

Starting with Apache Spark,
Best Practices and Learning from

the Field
Felix Cheung, Principal Engineer + Spark Committer

Spark@Microsoft

Best Practices
Enterprise Solutions

Resilient - Fault tolerant

19,500+ commits

Tungsten
AMPLab becoming RISELab
• Drizzle – low latency execution, 3.5x lower than

Spark Streaming
• Ernest – performance prediction, automatically

choose the optimal resource config on the cloud

Deployment
Scheduler
Resource Manager (aka Cluster Manager)

- Spark History Server, Spark UI

Spark Core

Parallelization, Partition
Transformation
Action
Shuffle

Doing multiple things at the same time

A unit of parallelization

Manipulating data - immutable
"Narrow"
"Wide"

Processing: sorting, serialize/deserialize,
compression
Transfer: disk IO, network
bandwidth/latency
Take up memory, or spill to disk for
intermediate results ("shuffle file")

Materialize results
Execute the chain of transformations
that leads to output – lazy evaluation
count
collect -> take
write

DataFrame
Dataset
Data source
Execution engine - Catalyst

SQL

Execution Plan
Predicate Pushdown

Strong typing
Optimized execution

Dataset[Row]

Partition = set of Row's

"format" - Parquet, CSV, JSON, or
Cassandra, HBase

Ability to process expressions as early in
the plan as possible

spark.read.jdbc(jdbcUrl, "food",
connectionProperties)

// with pushdown
spark.read.jdbc(jdbcUrl, "food",
connectionProperties).select("hotdog", "pizza",
"sushi")

Discretized Streams (DStreams)
Receiver DStream
Direct DStream
Basic and Advanced Sources

Streaming

Source
Reliability
Receiver + Write Ahead Log (WAL)
Checkpointing

https://databricks.com/wp-content/uploads/2015/01/blog-ha-52.png

Only for reliable messaging sources that
supports read from position
Stronger fault-tolerance, exactly-once*
No receiver/WAL
– less resource, lower overhead

Saving to reliable storage to recover
from failure
1. Metadata checkpointing
StreamingContext.checkpoint()

2. Data checkpointing
dstream.checkpoint()

ML Pipeline
Transformer
Estimator
Evaluator

Machine Learning

DataFrame-based
- leverage optimizations and support
transformations
a sequence of algorithms
- PipelineStages

Transformer EstimatorTransformerDataFrame

Feature engineering Modeling

Feature transformer
- take a DataFrame and its Column and
append one or more new Column

StopWordsRemover
Binarizer
SQLTransformer
VectorAssembler

Estimators

An algorithm
DataFrame -> Model
A Model is a Transformer

LinearRegression
KMeans

Evaluator

Metric to measure Model
performance on held-out test data

Evaluator

MulticlassClassificationEvaluator
BinaryClassificationEvaluator
RegressionEvaluator

MLWriter/MLReader

Pipeline persistence
Include transformers, estimators,
Params

Graph
Pregel
Graph Algorithms
Graph Queries

Graph

Directed multigraph with user properties
on edges and vertices

SEA
NYC

LAX

PageRank
ConnectedComponents

ranks =
tripGraph.pageRank(resetProbability=
0.15, maxIter=5)

DataFrame-based
Simplify loading graph data, wrangling
Support Graph Queries

Pattern matching
Mix pattern with SQL syntax

motifs = g.find("(a)-[e]->(b); (b)-
[e2]->(a); !(c)-[]->(a)").filter("a.id
= 'MIA'")

Structured Streaming Model
Source
Sink
StreamingQuery

Structured Streaming

Extending same DataFrame to include
incremental execution of unbounded
input

Reliability, correctness / exactly-once -
checkpointing (2.1 JSON format)

Stream as Unbounded Input

https://databricks.com/blog/2016/07/28/structured-streaming-in-apache-spark.html

Watermark (2.1) - handling of late data
Streaming ETL, joining static data,
partitioning, windowing

FileStreamSource
KafkaSource
MemoryStream (not for production)
TextSocketSource
MQTT

FileStreamSink (new formats in 2.1)
ConsoleSink
ForeachSink (Scala only)
MemorySink – as Temp View

staticDF = (
spark

.read

.schema(jsonSchema)

.json(inputPath)
)

streamingDF = (
spark

.readStream

.schema(jsonSchema)

.option("maxFilesPerTrigger", 1)

.json(inputPath)
)
Take a list of files as a stream

streamingCountsDF = (
streamingDF

.groupBy(
streamingDF.word,
window(
streamingDF.time,
"1 hour"))

.count()
)

query = (
streamingCountsDF

.writeStream

.format("memory")

.queryName("word_counts")

.outputMode("complete")

.start()
)
spark.sql("select count from word_counts order
by time")

How much going in affects how much
work it's going to take

Size does matter!
CSV or JSON is "simple" but also tend to
be big
JSON-> Parquet (compressed)
- 7x faster

Format also does matter

Recommended format - Parquet
Default data source/format
• VectorizedReader
• Better dictionary decoding

Parquet Columnar Format

Column chunk co-located
Metadata and headers for
skipping

Recommend Parquet

Compression is a factor

gzip <100MB/s vs snappy 500MB/s
Tradeoffs: faster or smaller?
Spark 2.0+ defaults to snappy

Sidenote: Table Partitioning

Storage data into groups of partitioning
columns
Encoded path structure matches Hive
table/event_date=2017-02-01

Spark UI
Timeline view

https://databricks.com/blog/2015/06/22/understanding-your-spark-application-through-visualization.html

Spark UI
DAG view

https://databricks.com/blog/2015/06/22/understanding-your-spark-application-through-visualization.html

Executor tab

SQL tab

Understanding Queries

explain() is your friend
but it could be hard to understand at
times == Parsed Logical Plan ==

Aggregate [count(1) AS count#79L]
+- Sort [speed_y#49 ASC], true

+- Join Inner, (speed_x#48 = speed_y#49)
:- Project [speed#2 AS speed_x#48, dist#3]
: +- LogicalRDD [speed#2, dist#3]
+- Project [speed#18 AS speed_y#49, dist#19]

+- LogicalRDD [speed#18, dist#19]

== Physical Plan ==
*HashAggregate(keys=[], functions=[count(1)], output=[count#79L])
+- Exchange SinglePartition

+- *HashAggregate(keys=[], functions=[partial_count(1)],
output=[count#83L])

+- *Project
+- *Sort [speed_y#49 ASC], true, 0

+- Exchange rangepartitioning(speed_y#49 ASC, 200)
+- *Project [speed_y#49]

+- *SortMergeJoin [speed_x#48], [speed_y#49], Inner
:- *Sort [speed_x#48 ASC], false, 0
: +- Exchange hashpartitioning(speed_x#48, 200)
: +- *Project [speed#2 AS speed_x#48]
: +- *Filter isnotnull(speed#2)
: +- Scan ExistingRDD[speed#2,dist#3]
+- *Sort [speed_y#49 ASC], false, 0

+- Exchange hashpartitioning(speed_y#49, 200)
+- *Project [speed#18 AS speed_y#49]

UDF

Write you own custom transforms
But... Catalyst can't see through it (yet?!)
Always prefer to use builtin transforms
as much as possible

UDF vs Builtin Example

Remember Predicate Pushdown?
val isSeattle = udf { (s: String) => s == "Seattle" }
cities.where(isSeattle('name))
*Filter UDF(name#2)
+- *FileScan parquet [id#128L,name#2] Batched: true, Format:
ParquetFormat, InputPaths: file:/Users/b/cities.parquet,
PartitionFilters: [], PushedFilters: [], ReadSchema:
struct<id:bigint,name:string>

UDF vs Builtin Example

cities.where('name === "Seattle")
*Project [id#128L, name#2]
+- *Filter (isnotnull(name#2) && (name#2 = Seattle))

+- *FileScan parquet [id#128L,name#2] Batched: true, Format:
ParquetFormat, InputPaths: file:/Users/b/cities.parquet,
PartitionFilters: [], PushedFilters: [IsNotNull(name),
EqualTo(name,Seattle)], ReadSchema:
struct<id:bigint,name:string>

UDF in Python

Avoid!
Why? Pickling, transfer, extra memory to
run Python interpreter
- Hard to debug errors!

from pyspark.sql.types import IntegerType
sqlContext.udf.register("stringLengthInt", lambda x:
len(x), IntegerType())
sqlContext.sql("SELECT stringLengthInt('test')").take(1)

Going for Performance

Stored in compressed Parquet
Partitioned table
Predicate Pushdown
Avoid UDF

Shuffling for Join

Can be very
expensive

Optimizing for Join

Partition!
Narrow transform if left and right
partitioned with same scheme

Optimizing for Join
Broadcast Join (aka Map-Side Join in
Hadoop)

Smaller table against large table - avoid
shuffling large table

Default 10MB auto broadcast

BroadcastHashJoin
left.join(right, Seq("id"), "leftanti").explain

== Physical Plan ==
*BroadcastHashJoin [id#50], [id#60], LeftAnti,
BuildRight
:- LocalTableScan [id#50, left#51]
+- BroadcastExchange
HashedRelationBroadcastMode(List(cast(input[0, int,
false] as bigint)))

+- LocalTableScan [id#60]

Repartition

To numPartitions or by Columns
Increase parallelism – will shuffle

coalesce() – combine partitions in place

Cache

cache() or persist()
Flush least-recently-used (LRU)
- Make sure there is enough memory!
MEMORY_AND_DISK to avoid expensive
recompute (but spill to disk is slow)

Streaming

Use Structured Streaming (2.1+)
If not...

If reliable messaging (Kafka) use Direct
DStream

Metadata - Config
Position from streaming source (aka
offset)
- could get duplicates! (at-least-once)
Pending batches

Persist stateful transformations
- data lost if not saved
Cut short execution that could grow
indefinitely

Direct DStream

Checkpoint also store offset

Turn off auto commit
- do when in good state for exactly-
once

Checkpointing
Stream/ML/Graph/SQL
- more efficient indefinite/iterative
- recovery
Generally not versioning-safe

Use reliable distributed file system
(caution on “object store”)

Hadoop

WebLog Spark SQL

External
Data
Source

BI Tools
HDFS

Hive

Hive
Metastore

FrontEnd

Hourly

Spark
Streaming

Spark
ML

Kafka

HDFS

FrontEnd

Near-RealTime
(end-to-end roundtrip:
8-20 sec)

Offline
Analysis

Spark SQL

RDBMS

BI Tools

Hive

SQL
Appliance

BI Tools

Spark
Streaming

Message
Bus

Spark
MLKafka

Storage

Spark SQL

Visualization

External
Data
Source

BI Tools

Data Lake

Hive
Metastore

Spark
ML

Spark
Streaming

Kafka

HDFS

Spark SQL
Visualization

Presto

BI Tools
Hive

SQL

Flume

SQL

Data
Science
Notebook

Spark
Streaming

Message
Bus

Storage
SQL

Spark SQL Spark SQL

Data
Factory

Moving

https://www.linkedin.com/in/felix-cheung-b4067510
https://github.com/felixcheung

