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Best Practices
Enterprise Solutions







Resilient - Fault tolerant





19,500+ commits



Tungsten
AMPLab becoming RISELab
• Drizzle – low latency execution, 3.5x lower than 

Spark Streaming
• Ernest – performance prediction, automatically 

choose the optimal resource config on the cloud





Deployment
Scheduler
Resource Manager (aka Cluster Manager)

- Spark History Server, Spark UI

Spark Core





Parallelization, Partition
Transformation
Action
Shuffle



Doing multiple things at the same time



A unit of parallelization



Manipulating data - immutable
"Narrow"
"Wide"







Processing: sorting, serialize/deserialize, 
compression
Transfer: disk IO, network 
bandwidth/latency
Take up memory, or spill to disk for 
intermediate results ("shuffle file")



Materialize results
Execute the chain of transformations 
that leads to output – lazy evaluation
count
collect -> take
write



DataFrame
Dataset
Data source
Execution engine - Catalyst

SQL



Execution Plan
Predicate Pushdown



Strong typing
Optimized execution



Dataset[Row]

Partition = set of Row's



"format" - Parquet, CSV, JSON, or 
Cassandra, HBase





Ability to process expressions as early in 
the plan as possible



spark.read.jdbc(jdbcUrl, "food", 
connectionProperties)

// with pushdown
spark.read.jdbc(jdbcUrl, "food", 
connectionProperties).select("hotdog", "pizza", 
"sushi")



Discretized Streams (DStreams)
Receiver DStream
Direct DStream
Basic and Advanced Sources

Streaming



Source
Reliability
Receiver + Write Ahead Log (WAL)
Checkpointing









https://databricks.com/wp-content/uploads/2015/01/blog-ha-52.png



Only for reliable messaging sources that 
supports read from position
Stronger fault-tolerance, exactly-once*
No receiver/WAL
– less resource, lower overhead



Saving to reliable storage to recover 
from failure
1. Metadata checkpointing
StreamingContext.checkpoint()

2. Data checkpointing
dstream.checkpoint()



ML Pipeline
Transformer
Estimator
Evaluator

Machine Learning



DataFrame-based
- leverage optimizations and support 
transformations
a sequence of algorithms
- PipelineStages



Transformer EstimatorTransformerDataFrame

Feature engineering Modeling



Feature transformer
- take a DataFrame and its Column and 
append one or more new Column



StopWordsRemover
Binarizer
SQLTransformer
VectorAssembler



Estimators

An algorithm
DataFrame -> Model
A Model is a Transformer

LinearRegression
KMeans



Evaluator

Metric to measure Model 
performance on held-out test data



Evaluator

MulticlassClassificationEvaluator
BinaryClassificationEvaluator
RegressionEvaluator



MLWriter/MLReader

Pipeline persistence
Include transformers, estimators, 
Params



Graph
Pregel
Graph Algorithms
Graph Queries

Graph



Directed multigraph with user properties 
on edges and vertices

SEA
NYC

LAX



PageRank
ConnectedComponents

ranks = 
tripGraph.pageRank(resetProbability=
0.15, maxIter=5)



DataFrame-based
Simplify loading graph data, wrangling
Support Graph Queries



Pattern matching
Mix pattern with SQL syntax

motifs = g.find("(a)-[e]->(b); (b)-
[e2]->(a); !(c)-[]->(a)").filter("a.id 
= 'MIA'")



Structured Streaming Model
Source
Sink
StreamingQuery

Structured Streaming



Extending same DataFrame to include 
incremental execution of unbounded 
input

Reliability, correctness / exactly-once -
checkpointing (2.1 JSON format)



Stream as Unbounded Input

https://databricks.com/blog/2016/07/28/structured-streaming-in-apache-spark.html



Watermark (2.1) - handling of late data
Streaming ETL, joining static data, 
partitioning, windowing



FileStreamSource
KafkaSource
MemoryStream (not for production)
TextSocketSource
MQTT



FileStreamSink (new formats in 2.1)
ConsoleSink
ForeachSink (Scala only)
MemorySink – as Temp View



staticDF = (
spark

.read

.schema(jsonSchema)

.json(inputPath)
)



streamingDF = (
spark

.readStream

.schema(jsonSchema)

.option("maxFilesPerTrigger", 1)

.json(inputPath)
)
# Take a list of files as a stream



streamingCountsDF = (
streamingDF

.groupBy(
streamingDF.word,
window(
streamingDF.time,
"1 hour"))

.count()
)



query = (
streamingCountsDF

.writeStream

.format("memory")

.queryName("word_counts")

.outputMode("complete")

.start()
)
spark.sql("select count from word_counts order 
by time")





How much going in affects how much 
work it's going to take



Size does matter!
CSV or JSON is "simple" but also tend to 
be big
JSON-> Parquet (compressed)
- 7x faster



Format also does matter

Recommended format - Parquet
Default data source/format
• VectorizedReader
• Better dictionary decoding



Parquet Columnar Format

Column chunk co-located
Metadata and headers for 
skipping



Recommend Parquet



Compression is a factor

gzip <100MB/s vs snappy 500MB/s
Tradeoffs: faster or smaller?
Spark 2.0+ defaults to snappy



Sidenote: Table Partitioning

Storage data into groups of partitioning 
columns
Encoded path structure matches Hive
table/event_date=2017-02-01



Spark UI
Timeline view

https://databricks.com/blog/2015/06/22/understanding-your-spark-application-through-visualization.html





Spark UI
DAG view

https://databricks.com/blog/2015/06/22/understanding-your-spark-application-through-visualization.html



Executor tab



SQL tab





Understanding Queries

explain() is your friend
but it could be hard to understand at 
times == Parsed Logical Plan ==

Aggregate [count(1) AS count#79L]
+- Sort [speed_y#49 ASC], true

+- Join Inner, (speed_x#48 = speed_y#49)
:- Project [speed#2 AS speed_x#48, dist#3]
: +- LogicalRDD [speed#2, dist#3]
+- Project [speed#18 AS speed_y#49, dist#19]

+- LogicalRDD [speed#18, dist#19]





== Physical Plan ==
*HashAggregate(keys=[], functions=[count(1)], output=[count#79L])
+- Exchange SinglePartition

+- *HashAggregate(keys=[], functions=[partial_count(1)], 
output=[count#83L])

+- *Project
+- *Sort [speed_y#49 ASC], true, 0

+- Exchange rangepartitioning(speed_y#49 ASC, 200)
+- *Project [speed_y#49]

+- *SortMergeJoin [speed_x#48], [speed_y#49], Inner
:- *Sort [speed_x#48 ASC], false, 0
: +- Exchange hashpartitioning(speed_x#48, 200)
: +- *Project [speed#2 AS speed_x#48]
: +- *Filter isnotnull(speed#2)
: +- Scan ExistingRDD[speed#2,dist#3]
+- *Sort [speed_y#49 ASC], false, 0

+- Exchange hashpartitioning(speed_y#49, 200)
+- *Project [speed#18 AS speed_y#49]



UDF

Write you own custom transforms
But... Catalyst can't see through it (yet?!)
Always prefer to use builtin transforms 
as much as possible



UDF vs Builtin Example

Remember Predicate Pushdown?
val isSeattle = udf { (s: String) => s == "Seattle" }
cities.where(isSeattle('name))
*Filter UDF(name#2)
+- *FileScan parquet [id#128L,name#2] Batched: true, Format: 
ParquetFormat, InputPaths: file:/Users/b/cities.parquet, 
PartitionFilters: [], PushedFilters: [], ReadSchema: 
struct<id:bigint,name:string>



UDF vs Builtin Example

cities.where('name === "Seattle")
*Project [id#128L, name#2]
+- *Filter (isnotnull(name#2) && (name#2 = Seattle))

+- *FileScan parquet [id#128L,name#2] Batched: true, Format: 
ParquetFormat, InputPaths: file:/Users/b/cities.parquet, 
PartitionFilters: [], PushedFilters: [IsNotNull(name), 
EqualTo(name,Seattle)], ReadSchema: 
struct<id:bigint,name:string>



UDF in Python

Avoid!
Why? Pickling, transfer, extra memory to 
run Python interpreter
- Hard to debug errors!

from pyspark.sql.types import IntegerType
sqlContext.udf.register("stringLengthInt", lambda x: 
len(x), IntegerType())
sqlContext.sql("SELECT stringLengthInt('test')").take(1)



Going for Performance

Stored in compressed Parquet
Partitioned table
Predicate Pushdown
Avoid UDF



Shuffling for Join

Can be very
expensive



Optimizing for Join

Partition!
Narrow transform if left and right 
partitioned with same scheme



Optimizing for Join
Broadcast Join (aka Map-Side Join in 
Hadoop)

Smaller table against large table - avoid 
shuffling large table

Default 10MB auto broadcast



BroadcastHashJoin
left.join(right, Seq("id"), "leftanti").explain

== Physical Plan ==
*BroadcastHashJoin [id#50], [id#60], LeftAnti, 
BuildRight
:- LocalTableScan [id#50, left#51]
+- BroadcastExchange
HashedRelationBroadcastMode(List(cast(input[0, int, 
false] as bigint)))

+- LocalTableScan [id#60]



Repartition

To numPartitions or by Columns
Increase parallelism – will shuffle

coalesce() – combine partitions in place



Cache

cache() or persist()
Flush least-recently-used (LRU)
- Make sure there is enough memory!
MEMORY_AND_DISK to avoid expensive 
recompute (but spill to disk is slow)



Streaming

Use Structured Streaming (2.1+)
If not...

If reliable messaging (Kafka) use Direct 
DStream



Metadata - Config
Position from streaming source (aka 
offset)
- could get duplicates! (at-least-once)
Pending batches



Persist stateful transformations
- data lost if not saved
Cut short execution that could grow 
indefinitely



Direct DStream

Checkpoint also store offset

Turn off auto commit
- do when in good state for exactly-
once



Checkpointing
Stream/ML/Graph/SQL
- more efficient indefinite/iterative
- recovery
Generally not versioning-safe

Use reliable distributed file system
(caution on “object store”)







Hadoop

WebLog Spark SQL

External
Data
Source

BI Tools
HDFS

Hive

Hive
Metastore

FrontEnd

Hourly



Spark
Streaming

Spark
ML

Kafka

HDFS

FrontEnd

Near-RealTime
(end-to-end roundtrip:
8-20 sec)

Offline
Analysis





Spark SQL

RDBMS

BI Tools

Hive

SQL
Appliance

BI Tools





Spark
Streaming

Message
Bus

Spark
MLKafka

Storage

Spark SQL

Visualization

External
Data
Source

BI Tools

Data Lake

Hive
Metastore

Spark
ML





Spark
Streaming

Kafka

HDFS

Spark SQL
Visualization

Presto

BI Tools
Hive

SQL

Flume

SQL

Data
Science
Notebook





Spark
Streaming

Message
Bus

Storage
SQL

Spark SQL Spark SQL

Data
Factory



Moving





https://www.linkedin.com/in/felix-cheung-b4067510
https://github.com/felixcheung


