
Stat 342 - Wk 4

SQL

'inner join' 

Data Step

Making new variables from old ones

The basics of missing values

Stat 342 Notes. Week 3, Page 1 / 56



Inner Joins!

Inner joins are the most popular of several ways to combine two 
or more datasets. If someone refers simply to a 'join', it is usually 
an inner join.

A select statement with an inner join takes variables from both 
datasets and matches them up according to some variable in 
comment, such as userID or date.

Stat 342 Notes. Week 3, Page 2 / 56



Let 'Key1' be the joining variable

 

Stat 342 Notes. Week 3, Page 3 / 56



An inner join makes a new dataset with one row for each 
matched variable value and the chosen variables from each.

Stat 342 Notes. Week 3, Page 4 / 56



The code to do this would be
select *

from mat1

inner join mat2

on mat1.key1 = mat2.key1;

Stat 342 Notes. Week 3, Page 5 / 56



In this code, the Y2000 variable from each of two different 
data sets, teen fertility and school years. The joining variable
found in both datasets is 'country'.
proc sql;

select wk03teenfertility.Country, 
wk03teenfertility.Y2000 as fertility2000, 
wk03schoolyears.Y2000 as school2000

from wk03teenfertility

inner join wk03schoolyears

on wk03teenfertility.Country = 
wk03schoolyears.Country;

Stat 342 Notes. Week 3, Page 6 / 56



A select statement with an inner join has syntax like this:

select <dataset 1>.<var>,...<dataset 2>.<var>

from <dataset 1>

inner join <dataset 2>

on <index variable in both datasets>;

The most common condition used here is dataset1.variable =
dataset2.variable

Stat 342 Notes. Week 3, Page 7 / 56



With an inner join, only 1 row is created for each instance 
where a value from the first join variable matches a value 
from second join.

In other words, for a row to be in an inner join, its index 
value has to be in BOTH of the tables.

Stat 342 Notes. Week 3, Page 8 / 56



There are other kinds of joins, such as left join, right join, 
and outer join.

The result of a left join is similar to that of an inner join: A 
table of the selected rows from both tables and the values in
common when they match, just like an inner join.

Stat 342 Notes. Week 3, Page 9 / 56



However, unlike an inner join...

For a row to be in a left join, its index value only has to be in 
the first table.

The other variables in the table that results from a left join, 
will be filled for any index values from both tables, but for 
the index values only in table 1, there will be missing data.

Stat 342 Notes. Week 3, Page 10 / 56



Compare the 'try it yourself' demonstrations at

http://www.w3schools.com/sql/sql_join_inner.asp

and at

http://www.w3schools.com/sql/sql_join_left.asp

Stat 342 Notes. Week 3, Page 11 / 56

http://www.w3schools.com/sql/sql_join_left.asp
http://www.w3schools.com/sql/sql_join_inner.asp


Likewise, a right join includes rows for any index values that 
are found in table2.

The only real difference between a left join and a right join is
the order of the tables.

Stat 342 Notes. Week 3, Page 12 / 56



A 'Full join', or 'outer join' includes rows for index values that
are in EITHER TABLE.

Stat 342 Notes. Week 3, Page 13 / 56



Country dataset examples on paper.

Stat 342 Notes. Week 3, Page 14 / 56



Data step: Making new variables from old ones

In the data step, there is a lot of flexibility with what we can 
do with variables.

This includes making derived variables.

Derived variables are useful as summaries or combinations 
of several variables, or as rescaling of variables.

Stat 342 Notes. Week 3, Page 15 / 56



They also allow you to make a copy of a variable that you 
can change without affecting the original data.

Since there are a lot more possibilities to making derived 
variables, the basic syntax is more vague.

data <outputname>;

set <inputname>;

<newvar> = <function of oldvars>;

run; 

Stat 342 Notes. Week 3, Page 16 / 56



You can take an annual income and convert it into a weekly 
income by dividing it by 52.

data finance;

set finance;

w_income = year_income / 52;

run; 

Stat 342 Notes. Week 3, Page 17 / 56



In this week's lab, we use a variable named 'fertility', which 
is the number of births in a year per 1000 teenage girls.

To rescale that into the number of children in a lifetime (30 
fertile years), or the Total Fertility Rate, we make a new 
variable TFR, and define it as a function of fertility.

data wk04part4;

set wk04part3;

TFR = fertility / 1000 * 30;

run; 

Stat 342 Notes. Week 3, Page 18 / 56



Also, we can remove the original variable if we wish. The 
drop command shown here is applied at the end of 
processing. It deletes the variable from the final dataset, but 
only after we have a chance to use it in the data step.

data wk04part4;

drop fertility;

set wk04part3;

TFR = fertility / 1000 * 30;

run; 

Stat 342 Notes. Week 3, Page 19 / 56



We can make variables based on IF-THEN conditions as well.

Code that determines what happens based on certain 
conditions, (if, then, else, do, while) are called control-of-
flow commands.

data finance2;

set finance1;

if year_income > 5000 then over5k = 1;

if year_income < 5000 then over5k = 0;

run; 

Stat 342 Notes. Week 3, Page 20 / 56



A note on variable declarations.

In some other programming languages, you have you 
declare a variable before you use it. That means telling the 
computer the name of the variable and its format.

You can directly decide the format of a SAS variable (covered
later in this semester if time permits) before using it. 

However, you can also just start using it without extra work, 
and SAS will do its best to determine the format.

Stat 342 Notes. Week 3, Page 21 / 56



In this example, assume that the variable over5k is not part 
of the dataset 'finance1', so this is the first time that SAS has 
seen it.

The first value assigned to it is a number, so the default 
numeric format is used.

data finance2;

set finance1;

if year_income > 5000 then over5k = 1;

if year_income <= 5000 then over5k = 0;

run; 

Stat 342 Notes. Week 3, Page 22 / 56



You could also replace these two IF statements with a single 
IF-ELSE statement. This works the same way, but is 
considered more protected against mistakes because there's
no way to accidentally run both IF statements on the same 
line.

data finance2;

set finance1;

if year_income > 5000 then over5k = 1;

else over5k = 0;

Stat 342 Notes. Week 3, Page 23 / 56



run; 

Stat 342 Notes. Week 3, Page 24 / 56



The data step runs once for every row in the dataset 
mentioned in 'set'. (If there are multiple datasets listed, it 
runs once for every row in the first one, then the second 
one, and so on)

Once a new variable is defined, SAS will make room for it in 
every row.

If a value for that variable can't be found, then it's left as a 
missing value.

Stat 342 Notes. Week 3, Page 25 / 56



So what would happen in this case when speed is between 
10 and 20?

data finance2;

set finance1;

if speed > 20 then fast = 1;

if speed < 10 then fast = 0;

run; 

Stat 342 Notes. Week 3, Page 26 / 56



If the original variable being used to make a new variable 
has a missing value, the new variable may result in a missing 
value too.

In the annual/weekly income example, an unknown value 
divided by 52 is still unknown. So the variable w_income will
be missing for any of those cases.

In the speed/fast example, assume the value for speed is 
missing. By default, a missing value is treated as the lowest 
possible value, so 'fast' will be 0 for missing speed.

Stat 342 Notes. Week 3, Page 27 / 56



1) On-paper example of summary statistics and missing data.

2) On-paper example of IF statements and missing data.

Stat 342 Notes. Week 3, Page 28 / 56



Let's say we didn't want missing speed values to be 
summarized as fast = 0. Instead, we wanted to be more 
accurate and say that 'speed' was missing, then 'fast' should 
be to.

We can fix this by making two changes.

1) Including an AND in the second if statement to make it 
need two conditions together.

2) Make that second condition 'not missing'.

Stat 342 Notes. Week 3, Page 29 / 56



The value for missing is just a period . 

We can exclude the missing value cases with either 'fast > .' ,
or with 'fast ne . ' 

data finance2;

set finance1;

if speed > 20 then fast = 1;

if (speed < 10) and (speed ne .) 

then fast = 0;

run; 

Stat 342 Notes. Week 3, Page 30 / 56



We may also want to include an explicit statement declaring 
'fast' as missing before we look at speed. This doesn't 
change the result, but it makes the code more readable to a 
human.
data finance2;

set finance1;

fast = .;

if speed > 20 then fast = 1;

if (speed < 10) and (speed ne .) 

then fast = 0;

run; 

Stat 342 Notes. Week 3, Page 31 / 56



Variables can be made from several other variables at once.

Here we have a dataset times, and we compute average 
time from three different trials.

DATA times2 ;

  SET times ;

  avg = (trial1 + trial2 + trial3) / 3 ;

RUN ;

Stat 342 Notes. Week 3, Page 32 / 56



If ANY of the three trail times are NA (missing), avg will be.

SAS can't look at an arbitrary, user-made formula and know 
which of the variables are important or what to do if they 
are missing. Therefore, if any are missing, it doesn't try to 
calculate anything for that variable for that row.

Stat 342 Notes. Week 3, Page 33 / 56



We can also use basic functions to compute variables.

DATA times2 ;

  SET times ;

  avg = MEAN(trial1, trial2, trial3);

  sd = SD(trial1, trial2, trial3);

  Ntrials = N(trial1, trial2, trial3);

RUN ;

If ALL of the three trail times are NA (missing), avg will be.

Stat 342 Notes. Week 3, Page 34 / 56



But if only some trials are missing, an average is taken from 
the trial times that remain.

Using MEAN(), we get a value for avg in each row.

The function MEAN() is smart enough to know that you can 
take an average from the remaining values if some are 
missing.

Stat 342 Notes. Week 3, Page 35 / 56



Other functions of single variables include...

INT(x), which rounds x down to the nearest integer.

ROUND(x). which rounds x up or down to the nearest whole.

ROUND(x, .3), which rounds x to the nearest .001. (the .3 
means 3 digits after the decimal point).

SQRT(x), LOG(x), EXP(x), which do the square root, natural 
log, and natural exponent, respectively.

Stat 342 Notes. Week 3, Page 36 / 56



And other functions of several variables together include...

MEDIAN(OF x1-x119)

NMISS(OF x1-x22)    for the number of missing values

SUM(OF x3-x5) for the sum (ignoring missing)

Recall that you can refer to a whole range of variables with 
hyphen notation like x1 – x20 for x1, x2, ... , x19, x20.

Stat 342 Notes. Week 3, Page 37 / 56



We need to include 'OF' in those cases to make sure SAS 
doesn't think it's a subtraction between two variables.
Additional references for these topics.

http://www.ats.ucla.edu/stat/sas/modules/funct.htm

http://www.ats.ucla.edu/stat/sas/modules/missing.htm

http://www.ats.ucla.edu/stat/sas/modules/vars.htm

Stat 342 Notes. Week 3, Page 38 / 56

http://www.ats.ucla.edu/stat/sas/modules/vars.htm
http://www.ats.ucla.edu/stat/sas/modules/missing.htm
http://www.ats.ucla.edu/stat/sas/modules/funct.htm


The RETAIN command 

In a default data step, every row is independent of every 
other row. What you calculate in one row doesn't affect 
future rows.

However, there are times when you would rather have 
things carry over.

Stat 342 Notes. Week 3, Page 39 / 56



Case 1: Assume each row in personal_finance represents 
one week's budget. We can find year-to-date (YTD) income. 
This is useful for seeing how much income you've earned 
since the beginning of the year, and for finding the total at 
the end of the year.

DATA personal_finance2;

  SET personal_finance;

  YTD = YTD + week_income;

  retain YTD = 0;

RUN ;

Stat 342 Notes. Week 3, Page 40 / 56



Case 2: If each row of a dataset is the amount of sales for 
that year, you may want to compare information to the 
previous year.

Here, YoY stands for year-over-year growth. sales_lastyear is 
set to the value of sales_thisyear after YoY is calculated.
DATA corp_finance2;

  SET corp_finance;

  YoY = sales_thisyear / sales_lastyear - 1;

sales_lastyear = sales_thisyear;

  retain lastyear;

RUN ;

Stat 342 Notes. Week 3, Page 41 / 56



On paper-example of case 1 of the retain command.

On paper-example of case 2 of the retain command.

Stat 342 Notes. Week 3, Page 42 / 56



Random number generation 

The most common functions to generate random numbers 
from are the uniform and the normal distribution.

This is done with the RAND() function inside a data step, 
specifying a distribution, and parameters if necessary.

RAND('UNIFORM') will provide a random value from 0 to 1.

RAND('NORMAL') will provide a random value from the 
standard normal distribution (mean = 0, sd = 1).

Stat 342 Notes. Week 3, Page 43 / 56



Why use random number generation?

1) Sampling. If you had a large dataset of every cellphone 
number in Vancouver, and you wanted to get the opinion of 
1000 randomly selected people. That random selection is 
done with random number generation.

You may want to... 

...weight your sample to account for certain demographics 
not answering their phones.

...give the possible responses to a multiple choice question 
in a randomly selected order.
Stat 342 Notes. Week 3, Page 44 / 56



Why use random number generation?

2) Goodness of fit testing.

If you wanted to find out how a certain set of data would 
behave if it followed a hypothesized distribution, you could 
generate values from that distribution and explore that 
hypothetical situation.

You could see how good that distribution fits your data by 
comparing hypothetical data to real data. That's one way to 
assess goodness of fit.
Stat 342 Notes. Week 3, Page 45 / 56



Why use random number generation?

3) Making data anonymous. (1/2)

If you are going to be sharing a dataset with other 
researchers or the public, you have an obligation to protect 
the privacy of any people whose data is recorded.

Sometimes private data like phone numbers or e-mail 
addresses is used to identify people in a data set. For 
example, in a record of sales, where one row is one sale, you
might see the same phone number in multiple rows.
Stat 342 Notes. Week 3, Page 46 / 56



3) Making data anonymous. (2/2)

If that's the case, you would be destroying useful 
information by getting rid of the phone number variable.

What you can do, however, is scramble the phone numbers. 
They would need to be scrambled in such a way that the 
same number gets scrambled the same way every time.

That way, someone else could read the data after it has been
scrambled and still see when one person has made many 
purchases. They cannot, however, call that person.
Stat 342 Notes. Week 3, Page 47 / 56



Random Number Generation: Seeds

Computers cannot (typically) generate true random 
numbers. Instead, they use a complicated formula based on 
a starting value that has to be provided by an outside 
source.

When you use a random number function like UNIFORM(x),

The value x is the starting value, or seed, that is used.

Stat 342 Notes. Week 3, Page 48 / 56



In SAS, by default

the computer will use the time of its internal clock as its 
seed.

If you specify a positive integer like 345 in the streaminit() 
routine with call streaminit(345)

Then that value '345' will be used as the first seed. When a 
random number is generated, a new seed based on '345' will
be used.

Stat 342 Notes. Week 3, Page 49 / 56



Why care about the seed?

If the clock-based seed is used, there is no way to retrieve a 
seed and use it again. Every time you run an analysis on a 
time-based seed you will get a different result.

If you want to generate random numbers, but you want to 
generate the same random numbers every time you run an 
analysis that includes setting a fixed seed, it will give the 
same result every time.

Stat 342 Notes. Week 3, Page 50 / 56



Here is an example program that sets a fixed seed and 
generates 10 random numbers from the Cauchy distrubtion.

data random;

   call streaminit(123);

   do i=1 to 10;

      x1=rand('cauchy');

      output; 

   end; 

run;

Stat 342 Notes. Week 3, Page 51 / 56



The same 10 Cauchy values will be found every time.

SAS can generate random numbers from a wide variety of 
distributions and parameters sets.

RAND('NORMAL', 5,3)  

will give you a random normal (aka Gaussian) number from a
distribution with mean 5 and standard deviation 3.

RAND('POISSON', 10)

will provide a random number from a Poisson distribution 
with lambda (mean, variance) of 10.

Stat 342 Notes. Week 3, Page 52 / 56



From SAS Documentation on the RAND function  

Stat 342 Notes. Week 3, Page 53 / 56



On-paper example of random number generation.

(Reference slides follow)

Stat 342 Notes. Week 3, Page 54 / 56



Special Variables

There are a few variables that are present in every SAS data 
step that you can use. These are typically for debugging data
steps.

_n_ , which tracks the number of iterations (rows)

that the data step has gone through already.

_error_ , which is 1 if there was an error processing a 
row, and 0 otherwise.

Stat 342 Notes. Week 3, Page 55 / 56



Labels example.
DATA  auto2;

   SET auto;

   LABEL  rep78  ="1978 Repair Record"

          mpg    ="Miles Per Gallon"

          foreign="Where Car Was Made";

RUN;

PROC CONTENTS DATA=auto2;

RUN;

Stat 342 Notes. Week 3, Page 56 / 56


