrl}
\frac{2}{1-\sqrt{10}} & =\frac{2}{1-\sqrt{10}} \cdot \frac{1+\sqrt{10}}{1+\sqrt{10}} & \text { Multiply by conjugate } 1+\sqrt{10} . \\
& =\frac{2(1+\sqrt{10})}{1^{2}-\sqrt{10^{2}}} & & (a-b)(a+b)=a^{2}-b^{2} . \\
& =\frac{2+2 \sqrt{10}}{1-10} & \text { Simplify. } \\
& =\frac{2+2 \sqrt{10}}{-9} & \text { Simplify. }
\end{array}
$$

14. $\frac{1}{4+\sqrt{12}}$

SOLUTION:

$$
\begin{array}{rlrl}
\frac{1}{4+\sqrt{12}} & =\frac{1}{4+\sqrt{12}} \cdot \frac{4-\sqrt{12}}{4-\sqrt{12}} & \text { Mutuliply by conjugate } 4-\sqrt{12} . \\
& =\frac{1(4-\sqrt{12})}{4^{2}-\sqrt{11^{2}}} & & (a-b)(a+b)=a^{2}-b^{2} . \\
& =\frac{4-\sqrt{12}}{16-12} & & \text { Simplify. } \\
& =\frac{4-\sqrt{2^{2} \cdot 3}}{4} & & \text { Factor } 12 . \\
& =\frac{4-\sqrt{2^{2}} \cdot \sqrt{3}}{4} & & \text { Product Property } \\
& =\frac{4-2 \sqrt{3}}{4} & & \text { Simplify. } \\
& =\frac{2-\sqrt{3}}{2} & & \text { Simplify. }
\end{array}
$$

15. $\frac{4}{6-\sqrt{7}}$

SOLUTION:

$$
\begin{array}{rlrl}
\frac{4}{6-\sqrt{7}} & =\frac{4}{6-\sqrt{7}} \cdot \frac{6+\sqrt{7}}{6+\sqrt{7}} & \text { Multiply by conjugate } 6+\sqrt{7} . \\
& =\frac{4(6+\sqrt{7})}{6^{2}-\sqrt{7^{2}}} & & (a-b)(a+b)=a^{2}-b^{2} . \\
& =\frac{24+4 \sqrt{7}}{36-7} & & \text { Simplify. } \\
& =\frac{24+4 \sqrt{7}}{29} & & \text { Simplify. }
\end{array}
$$

16. $\frac{6}{5+\sqrt{11}}$

SOLUTION:

$$
\begin{array}{rlrl}
\frac{6}{5+\sqrt{11}} & =\frac{6}{5+\sqrt{11}} \cdot \frac{5-\sqrt{11}}{5-\sqrt{11}} & \text { Multiply by conjugate5 }-\sqrt{11 .} \\
& =\frac{6(5-\sqrt{11})}{5^{2}-\sqrt{11^{2}}} & & (a-b)(a+b)=a^{2}-b^{2} . \\
& =\frac{30-6 \sqrt{11}}{25-11} & & \text { Simplify. } \\
& =\frac{30-6 \sqrt{11}}{14} & & \text { Simplify. } \\
& =\frac{15-3 \sqrt{11}}{7} & & \text { Simplify. }
\end{array}
$$

Simplify each expression.
17. $\sqrt{52}$

SOLUTION:

$$
\begin{aligned}
\sqrt{52} & =\sqrt{2 \cdot 2 \cdot 13} & & \text { Prime factorization of } 52 . \\
& =\sqrt{2^{2} \cdot 13} & & \text { Group factors. } \\
& =\sqrt{2^{2}} \cdot \sqrt{13} & & \text { Product Property } \\
& =2 \cdot \sqrt{13} & & \text { Simplify. }
\end{aligned}
$$

18. $\sqrt{56}$

SOLUTION:

$$
\begin{aligned}
\sqrt{56} & =\sqrt{2 \cdot 2 \cdot 2 \cdot 7} & & \text { Prime factorization of } 56 . \\
& =\sqrt{2^{2} \cdot 2 \cdot 7} & & \text { Group factors. } \\
& =\sqrt{2^{2}} \cdot \sqrt{2} \cdot \sqrt{7} & & \text { Product Property } \\
& =2 \cdot \sqrt{14} & & \text { Simplify. }
\end{aligned}
$$

19. $\sqrt{72}$

SOLUTION:

$$
\begin{aligned}
\sqrt{72} & =\sqrt{2 \cdot 2 \cdot 2 \cdot 3 \cdot 3} & & \text { Prime factorization of } 72 . \\
& =\sqrt{2^{2} \cdot 2 \cdot 3^{2}} & & \text { Group factors. } \\
& =\sqrt{2^{2}} \cdot \sqrt{2} \cdot \sqrt{3^{2}} & & \text { Product Property } \\
& =2 \cdot 3 \cdot \sqrt{2} & & \text { Simplify } \\
& =6 \sqrt{2} & & \text { Simplify. }
\end{aligned}
$$

20. $3 \sqrt{18}$

SOLUTION:

$$
\begin{aligned}
3 \sqrt{18} & =3 \cdot \sqrt{2 \cdot 3 \cdot 3} & & \text { Prime factorization of } 18 . \\
& =3 \cdot \sqrt{2 \cdot 3^{2}} & & \text { Group factors. } \\
& ==3 \cdot \sqrt{2} \cdot \sqrt{3^{2}} & & \text { Product Property } \\
& =3 \cdot 3 \cdot \sqrt{2} & & \text { Simplify. } \\
& =9 \sqrt{2} & & \text { Simplify } .
\end{aligned}
$$

21. $\sqrt{243}$

SOLUTION:

$$
\begin{aligned}
\sqrt{243} & =\sqrt{3 \cdot 3 \cdot 3 \cdot 3 \cdot 3} & & \text { Prime factorization of } 243 . \\
& =\sqrt{3^{4} \cdot 3} & & \text { Group factors. } \\
& =\sqrt{3^{4}} \cdot \sqrt{3} & & \text { Product Property. } \\
& =3^{2} \cdot a \sqrt{3} & & \text { Simplify. } \\
& =\sqrt{3} & & \text { Simplify. }
\end{aligned}
$$

22. $\sqrt{245}$

SOLUTION:

$\sqrt{245}=\sqrt{5 \cdot 7 \cdot 7}$ Prime factorization of 245
$=\sqrt{5 \cdot 7^{2}}$ Group terms.
$=\sqrt{5} \cdot \sqrt{7^{2}}$ Product Property
$=7 \sqrt{5} \quad$ Simplify
23. $\sqrt{5} \cdot \sqrt{10}$

SOLUTION:

$\sqrt{5} \cdot \sqrt{10}=\sqrt{5} \cdot \sqrt{5} \cdot \sqrt{2}$ Prime factorization of 10 .
$=\sqrt{5^{2}} \cdot \sqrt{2} \quad$ Product Property
$=5 \sqrt{2} \quad$ Simplify.
24. $\sqrt{10} \cdot \sqrt{20}$

SOLUTION:

$$
\begin{aligned}
\sqrt{10} \cdot \sqrt{20} & =\sqrt{2} \cdot \sqrt{5} \cdot \sqrt{2} \cdot \sqrt{2} \cdot \sqrt{5} & & \text { Prime factorization of } 10 \text { and } 20 . \\
& =\sqrt{2^{2}} \cdot \sqrt{2} \cdot \sqrt{5^{2}} & & \text { Product Property } \\
& =2 \cdot 5 \cdot \sqrt{2} & & \text { Simplify. } \\
& =10 \sqrt{2} & & \text { Simplify. }
\end{aligned}
$$

25. $3 \sqrt{8} \cdot 2 \sqrt{7}$

SOLUTION:

$$
\begin{aligned}
\sqrt[3]{8} \cdot 2 \sqrt{7} & =3 \cdot 2 \cdot \sqrt{8} \cdot \sqrt{7} & & \text { Associative Property } \\
& =3 \cdot 2 \cdot \sqrt{2^{2} \cdot 2} \cdot \sqrt{7} & & \text { Factorization of } 8 . \\
& =3 \cdot 2 \cdot \sqrt{2^{2}} \cdot \sqrt{2} \cdot \sqrt{7} & & \text { Product Property } \\
& =3 \cdot 2 \cdot 2 \cdot \sqrt{2} \cdot \sqrt{7} & & \text { Simplify. } \\
& =12 \sqrt{14} & & \text { Simplify. }
\end{aligned}
$$

26. $4 \sqrt{2} \cdot 5 \sqrt{8}$

SOLUTION:

$$
\begin{aligned}
4 \sqrt{2} \cdot 5 \sqrt{8} & =4 \cdot 5 \cdot \sqrt{2} \cdot \sqrt{8} & & \text { Associative Property } \\
& =4 \cdot 5 \cdot \sqrt{2} \cdot \sqrt{2^{2}} \cdot \sqrt{2} & & \text { Factor } 8 . \\
& =4 \cdot 5 \cdot \sqrt{2^{2}} \cdot \sqrt{2^{2}} & & \text { Product Property } \\
& =4 \cdot 5 \cdot 2 \cdot 2 & & \text { Simplify. } \\
& =80 & & \text { Simplify. }
\end{aligned}
$$

27. $3 \sqrt{25 t^{2}}$

SOLUTION:

$$
\begin{aligned}
3 \sqrt{25 t^{2}} & =3 \cdot \sqrt{25} \cdot \sqrt{t^{2}} & & \text { Product Property } \\
& =3 \cdot \sqrt{5^{2}} \cdot \sqrt{t^{2}} & & \text { Prime factorization of } 25 . \\
& =3 \cdot 5 \cdot|t| & & \text { Simplify. } \\
& =15|t| & & \text { Simplify } .
\end{aligned}
$$

28. $5 \sqrt{81 q^{5}}$

SOLUTION:

$$
\begin{aligned}
\sqrt[5]{8 q^{5}} & =5 \cdot \sqrt{81} \cdot \sqrt{q^{5}} & & \text { Product Property } \\
& =5 \cdot \sqrt{9^{2}} \cdot \sqrt{q^{4}} \cdot \sqrt{q} & & \text { Factorization of } 81 \text { and } q^{5} . \\
& =5 \cdot 9 \cdot q^{2} \cdot \sqrt{q} & & \text { Simplify. } \\
& =45 q^{2} \sqrt{q} & & \text { Simplify. }
\end{aligned}
$$

29. $\sqrt{28 a^{2} b^{3}}$

SOLUTION:

$$
\begin{aligned}
\sqrt{28 a^{2} b^{3}} & =\sqrt{28} \cdot \sqrt{a^{2}} \cdot \sqrt{b^{3}} & & \text { Product Property } \\
& =\sqrt{2^{2}} \cdot \sqrt{7} \cdot \sqrt{a^{2}} \cdot \sqrt{b^{2}} \cdot \sqrt{b} & & \text { Factor } 29 \text { and } b^{3} . \\
& =2 \cdot \sqrt{7} \cdot|a| \cdot b \cdot \sqrt{b} & & \text { Simplify. } \\
& =2|a| b \sqrt{7 b} & & \text { Simplify. }
\end{aligned}
$$

30. $\sqrt{75 q r^{3}}$

SOLUTION:

$$
\begin{aligned}
\sqrt{75 q r^{3}} & =\sqrt{75} \cdot \sqrt{q} \cdot \sqrt{r^{3}} & & \text { Product Property } \\
& =\sqrt{5^{2}} \cdot \sqrt{3} \cdot \sqrt{q} \cdot \sqrt{r^{2}} \cdot \sqrt{r} & & \text { Factor } 75 \text { and } r^{3} \\
& =5 \cdot \sqrt{3} \cdot \sqrt{q} \cdot r \cdot \sqrt{r} & & \text { Simplify. } \\
& =5 r \sqrt{3 q r} & & \text { Simplify } .
\end{aligned}
$$

31. $7 \sqrt{63 m^{3} p}$

SOLUTION:

$$
\begin{aligned}
7 \sqrt{6 m^{3} p} & =7 \cdot \sqrt{63} \cdot \sqrt{m^{3}} \cdot \sqrt{p} & & \text { Product Property } \\
& =7 \cdot \sqrt{3^{2}} \cdot \sqrt{7} \cdot \sqrt{m^{2}} \cdot \sqrt{m} \cdot \sqrt{p} & & \text { Factor } 63 \text { and } m^{3} . \\
& =7 \cdot 3 \cdot \sqrt{7} \cdot m \cdot \sqrt{m} \cdot \sqrt{p} & & \text { Simplify. } \\
& =2 m \sqrt{7 m p} & & \text { Simplify. }
\end{aligned}
$$

32. $4 \sqrt{66 g^{2} h^{4}}$

SOLUTION:

$$
\begin{aligned}
4 \sqrt{66 g^{2} h^{4}} & =4 \cdot \sqrt{66} \cdot \sqrt{g^{2}} \cdot \sqrt{h^{4}} & & \text { Product Property } \\
& =4 \cdot \sqrt{66} \cdot|g| \cdot h^{2} & & \text { Simplify. } \\
& =4|g| h^{2} \sqrt{66} & & \text { Simplify. }
\end{aligned}
$$

33. $\sqrt{2 a b^{2}} \cdot \sqrt{10 a^{5} b}$

SOLUTION:

$$
\begin{array}{rlrl}
\sqrt{2 a b^{2}} \sqrt{10 a^{5} b} & =\sqrt{2} \cdot \sqrt{a} \cdot \sqrt{b^{2}} \cdot \sqrt{10} \cdot \sqrt{a^{5}} \cdot \sqrt{b} & & \text { Product Property } \\
& =\sqrt{2} \cdot \sqrt{a} \cdot \sqrt{b^{2}} \cdot \sqrt{2} \cdot \sqrt{5} \cdot \sqrt{a^{5}} \cdot \sqrt{b} & \text { Factor } 10 . \\
& =\sqrt{2^{2}} \cdot \sqrt{5} \cdot \sqrt{a^{6}} \cdot \sqrt{b^{2}} \cdot \sqrt{b} & & \text { Simplify. } \\
& =2 a^{3} b \sqrt{5 b} & & \text { Simplify. }
\end{array}
$$

34. $\sqrt{4 c^{3} d^{3}} \cdot \sqrt{8 c^{3} d}$

SOLUTION:

$$
\begin{aligned}
\sqrt{4 c^{3} d^{3}} \sqrt{8 c^{3} d} & =\sqrt{4} \cdot \sqrt{c^{3}} \cdot \sqrt{d^{3}} \cdot \sqrt{8} \cdot \sqrt{c^{3}} \cdot \sqrt{d} & & \text { Product Property } \\
& =\sqrt{2^{2}} \cdot \sqrt{c^{6}} \cdot \sqrt{2^{2}} \cdot \sqrt{2} \cdot \sqrt{d^{4}} & & \text { Factor } 4 \text { and } 8 . \\
& =2 \cdot c^{3} \cdot 2 \cdot \sqrt{2} \cdot d^{2} & & \text { Simplify. } \\
& =4 c^{3} d^{2} \sqrt{2} & & \text { Simplify. }
\end{aligned}
$$

35. ROLLER COASTER Starting from a stationary position, the velocity v of a roller coaster in feet per second at the bottom of a hill can be approximated by $v=\sqrt{64 h}$, where h is the height of the hill in feet.
a. Simplify the equation.
b. Determine the velocity of a roller coaster at the bottom of a 134 -foot hill.

SOLUTION:

a.

$$
\begin{aligned}
v & =\sqrt{64 h} \\
& =\sqrt{64} \cdot \sqrt{h} \\
& =\sqrt{8^{2}} \cdot \sqrt{h} \\
& =8 \sqrt{h}
\end{aligned}
$$

b. To determine the velocity of the roller coaster at the bottom of the hill, substitute 134 for h in the equation $v=8 \sqrt{h}$.

$$
\begin{aligned}
v & =8 \sqrt{h} \\
& =8 \sqrt{134} \\
& \approx 92.6
\end{aligned}
$$

The roller coaster will have a velocity of about 92.6 $\mathrm{ft} / \mathrm{sec}$ at the bottom of a 134 -foot hill.
36. CCSS PRECISION When fighting a fire, the velocity v of water being pumped into the air is modeled by the function $v=\sqrt{2 h g}$, where h represents the maximum height of the water and g represents the acceleration due to gravity ($32 \mathrm{ft} / \mathrm{s}^{2}$).
a. Solve the function for h.
b. The Hollowville Fire Department needs a pump that will propel water 80 feet into the air. Will a pump advertised to project water with a velocity of 70 feet per second meet their needs? Explain.
c. The Jackson Fire Department must purchase a pump that will propel water 90 feet into the air. Will a pump that is advertised to project water with a velocity of 77 feet per second meet the fire department's need? Explain.

SOLUTION:

a.

$$
\begin{aligned}
v & =\sqrt{2 h g} \\
(v)^{2} & =(\sqrt{2 h g})^{2} \\
v^{2} & =2 h g \\
\frac{v^{2}}{2 g} & =h
\end{aligned}
$$

b. To determine the height of the water, substitute 70 for v in the function $h=\frac{v^{2}}{2 g}$.

$$
\begin{aligned}
h & =\frac{v^{2}}{2 g} \\
& =\frac{(70)^{2}}{2(32)} \\
& =76.6
\end{aligned}
$$

A pump with a velocity of 70 feet per second will pump water only to a maximum height of 76.6 feet. Therefore, this pump will not meet the fire department's need.
c. To determine the height of the water, substitute 77 for v in the function $h=\frac{v^{2}}{2 g}$.

$$
\begin{aligned}
h & =\frac{v^{2}}{2 g} \\
& =\frac{(77)^{2}}{2(32)} \\
& =92.6
\end{aligned}
$$

A pump with a velocity of 77 feet per second will pump water to a maximum height of 92.6 feet. Therefore, this pump will meet the fire department's need.

Simplify each expression.

$$
\begin{aligned}
& \text { 37. } \begin{aligned}
\sqrt{\frac{32}{t^{4}}} \\
\text { SOLUTION: } \\
\begin{array}{rlr}
\sqrt{\frac{32}{t^{4}}} & =\frac{\sqrt{32}}{\sqrt{t^{4}}} & \text { Quotient Property } \\
& =\frac{\sqrt{2^{5}}}{\sqrt{t^{4}}} & \text { Factor } 32 . \\
& =\frac{\sqrt{2^{4}} \cdot \sqrt{2}}{\sqrt{t^{4}}} & \text { Product Property } \\
& =\frac{2^{2} \cdot \sqrt{2}}{t^{2}} & \text { Simplify } \\
& =\frac{4 \sqrt{2}}{t^{2}} & \text { Simplify }
\end{array}
\end{aligned}>=\begin{array}{l}
\text { Sim }
\end{array}
\end{aligned}
$$

$$
\text { 38. } \sqrt{\frac{27}{m^{5}}}
$$

SOLUTION:

$$
\begin{array}{rlrl}
\sqrt{\frac{27}{m^{5}}} & =\frac{\sqrt{27}}{\sqrt{m^{5}}} \cdot \frac{\sqrt{m^{5}}}{\sqrt{m^{5}}} & & \text { Quotient Property } \\
& =\frac{\sqrt{27}}{\sqrt{m^{5}}} \cdot \frac{\sqrt{m^{5}}}{\sqrt{m^{5}}} & & \text { Multiply by conjugate } \sqrt{m^{5}} \\
& =\frac{\sqrt{27} \cdot \sqrt{m^{5}}}{m^{5}} & \text { Simplify. } \\
& =\frac{\sqrt{3^{3}} \cdot \sqrt{3} \cdot \sqrt{m^{4}} \cdot \sqrt{m}}{m^{5}} & \text { Factor } 28 \text { and } m^{5} . \\
& =\frac{3 \cdot \sqrt{3} \cdot m^{2} \cdot \sqrt{m}}{m^{5}} & \text { Simplify. } \\
& =\frac{3 \sqrt{3 m}}{m^{3}} & \text { Simplify. }
\end{array}
$$

39. $\frac{\sqrt{68 a c^{3}}}{\sqrt{27 a^{2}}}$

SOLUTION:

40. $\frac{\sqrt{h^{3}}}{\sqrt{8}}$

SOLUTION:

$$
\begin{array}{rlrl}
\frac{\sqrt{h^{3}}}{\sqrt{8}} & =\frac{\sqrt{h^{3}}}{\sqrt{8}} \cdot \frac{\sqrt{8}}{\sqrt{8}} & & \text { Multiply by conjugate } \sqrt{8} . \\
& =\frac{\sqrt{h^{2}} \cdot \sqrt{h} \cdot \sqrt{2^{2}} \cdot \sqrt{2}}{8} & \text { Factor } 8 \text { and } h^{3} . \\
& =\frac{h \cdot \sqrt{h} \cdot 2 \cdot \sqrt{2}}{8} & \text { Simplify. } \\
& =\frac{h \sqrt{2 h}}{4} & & \text { Simplify. }
\end{array}
$$

41. $\sqrt{\frac{3}{16}} \cdot \sqrt{\frac{9}{5}}$

SOLUTION:

$$
\begin{array}{rlrl}
\sqrt{\frac{3}{16}} \cdot \sqrt{\frac{9}{5}} & =\frac{\sqrt{3}}{\sqrt{16}} \cdot \frac{\sqrt{9}}{\sqrt{5}} & & \text { Quotient Property } \\
& =\frac{\sqrt{3 \cdot 9}}{\sqrt{16 \cdot 5}} & & \text { Property Property } \\
& =\frac{\sqrt{27}}{\sqrt{80}} \cdot \frac{\sqrt{80}}{\sqrt{80}} & & \text { Simplify. } \\
& =\frac{\sqrt{27}}{\sqrt{80}} \cdot \frac{\sqrt{80}}{\sqrt{80}} & & \text { Multiply by conjugate } \sqrt{80} . \\
& =\frac{\sqrt{2160}}{80} & & \text { Simplify. } \\
& =\frac{\sqrt{2^{4}} \cdot \sqrt{\sqrt{3}^{2}} \cdot \sqrt{3} \cdot \sqrt{5}}{80} & \text { Factor 2160. } \\
& =\frac{2^{2} \cdot 3 \cdot \sqrt{15}}{80} & & \text { Simplify. } \\
& =\frac{12 \sqrt{15}}{80} & & \text { Simplify. } \\
& =\frac{3 \sqrt{15}}{20} & & \text { Simplify. }
\end{array}
$$

42. $\sqrt{\frac{7}{2}} \cdot \sqrt{\frac{5}{3}}$

SOLUTION:

$$
\begin{array}{rlr}
\sqrt{\frac{7}{2}} \cdot \sqrt{\frac{5}{3}} & =\frac{\sqrt{7}}{\sqrt{2}} \cdot \frac{\sqrt{5}}{\sqrt{3}} & \text { Quotient Property } \\
& =\frac{\sqrt{7 \cdot 5}}{\sqrt{2 \cdot 3}} \quad \text { Product Property } \\
& =\frac{\sqrt{35}}{\sqrt{6}} \quad \text { Simplify. } \\
& =\frac{\sqrt{35}}{\sqrt{6}} \cdot \frac{\sqrt{6}}{\sqrt{6}} & \text { Multiply by conjugate } \sqrt{6} \\
& =\frac{\sqrt{210}}{6} \quad \text { Simplify. }
\end{array}
$$

43. $\frac{7}{5+\sqrt{3}}$

SOLUTION:

$$
\begin{array}{rlrl}
\frac{7}{5+\sqrt{3}} & =\frac{7}{5+\sqrt{3}} \cdot \frac{5-\sqrt{3}}{5-\sqrt{3}} & \text { Multiply by conjugate } 5-\sqrt{3} . \\
& =\frac{7(5-\sqrt{3})}{5^{2}-\sqrt{3^{2}}} & (a-b)(a+b)=a^{2}-b^{2} . \\
& =\frac{35-7 \sqrt{3}}{25-3} & & \text { Simplify. } \\
& =\frac{35-7 \sqrt{3}}{22} & & \text { Simplify. }
\end{array}
$$

44. $\frac{9}{6-\sqrt{8}}$

SOLUTION:

$$
\begin{array}{rlrl}
\frac{9}{6-\sqrt{8}} & =\frac{9}{6-\sqrt{8}} \cdot \frac{6+\sqrt{8}}{6+\sqrt{8}} & & \text { Multiply by conjugate } 6+\sqrt{8} . \\
& =\frac{9(6+\sqrt{8})}{6^{2}-\sqrt{8^{2}}} & & (a-b)(a+b)=a^{2}-b^{2} . \\
& =\frac{54+9 \sqrt{8}}{36-8} & & \text { Simplify. } \\
& =\frac{54+9 \cdot 2 \sqrt{2}}{28} & \text { Simplify. } \\
& =\frac{54+18 \sqrt{2}}{28}=\frac{27+9 \sqrt{2}}{14} & \text { Simplify. }
\end{array}
$$

45. $\frac{3 \sqrt{3}}{-2+\sqrt{6}}$

SOLUTION:

$$
\begin{array}{rlrl}
\frac{3 \sqrt{3}}{-2+\sqrt{6}} & =\frac{3 \sqrt{3}}{-2+\sqrt{6}} \cdot \frac{-2-\sqrt{6}}{-2-\sqrt{6}} & \text { Multiply by conjugate }-2-\sqrt{6} . \\
& =\frac{3 \sqrt{3}(-2-\sqrt{6})}{(-2)^{2}-\sqrt{6^{2}}} & (a-b)(a+b)=a^{2}-b^{2} . \\
& =\frac{-6 \sqrt{3}-3 \sqrt{18}}{4-6} & \text { Simplify. } \\
& =\frac{-6 \sqrt{3}-3 \sqrt{3^{2}} \cdot \sqrt{2}}{-2} & \text { Factor } 18 . \\
& =\frac{-6 \sqrt{3}-9 \sqrt{2}}{-2} & & \text { Simplify. } \\
& =\frac{6 \sqrt{3}+9 \sqrt{2}}{2} & & \text { Simplify. }
\end{array}
$$

46. $\frac{3}{\sqrt{7}-\sqrt{2}}$

SOLUTION:

$$
\begin{array}{rlr}
\frac{3}{\sqrt{7}-\sqrt{2}} & =\frac{3}{\sqrt{7}-\sqrt{2}} \cdot \frac{\sqrt{7}+\sqrt{2}}{\sqrt{7}+\sqrt{2}} & \text { Multiply by conjugate } \sqrt{7}+\sqrt{2} . \\
& =\frac{3(\sqrt{7}+\sqrt{2})}{\sqrt{7^{2}}-\sqrt{2^{2}}} & (a-b)(a+b)=a^{2}-b^{2} . \\
& =\frac{3 \sqrt{7}+3 \sqrt{2}}{7-2} & \\
& =\frac{3 \sqrt{7}+3 \sqrt{2}}{5} & \text { Simplify. } \\
& \text { Simplify. }
\end{array}
$$

47. $\frac{5}{\sqrt{6}+\sqrt{3}}$

SOLUTION:

$$
\frac{5}{\sqrt{6}+\sqrt{3}}=\frac{5}{\sqrt{6}+\sqrt{3}} \cdot \frac{\sqrt{6}-\sqrt{3}}{\sqrt{6}-\sqrt{3}} \text { Multiply by conjugate } \sqrt{6}-\sqrt{3} \text {. }
$$

$$
=\frac{5(\sqrt{6}-\sqrt{3})}{\sqrt{6^{2}}-\sqrt{3^{2}}} \quad(a-b)(a+b)=a^{2}-b^{2} .
$$

$$
=\frac{5 \sqrt{6}-5 \sqrt{3}}{6-3} \quad \text { Simplify }
$$

$$
=\frac{5 \sqrt{6}-5 \sqrt{3}}{3} \quad \text { Simplify }
$$

48. $\frac{2 \sqrt{5}}{2 \sqrt{7}+3 \sqrt{3}}$

SOLUTION:

$$
\begin{array}{rlrl}
\frac{2 \sqrt{5}}{2 \sqrt{7}+3 \sqrt{3}} & =\frac{2 \sqrt{5}}{2 \sqrt{7}+3 \sqrt{3}} \cdot \frac{2 \sqrt{7}-3 \sqrt{3}}{2 \sqrt{7}-3 \sqrt{3}} & \text { Multiply by conjugate } 2 \sqrt{7}-3 \sqrt{3} . \\
& =\frac{2 \sqrt{5}(2 \sqrt{7}-3 \sqrt{3})}{2^{2} \sqrt{7^{2}}-3^{2} \sqrt{3^{2}}} & & (a-b)(a+b)=a^{2}-b^{2} . \\
& =\frac{4 \sqrt{35}-6 \sqrt{15}}{4 \cdot 7-9 \cdot 3} & & \text { Simplify. } \\
& =\frac{4 \sqrt{35}-6 \sqrt{15}}{28-27} & & \text { Simplify. } \\
& =\frac{4 \sqrt{35}-6 \sqrt{15}}{1} & & \text { Simplify. } \\
& =4 \sqrt{35}-6 \sqrt{15} & & \text { Simplify. }
\end{array}
$$

49. ELECTRICITY The amount of current in amperes I that an appliance uses can be calculated using the formula $I=\sqrt{\frac{P}{R}}$, where P is the power in watts and R is the resistance in ohms.
a. Simplify the formula.
b. How much current does an appliance use if the power used is 75 watts and the resistance is 5 ohms?

SOLUTION:

a.
$I=\sqrt{\frac{P}{R}}$
$I=\frac{\sqrt{P}}{\sqrt{R}} \cdot \frac{\sqrt{R}}{\sqrt{R}}$
$I=\frac{\sqrt{P R}}{R}$
b. Substitute $P=75$ and $R=5$ in the equation

$$
\begin{aligned}
I & =\frac{\sqrt{P R}}{R} . \\
I & =\frac{\sqrt{P R}}{R} \\
& =\frac{\sqrt{75 \cdot 5}}{5} \\
& =\frac{\sqrt{375}}{5}
\end{aligned}
$$

$$
\approx 3.9
$$

An appliance uses about 3.9 amps of current if the power used is 75 watts and the resistance is 5 ohms.
50. KINETIC ENERGY The speed v of a ball can be determined by the equation $v=\sqrt{\frac{2 k}{m}}$, where k is the kinetic energy and m is the mass of the ball.
a. Simplify the formula if the mass of the ball is 3 kilograms.
b. If the ball is traveling 7 meters per second, what is the kinetic energy of the ball in Joules?

SOLUTION:

a. If the mass of the ball is 3 kilograms, substitute m $=3$ into the equation.

$$
\begin{aligned}
V & =\sqrt{\frac{2 k}{m}} \\
& =\sqrt{\frac{2 k}{3}} \\
& =\frac{\sqrt{2 k}}{\sqrt{3}} \cdot \frac{\sqrt{3}}{\sqrt{3}} \\
& =\frac{\sqrt{6 k}}{3}
\end{aligned}
$$

b. Substitute $V=7$ in the equation $V=\frac{\sqrt{6 k}}{3}$.

$$
\begin{aligned}
V & =\frac{\sqrt{6 k}}{3} \\
7 & =\frac{\sqrt{6 k}}{3} \\
3 \cdot 7 & =3 \cdot \frac{\sqrt{6 k}}{3} \\
21 & =\sqrt{6 k} \\
(21)^{2} & =(\sqrt{6 k})^{2} \\
441 & =6 k \\
\frac{441}{6} & =\frac{6 k}{6}
\end{aligned}
$$

$73.5=k$
The kinetic energy of the ball is 73.5 Joules.
51. SUBMARINES The greatest distance d in miles th the lookout can see on a clear day is modeled by the formula $d=\sqrt{\frac{3 h}{2}}$. Determine how high the submarine would have to raise its periscope to see a ship, if the submarine is the given distances away fro a ship.

Distance	3	6	9	12	15
Helght					

SOLUTION:

First solve the equation for h.

$$
\begin{aligned}
& d=\sqrt{\frac{3 h h}{2}} \\
& d^{2}=\left(\sqrt{\frac{3 h}{2}}\right)^{2} \\
& d^{2}=\frac{3 h}{2} \\
& \frac{2}{3} \cdot d^{2}=\frac{2}{3} \cdot \frac{3 h}{2} \\
& \frac{2}{3} d^{2}=h \\
& \begin{array}{|l|c|c|c|c|c}
\hline \text { Distance } & 3 & 6 & 9 & 12 & 15 \\
\hline \text { Height } & h= & h= & h= & h=\frac{2}{3} & h=\frac{2}{3} \\
=\frac{2}{3} d^{2} & \frac{2}{3}(3) & \frac{2}{3}(6) & \frac{2}{3}(9) & (12)^{2} & (15)^{2} \\
& 2=6 & 2= & 2= & =96 & =150 \\
2 & 24 & 54 & & \\
\hline
\end{array}
\end{aligned}
$$

52. CCSS STRUCTURE Explain how to solve $\frac{\sqrt{3}+2}{x}=\frac{\sqrt{3}-1}{\sqrt{3}}$.

SOLUTION:

To solve an equation of equal ratios, first find the equal cross products and then solve for the variable.

$$
\begin{array}{rll}
\frac{\sqrt{3}+2}{x} & =\frac{\sqrt{3}-1}{\sqrt{3}} & \\
\text { Orignal equation } \\
\sqrt{3}(\sqrt{3}+2) & =(\sqrt{3}-1) x & \text { Find the crosproducts } \\
\frac{\sqrt{3}(\sqrt{3}+2)}{\sqrt{3}-1} & =\frac{(\sqrt{3}-1) x}{\sqrt{3}-1} & \text { Divide each side by } \sqrt{3}-1 . \\
\frac{3+2 \sqrt{3}}{\sqrt{3}-1} & =x & \text { Simplify. }
\end{array}
$$

Use the conjugate of $\sqrt{3}-1$ to rationalize the denominator.

$$
\begin{aligned}
\frac{3+2 \sqrt{3}}{\sqrt{3}-1} & =\frac{3+2 \sqrt{3}}{\sqrt{3}-1} \cdot \frac{\sqrt{3}+1}{\sqrt{3}+1} \\
& =\frac{(3+2 \sqrt{3})(\sqrt{3}+1)}{(\sqrt{3})^{2}-1^{2}} \quad(a-b)(a+b)=a^{2}-b^{2} \\
& =\frac{5 \sqrt{3}+9}{2} \quad \text { Simplify }
\end{aligned}
$$

So, the solution is $x=\frac{5 \sqrt{3}+9}{2}$.
53. CHALLENGE Simplify each expression.
a. $\sqrt[3]{27}$
b. $\sqrt[3]{40}$
c. $\sqrt[3]{750}$

SOLUTION:

a. $\sqrt[3]{27}=\sqrt[3]{3^{3}}=3$
b. $\sqrt[3]{40}=\sqrt[3]{8 \cdot 5}=\sqrt[3]{2^{3} \cdot 5}=2 \sqrt[3]{5}$
c. $\sqrt[3]{750}=\sqrt[3]{125 \cdot 6}=\sqrt[3]{5^{3} \cdot 6}=5 \sqrt[3]{6}$
54. REASONING Marge takes a number, subtracts 4, multiplies by 4 , takes the square root, and takes the reciprocal to get $\frac{1}{2}$. What number did she start with? Write a formula to describe the process.

SOLUTION:

Let $x=$ a number.

$$
\begin{array}{cl}
\frac{1}{\sqrt{4(x-4)}}=\frac{1}{2} & \text { Original equation } \\
1 \cdot 2=1 \cdot \sqrt{4(x-4)} & \text { Cross multiply. } \\
2=\sqrt{4(x-4)} & \text { Simplify. } \\
(2)^{2}=\left(\sqrt{4(x-4))^{2}}\right. & \text { Square both sides. } \\
4=4(x-4) & \text { Simplify. } \\
4=4 x-16 & \text { Simplify. } \\
4+16=4 x-16+16 & \text { Add 16 to each side. } \\
20=4 x & \text { Simplify. } \\
\frac{20}{4}=\frac{4 x}{4} & \text { Divide each side by } 4 . \\
5=x & \text { Simplify. }
\end{array}
$$

55. OPEN ENDED Write two binomials of the form $a \sqrt{b}+c \sqrt{f}$ and $a \sqrt{b}-c \sqrt{f}$. Then find their product.

SOLUTION:

Two binomials of the form $a \sqrt{b}+c \sqrt{f}$ and

$$
\begin{aligned}
& a \sqrt{b}-c \sqrt{f} \text { are } 1+\sqrt{2} \text { and } 1-\sqrt{2} . \\
& \begin{aligned}
(1+\sqrt{2})(1-\sqrt{2}) & =1(1)-1(\sqrt{2})+1(\sqrt{2})-\sqrt{2}^{2} \\
& =1-2 \\
& =-1
\end{aligned}
\end{aligned}
$$

56. CHALLENGE Use the Quotient Property of Square Roots to derive the Quadratic Formula by solving the quadratic equation $a x^{2}+b x+c=0$. (Hint: Begin by completing the square.)

SOLUTION:

$$
\begin{aligned}
a x^{2}+b x+c & =0 \quad \text { Original equation } \\
x^{2}+\frac{b}{a} x+\frac{c}{a} & =0 \quad \text { Divide each side by } a . \\
x^{2}+\frac{b}{a} x & =-\frac{c}{a} \quad \text { Subtract } \frac{c}{a} \text { from each side. } \\
x^{2}+\frac{b}{a} x+\frac{b^{2}}{4 a^{2}} & =-\frac{c}{a}+\frac{b^{2}}{4 a^{2}} \quad \text { Complete the square. } \\
\left(x+\frac{b}{2 a}\right)^{2} & =\frac{-4 a c+b^{2}}{4 a^{2}} \text { Factor } x^{2}+\frac{b}{a} x+\frac{b^{2}}{4 a^{2}} . \\
\left|x+\frac{b}{2 a}\right| & =\sqrt{\frac{b^{2}-4 a c}{4 a^{2}}} \text { Take the square root of each side. } \\
x+\frac{b}{2 a} & = \pm \sqrt{\frac{b^{2}-4 a c}{4 a^{2}}} \text { Rem ove the absolute value sym bols and insert } \pm . \\
x+\frac{b}{2 a} & = \pm \frac{\sqrt{b^{2}-4 a c}}{\sqrt{4 a^{2}}} \text { Quotient Property of Square Roots } \\
x+\frac{b}{2 a} & = \pm \frac{\sqrt{b^{2}-4 a c}}{2 a} \sqrt{4 a^{2}}=2 a \\
x & =\frac{-b \pm \sqrt{b^{2}-4 a c}}{2 a} \text { Subtract } \frac{b}{2 a} \text { from each side. }
\end{aligned}
$$

57. WRITING IN MATH Summarize how to write a radical expression in simplest form.

SOLUTION:

No radicals can appear in the denominator of a fraction. So, rationalize the denominator to get rid of the radicand in the denominator. Then check if any of the radicands have perfect square factors other than 1 . If so, simplify.
For example, simplify the following.

$$
\begin{aligned}
& \frac{12 \sqrt{5}}{3+\sqrt{5}}=\frac{12 \sqrt{5}}{3+\sqrt{5}} \cdot \frac{3-\sqrt{5}}{3-\sqrt{5}} \text { Multiply by coniuggtes } 3-\sqrt{5} \text {. } \\
& =\frac{12 \sqrt{5}(3-\sqrt{5})}{3^{2}-\sqrt{5^{2}}} \quad(a-b)(a+b)=a^{2}-b^{2} . \\
& =\frac{36 \sqrt{5}-12 \sqrt{5^{2}}}{9-5} \text { DitritibutiveP Popaty and Multiply } \\
& =\frac{36 \sqrt{5}-12 \cdot 5}{4} \quad \text { Simplify. } \\
& =9 \sqrt{5}-15 \quad \text { Divide }
\end{aligned}
$$

58. Jerry's electric bill is $\$ 23$ less than his natural gas bill. The two bills are a total of $\$ 109$. Which of the following equations can be used to find the amount of his natural gas bill?
A $g+g=109$
B $23+2 g=109$
C $g-23=109$
D $2 g-23=109$

SOLUTION:

Let $g=$ Jerry's natural gas bill. Jerry's electric bill is $\$ 23$ less than his natural gas bill, so the electric bill is $g-23$.
The two bills are a total of $\$ 109$.

$$
\begin{aligned}
g+(g-23) & =109 \\
2 g-23 & =109
\end{aligned}
$$

So, the correct choice is D.
59. Solve $a^{2}-2 a+1=25$.

F $-4,-6$
G $4,-6$
H $-4,6$
J 4, 6

SOLUTION:

Solve for a.

$$
\begin{array}{rlrl}
a^{2}-2 a+1 & =25 \\
a^{2}-2 a-24 & =0 \\
a^{2}-6 a+4 a-24 & =0 \\
\left(a^{2}-6 a\right)+(4 a-24) & =0 \\
a(a-6)+4(a-6) & =0 & \\
(a+4)(a-6) & =0 & \\
a+4=0 & \text { or } & a-6 & =0 \\
a=-4 & x & =6
\end{array}
$$

The roots are -4 and 6 . So, the correct choice is H .
60. The expression $\sqrt{160 x^{2} y^{5}}$ is equivalent to which of the following?
A $16|x| y^{2} \sqrt{10 y}$
B $|x| y^{2} \sqrt{160 y}$
C $4|x| y^{2} \sqrt{10 y}$
D $10|x| y^{2} \sqrt{4 y}$

SOLUTION:

$$
\begin{aligned}
\sqrt{160 x^{2} y^{5}} & =\sqrt{2 \cdot 2 \cdot 2 \cdot 2 \cdot 2 \cdot 5 \cdot x^{2} \cdot y^{5}} \\
& =\sqrt{2^{4}} \cdot \sqrt{2} \cdot \sqrt{5} \cdot \sqrt{x^{2}} \cdot \sqrt{y^{4}} \cdot \sqrt{y} \\
& =2^{2} \cdot \sqrt{2} \cdot \sqrt{5 v}|x| \cdot y^{2} \cdot \sqrt{y} \\
& =4 y^{2}|x| \sqrt{10 y}
\end{aligned}
$$

So, the correct choice is C .
61. GRIDDED RESPONSE Miki earns $\$ 10$ an hour and 10% commission on sales. If Miki worked 38 hours and had a total sales of $\$ 1275$ last week, how much did she make?

SOLUTION:

Miki's earnings are $\$ 10$ per hour and 10% commission on sales.

$$
\begin{aligned}
\text { Total earnings } & =\text { hourly pay }+ \text { commission } \\
& =10(38)+0.10(1275) \\
& =380+127.5 \\
& =507.50
\end{aligned}
$$

Miki made $\$ 507.50$ last week.

