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m Simulation is a very powerful tool for statisticians.
m It allows us to investigate the performance of statistical
methods before delving deep into difficult theoretical work.

m At a more practical level, integrals themselves are important
for statisticians:

m p-values are nothing but integrals;
m Bayesians need to evaluate integrals to produce posterior
probabilities, point estimates, and model selection criteria.

m Therefore, there is a need to understand simulation techniques
and how they can be used for integral approximations.

3/47



Basic Monte Carlo

m Suppose we have a function ¢(x) and we'd like to compute
E{@o(X)} = [ o(x)f(x) dx, where f(x) is a density.

m There is no guarantee that the techniques we learn in calculus
are sufficient to evaluate this integral analytically.

m Thankfully, the law of large numbers (LLN) is here to help:

If X1, X2, ... are iid samples from f(x), then
%27:1 ©(Xi) — [ (x)f(x) dx with prob 1.

m Suggests that a generic approximation of the integral be
obtained by sampling lots of X;'s from f(x) and replacing
integration with averaging.

m This is the heart of the Monte Carlo method.



What follows?

Here we focus mostly on simulation techniques.

Some of these will be familiar, others probably not.

As soon as we know how to produce samples from a
distribution, the basic Monte Carlo above can be used to
approximate any expectation.

But there are problems where it is not possible to sample from
a distribution exactly.

m We'll discuss this point more later.
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Direct sampling techniques
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Generating uniform RVs

m Generating a single U from a uniform distribution on [0, 1]
seems simple enough.

m However, there are a number of concerns to be addressed.

m For example, is it even possible for a computer, which is
precise but ultimately discrete, to produce any number
between 0 and 17

m Furthermore, how can a deterministic computer possibly
generate anything that's really random?

m While it's important to understand that these questions are

out there, we will side-step them and assume that calls of
runif in R produce bona fide uniform RVs.



Inverse cdf transform

Suppose we want to simulate X whose distribution has a
given cdf F, i.e., %F(x) = f(x).

If F is continuous and strictly increasing, then F~! exists.
Then sampling U ~ Unif(0, 1) and setting X = F~1(U) does
the job — can you prove it?

This method is (sometimes) called the inversion method.

m The assumptions above can be weakened to some extent.

8/47



Example — exponential distribution

m For an exponential distribution with rate A\, we have

f(x)=Xe™ and F(x)=1-e ™.

It is easy to check that the inverse cdf is
F~Yu) = —log(1—u)/X, we(0,1).

m Therefore, to sample X from an exponential distribution:
Sample U ~ Unif(0,1).
Set X = —log(1 — U)/\.

Can be easily "vectorized” to get samples of size n.

This is in the R function rexp — be careful about rate
vs. scale parametrization.
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Example — Cauchy distribution

m The standard Cauchy distribution has pdf and cdf

f(x) = ﬁ and F(x)=1/2+ arctan(x)/m.

This distribution has shape similar to normal, but tails are
much heavier — Cauchy has no finite moments.

m But its cdf can be inverted:

F~Y(u) =tan[r(u—1/2)], wue(0,1).

To generate X from standard Cauchy:

m Sample U ~ Unif(0,1).

m Set X = tan[7(U — 1/2)].
Non-standard Cauchy (location p and scale 0): pu+ o X.
Use rt(n, df=1) in R.
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Example — discrete uniform distribution

m Suppose we want X to be sampled uniformly from {1,... N}.

m Here is an example where the cdf is neither continuous nor
strictly increasing.

m The idea is as follows:

Divide up the interval [0, 1] into N equal subintervals; i.e.,
[0,1/N),[1/N,2/N) and so forth.

Sample U ~ Unif(0,1).

Ifi/N< U< (i+1)/N, then X =i +1.

m More simply, set X = [nU]| + 1.

m This is equivalent to sample (N, size=1) in R.
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Example — triangular distribution

m The (symmetric!) pdf of X is given by

1+x if-1<x<0,
f(x) = .
1—-x if0<x<1.

m If we restrict X to [0,1], then the cdf is simply
Fix)=1-(1-x)2 xel0,1].

m For this “sub-problem” the inverse is
Flu)y=1-vV1i—u, uelo1]

m To sample X from the triangular distribution:
Sample U ~ Unif(0,1).
Set X =1-y1-U.
Take X = +X based on a flip of a coin.
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Sampling normal RVs

m While normal RVs can, in principle, be generating using the
cdf transform method, this requires evaluation of the standard
normal inverse cdf, which is a non-trivial calculation.

m There are a number of fast and efficient alternatives for
generating normal RVs.

m The one below, due to Box and Muller, is based on some
trigonometric transformations.
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Box—Muller method

m This method generates a pair of normal RVs X and Y.
m The method is based on the following facts:

m The cartesian coordinates (X, Y) are equivalent to the polar
coordinates (©, R), and the polar coordinates have a joint pdf

@) tre /2 (0,r) € [0,27] x [0,00).

m Then © ~ Unif(0,27) and R? ~ Exp(2) are independent.
m So to generate independent normal X and Y:

Sample U, V ~ Unif(0, 1).

Set R? = —2log V and © = 27U.

Finally, take X = Rcos®© and Y = Rsin©.

m Take a linear function to get different mean and variance.
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Bernoulli RVs

m Perhaps the simplest RVs are Bernoulli RVs — ones that take
only values 0 or 1.
m To generate X ~ Ber(p):
Sample U ~ Unif(0,1).
If U < p, then set X = 1; otherwise set X = 0.

m In R, use rbinom(n, size=1, prob=p).
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Binomial RVs

m Since X ~ Bin(n, p) is distributionally the same as
X1+ -+ Xp, where the X;'s are independent Ber(p) RVs,
the previous slides gives a natural strategy to sample X.

m That is, to sample X ~ Bin(n, p), generate Xi,..., X,
independently from Ber(p) and set X equal to their sum.
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m Poisson RVs can be constructed from a Poisson process, an
integer-valued continuous time stochastic process.

m By definition, the number of events of a Poisson process in a
fixed interval of time is a Poisson RV with mean proportional
to the length of the interval.

m But the time between events are independent exponentials.
m Therefore, if Y1, Ya,... are independent Exp(1) RVs, then

X =max{k: 3k, Vi <A}

then X ~ Pois()).

® In R, use rpois(n, lambda).
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Chi-square RVs

m The chi-square RV X (with n degrees of freedom) is defined
as follows:

m Zi,...,Z, are independent N(0,1) RVs.
m Take X = Z2 +--- + Z2.

m Therefore, to sample X ~ ChiSq(n) take the sum of squares
of n independent standard normal RVs.

m Independent normals can be sampled using Box—Muller.

18 /47



Student-t RVs

m A Student-t RV X (with v degrees of freedom) is defined as
the ratio of a standard normal and the square root of an
independent (normalized) chi-square RV.

m More formally, let Z ~ N(0,1) and Y ~ ChiSq(v); then

X=2Z/\Y /v

isat, RV.
B Remember the scale mixture of normals representation...?

m In R, use rt(n, df=nu).
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Multivariate normal RVs

m The p-dimensional normal distribution has a mean vector p
and a p X p variance-covariance matrix X.

The techniques above can be used to sample a vector
Z=(2,...,Zp) of independent normal RVs.

But how to incorporate the dependence contained in X7
Let ¥ = Q€' be the Cholesky decomposition of X.

It can be shown that X = pu + 27 is the desired
p-dimensional normal distribution.

Can you prove it?
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Fundamental theorem of simulation
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m Let f be a density function on an arbitrary space X; the goal
is to simulate from f.

m Note the trivial identity:

f(x)
f(x) = / du.
0

m This identity implicitly introduces an auxiliary variable U with
a conditionally uniform distribution.

m The intuition behind this viewpoint is that simulating from
the joint distribution of (X, U) might be easy, and then we
can just throw away U to get a sample of X ~ f...
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m “Theorem.” Simulating X ~ f is equivalent to simulating
(X, U) ~ Unif({(x,u) : 0 < u < f(x)})

and then throwing away U.
m Proof: Write the density of (X, U) and integrate out U.

m How to implement this?
m One kind-of silly? idea:

X~ f and U|(X =x)~ Unif(0, f(x)).
m A better idea: “conditioning preserves uniformity,” i.e.,

Z ~Unif(Z) = Z | (Z € Zo) ~ Unif(Zo).

3Not actually silly, it's used in the accept—reject method...
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More on implementation

m The “conditioning preserves uniformity” point can be
interpreted as follows.

m Suppose that A is a set that contains {(x,u) : 0 < u < f(x)}.
m Simulate (X, U) uniformly on A, and keep (X, U) only if
U < f(X).
m Such a pair (X, U) is uniformly distributed on the constraint
set, so X has the desired distribution f.
m Efficiency of sampling depends on how tightly A fits the
desired constraint set.

m For a one-dimensional X, with bounded support and bounded
f, a reasonable choice for A is a rectangle; see below.

m ldea extends — this is what the next sections are about!
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Example — beta simulation

m Simulate from a Beta(2.7,6.3) distribution.

m Start with uniforms in a box but keep only those that satisfy
the constraint.

m Simulated 2000 uniforms, kept only 744 betas.

Density
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Indirect sampling techniques
m Acceptance-rejection sampling
m Ratio method
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Indirect sampling techniques
m Acceptance-rejection sampling
m Ratio method
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m Suppose we want to sample from a distribution with pdf f(x).

m Suppose, further, that f(x) < h(x) := Mg(x) where g(x) is a
(simple) pdf and M is a constant > 1.

m We say h(x) majorizes f(x).

m The goal is to use samples from the (easy to sample) pdf g(x)
as “approximate samples’ from f(x).

m But it is clear that unless g(x) = f(x), there will be samples
from g that are not representative of f.

m The idea is to throw away those “bad” samples.
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Acceptance-rejection method

The rule that determines when a sample is “thrown away"” is
called the acceptance—rejection method.
m To approximately sample X from f(x):
Sample U ~ Unif(0,1).
Sample X’ ~ g(x).
Keep X = X' if U < f(X')/h(X’)
Try to prove the following:

m accept—reject returns a sample from f (see “theorem”);
m acceptance probability is 1/M.

Goal is to make acceptance prob high, i.e., M~ 1... (?)

Note: it is not necessary to know f exactly—it's enough to
know f only up to a proportionality constant.
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Example — Robert & Casella book cover

m True density is a weird trig function — see code.
m Majorant is a normal.

m Histogram of n = 2000 samples from trig density.

0.4
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Example — von Mises distribution

m Consider the von Mises distribution with pdf

exp{—r cos x}

f(x) = 2mho(r) x € [0,2n],

where Ip(k) is a Bessel function.

m This distribution is often referred to as a circular normal
distribution, and is a popular model in directional statistics.

m To sample from the von Mises distribution for fixed k, we
implement the acceptance-rejection method with majorant
made out of exponential pdfs.

m Only trick is to get a “good” envelope/majorant.
m See code for more details.
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von Mises distribution (cont.)

m von Mises distribution with x = 2.4
m Uses two oppositely oriented exponentials for the envelope.

= n = 5000 samples; acceptance rate (for k = 2) is ~ 0.81.

— True
— Majorant

(Un-normalized) Density
Density

“For some reason, majorant construction in my code only works for £ > 1...
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Example — small-shape gamma distribution

Suppose we want X ~ Gamma(a, 1), with o < 0.001.
Try using rgamma for this—you'll get lots of exact zeros!
Can we develop a better/more efficient method?

Towards an accept-reject method, we have the following:

—alog X — Exp(1) in distribution, as o — 0.

Suggests that we can get good samples of log X by doing
accept—reject with (basically) an exponential envelope.
m This is some work of mine:

m a version of the paper is at arXiv:1302.1884;
m R code is on my research website.
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Example — small-shape gamma (cont.)

m Left panel shows (un-normalized) density of Z = —alog X,
for « = 0.005, along with the proposed envelope.

m It turns out that this approach is more efficient than other
accept—reject methods for this problem, based on acceptance
rate (as a function of «).
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Indirect sampling techniques
m Acceptance-rejection sampling
m Ratio method
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Suppose we want to sample from a pdf f(x).

All that matters is the shape of f(x), so we can remove any
constants and consider h(x) = cf(x), for some ¢ > 0.

= Define the set in R?:

Sh={(u,v):0<u< h(v/u)l/z}.

If Sp is bounded, then we can find a bounding set that
encloses it.

Ideally, the bounding set should be simple, e.g., a rectangle.
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m Suppose Sy, is bounded, in which case we can find a rectangle
that encloses it.
m To sample X from f(x), the ratio method goes as follows:
Sample (U, V) uniformly from the bounding rectangle.
If (U, V) € Sh, then X = V/U is a sample from f(x).
m The proof is not too hard, but requires some tedious
jacobian-type of calculations; see Lange.
m Naturally, some draws from the rectangle will be rejected —
the efficiency of the sampling algorithm depends on how
closely the bounding set matches S,
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Example — gamma distribution

m Sample X ~ Gamma(a, 1) for non-integer «.
= To apply the ratio method, take h(x) = x*~te™ for x > 0.

m It can be shown that, in general, if h(x) =0 for x < 0, then
the rectangle [0, k,] x [0, k,], with

ky = sup h(x)*? and k, = sup{|x|h(x)*/?},

encloses S,

m For the gamma case,

k, = [(a — 1)/e](a—1)/2 and k, = [(a + 1)/e](a+1)/2‘
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Example — gamma distribution (cont.)

m Ratio method samples X ~ Gamma(a, 1) as follows:
Sample U’, V' ~ Unif(0,1), set U = k,U’ and V =k, V'.
Set X = V/U.
If U< X(@=1)/2e=X/2 then accept X.

m Example: a =7.7.

m Ratio method has acceptance probability =~ 0.44.

0.15

0.10

0.05

0.00
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Sampling importance resampling
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m Previous methods are “exact” in the sense that the
distribution of the draw X (given that it's accepted) is the
target distribution f.

m s it necessary for the sampling to be exact?

m An interesting idea is to sample from a different distribution
g(x), which is similar to f(x), and weight these samples in
such a way that a resample according to the given weights
looks like a sample from f(x).

m This is the idea of sampling importance resampling (SIR).

m Not unlike acceptance-rejection sampling.
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SIR algorithm

m Suppose that the target pdf is f(x), which may be known only
up to a proportionality constant.

m Let g(x) be another pdf with the same support as f(x).

m SIR algorithm:

Take an independent sample Yi,..., Y}, from g.
Calculate the standardized importance weights

w(Y;) o £(Y;)/g(Ys), j=1....m

Resample X, ..., X, with replacement from {Y1,..., Y}
with probabilities w(Y1),..., w(Yn).
m The resulting sample X1, ..., X, is approximately distributed
according to f(x).
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m One can prove that, as m — oo, P(X; € A) — [, f(x) dx,
and it is in this sense that the sampling is approximate.
m The choice of envelope g is not trivial.

m Need f(x)/g(x) to not be too large.

m If this is violated, then it may happen that one w(Y;) will be
almost identically 1, meaning that the X-sample would all be
the same value.

m Theory suggests m should be large, but “large” here depends
on the desired size n of the sample from the target.

m In general, the Monte Carlo estimates based on the SIR
sample will have variances larger than could be obtained with
other methods (e.g., importance sampling, next).
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Example — Bayesian inference via SIR

m Consider the problem from old homework, where the
likelihood function is

L(0) x ﬁ{l —cos(Xi —0)}, —-n7<0<m.
i=1

Observed data (X, ..., X,) given in the code.
Assume that 6 is given a Unif(—m, ) prior distribution.

Use SIR algorithm, with the prior as the envelope; N = 103.

Plots below.
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Example — Bayesian inference via SIR (cont.)

m Left is a histogram of the importance weights.

m Right is a histogram the SIR sample (density overlaid).
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@ Summary
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m Simulating random variables is important for various
applications of the Monte Carlo method.

m Some distributions can be easily simulated via the inversion
method, while others require more care.

m “Fundamental theorem” provides a general strategy for
simulating from non-standard distributions, though its
implementation may not be straightforward.

m The accept-reject method is a clever implementation.

m Method's efficiency relies on how close the envelope function is
to the target density.

m Not easy to make a good choice.

m Various automatic/adaptive methods are available.

m The “accept—reject” idea appeared in the SIR context, and
will appear again later...
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