& PACHE: BIG_DRTR

NORTH_AMERICA

0

Starting with Apache Spark, Best Practices and Learning from the Field

Felix Cheung, Principal Engineer + Spark Committer Spark@Microsoft

Community Contributions

Introduction to Apache Spark Best Practices Enterprise Solutions

Introduction to Apache Spark

What is Spark?

"Fast and expressive cluster computing system" – Matei Zaharia, creator of Apache Spark

Distributed Scalable Resilient - Fault tolerant

Key Differentiators

In-memory processing Friendly programming model Rich expressive APIs

Why Spark? Open Source Community

Over 1000 contributors 19,500+ commits 310+ Spark Packages 23,000+ questions on stackoverflow user@spark.apache.org

1,072 contributors

Why Spark?

Innovations

-amplab//~

Catalyst, Tungsten AMPLab becoming RISELab

- Drizzle low latency execution, 3.5x lower than Spark Streaming
- Ernest performance prediction, automatically choose the optimal resource config on the cloud

Spark SQL

Spark Streaming

MLlib (machine learning)

GraphX (graph)

Apache Spark

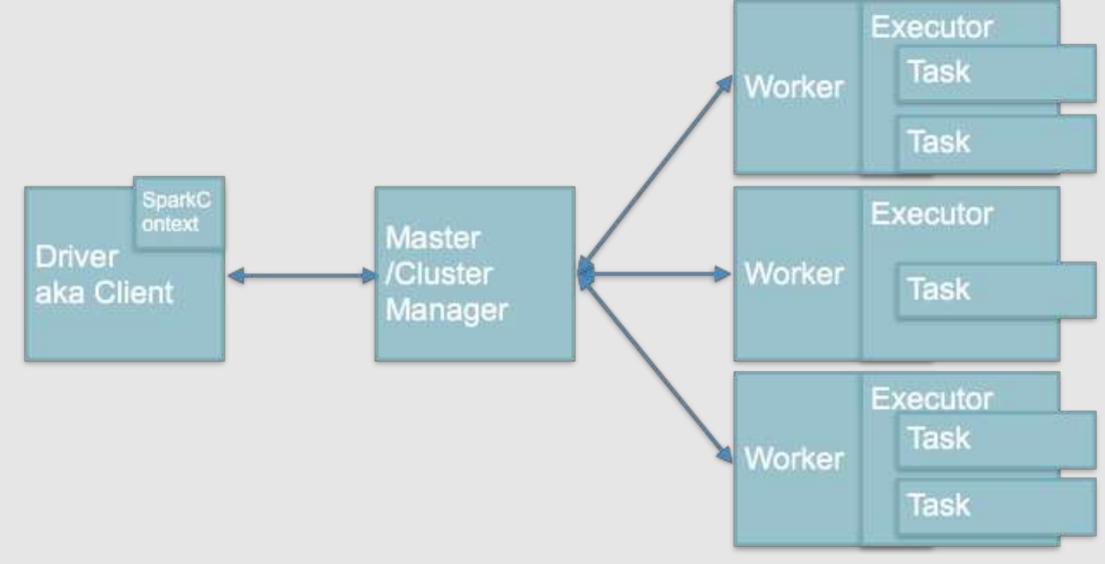
Foundation

Deployment Scheduler

Resource Manager (aka Cluster Manager) Executor

Diagnostics UI - Spark History Server, Spark UI

Architecture



Parallelization, Partition Transformation

Action

Shuffle

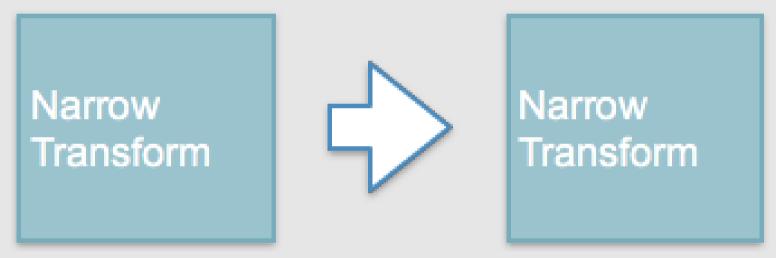
Doing multiple things at the same time

A unit of parallelization

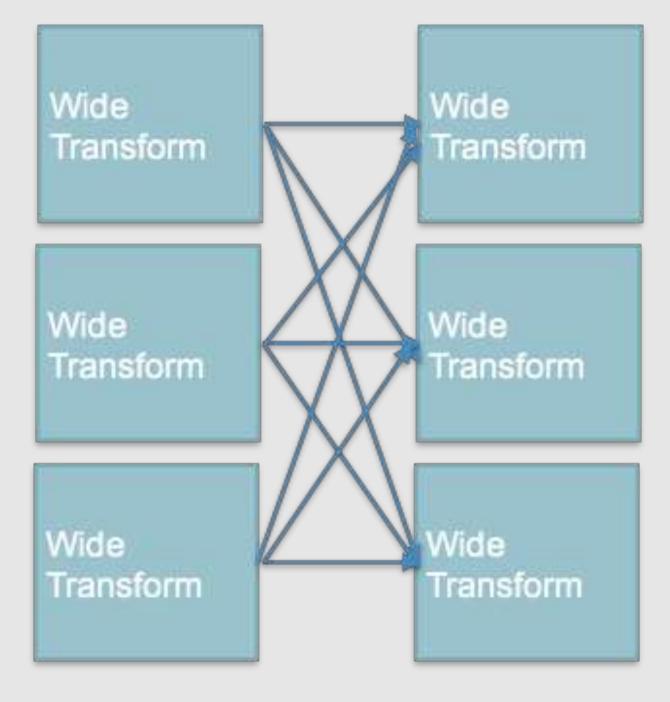
Transformation

Manipulating data - immutable "Narrow" "Wide"

Narrow Transformation



Wide Transformation



Why is shuffle costly?

Processing: sorting, serialize/deserialize, compression

Transfer: disk IO, network bandwidth/latency

Take up memory, or spill to disk for intermediate results ("shuffle file")

Materialize results

Execute the chain of transformations that leads to output – *lazy evaluation*

count

collect -> take

write

DataFrame Dataset

Data source

Execution engine - Catalyst

Execution Plan Predicate Pushdown

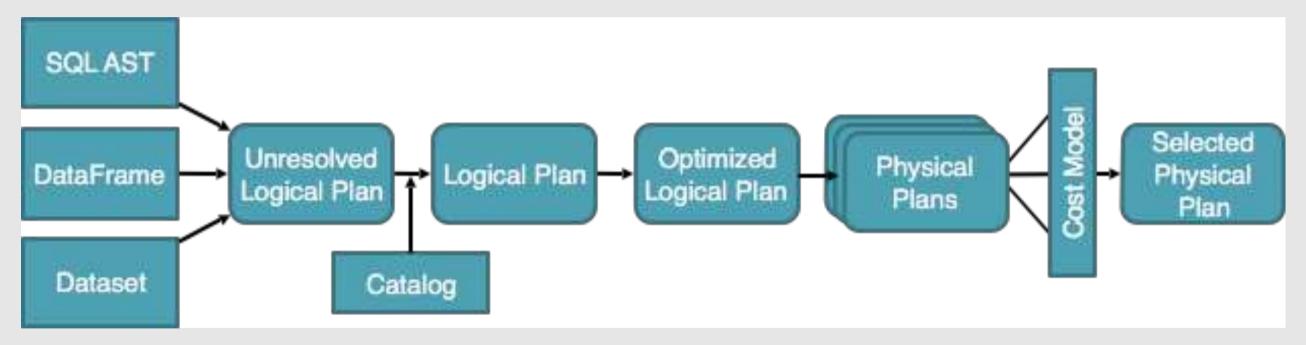
Strong typing Optimized execution

Table – Row and Column Schema – name and data types Dataset [Row] Partition = set of Row's

Data Sources

"format" - Parquet, CSV, JSON, or Cassandra, HBase

Execution Plan



Predicate Pushdown

Ability to process expressions as early in the plan as possible

Predicate Pushdown Example

spark.read.jdbc(jdbcUrl, "food", connectionProperties)

// with pushdown

spark.read.jdbc(jdbcUrl, "food", connectionProperties).select("hotdog", "pizza", "sushi")

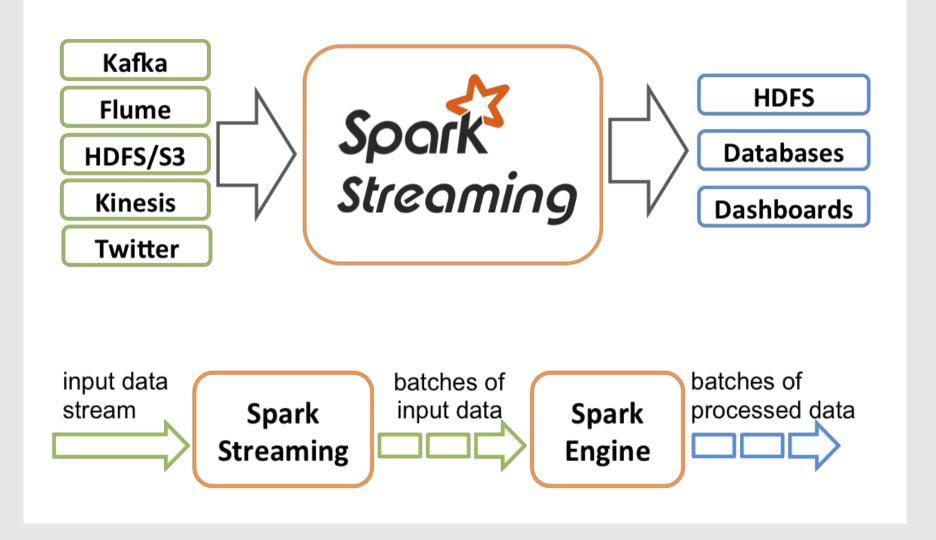
Discretized Streams (DStreams) Receiver DStream Direct DStream

Basic and Advanced Sources

Source Reliability

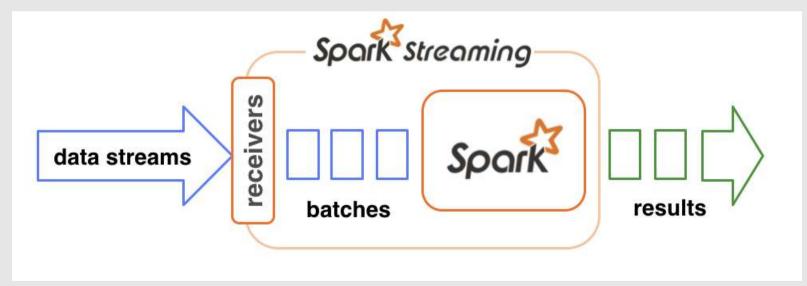
Receiver + Write Ahead Log (WAL) Checkpointing

Streaming Source

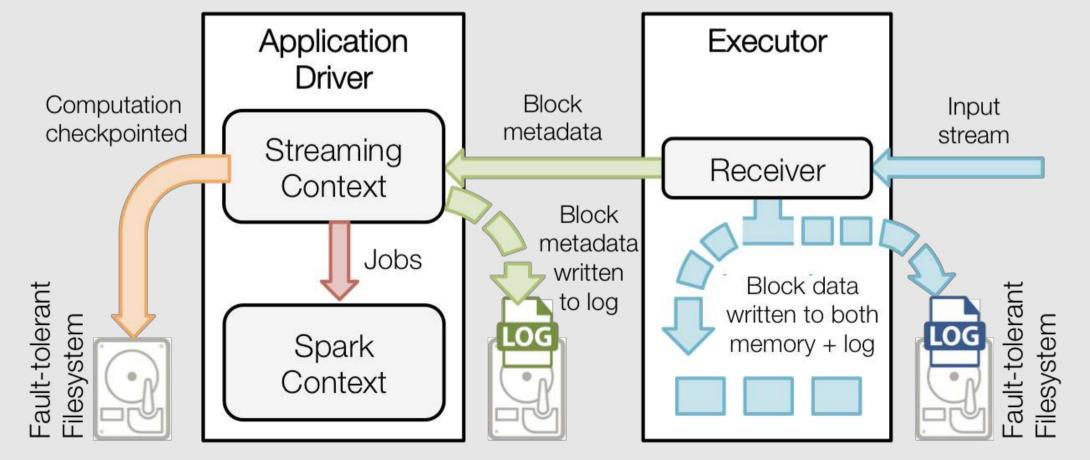


Micro-batch batchInterval – how often when data is fetched

Take data from source at batchInterval and get them into batch



Receiver WAL WAL – Write Ahead Log



Only for reliable messaging sources that supports read from position

Stronger fault-tolerance, exactly-once*

No receiver/WAL

- less resource, lower overhead

Checkpointing

- Saving to reliable storage to recover from failure
- 1. Metadata checkpointing StreamingContext.checkpoint()
- 2. Data checkpointing dstream.checkpoint()

Machine Learning

ML Pipeline Transformer Estimator Evaluator

MLlib ML Pipeline

- DataFrame-based
- leverage optimizations and support transformations
- a sequence of algorithms
- PipelineStages

Pipeline Model

Feature engineering

Modeling

Feature transformer

- take a DataFrame and its Column and append one or more new Column

StopWordsRemover Binarizer SQLTransformer VectorAssembler

Tokenizer RegexTokenizer NGram HashingTF OneHotEncoder

An algorithm DataFrame -> Model A Model is a Transformer

LinearRegression KMeans

Metric to measure Model performance on held-out test data

MulticlassClassificationEvaluator BinaryClassificationEvaluator RegressionEvaluator

MLWriter/MLReader

Pipeline persistence Include transformers, estimators, Params

Graph

Graph Pregel Graph Algorithms Graph Queries

Property Graph

Directed multigraph with user properties on edges and vertices



Graph Algorithms

PageRank ConnectedComponents

ranks =
tripGraph.pageRank(resetProbability=
0.15, maxIter=5)

DataFrame-based Simplify loading graph data, wrangling Support Graph Queries

Pattern matching Mix pattern with SQL syntax

motifs = g.find("(a)-[e]->(b); (b)[e2]->(a); !(c)-[]->(a)").filter("a.id
= 'MIA'")

Structured Streaming

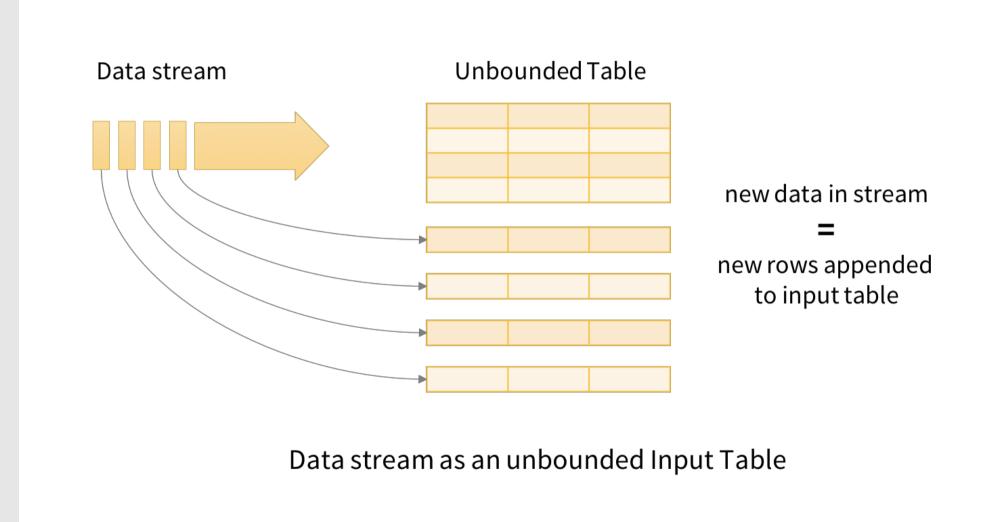
Structured Streaming Model Source Sink StreamingQuery

Continuous Application

Extending same DataFrame to include incremental execution of unbounded input

Reliability, correctness / exactly-once - checkpointing (2.1 JSON format)

Stream as Unbounded Input



https://databricks.com/blog/2016/07/28/structured-streaming-in-apache-spark.html

Continuous Application

Watermark (2.1) - handling of late data Streaming ETL, joining static data, partitioning, windowing

FileStreamSource

KafkaSource

MemoryStream (not for production) TextSocketSource MQTT

FileStreamSink (new formats in 2.1) ConsoleSink

ForeachSink (Scala only) MemorySink – as Temp View

Read Static Data

staticDF = (

spark

- .read
- .schema(jsonSchema)
- .json(inputPath)

Read Streaming Data

- streamingDF = (
 - spark
 - .readStream
 - .schema(jsonSchema)
 - .option("maxFilesPerTrigger", 1)
 - .json(inputPath)

Take a list of files as a stream

Process Streaming Data

```
streamingCountsDF = (
  streamingDF
    .groupBy(
      streamingDF.word,
      window (
       streamingDF.time,
       "1 hour"))
    .count()
```

```
spark.sql("select count from word_counts order
by time")
```

- .start()
- .outputMode("complete")
- .format("memory")
 .queryName("word counts")
- .writeStream
- streamingCountsDF
- query = (

Write Streaming Data

Best Practices

How much going in affects how much work it's going to take

Size does matter! CSV or JSON is "simple" but also tend to be big JSON-> Parquet (compressed) - 7x faster

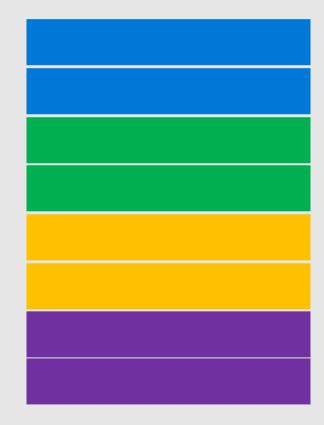
Format also does matter

Recommended format - Parquet Default data source/format

- VectorizedReader
- Better dictionary decoding

Parquet Columnar Format

Column chunk co-located Metadata and headers for skipping



Recommend Parquet

Smart format = less work Benchmark Parquet -> ORC - 3.7x to 6.3x slower

Compression is a factor

gzip <100MB/s vs snappy 500MB/s Tradeoffs: faster or smaller? Spark 2.0+ defaults to snappy

Sidenote: Table Partitioning

Storage data into groups of partitioning columns

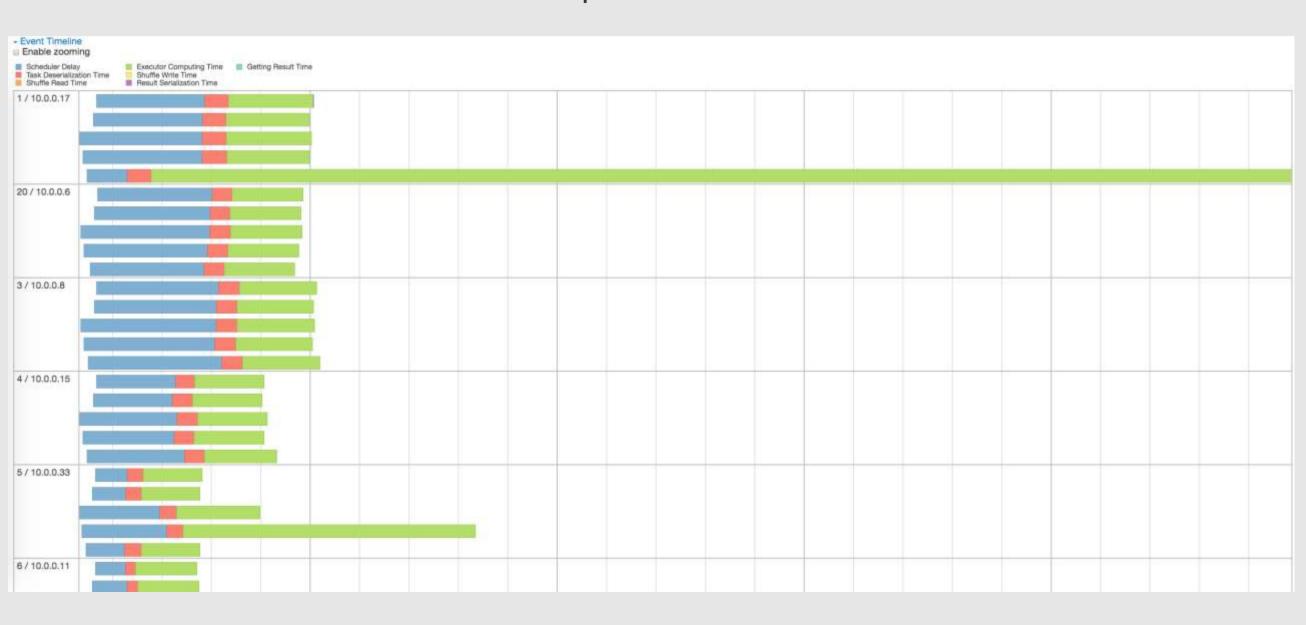
Encoded path structure matches Hive table/event_date=2017-02-01

Spark UI Timeline view

Total Time Across All Tasks: 2 s Shuffle Read: 200.2 KB / 13839

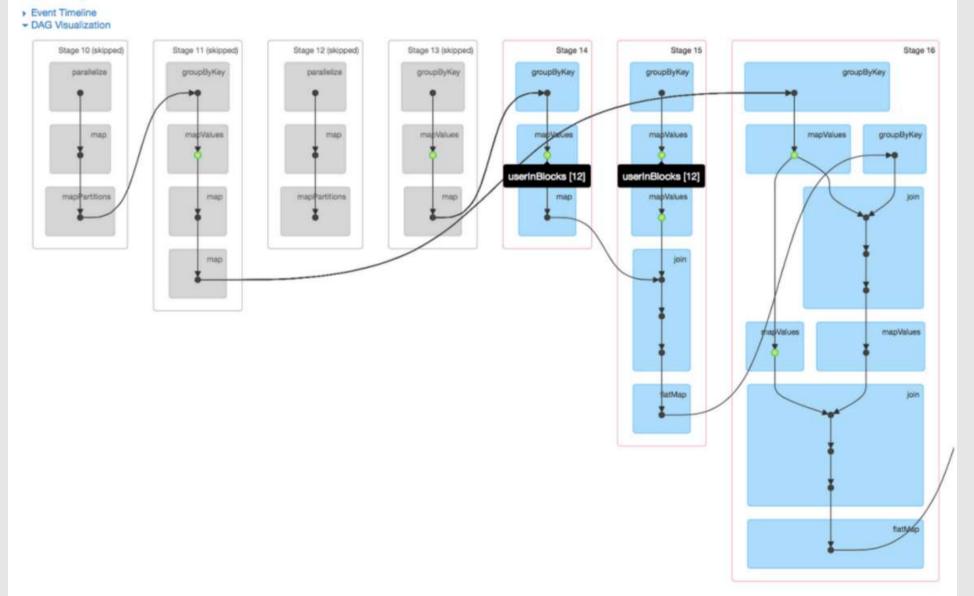
https://databricks.com/blog/2015/06/22/understanding-your-spark-application-through-visualization.html

Data Skew – uneven partitions



Spark UI DAG view

Status: SUCCEEDED Completed Stages: 22 Skipped Stages: 4



https://databricks.com/blog/2015/06/22/understanding-your-spark-application-through-visualization.html

Executor tab

Spork 2.0.0.2.5.2.1-1 Jobs Stages Storage Environment Executors SQL

Executors

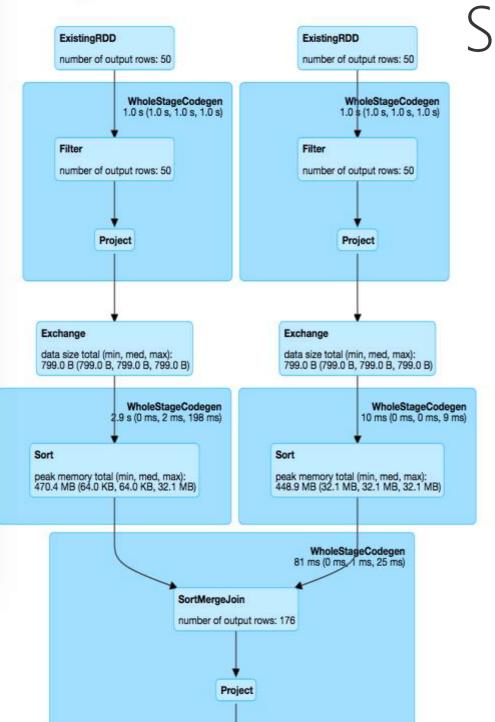
Summary

	RDD Blocks	Storage Memory	Disk Used	Cores	Active Tasks	Failed Tasks	Complete Tasks	Total Tasks	Task Time (GC Time)	Input	Shuffle Read	Shuffle Write
Active(21)	0	0.0 B / 892.3 GB	0.0 B	280	0	0	6529	6529	59.8 m (4.8 m)	308.2 MB	2.3 MB	2.5 MB
Dead(0)	0	0.0 B / 0.0 B	0.0 B	0	0	0	0	0	0 ms (0 ms)	0.0 B	0.0 B	0.0 B
Total(21)	0	0.0 B / 892.3 GB	0.0 B	280	0	0	6529	6529	59.8 m (4.8 m)	308.2 MB	2.3 MB	2.5 MB

Executors

Executor ID	Address	Status	RDD Blocks	Storage Memory	Disk Used	Cores			Complete Tasks		Task Time (GC Time)	Input		Shuffle Write	Logs
20	10.0.0.17:44627	Active	0	0.0 B / 42.5 GB	0.0 B	14	0	0	252	252	3.0 m (11.6 s)	14.4 MB	18.7 KB	134.6 KB	stdout stderr
19	10.0.0.27:34455	Active	0	0.0 B /	0.0 B	14	0	0	404	404	2.9 m		81.7	80.0	stdout

Succeeded Jobs: 34



QL tab. == Parsed Logical Plan == Aggregate [count(1) AS count#79L] +- Sort [speed_y#49 ASC], true +- Join Inner, (speed_x#48 = speed_y#49) :- Project [speed#2 AS speed_x#48, dist#3] : +- LogicalRDD [speed#2, dist#3] +- Project [speed#18 AS speed_v#49, dist#19] +- LogicalRDD [speed#18, dist#19] == Analyzed Logical Plan == count: bigint Aggregate [count(1) AS count#79L] +- Sort [speed_y#49 ASC], true +- Join Inner, (speed_x#48 = speed_y#49) :- Project [speed#2 AS speed_x#48, dist#3] : +- LogicalRDD [speed#2, dist#3] +- Project [speed#18 AS speed_y#49, dist#19] +- LogicalRDD [speed#18, dist#19] == Optimized Logical Plan == Aggregate [count(1) AS count#79L] +- Project +- Sort [speed_y#49 ASC], true +- Project [speed_y#49] +- Join Inner, (speed_x#48 = speed_y#49) :- Project [speed#2 AS speed_x#48] : +- Filter isnotnull(speed#2) +- LogicalRDD [speed#2, dist#3] +- Project [speed#18 AS speed_y#49] +- Filter isnotnull(speed#18) +- LogicalRDD [speed#18, dist#19] == Physical Plan == *HashAggregate(keys=[], functions=[count(1)], output=[count#79L]) +- Exchange SinglePartition +- *HashAggregate(keys=[], functions=[partial_count(1)], output=[count#83L] +- *Project

+- *Sort Espeed v#49 ASCT true 0

Streaming tab

Input Plate

Placetyers: 1/1 active

Avg 1.08 events/sec

Scheduling Delay [7]

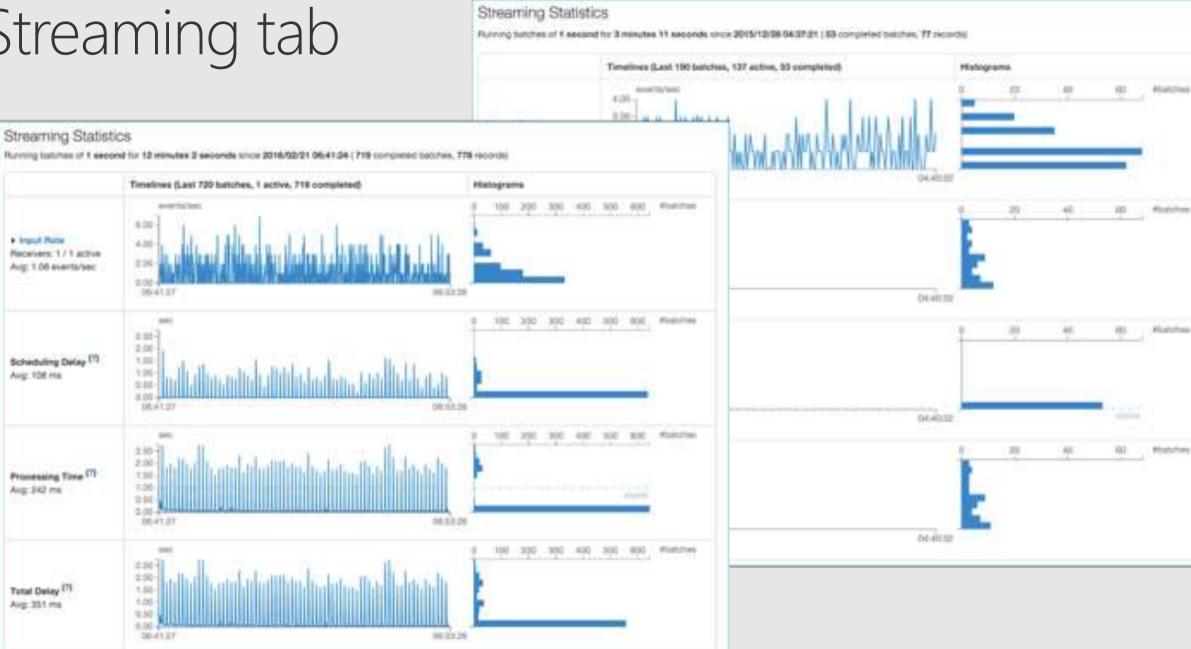
Processing Time [7]

Avg 342 ms

Total Dates (7)

Avg: 301 ms

Ave: 108 ma



Understanding Queries

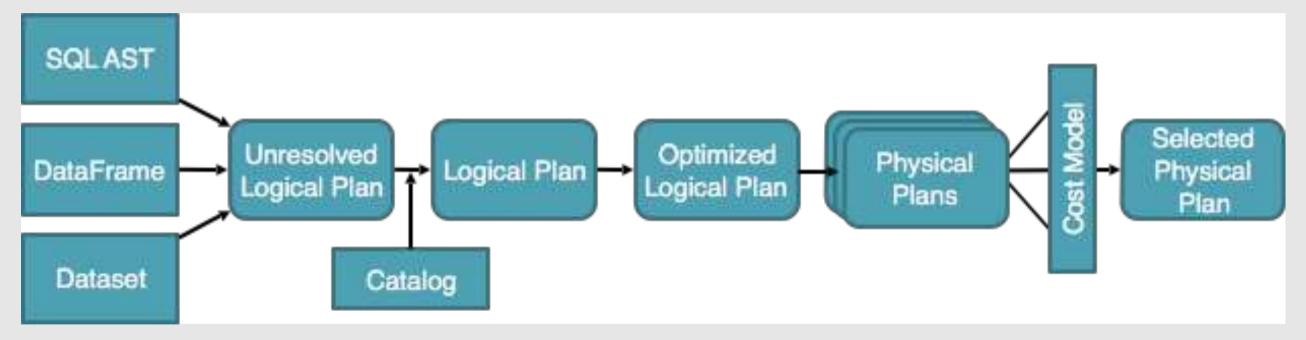
explain() is your friend

but it could be hard to understand at

times

== Parsed Logical Plan ==
Aggregate [count(1) AS count#79L]
+- Sort [speed_y#49 ASC], true
+- Join Inner, (speed_x#48 = speed_y#49)
 :- Project [speed#2 AS speed_x#48, dist#3]
 : +- LogicalRDD [speed#2, dist#3]
 +- Project [speed#18 AS speed_y#49, dist#19]
 +- LogicalRDD [speed#18, dist#19]

Remember Execution Plan



== Physical Plan ==

*HashAggregate(keys=[], functions=[count(1)], output=[count#79L])

+- Exchange SinglePartition

+- *HashAggregate(keys=[], functions=[partial_count(1)],
output=[count#83L])

+- *Project

+- *Sort [speed_y#49 ASC], true, 0

+- Exchange rangepartitioning(speed_y#49 ASC, 200)

+- *Project [speed_y#49]

- +- *SortMergeJoin [speed_x#48], [speed_y#49], Inne
 - :- *Sort [speed_x#48 ASC], false, 0
 - : +- Exchange hashpartitioning(speed_x#48, 200
 - : +- *Project [speed#2 AS speed_x#48]

+- *Filter isnotnull(speed#2)

+- Scan ExistingRDD[speed#2,dist#3]

+- *Sort [speed_y#49 ASC], false, 0

+- Exchange hashpartitioning(speed_y#49, 200

Write you own custom transforms But... Catalyst can't see through it (yet?!) Always prefer to use builtin transforms as much as possible

UDF vs Builtin Example

Remember Predicate Pushdown?

val isSeattle = udf { (s: String) => s == "Seattle" }
cities.where(isSeattle('name))

*Filter UDF(name#2)

+- *FileScan parquet [id#128L,name#2] Batched: true, Format:
ParquetFormat, InputPaths: file:/Users/b/cities.parquet,
PartitionFilters: [], PushedFilters: [], ReadSchema:
struct<id:bigint,name:string>

UDF vs Builtin Example Using Buildtin Expression

cities.where('name === "Seattle")

*Project [id#128L, name#2]

+- *Filter (isnotnull(name#2) && (name#2 = Seattle))

+- *FileScan parquet [id#128L,name#2] Batched: true, Format:
ParquetFormat, InputPaths: file:/Users/b/cities.parquet,
PartitionFilters: [], PushedFilters: [IsNotNull(name),
EqualTo(name,Seattle)], ReadSchema:
struct<id:bigint,name:string>

UDF in Python

from pyspark.sql.types import IntegerType

sqlContext.udf.register("stringLengthInt", lambda x: len(x), IntegerType())

sqlContext.sql("SELECT stringLengthInt('test')").take(1)

Avoid!

Why? Pickling, transfer, extra memory to run Python interpreter

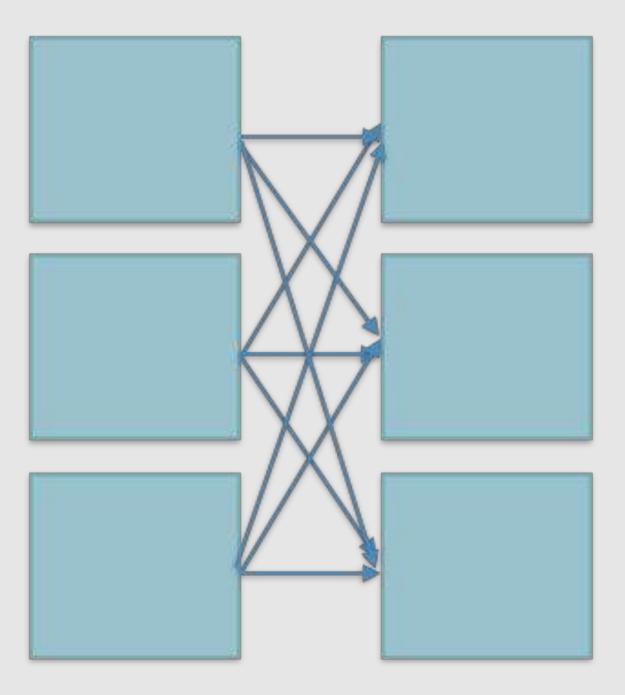
- Hard to debug errors!

Going for Performance

Stored in compressed Parquet Partitioned table Predicate Pushdown Avoid UDF

Shuffling for Join

Can be very expensive



Optimizing for Join

Partition!

Narrow transform if left and right partitioned with same scheme

Optimizing for Join

Broadcast Join (aka Map-Side Join in Hadoop)

Smaller table against large table - avoid shuffling large table

Default 10MB auto broadcast

BroadcastHashJoin

left.join(right, Seq("id"), "leftanti").explain

== Physical Plan ==

*BroadcastHashJoin [id#50], [id#60], LeftAnti, BuildRight

:- LocalTableScan [id#50, left#51]

+- BroadcastExchange
HashedRelationBroadcastMode(List(cast(input[0, int,
false] as bigint)))

+- LocalTableScan [id#60]

To numPartitions or by Columns Increase parallelism – will shuffle

coalesce() – combine partitions in place

cache() Of persist()

Flush least-recently-used (LRU) - Make sure there is enough memory! MEMORY_AND_DISK to avoid expensive recompute (but spill to disk is slow)

Use Structured Streaming (2.1+) If not...

If reliable messaging (Kafka) use Direct DStream

Metadata Checkpointing

Metadata - Config

Position from streaming source (aka offset)

- could get duplicates! (at-least-once)
 Pending batches

Data Checkpointing

Persist stateful transformations

- data lost if not saved

Cut short execution that could grow *indefinitely*

Direct DStream

Checkpoint also store offset

Turn off auto commit

- do when in good state for exactlyonce Checkpointing

- Stream/ML/Graph/SQL
 - more efficient indefinite/iterative
- recovery Generally *not* versioning-safe

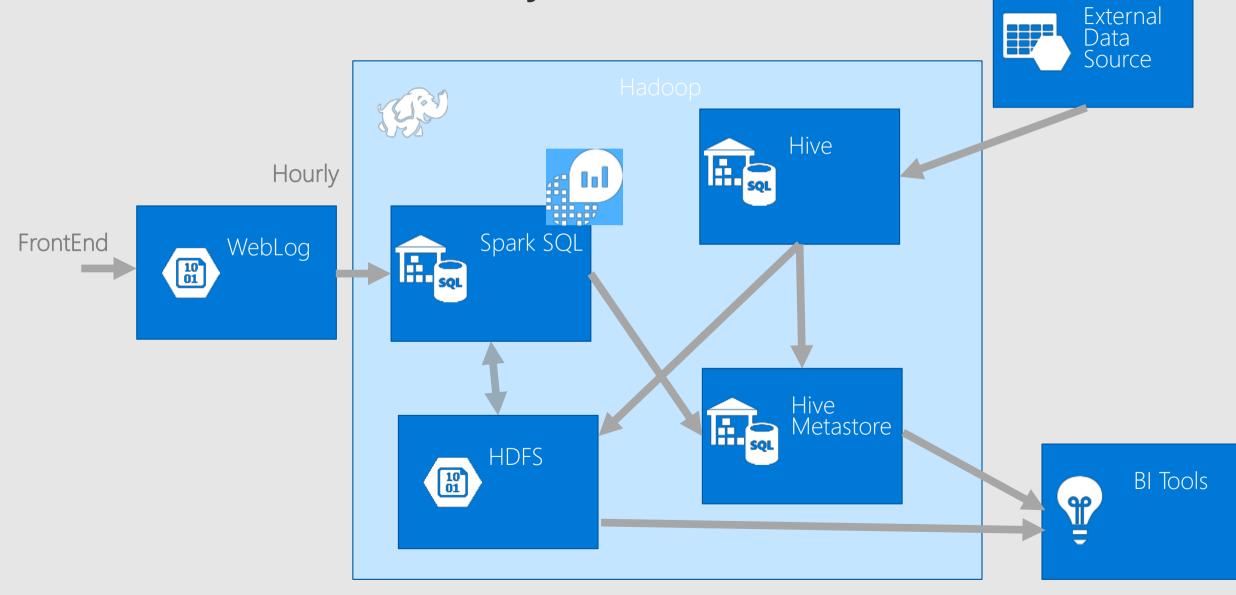
Use *reliable* distributed *file system* (caution on "object store")

Building Solutions with Apache Spark

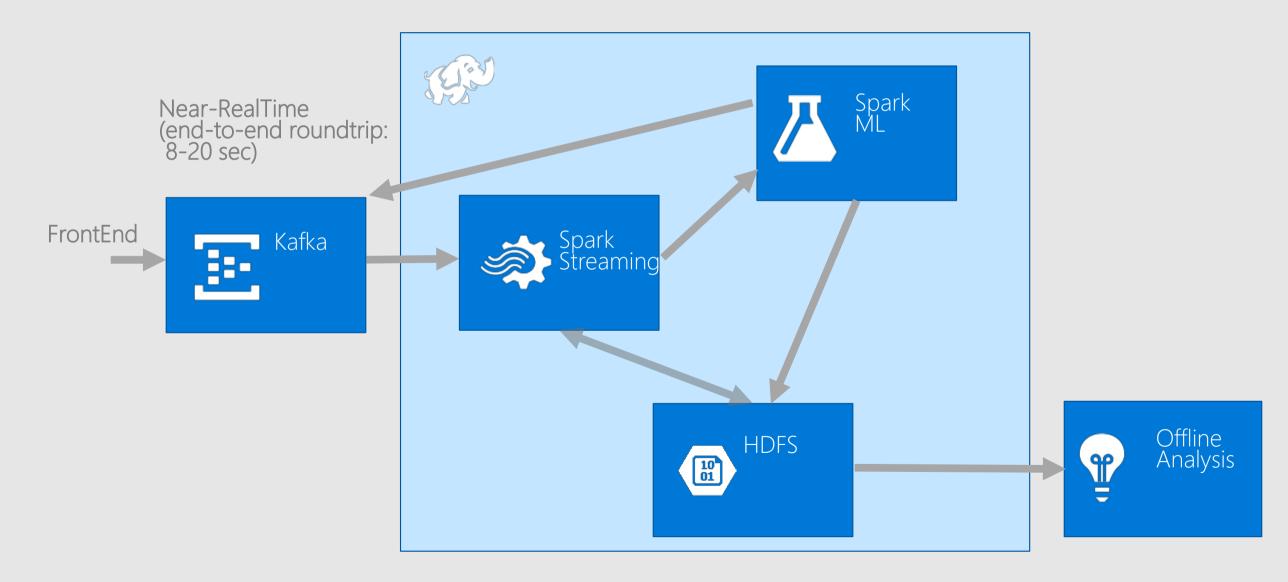
Building solutions with Apache Spark

- 1. ETL, statistical model User behavior analysis
- 2. Streaming machine learning model Natural Language Processing (NLP) and Topic Modeling

User Behavior Analysis



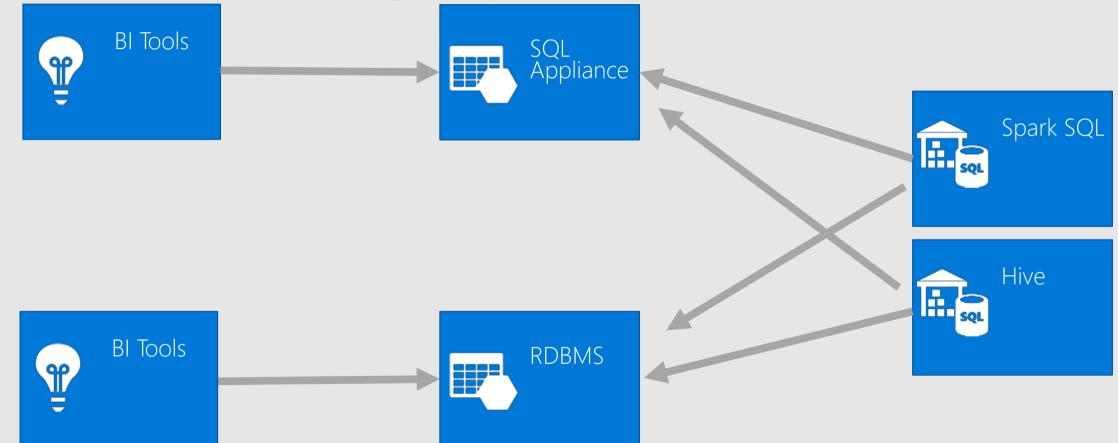
Streaming NLP and Topic Modeling



Enterprise solutions with Apache Spark Consumer research group

- User Behavior
- Aggregated to Sales, Stores, Households
- Fast concurrent access

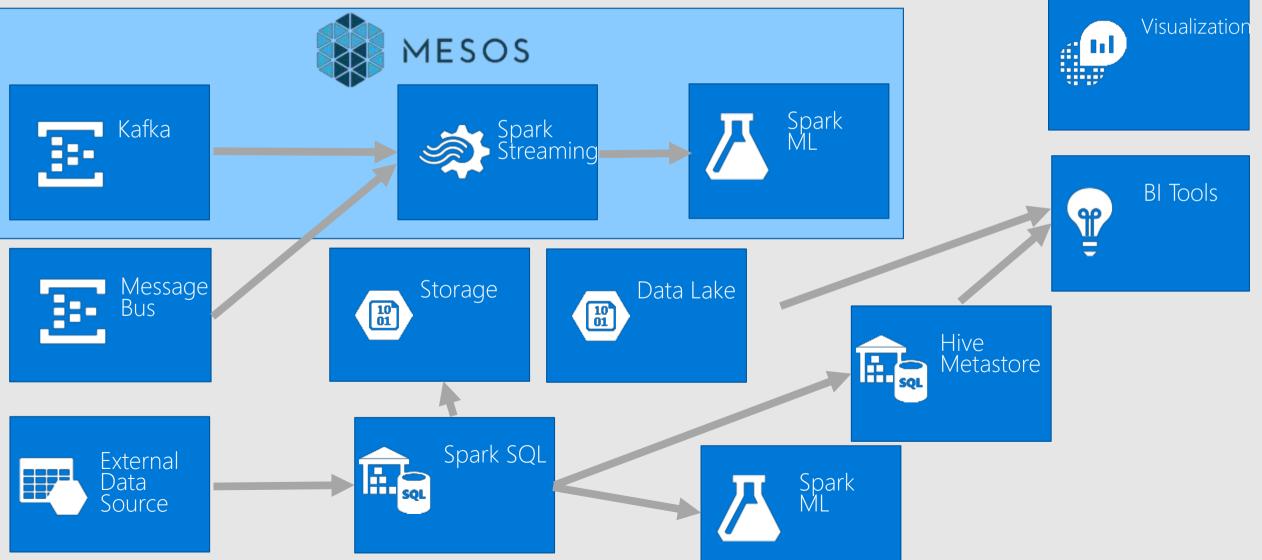
Enterprise solutions with Apache Spark Consumer research group



Enterprise solutions with Apache Spark Retail

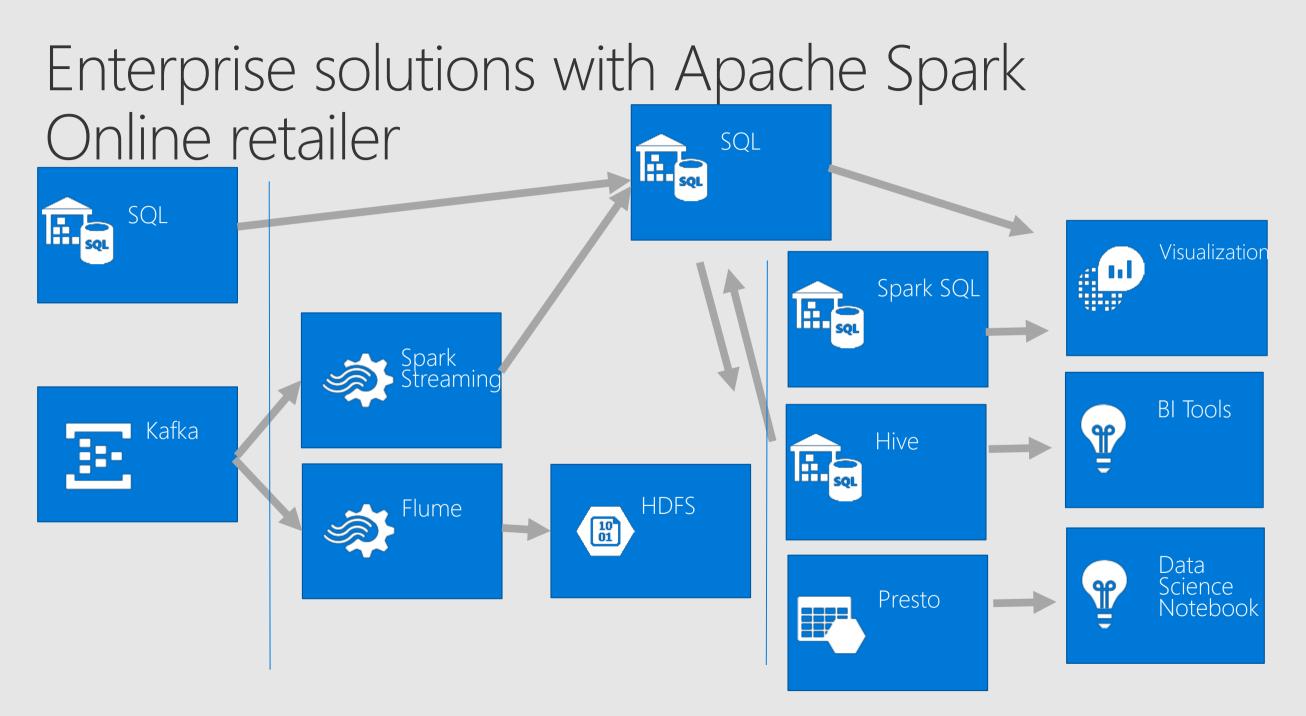
- Lots of Machines
- Inventory
- IOT → Predictive Modeling
- Transactions

Enterprise solutions with Apache Spark Retail



Enterprise solutions with Apache Spark Online retailer

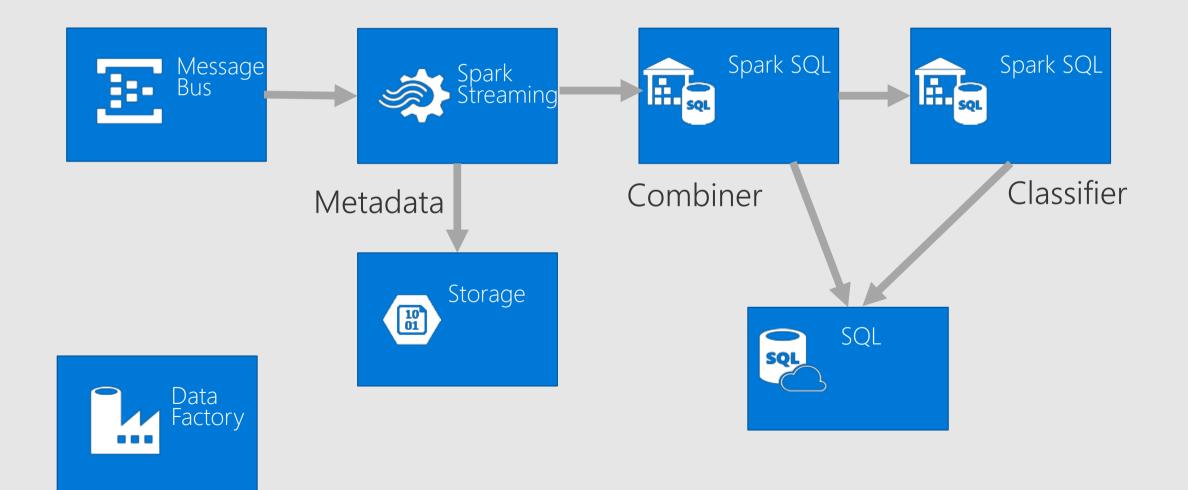
- Catalog
- Supply chain
- Accounting
- Pricing
- Search



Enterprise solutions with Apache Spark Finance

- Payments
- Subscriptions
- Transactions
- Auditing for mismatch, missing
- Monitoring metrics for latency, processing rate

Enterprise solutions with Apache Spark Finance



Key Takeaways

Technology trend: Moving to Streaming + Predictive

Key Takeaways

Why Streaming?

- Faster insight at scale
- Streaming ETL
- Triggers
- Latest data to static data
- Continuous learning

After session...

Contact me

https://www.linkedin.com/in/felix-cheung-b4067510 https://github.com/felixcheung