Stat 451 Lecture Notes 05¹² Simulating Random Variables

Ryan Martin UIC

www.math.uic.edu/~rgmartin

¹Based on Chapter 6 in Givens & Hoeting, Chapter 22 in Lange, and Chapter 2 in Robert & Casella
²Updated: March 7, 2016

Outline

- 1 Introduction
- 2 Direct sampling techniques
- 3 Fundamental theorem of simulation
- 4 Indirect sampling techniques
- 5 Sampling importance resampling
- 6 Summary

Motivation

- Simulation is a very powerful tool for statisticians.
- It allows us to investigate the performance of statistical methods before delving deep into difficult theoretical work.
- At a more practical level, integrals themselves are important for statisticians:
 - p-values are nothing but integrals;
 - Bayesians need to evaluate integrals to produce posterior probabilities, point estimates, and model selection criteria.
- Therefore, there is a need to understand simulation techniques and how they can be used for integral approximations.

Basic Monte Carlo

- Suppose we have a function $\varphi(x)$ and we'd like to compute $E\{\varphi(X)\} = \int \varphi(x)f(x) dx$, where f(x) is a density.
- There is no guarantee that the techniques we learn in calculus are sufficient to evaluate this integral analytically.
- Thankfully, the law of large numbers (LLN) is here to help:

```
If X_1, X_2, ... are iid samples from f(x), then \frac{1}{n} \sum_{i=1}^{n} \varphi(X_i) \to \int \varphi(x) f(x) dx with prob 1.
```

- Suggests that a generic approximation of the integral be obtained by sampling lots of X_i 's from f(x) and replacing integration with averaging.
- This is the heart of the *Monte Carlo method*.

What follows?

- Here we focus mostly on simulation techniques.
- Some of these will be familiar, others probably not.
- As soon as we know how to produce samples from a distribution, the basic Monte Carlo above can be used to approximate any expectation.
- But there are problems where it is not possible to sample from a distribution exactly.
- We'll discuss this point more later.

Outline

- 1 Introduction
- 2 Direct sampling techniques
- 3 Fundamental theorem of simulation
- 4 Indirect sampling techniques
- 5 Sampling importance resampling
- 6 Summary

Generating uniform RVs

- Generating a single U from a uniform distribution on [0,1] seems simple enough.
- However, there are a number of concerns to be addressed.
- For example, is it even possible for a computer, which is precise but ultimately discrete, to produce any number between 0 and 1?
- Furthermore, how can a deterministic computer possibly generate anything that's *really* random?
- While it's important to understand that these questions are out there, we will side-step them and assume that calls of runif in R produce bona fide uniform RVs.

Inverse cdf transform

- Suppose we want to simulate X whose distribution has a given cdf F, i.e., $\frac{d}{dx}F(x) = f(x)$.
- If F is continuous and strictly increasing, then F^{-1} exists.
- Then sampling $U \sim \text{Unif}(0,1)$ and setting $X = F^{-1}(U)$ does the job can you prove it?
- This method is (sometimes) called the *inversion method*.
- The assumptions above can be weakened to some extent.

Example – exponential distribution

■ For an exponential distribution with rate λ , we have

$$f(x) = \lambda e^{-\lambda x}$$
 and $F(x) = 1 - e^{-\lambda x}$.

It is easy to check that the inverse cdf is

$$F^{-1}(u) = -\log(1-u)/\lambda, \quad u \in (0,1).$$

- Therefore, to sample *X* from an exponential distribution:
 - **1** Sample $U \sim \text{Unif}(0,1)$.
 - **2** Set $X = -\log(1 U)/\lambda$.
- lacktriangle Can be easily "vectorized" to get samples of size n.
- This is in the R function rexp be careful about rate vs. scale parametrization.

Example – Cauchy distribution

The standard Cauchy distribution has pdf and cdf

$$f(x) = \frac{1}{\pi(1+x^2)}$$
 and $F(x) = 1/2 + \arctan(x)/\pi$.

- This distribution has shape similar to normal, but tails are much heavier — Cauchy has no finite moments.
- But its cdf can be inverted:

$$F^{-1}(u) = \tan[\pi(u - 1/2)], \quad u \in (0, 1).$$

- To generate *X* from standard Cauchy:
 - Sample $U \sim \text{Unif}(0,1)$.
 - Set $X = \tan[\pi(U 1/2)]$.
- Non-standard Cauchy (location μ and scale σ): $\mu + \sigma X$.
- Use rt(n, df=1) in R.

Example – discrete uniform distribution

- Suppose we want X to be sampled uniformly from $\{1, ..., N\}$.
- Here is an example where the cdf is neither continuous nor strictly increasing.
- The idea is as follows:
 - Divide up the interval [0,1] into N equal subintervals; i.e., [0,1/N), [1/N,2/N) and so forth.
 - 2 Sample $U \sim \text{Unif}(0,1)$.
 - 3 If $i/N \le U < (i+1)/N$, then X = i+1.
- More simply, set $X = \lfloor nU \rfloor + 1$.
- This is equivalent to sample(N, size=1) in R.

Example – triangular distribution

■ The (symmetric!) pdf of X is given by

$$f(x) = \begin{cases} 1 + x & \text{if } -1 \le x < 0, \\ 1 - x & \text{if } 0 \le x \le 1. \end{cases}$$

• If we restrict X to [0,1], then the cdf is simply

$$\tilde{F}(x) = 1 - (1 - x)^2, \quad x \in [0, 1].$$

■ For this "sub-problem" the inverse is

$$\tilde{F}^{-1}(u) = 1 - \sqrt{1-u}, \quad u \in [0,1].$$

- To sample *X* from the triangular distribution:
 - **1** Sample $U \sim \mathsf{Unif}(0,1)$.
 - 2 Set $\tilde{X} = 1 \sqrt{1 U}$.
 - **3** Take $X = \pm \tilde{X}$ based on a flip of a coin.

Sampling normal RVs

- While normal RVs can, in principle, be generating using the cdf transform method, this requires evaluation of the standard normal inverse cdf, which is a non-trivial calculation.
- There are a number of fast and efficient alternatives for generating normal RVs.
- The one below, due to Box and Muller, is based on some trigonometric transformations.

Box-Muller method

- This method generates a pair of normal RVs X and Y.
- The method is based on the following facts:
 - The cartesian coordinates (X, Y) are equivalent to the polar coordinates (Θ, R) , and the polar coordinates have a joint pdf

$$(2\pi)^{-1} r e^{-r^2/2}, \quad (\theta, r) \in [0, 2\pi] \times [0, \infty).$$

- Then $\Theta \sim \mathsf{Unif}(0,2\pi)$ and $R^2 \sim \mathsf{Exp}(2)$ are independent.
- So to generate independent normal *X* and *Y*:
 - **1** Sample $U, V \sim \text{Unif}(0, 1)$.
 - 2 Set $R^2 = -2 \log V$ and $\Theta = 2\pi U$.
 - 3 Finally, take $X = R \cos \Theta$ and $Y = R \sin \Theta$.
- Take a linear function to get different mean and variance.

Bernoulli RVs

- Perhaps the simplest RVs are Bernoulli RVs ones that take only values 0 or 1.
- To generate $X \sim \text{Ber}(p)$:
 - **1** Sample $U \sim \text{Unif}(0,1)$.
 - 2 If $U \le p$, then set X = 1; otherwise set X = 0.
- In R, use rbinom(n, size=1, prob=p).

Binomial RVs

- Since $X \sim \text{Bin}(n, p)$ is distributionally the same as $X_1 + \cdots + X_n$, where the X_i 's are independent Ber(p) RVs, the previous slides gives a natural strategy to sample X.
- That is, to sample $X \sim \text{Bin}(n, p)$, generate X_1, \dots, X_n independently from Ber(p) and set X equal to their sum.

Poisson RVs

- Poisson RVs can be constructed from a Poisson process, an integer-valued continuous time stochastic process.
- By definition, the number of events of a Poisson process in a fixed interval of time is a Poisson RV with mean proportional to the length of the interval.
- But the time between events are independent exponentials.
- Therefore, if $Y_1, Y_2,...$ are independent Exp(1) RVs, then

$$X = \max\{k : \sum_{i=1}^{k} Y_i \le \lambda\}$$

then $X \sim \text{Pois}(\lambda)$.

■ In R, use rpois(n, lambda).

Chi-square RVs

- The chi-square RV X (with n degrees of freedom) is defined as follows:
 - Z_1, \ldots, Z_n are independent N(0,1) RVs.
 - Take $X = Z_1^2 + \cdots + Z_n^2$.
- Therefore, to sample $X \sim \text{ChiSq}(n)$ take the sum of squares of n independent standard normal RVs.
- Independent normals can be sampled using Box–Muller.

Student-t RVs

- A Student-t RV X (with ν degrees of freedom) is defined as the ratio of a standard normal and the square root of an independent (normalized) chi-square RV.
- More formally, let $Z \sim N(0,1)$ and $Y \sim \text{ChiSq}(\nu)$; then

$$X = Z/\sqrt{Y/\nu}$$

is a t_{ν} RV.

- Remember the scale mixture of normals representation...?
- In R, use rt(n, df=nu).

Multivariate normal RVs

- The *p*-dimensional normal distribution has a mean vector μ and a $p \times p$ variance-covariance matrix Σ .
- The techniques above can be used to sample a vector $Z = (Z_1, ..., Z_p)'$ of independent normal RVs.
- But how to incorporate the dependence contained in Σ?
- Let $\Sigma = \Omega \Omega'$ be the Cholesky decomposition of Σ .
- It can be shown that $X = \mu + \Omega Z$ is the desired p-dimensional normal distribution.
- Can you prove it?

Outline

- 1 Introduction
- 2 Direct sampling techniques
- 3 Fundamental theorem of simulation
- 4 Indirect sampling techniques
- 5 Sampling importance resampling
- 6 Summary

Intuition

- Let f be a density function on an arbitrary space X; the goal is to simulate from f.
- Note the trivial identity:

$$f(x) = \int_0^{f(x)} du.$$

- This identity implicitly introduces an *auxiliary variable U* with a conditionally uniform distribution.
- The intuition behind this viewpoint is that simulating from the joint distribution of (X, U) might be easy, and then we can just throw away U to get a sample of $X \sim f...$

The "theorem"

"Theorem." Simulating $X \sim f$ is equivalent to simulating

$$(X, U) \sim \text{Unif}(\{(x, u) : 0 < u < f(x)\})$$

and then throwing away U.

- *Proof:* Write the density of (X, U) and integrate out U.
- How to implement this?
 - One kind-of silly³ idea:

$$X \sim f$$
 and $U \mid (X = x) \sim \text{Unif}(0, f(x)).$

■ A better idea: "conditioning preserves uniformity," i.e.,

$$Z \sim \mathsf{Unif}(\mathbb{Z}) \implies Z \mid (Z \in \mathbb{Z}_0) \sim \mathsf{Unif}(\mathbb{Z}_0).$$

³Not actually silly, it's used in the accept-reject method...

More on implementation

- The "conditioning preserves uniformity" point can be interpreted as follows.
 - Suppose that A is a set that contains $\{(x, u) : 0 < u < f(x)\}$.
 - Simulate (X, U) uniformly on A, and keep (X, U) only if U < f(X).
 - Such a pair (X, U) is uniformly distributed on the constraint set, so X has the desired distribution f.
- Efficiency of sampling depends on how tightly A fits the desired constraint set.
- For a one-dimensional X, with bounded support and bounded f, a reasonable choice for A is a rectangle; see below.
- Idea extends this is what the next sections are about!

Example – beta simulation

- Simulate from a Beta(2.7, 6.3) distribution.
- Start with uniforms in a box but keep only those that satisfy the constraint.
- Simulated 2000 uniforms, kept only 744 betas.

Outline

- 1 Introduction
- 2 Direct sampling techniques
- 3 Fundamental theorem of simulation
- 4 Indirect sampling techniques
 - Acceptance-rejection sampling
 - Ratio method
- 5 Sampling importance resampling
- 6 Summary

Outline

- 1 Introduction
- 2 Direct sampling techniques
- 3 Fundamental theorem of simulation
- 4 Indirect sampling techniques
 - Acceptance-rejection sampling
 - Ratio method
- 5 Sampling importance resampling
- 6 Summary

Majorization

- Suppose we want to sample from a distribution with pdf f(x).
- Suppose, further, that $f(x) \le h(x) := Mg(x)$ where g(x) is a (simple) pdf and M is a constant > 1.
- We say h(x) majorizes f(x).
- The goal is to use samples from the (easy to sample) pdf g(x) as "approximate samples" from f(x).
- But it is clear that unless $g(x) \approx f(x)$, there will be samples from g that are not representative of f.
- The idea is to throw away those "bad" samples.

Acceptance-rejection method

- The rule that determines when a sample is "thrown away" is called the *acceptance*—rejection method.
- To approximately sample X from f(x):
 - **1** Sample $U \sim \text{Unif}(0,1)$.
 - 2 Sample $X' \sim g(x)$.
 - $3 \text{ Keep } X = X' \text{ if } U \leq f(X')/h(X')$
- Try to prove the following:
 - accept—reject returns a sample from f (see "theorem");
 - \blacksquare acceptance probability is 1/M.
- Goal is to make acceptance prob high, i.e., $M \approx 1...$ (?)
- Note: it is not necessary to know *f* exactly—it's enough to know *f* only up to a proportionality constant.

Example – Robert & Casella book cover

- True density is a weird trig function see code.
- Majorant is a normal.
- Histogram of n = 2000 samples from trig density.

Example – von Mises distribution

Consider the von Mises distribution with pdf

$$f(x) = \frac{\exp\{-\kappa \cos x\}}{2\pi I_0(\kappa)}, \quad x \in [0, 2\pi],$$

where $I_0(\kappa)$ is a Bessel function.

- This distribution is often referred to as a circular normal distribution, and is a popular model in directional statistics.
- To sample from the von Mises distribution for fixed κ , we implement the acceptance-rejection method with majorant made out of exponential pdfs.
- Only trick is to get a "good" envelope/majorant.
- See code for more details.

von Mises distribution (cont.)

- von Mises distribution with $\kappa = 2.4$
- Uses two oppositely oriented exponentials for the envelope.
- n = 5000 samples; acceptance rate (for $\kappa = 2$) is ≈ 0.81 .

⁴For some reason, majorant construction in my code only works for $\kappa > 1...$

Example – small-shape gamma distribution

- Suppose we want $X \sim \text{Gamma}(\alpha, 1)$, with $\alpha \leq 0.001$.
- Try using rgamma for this—you'll get lots of exact zeros!
- Can we develop a better/more efficient method?
- Towards an accept—reject method, we have the following:

$$-\alpha \log X \to \operatorname{Exp}(1)$$
 in distribution, as $\alpha \to 0$.

- Suggests that we can get good samples of log X by doing accept-reject with (basically) an exponential envelope.
- This is some work of mine:
 - a version of the paper is at arXiv:1302.1884;
 - R code is on my research website.

Example – small-shape gamma (cont.)

- Left panel shows (un-normalized) density of $Z = -\alpha \log X$, for $\alpha = 0.005$, along with the proposed envelope.
- It turns out that this approach is more efficient than other accept—reject methods for this problem, based on acceptance rate (as a function of α).

Outline

- 1 Introduction
- 2 Direct sampling techniques
- 3 Fundamental theorem of simulation
- 4 Indirect sampling techniques
 - Acceptance-rejection sampling
 - Ratio method
- 5 Sampling importance resampling
- 6 Summary

Bounding set

- Suppose we want to sample from a pdf f(x).
- All that matters is the shape of f(x), so we can remove any constants and consider h(x) = cf(x), for some c > 0.
- Define the set in \mathbb{R}^2 :

$$S_h = \{(u, v) : 0 < u \le h(v/u)^{1/2}\}.$$

- If S_h is bounded, then we can find a bounding set that encloses it.
- Ideally, the bounding set should be simple, e.g., a rectangle.

Ratio method

- Suppose S_h is bounded, in which case we can find a rectangle that encloses it.
- To sample X from f(x), the ratio method goes as follows:
 - 1 Sample (U, V) uniformly from the bounding rectangle.
 - 2 If $(U, V) \in \mathcal{S}_h$, then X = V/U is a sample from f(x).
- The proof is not too hard, but requires some tedious jacobian-type of calculations; see Lange.
- Naturally, some draws from the rectangle will be rejected the efficiency of the sampling algorithm depends on how closely the bounding set matches S_h .

Example – gamma distribution

- Sample $X \sim \mathsf{Gamma}(\alpha, 1)$ for non-integer α .
- To apply the ratio method, take $h(x) = x^{\alpha-1}e^{-x}$ for x > 0.
- It can be shown that, in general, if h(x) = 0 for x < 0, then the rectangle $[0, k_u] \times [0, k_v]$, with

$$k_u = \sup_x h(x)^{1/2}$$
 and $k_v = \sup_x \{|x|h(x)^{1/2}\},$

encloses S_h .

For the gamma case,

$$k_{\nu} = [(\alpha - 1)/e]^{(\alpha - 1)/2}$$
 and $k_{\nu} = [(\alpha + 1)/e]^{(\alpha + 1)/2}$.

Example – gamma distribution (cont.)

- Ratio method samples $X \sim \mathsf{Gamma}(\alpha, 1)$ as follows:
 - **1** Sample U', $V' \sim \text{Unif}(0,1)$, set $U = k_u U'$ and $V = k_v V'$.
 - **2** Set X = V/U.
 - If $U \le X^{(\alpha'-1)/2}e^{-X/2}$, then accept X.
- **Example:** $\alpha = 7.7$.
- Ratio method has acceptance probability \approx 0.44.

Outline

- 1 Introduction
- 2 Direct sampling techniques
- 3 Fundamental theorem of simulation
- 4 Indirect sampling techniques
- 5 Sampling importance resampling
- 6 Summary

Motivation

- Previous methods are "exact" in the sense that the distribution of the draw X (given that it's accepted) is the target distribution f.
- Is it necessary for the sampling to be exact?
- An interesting idea is to sample from a different distribution g(x), which is similar to f(x), and weight these samples in such a way that a resample according to the given weights looks like a sample from f(x).
- This is the idea of *sampling importance resampling* (SIR).
- Not unlike acceptance—rejection sampling.

SIR algorithm

- Suppose that the target pdf is f(x), which may be known only up to a proportionality constant.
- Let g(x) be another pdf with the same support as f(x).
- SIR algorithm:
 - 1 Take an independent sample Y_1, \ldots, Y_m from g.
 - 2 Calculate the standardized importance weights

$$w(Y_j) \propto f(Y_j)/g(Y_j), \quad j=1,\ldots,m.$$

- Resample X_1, \ldots, X_n with replacement from $\{Y_1, \ldots, Y_m\}$ with probabilities $w(Y_1), \ldots, w(Y_m)$.
- The resulting sample $X_1, ..., X_n$ is approximately distributed according to f(x).

Remarks

- One can prove that, as $m \to \infty$, $P(X_1 \in A) \to \int_A f(x) dx$, and it is in this sense that the sampling is approximate.
- The choice of envelope g is not trivial.
 - Need f(x)/g(x) to not be too large.
 - If this is violated, then it may happen that one $w(Y_j)$ will be almost identically 1, meaning that the X-sample would all be the same value.
- Theory suggests *m* should be large, but "large" here depends on the desired size *n* of the sample from the target.
- In general, the Monte Carlo estimates based on the SIR sample will have variances larger than could be obtained with other methods (e.g., importance sampling, next).

Example – Bayesian inference via SIR

 Consider the problem from old homework, where the likelihood function is

$$L(\theta) \propto \prod_{i=1}^{n} \{1 - \cos(X_i - \theta)\}, \quad -\pi \leq \theta \leq \pi.$$

- Observed data $(X_1, ..., X_n)$ given in the code.
- Assume that θ is given a Unif $(-\pi, \pi)$ prior distribution.
- Use SIR algorithm, with the prior as the envelope; $N=10^3$.
- Plots below.

Example – Bayesian inference via SIR (cont.)

- Left is a histogram of the importance weights.
- Right is a histogram the SIR sample (density overlaid).

Outline

- 1 Introduction
- 2 Direct sampling techniques
- 3 Fundamental theorem of simulation
- 4 Indirect sampling techniques
- 5 Sampling importance resampling
- 6 Summary

Remarks

- Simulating random variables is important for various applications of the Monte Carlo method.
- Some distributions can be easily simulated via the inversion method, while others require more care.
- "Fundamental theorem" provides a general strategy for simulating from non-standard distributions, though its implementation may not be straightforward.
- The accept—reject method is a clever implementation.
 - Method's efficiency relies on how close the envelope function is to the target density.
 - Not easy to make a good choice.
 - Various automatic/adaptive methods are available.
- The "accept-reject" idea appeared in the SIR context, and will appear again later...