Compact \& Powerful Inverter Starvert iG5A

0.4~1.5kW 1phase 200~230Volts
0.4~22kW 3Phase 200~230Volts
0.4~22kW 3Phase 380~480Volts

Automation Equipment

LSInstrial Systems

Inverter STARVERT IG5A

LS Starvert iG5A is very competitive in its price and shows an upgraded functional strength. User-friendly interface, extended inverter ranges up to 22 kW , superb torque competence and small size of iG5A provides an optimum use environment.

Powerful \& Upgraded Performance

iG5A provides sensorless vector control, PID control, and ground-fault protection through powerful built-in functions.

Sensorless vector control

The built-in sensorless vector control provides the superb speed control and powerful high torque.

Ground-fault protection during running

The ground-fault protection of output terminal is possible during running.

Analog control from -10V to 10 V
Inputting analog signals from -10 V to 10 V provides user-friendly operation.

Built-in PID control

The built-in PID function enables to control flow-rate, oil-pressure, temperature, etc without any extra controller.

Built-in dynamic braking circuit
The built-in dynamic braking circuit minimizes deceleration time via braking resistors.

Built-in 485 communication

The built-in RS-485 communication supports remote control and monitoring between iG5A and other equipment.

Wide product range

iG5A consists of the product range from 0.4 to 22 KW .

RS-485 communication

User-friendly Interface \& Easy Maintenance

The parameter setting becomes easier by adopting the 4 directions key. And iG5A supports easy maintenance via diagnosis and fan changeable structure.

Diagnosis of output module

Through easy parameter setting, iG5A can diagnose the status of output module.

Easy change of fan

iG5A is designed to be the fan changeable structure in preparation for a fan breakdown.

Cooling fan control

By controlling the cooling fan, iG5A provides a virtually quiet environment according to the status of operation.

User-friendly interface

The 4 directions key provides easy handling and monitoring.

External loader (Optional)

The external loader away from a panel enables to control and monitor conveniently. And the parameters made by external loader can be copied and applicable to other Inverters.

Compact Size

The compact size achieves cost-efficiency and various applications.

Same height from 0.4 to 4.0 kW (128 mm)

Model \& Type

Applicable motor ranges	1 Phase 200V	3 Phase 200V	3 Phase 400V
0.4kW (0.5HP)	SV004iG5A-1	SV004iG5A-2	SV004iG5A-4
0.75kW (1HP)	SV008iG5A-1	SV008iG5A-2	SV008iG5A-4
1.5kW (2HP)	SV015iG5A-1	SV015iG5A-2	SV015iG5A-4
2.2kW (3HP)		SV022iG5A-2	SV022iG5A-4
$3.7 \mathrm{~kW} \text { (5HP) }$		SV037iG5A-2	SV037iG5A-4
4.0kW (5.4HP)		SV040iG5A-2	SV040iG5A-4
5.5kW (7.5HP)		SV055iG5A-2	SV055iG5A-4
7.5kW (10HP)		SV075iG5A-2	SV075iG5A-4
11.0kW (15HP)		SV110iG5A-2	SV110iG5A-4
15.0kW (20HP)		SV150iG5A-2	SV150iG5A-4
18.5kW (25HP)		SV185iG5A-2	SV185iG5A-4
22.0kW (30HP)		SV220iG5A-2	SV220iG5A-4

Standard Specifications

: $: 1$ Phase 200V

SV] [] iG5A-1] [004	008	015
Max. capacity ${ }^{1)}$	(HP)	0.5	1	2
	(kW)	0.4	0.75	1.5
Output rating	Capacity (kVA) ${ }^{\text {2) }}$	0.95	1.9	3.0
	FLA (A) ${ }^{3}$	2.5	5	8
	Max frequency	$400[\mathrm{~Hz}]{ }^{4)}$		
	Max voltage	3 phase 200~230V 5)		
Input rating	Rated voltage	1 phase 200~230 VAC (+10\%, -15\%)		
	Rated frequency	$50 \sim 60[\mathrm{~Hz}]$ ($\pm 5 \%)$		
Cooling method		Forced air cooling		
Weight (kg)		0.76	1.12	1.84

:: 3 Phase 200V

		004	008	015	022	037	040	055	075	110	150	185	220
Max. capacity 1)	(HP)	0.5	1	2	3	5	5.4	7.5	10	15	20	25	30
	(kW)	0.4	0.75	1.5	2.2	3.7	4.0	5.5	7.5	11	15	18.5	22
Output rating	Capacity (kVA) ${ }^{\text {2) }}$	0.95	1.9	3.0	4.5	6.1	6.5	9.1	12.2	17.5	22.9	28.2	33.5
	FLA (A) ${ }^{3}$	2.5	5	8	12	16	17	24	32	46	60	74	88
	Max frequency	$400[\mathrm{~Hz}]$ 4)											
	Max voltage	3 phase 200~230V 5)											
Input rating	Rated voltage	3 phase 200~230 (+10\%, -15\%)											
	Rated frequency	$50 \sim 60[\mathrm{~Hz}](\pm 5 \%)$											
Cooling method		$\mathrm{N} / \mathrm{C}^{6}$)	Forced air cooling										
Weight (kg)		0.76	0.77	1.12	1.84	1.89	1.89	3.66	3.66	9.0	9.0	13.3	13.3

: 3 Phase 400V

		004	008	015	022	037	040	055	075	110	150	185	220
Max. capacity ${ }^{1)}$	(HP)	0.5	1	2	3	5	5.4	7.5	10	15	20	25	30
	(kW)	0.4	0.75	1.5	2.2	3.7	4.0	5.5	7.5	11	15	18.5	22
Output rating	Capacity (kVA) ${ }^{2)}$	0.95	1.9	3.0	4.5	6.1	6.5	9.1	12.2	18.3	22.9	29.7	34.3
	FLA (A) ${ }^{3}$	1.25	2.5	4	6	8	9	12	16	24	30	39	45
	Max frequency	$400[\mathrm{~Hz}]$ 4)											
	Max voltage	3 phase 380~480V 5)											
Input rating	Rated voltage	3 phase 380~480 VAC (+10\%, -15\%)											
	Rated frequency	$50 \sim 60[\mathrm{~Hz}](\pm 5 \%)$											
Cooling method		$\mathrm{N} / \mathrm{C}^{6)}$	Forced air cooling										
Weight (kg)		0.76	0.77	1.12	1.84	1.89	1.89	3.66	3.66	9.0	9.0	13.3	13.3

[^0]Standard Specifications

[^1]
Wiring

: 0.4~7.5kW

Wiring

: 11.0~22.0kW

Terminal Configuration

:: Specifications for power terminal block wiring

- 0.4kW~0.75kW (1 phase)

- 5.5kW~7.5kW (3 phase)

- 0.4kW~1.5kW (3 phase)

- 11~22kW (3 phase)

	R, S, T wire		U, V, W wire		Ground wire		Terminal Screw Size	Screw Torque (kgf.cm) / lb-in
	mm^{2}	AWG	mm^{2}	AWG	mm ${ }^{2}$	AWG		
SV004iG5A-1	2	14	2	14	3.5	12	M3.5	10/8.7
SV008iG5A-1	2	14	2	14	3.5	12	M3.5	10/8.7
SV015iG5A-1	2	14	2	14	3.5	12	M4	15/13
SV004iG5A-2	2	14	2	14	3.5	12	M3.5	10/8.7
SV008iG5A-2	2	14	2	14	3.5	12	M3.5	10/8.7
SV015iG5A-2	2	14	2	14	3.5	12	M3.5	10/8.7
SV022iG5A-2	2	14	2	14	3.5	12	M4	15/13
SV037iG5A-2	3.5	12	3.5	12	3.5	12	M4	15/13
SV040iG5A-2	3.5	12	3.5	12	3.5	12	M4	15/13
SV055iG5A-2	5.5	10	5.5	10	5.5	10	M5	32/28
SV075iG5A-2	8	8	8	8	5.5	10	M5	32/28
SV110iG5A-2	14	6	14	6	14	6	M6	30.7/26.6
SV150iG5A-2	22	4	22	4	14	6	M6	30.7/26.6
SV185iG5A-2	30	2	30	2	22	4	M8	30.5/26.5
SV220iG5A-2	38	2	30	2	22	4	M8	30.5/26.5
SV004iG5A-4	2	14	2	14	2	14	M3.5	10/8.7
SV008iG5A-4	2	14	2	14	2	14	M3. 5	10/8.7
SV015iG5A-4	2	14	2	14	2	14	M4	15/13
SV022iG5A-4	2	14	2	14	2	14	M4	15/13
SV037iG5A-4	2	14	2	14	2	14	M4	15/13
SV040iG5A-4	2	14	2	14	2	14	M4	15/13
SV055iG5A-4	3.5	12	2	14	3.5	12	M5	32/28
SV075iG5A-4	3.5	12	3.5	12	3.5	12	M5	32/28
SV110iG5A-4	5.5	10	5.5	10	8	8	M5	30.7/26.6
SV150iG5A-4	14	6	8	8	8	8	M5	30.7/26.6
SV185iG5A-4	14	6	8	8	14	6	M6	30.5/26.5
SV220iG5A-4	22	4	14	6	14	6	M6	30.5/26.5

Terminal Configuration

Control terminal specifications

Terminal	Description	Wire size (mm^{2})		Screw size	Torque (Nm)	Specification
		Single wire	Stranded			
P1~P8	Multi-function input T/M 1-8	1.0	1.5	M2.6	0.4	
CM	Common terminal	1.0	1.5	M2.6	0.4	
VR	Power supply for external potentiometer	1.0	1.5	M2.6	0.4	Output voltage: 12 V Max. output current: 100 mA Potentiometer: 1~5kohm
V1	Input terminal for voltage operation	1.0	1.5	M2.6	0.4	Max. input voltage: $-12 \mathrm{~V} \sim+12 \mathrm{~V}$ input
I	Input terminal for current operation	1.0	1.5	M2.6	0.4	0~20mA input Internal resistor: 5000hm
AM	Multi-function analog output terminal	1.0	1.5	M2.6	0.4	Max. output voltage: 11 V Max. output current: 100 mA
MO	Multi-function terminal for open collector	1.0	1.5	M2.6	0.4	Below DC 26V,100mA
MG	Ground terminal for external power supply	1.0	1.5	M2.6	0.4	
24	24 V external power supply	1.0	1.5	M2.6	0.4	Max. output current: 100 mA
3A	Multi-function relay output A contact	1.0	1.5	M2.6	0.4	Below AC 250V, 1A
3B	Multi-function relay output B contact	1.0	1.5	M2.6	0.4	Below DC 30V, 1A
3 C	Common for multi-function relays	1.0	1.5	M2.6	0.4	

1) Use the recommended tightening torque when securing terminal screws.
※ When you use external power supply (24V) for multi-function input terminal (P1~P8), apply voltage higher than 12 V to activate.
※ Tie the control wires more than 15 cm away from the control terminals. Otherwise, it interferes front cover reinstallation.

Keypad Features

	Display	Term	Description
KEY	RUN	Run key	Run command
	STOP/RESET	STOP/RESET key	STOP: Stop command during operation, RESET: Reset command when a fault occurs.
	-	Up key	Used to scroll through codes or increase parameter value
	∇	Down key	Used to scroll through codes or decrease parameter value
	-	Right key	Used to jump to other parameter groups or move a cursor to the right to change the parameter value
	4	Left key	Used to jump to other parameter groups or move a cursor to the left to change the parameter value
	\bigcirc	Enter key	Used to set the parameter value or save the changed parameter value
LED ${ }^{1)}$	FWD	Forward run	Lit during forward run
	REV	Reverse run	Lit during reverse run
	RUN	Run key	Lit during operation
	SET	Setting	Lit during parameter setting

1) 4 LEDs above are set to blink when a fault occurs.

Moving to Other Groups

:: Parameter groups

There are 4 different parameter groups in iG5A series as shown below.

Parameter group	Description
Drive group	Basic parameters necessary for the inverter to run. Parameters such as Target frequency, Accel/Decel time settable.
Function group 1	Basic function parameters to adjust output frequency and voltage.
Function group 2	Advanced function parameters to set parameters for such as PID Operation and second motor operation.
I/O (Input/Output) group	Parameters necessary to make up a sequence using multi-function input/output terminal.

:: Moving to other groups

[^2]

1	1717178 10.1719	- In the first coded 0.00", press the Up ($\mathbf{\Delta})$ key once to go to the second code.
2	F1r 115	ACC [Accel time] is displayed. Press the Ent (\mathbf{O}) key once.
3	08 0 0.17 0.10	Preset value is 5.0 , and the cursor is in the digit 0 . Press the Left ($\mathbf{4}$) key once to move the cursor to the left.
4	508 -1.00	The digit 5 in 5.0 is active. Then press the Up($\mathbf{\Delta})$ key once.
5	$\begin{array}{r}508 \\ 51.08 \\ \hline\end{array}$	The value is increased to 6.0 Press the Left ($\mathbf{~})$ key to move the cursor to the left.
6		0.60 is displayed. The first 0 in 0.60 is active. Press the Up ($\mathbf{\Delta}$) key once.
7	10 0 08 10 10 10,08	16.0 is set. - Press the Ent (\boldsymbol{O}) key once. - 16.0 is blinking. ${ }^{1)}$ - Press the Ent $\left(\begin{array}{l}\text {) key once again to return to the parameter name. }\end{array}\right.$
8	B1F 115	ACC is displayed. Accel time is changed from 5.0 to 16.0 sec .

1) Pressing the Left ($\mathbf{\Psi}) / \operatorname{Right}(\boldsymbol{\nabla}) / \mathrm{Up}(\mathbf{\Delta}) / \operatorname{Down}(\mathbf{\nabla})$ key while a cursor is blinking will cancel the parameter value change.

Pressing the Ent (\boldsymbol{O}) key in this status will enter the value into memory.
※ In step 7, pressing the Left ($\mathbf{(})$ or Right () key while 16.0 is blinking will disable the setting.

Code change in Drive group

1	$\begin{aligned} & 1717 \\ & 18.17 \\ & 1.21 \end{aligned}$	In the 1st code in Drive group" $0.00^{\prime \prime}$, press the Up ($\mathbf{\Delta})$ key once.
2		- The 2nd code in Drive group" ACC" is displayed. - Press the Up ($\mathbf{\Delta}$) key once.
3	GE5	- The 3rd codé dEC" in Drive group is displayed. - Keep pressing the Up ($\mathbf{\Delta}$) key until the last code appears.
4	交-15	- The last code in Drive group "drC" is displayed. - Press the Up ($\mathbf{\Delta}$) key again.
5	171717 10.1118	- Return to the first code of Drive group.
- Use Down (V) key for the opposite order.		

Trial Run

:: Multi-step operation + Run/Stop via FX/RX + Max. frequency change

Operation condition

| Operation command: | Frequency command: | Max. frequency change: |
| :--- | :--- | :--- | Run/Stop via FX/RX Multi-step operation [Low (20), Middle (30), High (80)] From 60 Hz to 80 Hz

Wiring

1. Please make sure that R, S, T are connected to 3 phase $A C$ input, and $\mathrm{U}, \mathrm{V}, \mathrm{W}$ are also motor connection terminals.
2. After supplying the power, please set the frequency of multi-step among Low, Middle, and High.
3. If P1 (FX) turns on, the motor operates in forward. And after turning off, it stops according to the deceleration time.
4. If $\mathrm{P} 2(\mathrm{RX})$ turns on, the motor operates in reverse. And after turning off, it stops according to the deceleration time.

Parameter setting

Step	Command	Code	Description	Default	After change
$\mathbf{1}$	Max. frequency change (FU1)	F21	Change Max. frequency.	60 Hz	80 Hz
$\mathbf{2}$	Multi-step frequency (DRV)	st1	Set Low' step.	10 Hz	20 Hz
$\mathbf{3}$	Multi-step frequency (DRV)	st2	Set Middle' step.	20 Hz	30 Hz
$\mathbf{4}$	Multi-step frequency (I/O)	I30	Set High' step.	30 Hz	80 Hz
$\mathbf{5}$	Forward run (P1: FX)	I17	The default is FX. This value may change.	FX	FX
$\mathbf{6}$	Reverse run (P2: RX)	I18	The default is RX. This value may change.	RX	RX

:: Potentiometer (Volume) + Run/Stop via FX/RX + Accel/Decel time change

Operation condition

Operation command:	Frequency command:	Accel/Decel time:
Run/Stop via FX/RX	$0 \sim 60 \mathrm{~Hz}$ analog input via potentiometer	Accel-10sec, Decel-20sec

Wiring

Potentiometer 1~5kohm, 1/2W

$0 \sim 60 \mathrm{~Hz}$

1. Please make sure that R, S, T are connected to 3 phase $A C$ input, and $\mathrm{U}, \mathrm{V}, \mathrm{W}$ are also motor connection terminals.
2. After supplying the power, please set the frequency of multi-step among Low, Middle, and High.
3. If P1 (FX) turns on, the motor operates in forward. And after turning off, it stops according to the deceleration time.
4. If $\mathrm{P} 2(\mathrm{RX})$ turns on, the motor operates in reverse. And after turning off, it stops according to the deceleration time.
5. Control the motor's speed via potentiometer.

Acce/Decel time: Accel-10sec, Decel-20sec

Dimensions

:: SV004iG5A-2 / SV008iG5A-2, SV004iG5A-4 / SV008iG5A-4

:: SV015iG5A-2 / SV015iG5A-4

: SV022iG5A-2 / SV037iG5A-2 / SV040iG5A-2, SV022iG5A-4 / SV037iG5A-4 / SV040iG5A-4

:: SV055iG5A-2 / SV075iG5A-2, SV055iG5A-4 / SV075iG5A-4

Dimensions

: SV110iG5A-2 / SV150iG5A-2 / SV110iG5A-4 / SV150iG5A-4

:: SV185iG5A-2 / SV220iG5A-2 / SV185iG5A-4 / SV220iG5A-4

W

mm (inches)

Inverter model	$\mathbf{(k W})$	$\mathbf{W}(\mathbf{m m})$	$\mathbf{W 1}(\mathbf{m m})$	$\mathbf{H}(\mathbf{m m})$	$\mathbf{H 1}(\mathbf{m m})$	$\mathbf{D}(\mathbf{m m})$	\emptyset	$\mathbf{A}(\mathbf{m m})$	$\mathbf{B}(\mathbf{m m})$	$(\mathbf{k g})$
SV185iG5A-2	18.5	260	240	410	392	208.5	10.0	10.0	10.0	13.3
SV220iG5A-2	22.0	260	240	410	392	208.5	10.0	10.0	10.0	13.3
SV185iG5A-4	18.5	260	240	410	392	208.5	10.0	10.0	10.0	10.0
SV220iG5A-4	22.0	260	240	410	392	208.5	10.0	10.0	10.0	10.0

Braking Resistors and Peripheral Devices

Braking resistors

Voltage	Inverter	100\% braking		150\% braking	
		Resistor [Ω]	Watt [W] ${ }^{1)}$	Resistor [Ω]	Watt [W] ${ }^{1 /}$
200V Series	0.4	400	50	300	100
	0.75	200	100	150	150
	1.5	100	200	60	300
	2.2	60	300	50	400
	3.7	40	500	33	600
	5.5	30	700	20	800
	7.5	20	1,000	15	1,200
	11.0	15	1,400	10	2,400
	15.0	11	2,000	8	2,400
	18.5	9	2,400	5	3,600
	22.0	8	2,800	5	3,600
400V Series	0.4	1,800	50	1,200	100
	0.75	900	100	600	150
	1.5	450	200	300	300
	2.2	300	300	200	400
	3.7	200	500	130	600
	5.5	120	700	85	1,000
	7.5	90	1,000	60	1,200
	11.0	60	1,400	40	2,000
	15.0	45	2,000	30	2,400
	18.5	35	2,400	20	3,600
	22.0	30	2,800	20	3,600

1) The wattage is based on Enable Duty (\%ED) with continuous braking time 15 sec .

Breakers

Model	Breaker		Model	Breaker	
	Current [A]	Voltage [V]		Current [A]	Voltage [V]
004iG5A-1	ABS33b,EBs33	GMC-12	185iG5A-2	ABS203b,EBs53	GMC-85
008iG5A-1	ABS33b,EBs33	GMC-12	220iG5A-2	ABS203b,EBs53	GMC-100
015iG5A-1	ABS33b,EBs33	GMC-12	004iG5A-4	ABS33b,EBs33	GMC-12
004iG5A-2	ABS33b,EBs33	GMC-12	008iG5A-4	ABS33b,EBs33	GMC-12
004iG5A-2	ABS33b,EBs33	GMC-12	015iG5A-4	ABS33b,EBs33	GMC-12
008iG5A-2	ABS33b,EBs33	GMC-12	022iG5A-4	ABS33b,EBs33	GMC-22
015iG5A-2	ABS33b,EBs33	GMC-12	037iG5A-4	ABS33b,EBs33	GMC-22
022iG5A-2	ABS33b,EBs33	GMC-18	040iG5A-4	ABS33b,EBs33	GMC-22
037iG5A-2	ABS33b,EBs33	GMC-22	055iG5A-4	ABS33b,EBs33	GMC-22
040iG5A-2	ABS33b,EBs33	GMC-22	075iG5A-4	ABS33b,EBs33	GMC-22
055iG5A-2	ABS53b,EBs53	GMC-22	110iG5A-4	ABS53b,EBs53	GMC-22
075iG5A-2	ABS103b,EBs53	GMC-32	150iG5A-4	ABS103b,EBs53	GMC-25
110iG5A-2	ABS103b,EBs53	GMC-50	185iG5A-4	ABS103b,EBs53	GMC-40
150iG5A-2	ABS203b,EBs53	GMC-65	220iG5A-4	ABS103b,EBs53	GMC-50

Braking Resistors and Peripheral Devices

: : Fuses \& AC reactors

Model	AC external fuse		AC reactor	DC reactor
	Current [A]	Voltage [V]		
004iG5A-1	10 A	500 V	$4.20 \mathrm{mH}, 3.5 \mathrm{~A}$	-
008iG5A-1	10 A	500 V	$2.13 \mathrm{mH}, 5.7 \mathrm{~A}$	-
015iG5A-1	15 A	500 V	$1.20 \mathrm{mH}, 10 \mathrm{~A}$	-
004iG5A-2	10 A	500 V	$4.20 \mathrm{mH}, 3.5 \mathrm{~A}$	-
008iG5A-2	10 A	500 V	$2.13 \mathrm{mH}, 5.7 \mathrm{~A}$	-
015iG5A-2	15 A	500 V	$1.20 \mathrm{mH}, 10 \mathrm{~A}$	-
022iG5A-2	25 A	500 V	$0.88 \mathrm{mH}, 14 \mathrm{~A}$	-
037iG5A-2	30 A	500 V	$0.56 \mathrm{mH}, 20 \mathrm{~A}$	-
040iG5A-2	30 A	500 V	$0.56 \mathrm{mH}, 20 \mathrm{~A}$	-
055iG5A-2	30 A	500 V	$0.39 \mathrm{mH}, 30 \mathrm{~A}$	-
075iG5A-2	50 A	500 V	$0.28 \mathrm{mH}, 40 \mathrm{~A}$	-
110iG5A-2	70 A	500 V	$0.20 \mathrm{mH}, 59 \mathrm{~A}$	$0.74 \mathrm{mH}, 56 \mathrm{~A}$
150iG5A-2	100 A	500 V	$0.15 \mathrm{mH}, 75 \mathrm{~A}$	$0.57 \mathrm{mH}, 71 \mathrm{~A}$
185iG5A-2	100 A	500 V	$0.12 \mathrm{mH}, 96 \mathrm{~A}$	$0.49 \mathrm{mH}, 91 \mathrm{~A}$
220iG5A-2	125 A	500 V	$0.10 \mathrm{mH}, 112 \mathrm{~A}$	$0.42 \mathrm{mH}, 107 \mathrm{~A}$
004iG5A-4	5 A	500 V	$18.0 \mathrm{mH}, 1.3 \mathrm{~A}$	-
008iG5A-4	10 A	500 V	$8.63 \mathrm{mH}, 2.8 \mathrm{~A}$	-
015iG5A-4	10 A	500 V	$4.81 \mathrm{mH}, 4.8 \mathrm{~A}$	-
022iG5A-4	10 A	500 V	$3.23 \mathrm{mH}, 7.5 \mathrm{~A}$	-
037iG5A-4	20 A	500 V	$2.34 \mathrm{mH}, 10 \mathrm{~A}$	-
040iG5A-4	20 A	500 V	$2.34 \mathrm{mH}, 10 \mathrm{~A}$	-
055iG5A-4	20 A	500 V	$1.22 \mathrm{mH}, 15 \mathrm{~A}$	-
075iG5A-4	30 A	500 V	$1.14 \mathrm{mH}, 20 \mathrm{~A}$	-
110iG5A-4	35 A	500 V	$0.81 \mathrm{mH}, 30 \mathrm{~A}$	$2.76 \mathrm{mH}, 29 \mathrm{~A}$
150iG5A-4	45 A	500 V	$0.61 \mathrm{mH}, 38 \mathrm{~A}$	$2.18 \mathrm{mH}, 36 \mathrm{~A}$
185iG5A-4	60 A	500 V	$0.45 \mathrm{mH}, 50 \mathrm{~A}$	$1.79 \mathrm{mH}, 48 \mathrm{~A}$
220iG5A-4	70 A	500 V	$0.39 \mathrm{mH}, 58 \mathrm{~A}$	$1.54 \mathrm{mH}, 55 \mathrm{~A}$

Function List

: Drive Group

$\begin{aligned} & \text { LED } \\ & \text { display } \end{aligned}$	Parameter name	Description	Factory default	Adj. during run
0.00	During stop: Frequency command During run: Output frequency	$0 \sim 400 \mathrm{~Hz}$	0.00	Yes
ACC	Accel time	0~6000sec	5.0	Yes
dEC	Decel time		10.0	Yes
drv	Drive mode	0 (Keypad), 1 (FX/RX-1), 2 (FX/RX-2), 3 (RS-485)	1	No
Frq	Frequency setting method	0 (Keypad-1), 1 (Keypad-2), 2 (V1S: -10~10V), 3 (V1: 0~10V) 4 (I: $0 \sim 20 \mathrm{~mA}), 5$ (V1S+1), 6 (V1+I), 7 (RS-485), 8 (Digital volume)	0	No
St1	Multi-Step frequency 1	$0 \sim 400 \mathrm{~Hz}$	10.00	Yes
St2	Multi-Step frequency 2		20.00	Yes
St3	Multi-Step frequency 3		30.00	Yes
CUr	Output current	A	-	-
rPM	Motor RPM	rpm	-	-
dCL	Inverter DC link voltage	V	-	-
vOL	User display select	vOL, Por, tor	vOL	-
nOn	Fault display	-	nOn	-
drC	Direction of motor rotation select	F (Forward), R (Reverse)	F	Yes
Drv2	Drive mode 2	0 (Keypad), 1 (FX/RX-1), 2 (FX/RX-2)	1	No
Frq2	Frequency setting method 2	0 (Keypad-1), 1 (Keypad-2), 2 (V1S-: 10~10V), 3 (V: 0~10V) 4 (I: 0~20mA), 5 (V1S+I), 6 (V1+I), 7 (RS-485)	0	No
rEF	Reference value for PID	$0 \sim 400[\mathrm{~Hz}]$ or $0 \sim 100$ [\%]	0.00	Yes
Fbk	Feedback value for PID	-	-	-

: Function group 1

$\begin{aligned} & \text { LED } \\ & \text { display } \end{aligned}$	Parameter name	Description	Factory default	Adj. during run
F0	Jump code	0~71	1	Yes
F1	Forward/Reverse run disable	0 (Fwd and rev run enable), 1 (Forward run disable), 2 (Reverse run disable)	0	No
F2	Accel pattern	0 (Linear), 1 (S-curve)	0	No
F3	Decel pattern		0	
F4	Stop mode select	0 (Decelerate to stop), 1 (DC brake to stop), 2 (Free run to stop), 3 (Power braking)	0	No
F8 ${ }^{1)}$	DC brake start frequency	Start frequency, 0~60Hz	5.00	No
F9	DC brake wait time	0.1~60sec	0.1	No
F10	DC brake voltage	0~200\%	50	No
F11	DC brake time	0~60sec	1.0	No
F12	DC brake start voltage	0~200\%	50	No
F13	DC brake start time	0~60sec	0	No
F14	Time for magnetizing a motor	0~60sec	1.0	No
F20	Jog frequency	$0 \sim 400 \mathrm{~Hz}$	10.00	Yes
F21 ${ }^{\text {2) }}$	Max. frequency	$40 \sim 400 \mathrm{~Hz}$	60.00	No
F22	Base frequency	$30 \sim 400 \mathrm{~Hz}$	60.00	No
F23	Start frequency	$0.1 \sim 10 \mathrm{~Hz}$	0.50	No
F24	Frequency high/low limit select	0 (NO), 1 (YES)	0 (No)	No
F25 ${ }^{3)}$	Frequency high limit	Frequency low limit frequency high limit	60.00	No
F26	Frequency low limit	0~frequency high limit	0.50	No

[^3]2) If H 40 is set to 3 (Sensorless vector), Max. frequency is settable up to 300 Hz .
3) Only displayed when F24 (Frequency high/low limit select) is set to 1 .

Function List

:: Function group 1

$\begin{aligned} & \text { LED } \\ & \text { display } \end{aligned}$	Parameter name	Description	Factory default	Adj. during run
F27	Torque Boost select	0 (Manual torque boost), 1 (Auto torque boost)	0	No
F28	Torque boost in forward direction		5	No
F29	Torque boost in reverse direction		5	No
F30	V/F pattern	0 (Linear), 1 (Square), 2 (User V/F)	0	No
F31 ${ }^{\text {1) }}$	User V/F frequency 1	0~User V/F frequency2 [Hz]	15.00	No
F32	User V/F voltage 1	0~100\%	25	No
F33	User V/F frequency 2	User V/F frequency1~User V/F frequency3 [Hz]	30.00	No
F34	User V/F voltage 2	0~100\%	50	No
F35	User V/F frequency 3	User V/F frequency2~User V/F frequency4 [Hz]	45.00	No
F36	User V/F voltage 3	0~100\%	75	No
F37	User V/F frequency 4	User V/F frequency3~Max. frequency [Hz]	60.00	No
F38	User V/F voltage 4	0~100\%	100	No
F39	Output voltage adjustment	40~110\%	100	No
F40	Energy-saving level	0~30\%	0	Yes
F50	Electronic thermal select	0 (NO), 1 (YES)	0	Yes
F51 ${ }^{2)}$	Electronic thermal level for 1 minute	50~200\%	150	Yes
F52	Electronic thermal level for continuous	50~200\%	100	Yes
F53	Motor cooling method	0 (Self-cooling), 1 (Post-cooling)	0	Yes
F54	Overload warning level	30~150\%	150	Yes
F55	Overload warning time	$0 \sim 30 \mathrm{sec}$	10	Yes
F56	Overload trip select	0 (NO), 1 (YES)	1	Yes
F57	Overload trip level	30~200\%	180	Yes
F58	Overload trip time	0~60sec	60	Yes
F59	Stall prevention select	0 : Stall prevention disabled 1: During Accel 2: During constant run 3: During Accel, During constant run 4: During Decel 5: During Accel, During Decel 6: During Decel, During constant run 7: During Accel, During constant run, During Decel	0	No
F60	Stall prevention level	30~200\%	150	No
F61	When Stall prevention during deceleration, voltage limit select	0~1	0	No
F63	Save up/down frequency select	0~1	0	No
F64	Save up/down frequency		0.00	No
F65	Up down mode select	0 : Increases goal frequency as a standard of Max. frequency/Min.frequency 1: Increases as many as step frequency according to edge input 2: Available to combine 1 and 2	0	No
F66	Up-down step frequency	$0 \sim 400$ [Hz]	0.00	No
F70	Draw run mode select	0 : Inverter doesn't run as a draw mode 1: V1(0~10V) input draw run 2: $1(0 \sim 20 \mathrm{~mA})$ input draw run 3: V1(-10~10V) input draw run	0	No
F71	Draw rate	$0 \sim 100$ [\%]	0.0	Yes

[^4]
: Function group 2

$\begin{aligned} & \text { LED } \\ & \text { display } \end{aligned}$	Parameter name	Description	Factory default	Adj. during run
H0	Jump code	0~95	1	Yes
H1	Fault history 1		nOn	-
H2	Fault history 2		nOn	-
H3	Fault history 3		nOn	-
H4	Fault history 4		nOn	-
H5	Fault history 5		nOn	-
H6	Reset fault history	0 (No), 1 (Yes)	0 (NO)	Yes
H7	Dwell frequency	$0 \sim 400 \mathrm{~Hz}$	5.00	No
H8	Dwell time	0~10sec	0.0	No
H10	Skip frequency select	0 (No), 1 (Yes)	0 (NO)	No
H11 ${ }^{\text {1) }}$	Skip frequency low limit 1	$0 \sim$ frequency high limit $1[\mathrm{~Hz}]$	10Hz	No
H12	Skip frequency high limit 1	Frequency high limit $1[\mathrm{~Hz}] \sim$ Max. frequency [Hz$]$	15Hz	No
H13	Skip frequency low limit 2	0~frequency high limit $2[\mathrm{~Hz}]$	20 Hz	No
H14	Skip frequency high limit 2	Frequency low limit $2[\mathrm{~Hz}] \sim M a x$. frequency [Hz$]$	25 Hz	No
H15	Skip frequency low limit 3	$0 \sim f r e q u e n c y ~ h i g h ~ l i m i t ~ 3 ~[H z] ~$	30 Hz	No
H16	Skip frequency high limit 3	Frequency low limit $3[\mathrm{~Hz}] \sim M a x$. frequency [Hz$]$	35 Hz	No
H17	S-Curve accel/decel start side	1~100\%	40\%	No
H18	S-Curve accel/decel end side	1~100\%	40\%	No
H19	Input/output phase loss protection select	0 (Disabled), 1 (Output phase protection), 2 (Input phase protection, 3 (Input/output phase protection)	0	Yes
H2O	Power On Start select	0 (NO), 1 (YES)	0 (NO)	Yes
H21	Restart after fault reset selection	0 (NO), 1 (YES)	0 (NO)	
H22 ${ }^{\text {2) }}$	Speed search select	0 : Speed search disabled 1: Normal accel 2: Operation after fault 3: Normal accel, Operation after fault 4: Restart after instant power failure 5: Normal accel, Restart after instant power failure 6: Operation after fault, Restart after instant power failure 7: Normal accel, Operation after fault, Restart after instant power failure 8: Power On start 9: Normal accel, Power On start 10: Operation after fault, Power On start 11: Normal accel, Operation after fault, Power On start 12: Restart after instant power failure, Power On start 13: Normal accel, Restart after instant power failure, Power On start 14: Operation after fault, Restart after instant power failure, Power On start 15: Normal accel, Operation after fault, Restart after instant power failure, Power On start		Yes
H23	Current level during speed search	80~200\%	100	Yes
H24	P gain during speed search	0~9999	100	Yes
H25	I gain during speed search	0~9999	1000	Yes
H26	Number of auto restart try	0~10	0	Yes
H27	Auto restart time	0~60sec	1 sec	Yes
H30	Motor type select	0.2~22 [KW]	$7.5^{3)}$	No
H31	Number of motor poles	2~12	4	No

[^5]
Function List

: Function group 2

$\begin{aligned} & \text { LED } \\ & \text { display } \end{aligned}$	Parameter name	Description	Factory default	Adj. during run
H32	Rated slip frequency	0~10Hz	- 1)	No
H33	Motor rated current	1.0~150 [A]	-	No
H34	No load motor current	0.1~50 [A]	-	No
H36	Motor efficiency	50~100\%	-	No
H37	Load inertia rate	0~2	0	No
H39	Carrier frequency select	1~15kHz	3 kHz	Yes
H40	Control mode select	0 (Volts/frequency control), 1 (Slip compensation control), 2 (PID feedback control), 3 (Sensorless vector control)	0	No
H41	Auto tuning	0 (NO), 1 (YES)	-	No
H42	Stator resistance (Rs)	0~28 [Ω]	-	No
H44	Leakage inductance (Ls)	$0 \sim 300.0 \mathrm{mH}$	1000	Yes
H45 ${ }^{\text {2) }}$	Sensorless P gain		100	Yes
H46	Sensorless I gain	0~32767	0	No
H47	Sensorless torque limit	100~220 [\%]	180.0	No
H48	PWM mode select	0 : Normal PWM mode 1: 2 phase PWM mode	0	No
H49	PID control select	0~1	0	No
H50 3)	PID Feedback select	0 (1:0~20mA), 1 (V1 0~10V)		
H51	P gain for PID controller	0~999.9\%	300\%	Yes
H52	Integral time for PID controller (I gain)	0.1~32.0sec	1 sec	Yes
H53	Differential time for PID controller (D gain)	$0.1 \sim 30.0 \mathrm{sec}$	Osec	Yes
H54	F gain for PID controller	0~999.9\%	0\%	Yes
H55	PID output frequency limit	$0.1 \sim 400 \mathrm{~Hz}$ Max. frequency	60 Hz	Yes
H56	PID output frequency low limit	$0.1 \sim 400[\mathrm{~Hz}]$	0.50	Yes
H57	PID standard value select	0 : Loader digital setting 1 1: Loader digital setting 2 2: V1 terminal setting 2: 0~10V 3: I terminal setting: $0 \sim 20 \mathrm{~mA}$ 4: Setting as a RS-485 communication	0	No
H58	PID control unit select	0 : Frequency [Hz] 1: Percentage [\%]	0	No
H60	Diagnosis select	0 : Diagnosis disabled 1: IGBT fault/ Ground-fault 2: Output phase short \& Output open/ Ground-fault 3: Ground-fault	0	No
H61	Sleep delay time	0~2000 [sec]	60.0	No
H62	Sleep frequency	0~400 [Hz]	0.00	Yes
H63	Wake up level	0~100 [\%]	35.0	Yes
H64	KEB drive select	0~1	0	No
H65	KEB action start level	110~140 [\%]	125.0	No
H66	KEB action stop level	110~145 [\%]	130.0	No
H67	KEB action gain	1~20,000	1000	No
H70	Frequency reference for accel/decel	0 (Based on Max. frequency), 1 (Based on delta frequency)	0	No
H71	Accel/Decel time scale	0 (0.01 sec), 1 (0.1 sec), 2 (1 sec)	1 (0.1 sec)	Yes
H72	Power on display	0: Frequency command 9: Motor rpm 1: Accel time 10: Inverter DC link voltage 2: Decel time 11: User display select (H73) 3: Drive mode 12: Fault display 4: Frequency mode 13: Direction of motor rotation select 5: Multi-Step frequency 1 14: Output current 2 6: Multi-Step frequency 2 15: Motor rpm 2 7: Multi-Step frequency 3 16: Inverter DC link voltage 2 8: Output current 17: User display select 2	0	Yes
H73	Monitoring item select	0 : Output voltage [V] 1: Output power [kW] 2: Torque [kgf. m]	0	Yes
H74	Gain for motor rpm display	1~1000\%	100\%	Yes
H75	DB resistor operating rate limit select	0: Unlimited 1: Use DB resistor for the H76 set time.	1	Yes
H76	DB resistor operating rate	0~30\%	10\%	Yes

[^6]
: Function group 2

$\begin{aligned} & \text { LED } \\ & \text { display } \end{aligned}$	Parameter name	Description			Factory default	Adj. during run
H77 ${ }^{\text {1) }}$	Cooling fan control	0 (Always ON), 1 (Keep ON when its Temp. is higher than Inverter protection limit Temp.)			0	Yes
H78	Operating method select when cooling fan malfunctions	0 (Run when cooling fan malfunctions), 1 (Stop when cooling fan malfunctions)			0	Yes
H79	S/W version	0~10.0			1.0	No
H81	2nd motor Accel time	0~6000sec			5.0	Yes
H82	2nd motor Decel time				10.0	Yes
H83	2nd motor base frequency	30~400Hz			60.00	No
H84	2nd motor V/F pattern	0 (Linear), 1 (Square), 2 (User V/F)			0	No
H85	2nd motor forward torque boost	0~15\%			5	No
H86	2nd motor reverse torque boost				5	No
H87	2nd motor stall prevention level	30~150\%			150\%	No
H88	2nd motor Electronic thermal level for 1 min	50~200\%			150\%	Yes
H89	2nd motor Electronic thermal level for continuous	50~150\%			100\%	Yes
H90	2nd motor rated current	0.1~100 [A]			26.3	No
H91	Parameter read	0~1			0	No
H92	Parameter write	0~1			0	No
H93	Parameter initialize	0~5			0	No
H94	Password register	0~FFFF			0	Yes
H95	Parameter lock	0~FFFF	UL (Unlock)	Parameter change enable	0	Yes
			L (Lock)	Parameter change disable		

1) Exception SV004iG5A-2/SV004iG5A-4 adopt self-cooling type, so this code is hidden.
: Input/output group

$\begin{aligned} & \text { LED } \\ & \text { display } \end{aligned}$	Parameter name	Description	Factory default	Adj. during run
10	Jump code	0~87	1	Yes
I1	Filter time constant for NV input	0~9999	10	Yes
12	NV input Min. voltage	0~10V	0.00	Yes
13	Frequency corresponding to I2	0~Max. frequency [Hz]	0.00	Yes
14	NV input Max. voltage	0~-10V	10.0	Yes
15	Frequency corresponding to I4	0~Max. frequency [Hz]	60.00	Yes
I6	Filter time constant for V1 input	0~9999	10	Yes
17	V1 input Min. voltage	0~10V	0	Yes
18	Frequency corresponding to I7	0~Max. frequency [Hz]	0.00	Yes
19	V1 input Max. voltage	0~10V	10	Yes
I10	Frequency corresponding to I9	0~Max. frequency [Hz]	60.00	Yes
I11	Filter time constant for I input	0~9999	10	Yes
I12	I input Min. current	0~20mA	4.00	Yes
I13	Frequency corresponding to I12	0~Max. frequency [Hz]	0.00	Yes
I14	I input Max. current	$0 \sim 20 \mathrm{~mA}$	20.00	Yes
I15	Frequency corresponding to I14	0~Max. frequency [Hz]	60.00	Yes

Function List

: Input/output group

:: Input/output group

$\begin{aligned} & \text { LED } \\ & \text { display } \end{aligned}$	Parameter name	Description	Factory default	Adj. during run
151	Analog output level adjustment	10~200\%	100	Yes
152	Frequency detection level	$0 \sim 400 \mathrm{~Hz}$	30.00	Yes
153	Frequency detection bandwidth		10.00	Yes
154	Multi-function output terminal select	0: FDT-1	12	Yes
155	Fault relay select	1: FDT-2 2: FDT-3 3: FDT-4 4: FDT-5 5: Overload (OL) 6: Inverter overload (IOL) 7: Motor stall (STALL) 8: Over voltage trip (OV) 9: Low voltage trip (LV) 10: Inverter overheat (OH) 11: Command loss 12: During run 13: During stop 14: During constant run 15: During speed searching 16: Wait time for run signal input 17: Fault relay select 18: Warning for cooling fan trip 19: Brake signal select	17	Yes
156	Fault relay output	0: - 1: When the low voltage trip occurs 2: When the trip other than low voltage trip occurs 3: When the low voltage trip occurs, When the trip other than low voltage trip occurs 4: When setting the H26 (Number of auto restart try) 5: When the low voltage trip occurs, When setting the H26 (Number of auto restart try) 6: When the trip other than low voltage trip occurs, When setting the H26 (Number of auto restart try) 7: When the low voltage trip occurs, When the trip other than low voltage trip occurs, When setting the H26 (Number of auto restart try)	2	Yes
157	Output terminal select when communication error occurs	0: - 1: Multi-function output terminal 2: Multi-function relay 3: Multi-function output terminal, Multi-function relay	0	Yes
159	Communication protocol select	0 (Modbus RTU), 1 (LS BUS)	0	No
I60	Inverter number	1~Max. frequency [Hz]	1	Yes
161	Baud rate	0: 1200bps 1:2400bps 2: 4800bps 3: 9600bps 4: 19200bps	3	Yes
I62	Drive mode select after loss of frequency command	0 : Continuous operation at the frequency before its command is lost. 1: Free run stop (Coast to stop) 2: Decel to stop	0	Yes
163	Wait time after loss of frequency command	0.1~120 sec	1.0	Yes
164	Communication time setting	2~100msec	5	Yes

Protective Functions

Keypad display	Protective functions	Descriptions
$\begin{aligned} & 191 \\ & 1116 \\ & \hline \end{aligned}$	Overcurrent	The inverter turns off its output when the output current of the inverter flows more than 200% of the inverter rated current.
$\begin{array}{ll} 5 & 5 \\ 1015 \\ \hline \end{array}$	Ground fault current	The inverter turns off its output when a ground fault occurs and the ground fault current is more than the internal setting value of the inverter.
$\begin{array}{llll}1 & 171 \\ 1 & 1115\end{array}$	Inverter Overload	The inverter turns off its output when the output current of the inverter flows more than the rated level (150% for 1 minute).
$\begin{array}{lll\|} \hline 171 & 1 \\ 101 & 1 & 1 \\ \hline \end{array}$	Overload trip	The inverter turns off its output if the output current of the inverter flows at 150% of the inverter rated current for more than the current limit time (1 min).
$\begin{aligned} & 9110 \\ & 1.176 \end{aligned}$	Heat sink overheat	The inverter turns off its output if the heat sink overheats due to a damaged cooling fan or an alien substance in the cooling fan by detecting the temperature of the heat sink.
$\begin{aligned} & 9716 \\ & \hline 161 \\ & \hline \end{aligned}$	Output Phase loss	The inverter turns off its output when the one or more of the output ($\mathrm{U}, \mathrm{V}, \mathrm{W}$) phase is open. The inverter detects the output current to check the phase loss of the output.
	Over voltage	The inverter turns off its output if the $D C$ voltage of the main circuit increases higher than 400 V when the motor decelerates. This fault can also occur due to a surge voltage generated at the power supply system.
$\begin{array}{lll} 1 & \text { Hi } \\ 1 & A & \end{array}$	Low voltage	The inverter turns off its output if the DC voltage is below 180 V because insufficient torque or overheating of the motor can occur when the input voltage of the inverter drops.
E!	Electronic Thermal	The internal electronic thermal of the inverter determines the overheating of the motor. If the motor is overloaded, the inverter turns off the output. The inverter cannot protect the motor when driving a motor having more than 4 poles or multi motors.
$\begin{array}{lll} 5 & 17 & 1 \\ 1 & 1 & 1 \\ \hline \end{array}$	Input phase loss	Inverter output is blocked when one of R, S, T is open or the electrolytic capacitor needs to be replaced.
-1 1 1 1 1	Self-diagnostic malfunction	Displayed when IGBT damage, output phase short, output phase ground fault or output phase open occurs.
EEE	Parameter save error	Displayed when user-setting parameters fails to be entered into memory.
H11010	Inverter hardware fault	Displayed when an error occurs in the control circuitry of the inverter.
EFO	Communication Error	Displayed when the inverter cannot communicate with the keypad.
$5 \frac{5}{6}-2$	Remote keypad communication error	Displayed when the inverter and the remote keypad do not communicate with each other. It does not stop inverter operation.
$\begin{array}{lll} 5 & 17 \\ 1 & 10 & 10 \end{array}$	Keypad error	Displayed after the inverter resets the keypad when a keypad error occurs and this
58	Cooling fan fault	Displayed when a fault condition occurs in the inverter cooling fan.
$\begin{array}{ll} 5 E & 2 \\ E & 2 \end{array}$	Instant cut off	Used for the emergency stop of the inverter. The inverter instantly turns off the output when the EST terminal is turned on. Caution: The inverter starts to regular operation when turning off the EST terminal while FX or RX terminal is ON.
$\begin{array}{ll} E & 10 \\ E E & \\ \hline \end{array}$	External fault A contact input	When multi-function input terminal (I20-I24) is set to 19 \{External fault signal input A: (Normal Open Contact)\}, the inverter turns off the output.
EEE	External fault B contact input	When multi-function input terminal (I20-I24) is set to 19 \{External fault signal input B: (Normal Close Contact)\}, the inverter turns off the output.
$\begin{array}{r} 1 \\ -\quad 1 \\ \hline \end{array}$	Operating method when the frequency command is lost	When inverter operation is set via analog input ($0-10 \mathrm{~V}$ or $0-20 \mathrm{~mA}$ input) or option (RS-485) and no signal is applied, operation is done according to the method set in I62 (Operating method when the frequency reference is lost).

Fault Remedy

| Remedy |
| :--- | :--- | :--- |

Leading Innovation, Creating Tomorrow

[For your safety, please read user's manual thoroughly before operating.

- Contact the nearest authorized service facility for examination, repair, or adjustment.
[Please contact qualified service technician when you need maintenance.
Do not disassemble or repair by yourself
- Any maintenance and inspection shall be performed by the personnel having expertise concerned
(C) 2005.5 LS Industrial Systems Co.,Ltd. All rights reserved.

LS Industrial Systems Co., Ltd.

www.lgis.com

HEAD OFFICE

LS Tower 1026-6, Hogye-dong, Dongan-gu,
Anyang-si, Gyeonggi-do 431-848, Korea

-Europe	$+82-2-2034-4376 /$ ywsohn@lsis.biz
- Middle East	$+82-2-2034-4901$ / bonseongk@Isis.biz
-South West Asia	$+82-2-2034-4645 /$ sungkyup@lsis.biz
-South East Asia	$+82-2-2034-4707$ / ohpark@Isis.biz
-CIS	$+82-2-2034-4913 /$ jinhkang@Isis.biz
-America	$+82-2-2034-4377 /$ younsupl@Isis.biz

Specifications in this catalog are subject to change without notice due to continuous product development and improvement.

Global Network

- LS Industrial Systems (Middle East) FZE >> Dubai, U.A.E.

Address: LOB 19 JAFZA VIEW TOWER Room 205, Jebel Ali Freezone P.O. Box 114216, Dubai, United Arab Emirates Tel: 971-4-886 5360 Fax: 971-4-886-5361 e-mail: hwyim@lsis.biz
■ Dalian LS Industrial Systems Co., Ltd. >>Dalian, China
Address: No.15, Liaohexi 3-Road, Economic and Technical Development zone, Dalian 116600, China Tel: 86-411-8273-7777 Fax: 86-411-8730-7560 e-mail: lixk@lsis.com.cn

- LS Industrial Systems (Wuxi) Co., Ltd. 〉》 Wuxi, China Address: 102-A , National High \& New Tech Industrial Development Area, Wuxi, Jiangsu, 214028, P.R.China Tel: 86-510-8534-6666 Fax: 86-510-522-4078 e-mail: xuhg@|sis.com.cn
- LS-VINA Industrial Systems Co., Ltd. >> Hanoi, Vietnam Address: Nguyen Khe - Dong Anh - Ha Noi - Viet Nam
Tel: 84-4-882-0222 Fax: 84-4-882-0220 e-mail: srio@|sisvina.com
- LS-VINA Industrial Systems Co., Ltd. \gg Hochiminh , Vietnam Address: 41 Nguyen Thi Minh Khai Str. Yoco Bldg 4th Floor, Hochiminh City, Vietnam Tel: 84-8-3822-7941 Fax: 84-8-3822-7942 e-mail: sbpark@lsisvina.com
\square LS Industrial Systems Tokyo Office \gg Tokyo, Japan
Address: 16FL, Higashi-Kan, Akasaka Twin Tower 17-22, 2-chome, Akasaka, Minato-ku Tokyo 107-8470, Japan Tel: 81-3-3582-9128 Fax: 81-3-3582-2667 e-mail: jschuna@lsis.biz
\square LS Industrial Systems Shanghai Office \gg Shanghai, China Address: Room E-G, 12 th Floor Huamin Empire Plaza, No.726, West Yan'an Road Shanghai 200050, P.R. China Tel: 86-21-5237-9977 (609) Fax: 89-21-5237-7191 e-mail: jinhk@|sis.com.cn
\square LS Industrial Systems Beijing Office \gg Beijing, China
Address: B-Tower 17FL.Beijing Global Trade Center B/D. No.36, BeiSanHuanDong-Lu, DongCheng-District, Beiiing 100013, P.R. China
Tel: 86-10-5825-6025,7 Fax: 86-10-5825-6026 e-mail: cuixiaorong@|sis.com.cn
- LS Industrial Systems Guangzhou Office \gg Guangzhou, China Address: Room 1403,14F,New Poly Tower,2 Zhongshan Liu Road,Guangzhou, P.R. China Tel: 86-20-8326-6764 Fax: 86-20-8326-6287 e-mail: linsz@|sis.biz
- LS Industrial Systems Chengdu Office \gg Chengdu, China Address: 12 Floor, Guodong Building, No52 Jindun Road Chengdu, 610041, P.R. China Tel: 86-28-8612-9151 Fax: 86-28-8612-9236 e-mail: yangct@Isis.com.cn
- LS Industrial Systems Qingdao Office \gg Qingdao, China Address: 7B40,Haixin Guangchang Shenye Building B, No.9, Shandong Road Qingdao 26600, P.R. China Tel: 86-532-8501-6568 Fax: 86-532-583-3793 e-mail: lir@Isis.com.cn

[^0]: 1) Indicate the maximum applicable motor capacity when using 4 pole LS standard motor.
 2) Rated capacity is based on 220 V for 200 V series and 440 V for 400 V series.
 3) Refer to 15-3 of user's manual when carrier frequency setting (39) is above 3 kHz .
 4) Max. frequency setting range is extended to 300 Hz when H 40 (Control mode select) is set to 3 (Sensorless vector control).
 5) Max. output voltage cannot be higher than the input voltage. It can be programmable below input voltage.
[^1]: 1) Means average braking torque during Decel to stop of a motor.
 2) Refer to Chapter 16 of user's manual for DB resistor specification.
[^2]: 1) Target frequency can be set at 0.0 (the 1 st code of drive group). Even though the preset value is 0.0 , it is user-settable.

 The changed frequency will be displayed after it is changed.

[^3]: 1) Only displayed when F 4 is set to 1 (DC brake to stop).
[^4]: 1) Set F30 to 2 (User V/F) to display this parameter.
 2) Set F 50 to 1 to display this parameter.
[^5]: 1) Only displayed when H10 is set to 1. \# H17, H18 are used when F2, F3 are set to 1 (S-curve).
 2) Normal acceleration has first priority. Even though \#4 is selected along with other bits, Inverter performs Speed search \#4.
 3) H3O is preset based on Inverter rating.
[^6]: 1) H32~H36 factory default values are set based on LS motor.
 2) Set H 40 to 3 (Sensorless vector control) to display this parameter.
 3) Set H 40 to 2 (PID control) to display this parameter.
