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Introduction to Apache Spark

sk




What is Spark?

"Fast and expressive cluster computing
system” —
Matel Zaharia, creator of Apache Spark




Design Goals

Distributed
Scalable
Resilient - Fault tolerant




Key Differentiators

IN-memory processing
Friendly programming model
Rich expressive APIs



Why Spark?

Open Source Community

Over 1000 contributors
19,500+ commits

310+ Spark Packages
23,000+ questions on stackovertlow
user@spark.apache.org

22 1,072 contributors




Why Spark?

InNnovations
lab

Catalyst, Tungsten -
AMPLab becoming RISELab riseict)
» Drizzle — low latency execution, 3.5x lower than
Spark Streaming

» Ernest — performance prediction, automatically
choose the optimal resource config on the cloud




Spark MLlIlib
Streamingl} (machine

learning)

Apache Spark




Spark Core

Foundation

Deployment
Scheduler

Resource Manager (aka Cluster Manager)
-xecutor

Diagnostics Ul - Spark History Server, Spark Ul




Architecture

SparkC
ontext

Driver
aka Client

Master
/Cluster

Manager

Executor

Worker i
Task




Key Concepts

Parallelization, Partition
Transformation

Action
Shuffle



Parallelization

Doing multiple things at the same time



Partition

A unit of parallelization



Transformation

Manipulating data - immutable
‘Narrow’

"Wide"



Narrow Transformation




Wide Transformation

Wide Wide

Transform \v Transform

Wide "‘ Wide

Transform v W Transform

Transform Transform




Why s shuffle costly?

Processing: sorting, serialize/deserialize,
compression

Transfer: disk 10O, network
bandwidth/latency

Take up memory, or spill to disk for
intermediate results ("shuffle file")




Action

Materialize results

-xecute the chain of transformations
that leads to output — lazy evaluation

count
collect -> take
write




5QL

Datakrame

Dataset

Data source

Execution engine - Catalyst




Key Concepts

Fxecution Plan
Predicate Pushdown



Dataset

Strong typing
Optimized execution



DataFrame

Table — Row and Column
Schema — name and data types

Dataset [Row]

Partition = set of Row's




Data Sources

A\’?(\’ M PP N C HE J .,
(JSON} < HHHE inum|s3 HBRASE 57

y ,
o —, JDBC
= My and more...

"format" - Parquet, CSV, JSON, or
Cassandra, HBase



Fxecution Plan

SQLAST

Unresolved : Optimized

Logical Plan Logical Plan




Predicate Pushdown

ADili

the

ty -

[0 Process expressions as early in

ol

N as possible



Predicate Pushdown Example

spark.read.jdbc (JdbcUrl, "food",
connectionProperties)

// with pushdown

spark.read.jdbc (jdbcUrl, "food",
connectionProperties) .select ("hotdog"
"sushi")

" . "
pizza’,



Streaming

Discretized Streams (DStreams)
Receiver DStream

Direct DStream

Basic and Advanced Sources




Key Concepts

sSource

Reliability

Receiver + Write Ahead Log (WAL)
Checkpointing




Streaming Source

Kafka
Flume J? HDFS
HDFS/S3 Sp Qr K Databases
o

Kinesis S tf eamin 9 Dashboards

Twitter
input data batches of batches of
stream Spark input data Spark processed data

Streaming Engine



Batch

Micro-batch

batchlinterval — how often when data is
fetchea




Recelver

Take data from source at batchinterval
and get them into batch

data stream[s>

SparK’ streaming

| 11
batches results

[ receivers ]




Recelver WAL
WAL — Write Ahead Log

Application Executor
Driver
Computation y Block Input
checkpointed Streaming metadata stream
Context ! [ Receiver ]
\. Block |
metadata
|Jobs . _
= L written Block data | " =
= - ~ to log : o
= written to both S e
5 Z Spark memory + log LG
N~ w2
A > Context =
g 2 \ J g 2
- L

https://databricks.com/wp-content/uploads/2015/01/blog-ha-52.png



Direct DStream

Only tfor reliable messaging sources that
supports read from position

Stronger fault-tolerance, exactly-once*

No receiver/WAL
— less resource, lower overhead




Checkpointing

Saving to reliable storage to recover
from failure

1. Metadata checkpointing

StreamingContext.checkpoint ()

2. Data checkpointing

dstream.checkpoint ()




Machine Learning

ML Pipeline
Transtormer
Estimator
Fvaluator



MLIb ML Pipeline

DataFrame-based

- leverage optimizations and support
transtformations

a sequence of algorithms

= PipelineStages



Pipeline Model

Tokenizer Logistic

DataFrame Transformer Transformer

Feature engineering Modeling



Transformers

Feature transtformer

- take a DataFrame and its Column and
append one or more new Column




Transformers

StopWordsRemover Tokenizer
Binarizer RegexTokenizer
SQLTransformer NGram

VectorAssembler Hashing TF
OneHotEncoder




Estimators

An algorithm
DataFrame -> Model
A Model is a Transformer

LinearRegression
KMeans



Fvaluator

Metric to meas
verformance o

\_/

re Mode

N held-ou

' test data



Fvaluator

MulticlassClassiticationkvaluator
BinaryClassificationEvaluator
Regressionkvaluator




MLWriter/MLReader

PIpeline persistence

nclude transformers, estimators,
Params




Graph

Graph

Pregel

Graph Algorithms
Graph Queries




Property Graph

Directed multigraph with user properties
on edges and vertices



Graph Algorithms

PageRank
ConnectedComponents

ranks =
tripGraph.pageRank (resetProbability=
0.15, maxIter=5)



GraphFrames

DataFrame-basec
Simplity loading graph data, wrangling
Support Graph Queries




Graph Queries

Pattern matching
Mix pattern with SQL syntax

motifs = g.find (" (a)-[e]->(b),; (b)-
[e2]->(a); !'(c)-[]->(a)").filter("a.id
— 'MIA'")



Structured Streaming

Structured Streaming Model
source

Sink

StreamingQuery



Continuous Application

Extending same DataFrame to include
iIncremental execution of unbounded
INput

Reliability, correctness / exactly-once -
checkpointing (2.1 JSON format)




Stream as Unbounded Input

Data stream Unbounded Table
new data in stream

IIII I',IIII Ill\... \
\ L I— -
% new rows appended
~_
\'a__ x-%_'““'---—--____

toinputtable

Data stream as an unbounded Input Table

https://databricks.com/blog/2016/07/28/structured-streaming-in-apache-spark.html



Continuous Application

Watermark (2.1) - handling of late data

Streaming ETL, joining static data,
partitioning, windowing



Sources

FileStreamSource
KaftkaSource
MemoryStream (not for production)

TextSocketSource
MQTT



Sinks

FlleStreamSink (new formats in 2.1)
ConsoleSink

ForeachSink (Scala only)
MemorySink — as Temp View



Read Static Data

staticDF = (
spark
.read
.schema (JsonSchema)
.Json (1nputPath)



Read Streaming Data

streamingDF = (
spark
.readStream
.schema (JsonSchema)
.option ("maxFilesPerTrigger", 1)
.Json (1nputPath)
)

# Take a list of files as a stream



Process Streaming Data

streamingCountsDF = (
streamingDF
.groupBy (
streamingDF.word,
wilindow (
streamingDF. time,
"1 hour"))
.count ()



Write Streaming Data

query = (
streamingCountsDF
.writeStream
.format ("memory")
.queryName ("word counts")
.outputMode ("complete™)

.start ()
)

spark.sqgl ("select count from word counts order
by time")



Best Practices



BIg Data

How much going in affects how much
work it's going to take




BIg Data

Size does matter!

CSV or JSON is "simple" but also tend to
pe DIg

JSON-> Parguet (compressed)

- /X faster



Format also does matter

Recommended format - Parquet
Default data source/format

» \lectorizedReader

» Better dictionary decoding




Parquet Columnar Format

Column chunk co-located

Metadata anc
skipping

headers for




Recommend Parquet

Smart format = less work
Benchmark Parquet -> ORC
- 3./x to 6.3x slower

http://tech.marksblogg.com/billion-nyc-taxi-rides-spark-2-1-0-emr.htm|



Compression is a factor

gzip <100MB/s vs snappy S00MB/s
Tradeofts: faster or smaller?
Spark 2.0+ defaults to snappy




Sidenote: Table Partitioning

Storage data into groups of partitioning
columns

Encoded path structure matches Hive

table/event date=2017-02-01



nark Ul

meline view

Details for Stage 11 (Attempt 0)

Total Time Across All Tasks: 2 s
Shuffle Read: 200.2 KB / 13839

» DAG Visualization

» Show Additional Metrics

ne
eline

Enable zooming

Scheduler Delay Executor Computing Time
Task Deserialization Time Shuffle Write Time
Shuffle Read Time B Result Serialization Time

9/ ip-172-31-42-19.us-west-2.compute.internal

10/ ip-172-31-42-20.us-west-2.compute.internal

11/ ip-172-31-42-17 .us-west-2.compute.internal

12/ ip-172-31-42-18.us-west-2.compute.internal

Getting Result Time

Task 15 (attempt 0)
Status: SUCCESS
Launch Time: 2015/06/09 19:09:45
Finish Time: 2015/06/09 19:09:45
Scheduler Delay: 16 ms
Task Deserialization Time: 21 ms

Shuffie Read Time: 1 ms
Executor Computing Time: 0.1 s
Shuffie Write Time: O ms
Result Serialization Time: 0 ms
Getting Result Time: 0 ms

https://databricks.com/blog/2015/06/22/understanding-your-spark-application-through-visualization.html



Data Skew — uneven partitions

- Event Timeline

1 Enable zooming

B Scheduler Delay ¥ Executor Computing Time @8 Getting Sesult Time
W Task Dasecisiization Temw . ShufMa Weite Time

¥ Shuffie Read Time
1/10.00.7

® Resuk Seraizaton Tima

20/10.006

4/100015

5/100.033 |




Details for Job 4

Status: SUCCEEDED
Completed Stages: 22
Skipped Stages: 4

» Event Timeline
« DAG Visualzation

Stage 10 iskipped

Daraielize

Stage 12 skipped Stage 13 (slopped) Stage 14 Stage 15 Stage 16
oaraselze groupByKey groupByKey groupByKey oroupByKay
L ]
g magVaies
v

userinBlocks [12] userinBlocks [12)

https://databricks.com/blog/2015/06/22/understanding-your-spark-application-through-visualization.html



Fxecutor tab

Sport}'(\z 2.0.0.2.5.2.1-1 Jobs Stages
Executors
Summary
RDD Storage Disk
Blocks Memory Used
Active(21) 0 0.0B/892.3 0.0B
GB
Dead(0) 0 0.0B/0.0B 0.0B
Total(21) O 0.0B/892.3 0.0B
GB
Executors
Executor RDD
ID Address Status Blocks
20 10.0.0.17:44627 Active 0
19 10.0.0.27:34455 Active O

Storage Environment = Executors SQL

Active Failed Complete Total Task Time (GC Shuffle
Cores Tasks Tasks Tasks Tasks Time) Input Read
280 0 0 6529 6529 598m@4.8m) 3082 23MB

MB
0 0 0 0 0 ms (0 ms) 0.0B 0.0B
280 0 6529 6529 588m@4.8m) 3082 23MB
MB
Task
Time
Storage Disk Active Failed Complete Total (GC Shuffle
Memory Used Cores Tasks Tasks Tasks Tasks Time) Input Read
0.0B/ 0.0B 14 0 0 252 252 3.0m 144 18.7
42.5 GB (116 MB KB
s)
0.0B/ 00B 14 0 0 404 404 29m 125 81.7

AN E D

1N &

AND

wo

Shuffle
Write

2.5 MB

0.0B
2.5 MB

Shuffle
Write Logs

134.6 stdout
KB stderr

80.0 stdout

wo ntAlArve



Succeeded Jobs: 3 4

number of output rows: 50 number of output rows: 50
WholeStageCodegen
1.0s{1.05,1.0s,10s} 108(1.0s,1.0s,1.0s}
Filter Filter
number of output rows: 50 number of output rows: 50
v \4
v \ J
Exchange Exchange
data size total (min, med, max): data size total {min, med, max):
799.0 B (799.0 B, 793.0 B, 793.0 B) 798.0B(799.0B, 7! UB 798.0 B}
WholeStageCodegen WholeStageCodegen
9 s (0 ms, 2 ms, 198 ms) 10 ms {0 ms, O ms, 9 ms)
Sort Sort
peak m total (min, med, peak min, med, max)
4704MB 0 KB, 64.0KB, 32.1 4489 MB 32.1 M8, 321MB)
ms, 25 ms)
number of output rows: 176
Project

SQL tab..

== Parsed Logical Plan ==
Aggregate [count(1l) AS count#79L]
+- Sort [speed_y#49 ASC], true
+- Join Inner, (speed_x#48 = speed_y#49)
:- Project [speed#2 AS speed_x#48, dist#3]
+- LogicalRDD [speed#2, dist#3]
+- Project [speed#18 AS speed_y#49, dist#19]
+- LogicalRDD [speed#18, dist#19]

= Analyzed Logical Plan ==
count: bigint
Aggregate [count(1l) AS count#79L]
+- Sort [speed_y#49 ASC], true
+- Join Inner, (speed_x#48 = speed_y#49)
:- Project [speed#2 AS speed_x#48, dist#3]
+- LogicalRDD [speed#2, dist#3]
+- Project [speed#18 AS speed_y#49, dist#19]
+- LogicalRDD [speed#18, dist#19]

= Optimized Logical Plan ==
Aggregate [count(l) AS count#79L]
+- Project
+- Sort [speed_y#49 ASC], true
+- Project [speed_y#49]
+- Join Inner, (speed_x#48 = speed_y#49)
:- Project [speed#2 AS speed_x#48]
+- Filter isnotnull(speed#2)
: +- LogicalRDD [speed#2, dist#3]
+- Project [speed#18 AS speed_y#49]
+- Filter isnotnull(speed#18)
+- LogicalRDD [speed#18, dist#19]

== Physical Plan ==

*HashAggregate(keys=[], functions=[count(1)], output=[count#79L])

+- Exchange SinglePartition

+- *HashAggregate(keys=[], functions=[partial_count(1)], output=[count#83L]

+- *Project
4 BCrart FTenooad wHAOQO ACCTl. s D



Streaming Statistics

Streaming tab T
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Understanding Queries

explain () IS your frienc

but it could be hard to understand at
times

== Parsed Logilcal Plan ==

Aggregate [count (1) AS count#79L]
+- Sort [speed y#49 ASC], true
+- Join Inner, (speed x#48 = speed y#49)
:— Project [speed#2 AS speed x#48, dist#3]
: +- LogicalRDD [speed#2, dist#3]
+— Project [speed#18 AS speed v#49, dist#19]
+- LogicalRDD [speed#18, dist#19]



Remember Execution Plan

SQLAST




== Physical Plan ==
*HashAggregate (keys=[], functions=[count (1l)], output=[count#79L])
+—- Exchange SinglePartition

+- *HashAggregate (keys=[], functions=[partial count(l)],
output=[count#83L])

+— *Project
+- *Sort [speed y#49 ASC], true, O
+- Exchange rangepartitioning (speed y#49 ASC, 200)
+— *Project [speed y#49]
+- *SortMergeJoin [speed x#48], [speed y#49], Inne
:— *Sort [speed x#48 ASC], false, O
+- Exchange hashpartitioning (speed x#48, 200
+- *Project [speed#2 AS speed x#48]
+- *Filter isnotnull (speed#2)
: +- Scan ExistingRDD[speed#2,dist#3]
+- *Sort [speed y#49 ASC], false, O
+- Exchange hashpartitioning (speed y#49, 200



UDF

Write you own custom transtorms
But... Catalyst can't see through it (yet?!)

Always prefer to use builtin transforms
as much as possible




UDF vs Builtin Example

Remember Predicate Pushdown?

val 1sSeattle udf { (s: String) => s == "Seattle" }

clities.where (isSeattle ('name))
*Filter UDF (name#2)

+- *FileScan parquet [id#128L,name#2] Batched: true, Format:
ParquetFormat, InputPaths: file:/llsers/b/cities.parquet,

PartitionFilters: [], PushedFilters: [], ReadSchema:
struct<id:bigint, name:string>



UDF vs Builtin Example
Using Buildtin Expression

clties.where ('name === "Seattle")
*Project [id#128L, name#2]
+- *Filter (isnotnull (name#2) && (name#2 = Seattle))

+- *FileScan parquet [1id#128L,name#2] Batched: true, Format:
ParquetFormat, InputPethe: file:/leore/h/mitise naranat
PartitionFilters: [], PushedFilters: [IsNotNull (name),
EqualTo (name, Seattle) |, ReadSchema:

struct<id:bigint, name:string>



UDF in Python

from pyspark.sgl.types 1mport IntegerType

sgqlContext.udf.register ("stringLengthInt", lambda x:
len(x), IntegerType())

sgqlContext.sqgl ("SELECT stringLengthInt ('test')") .take (1)

Avoid!

Why? Pickling, transfer, extra memory to
run Python interpreter

- Hard to debug errors!




Going for Performance

Stored in compressed Parquet
Partitioned table

Predicate Pushdown
Avoid UDF




Shuffling for Join

Can be very
expensive




Optimizing for Join

Partition!

Narrow transtform if left and right
partitioned with same scheme



Optimizing for Join

Sroadcast Join (aka Map-Side Join in
-“adoop)

Smaller table against large table - avoic
shutfling large table

Default TOMB auto broadcast




BroadcastHashJoin

left.join(right, Seg("id"), "leftanti") .explain

== Physical Plan ==

*BroadcastHashJoin [1d#50], [id#60], LeftAnti,
BuildRight

:— LocalTableScan [1d#50, left#51]

+—- BroadcastExchange
HashedRelationBroadcastMode (List (cast (1nput [0, int,
false] as bigint)))

+—- LocalTableScan [id#60]



Repartition

T0 numPartitions Or by Columns
Increase parallelism — will shuftfle

coalesce () — COmbiﬂe partitiOﬂS iﬂ p\aCe



Cache

cache () Of persist ()

Flush least-recently-used (LRU)
- Make sure there is enough memory!

MEMORY AND DISK to avoid exper S|ve
recompute (but spill to disk is slow)




Streaming

Use Structured Streaming (2.1+)
T not...

f reliable messaging (Katka) use Direct
DStream




Metadata Checkpointing

Metadata - Config

Position from streaming source (aka
offset)

- could get duplicates! (at-least-once)
Pending batches




Data Checkpointing

Persist stateful transformations
- data lost if not saved

Cut short execution that could grow
indefinitely




Direct DStream

Checkpoint also store offset

Turn off auto commit

- do when in good state for exactly-
once



Checkpointing

Stream/ML/Graph/SQL
- more efficient indefinite/iterative

- recovery
Generally not versioning-safe

Use reliable distributed file system
(caution on “obiect store”)



Building Solutions with Apache
Spark



Building solutions with Apache Spark

1. ETL, statistical model —
Jser behavior analysis

2. Streaming machine learning model —
Natural Language Processing (NLP)
and Topic Modeling




User Behavior Analysis

External
ﬁ Data
Source

Hourly

FrontEnd

i Hive
='=_ Metastore

9 Bl Tools




Streaming NLP and Topic Modeling

Spark
A

Near-RealTime
(end-to-end roundtrip:
8-20 sec)

FrontEnd e ECHE

Bl

@ HDFS




Enterprise solutions with Apache Spark
Consumer research group

« User Behavior
» Aggregated to Sales, Stores, Households
e Fast concurrent access



Enterprise solutions with Apache Spark
Consumer research group

SQL
Appliance

Spark SQL

. Hive
l-l
HEE

9 BI Tools
9 Bl Tools ﬁ RDBMS




-nterprise solutions with Apache Spark
Retall

. Lots of Machines

* Inventory

» |OT = Predictive Modeling
 [ransactions




Retall

-nterprise solutions with Apache Spark

- Kafka

el

AVAVA,
AVAV' ' A
VAVA 'V

VANAY

Visualizatio
MESQOS siim

9 Bl Tools

=1 Message

- - Bus

™
el

External
BE\F
Source

i Hive
Metastore




Enterprise solutions with Apache Spark
Online retailer

» Catalog

» Supply chain
« Accounting
* Pricing

» Search



.y

II'.TE SQL

Enterprise solutions with Apache Spark

Online retailer
Visualizatio
=P Streaming
Bl Tools
Flume HDFS

L&ﬂa

Data

Te Science




-nterprise solutions with Apache Spark
-Inance

« Payments

» Subscriptions

» [ransactions

« Auditing for mismatch, missing

« Monitoring metrics tor latency, processing rate




-nterprise solutions with Apache Spark

-lNance
Spark =, Spark SQL g  Spark SQL
=P Streaming ]EE ]EE

Metadata Combiner Classifier

1 Message
= Bus

el

@ SQL
C_\

. )

b




Key Takeaways

Technology trend:
Moving to Streaming + Predictive




Key Takeaways
Why Streaming?

» Faster insight at scale

» Streaming ETL

« [riggers

» Latest data to static data
» Continuous learning



Question?

After session...

Contact me

N

ttps://www.

inkedin.com/in/felix-cheung-b406/510

N

ttps://githu

0.com/felixcheung




