STAT 512: Statistical Inference

Autumn 2020

Lecture 8: Linear models and multivariate normal distributions

Instructor: Yen-Chi Chen

Reference: Casella and Berger Chapter 4.

8.1 Review of linear algebra

An $m \times n$ matrix $A = \{A_{ij}\}$ is an array of nm elements such that

$$A = \begin{pmatrix} A_{11} & A_{12} & \cdots & A_{1n} \\ A_{21} & A_{22} & \cdots & A_{2n} \\ \vdots & \vdots & \vdots & \vdots \\ A_{m1} & A_{m2} & \cdots & A_{mn} \end{pmatrix}.$$

In this case, we can write $A \in \mathbb{R}^{m \times n}$. The matrix represents a linear mapping (linear transformation) $A : \mathbb{R}^n \to \mathbb{R}^m \ (x \mapsto Ax)$, where $x \in \mathbb{R}^n$ is written as a column vector (i.e., an $n \times 1$ matrix) and

$$Ax = \begin{pmatrix} A_{11} & A_{12} & \cdots & A_{1n} \\ A_{21} & A_{22} & \cdots & A_{2n} \\ \vdots & \vdots & \vdots & \vdots \\ A_{m1} & A_{m2} & \cdots & A_{mn} \end{pmatrix} \begin{pmatrix} x_1 \\ x_2 \\ \vdots \\ x_n \end{pmatrix} = \begin{pmatrix} \sum_j A_{1j} x_j \\ \sum_j A_{2j} x_j \\ \vdots \\ \sum_j A_{mj} x_j \end{pmatrix}$$

Clearly, the above operation implies the linear addition, i.e., for any $a, b \in \mathbb{R}$ and $x, y \in \mathbb{R}^n$, A(ax + by) = aAx + bAy.

For two $m \times n$ matrices A, B, the addition A + B is another $m \times n$ matrix such that $[A + B]_{ij} = A_{ij} + B_{ij}$. For an $m \times n$ matrix A and an $n \times p$ matrix B, the matrix multiplication AB is an $m \times p$ matrix such that

$$[AB]_{ij} = \sum_{k=1}^{n} A_{ik} B_{kj}$$

A very important property is that $AB \neq BA$ in general even if m = n = p.

8.1.1 Useful characteristics of a matrix

Rank. The rank of a matrix A, denoted as $\mathsf{rank}(A)$, is the dimension of its column space. The column space is the vector space spanned by A_{+1}, \dots, A_{+n} , the column vectors of A, i.e.,

$$A_{+j} = \begin{pmatrix} A_{1j} \\ A_{2j} \\ \vdots \\ A_{mj} \end{pmatrix}.$$

One can easily verify that $\operatorname{rank}(A) \leq \min\{m, n\}$. Also, $\operatorname{rank}(AB) \leq \min\{\operatorname{rank}(A), \operatorname{rank}(B)\}$.

Identity matrix. The $n \times n$ identity matrix \mathbf{I}_n is a matrix that has 1's on its diagonal and 0 elsewhere. Namely, $\mathbb{I}_n = \mathsf{Diag}(1, 1, 1, \dots, 1)$. One can easily see that for an $m \times n$ matrix A and $n \times m$ matrix B, $A\mathbf{I}_n = A$ and $\mathbf{I}_n B = B$.

Inverse. The *inverse* of an $n \times n$ (square) matrix A, denoted as A^{-1} , is an $n \times n$ matrix with the property that $AA^{-1} = A^{-1}A = \mathbf{I}_n$. Note: the inverse may not exist. When the inverse of A exists, A is called *regular* otherwise it is called singular. The followings are equivalent of a $n \times n$ square matrix A:

- A is regular/non-singular (i.e., has an inverse matrix).
- A is full rank, i.e., rank(A) = n.
- The determinant of A is not 0 (we will define determinant later).

If both $n \times n$ matrices A, B are regular, then AB is also regular with inverse $(AB)^{-1} = B^{-1}A^{-1}$. For a diagonal matrix $D = \text{Diag}(d_1, \dots, d_n)$, its inverse is $D^{-1} = \text{Diag}(d_1^{-1}, \dots, d_n^{-1})$.

Transpose. For an $m \times n$ matrix A, its *transpose*, denoted as A^T , is an $n \times m$ matrix such that $[A^T]_{ij} = A_{ji}$. You can easily verify that $(A + B)^T = A^T + B^T$, $(AB)^T = B^T A^T$, and $(A^{-1})^T = (A^T)^{-1}$.

Trace. For an $n \times n$ matrix A, its *trace*, denoted as $\operatorname{Tr}(A)$, is $\operatorname{Tr}(A) = \sum_{i=1}^{n} A_{ii}$. One can easily verify that $\operatorname{Tr}(aA+bB) = a\operatorname{Tr}(A) + b\operatorname{Tr}(A)$ and $\operatorname{Tr}(A) = \operatorname{Tr}(A^T)$. Moreover, for an $m \times n$ matrix A and an $n \times m$ matrix B, $\operatorname{Tr}(AB) = \operatorname{Tr}(BA)$.

Triangular matrix. An $n \times n$ matrix A is upper triangular if $A_{ij} = 0$ for all i < j. An $n \times n$ matrix A is lower triangular if A^T is upper triangular. A matrix is called triangular if it is either upper or lower triangular.

Determinant. For an $n \times n$ matrix A, its determinant, denoted as |A|, is

$$\det(A) = \sum_{\pi} \epsilon(\pi) \prod_{i=1}^{n} A_{i\pi(i)},$$

where π is all possible permutations of $\{1, 2, 3, \dots, n\}$ and $\epsilon(\pi) = \pm 1$ according to if the permutation is even or odd permutation. Here are some useful properties of the determinant: $\det(AB) = \det(A) \cdot \det(B)$ when they are both square matrices, $\det(A)^{-1} = \det(A^{-1})$, $\det(A^T) = \det(A)$, $\det(A) = \prod_{i=1}^n A_{ii}$ if A is triangular.

Orthogonal matrix. An $n \times n$ matrix U is orthogonal if $U^T U = \mathbf{I}_n$. Namely, its column vectors form an orthonormal basis of \mathbb{R}^n . Note that one can easily see that this implies that $U^T = U^{-1}$ so $UU^T = \mathbf{I}_n$ as well.

Eigenvalues and eigenvectors. For an $n \times n$ matrix, its *eigenvalues* are the *n* roots $\lambda_1, \dots, \lambda_n$ to the following polynomial equation:

$$\det(A - \lambda \mathbf{I}_n) = 0.$$

For each λ_j , there exists a vector u_j such that $(A - \lambda_j \mathbf{I}_n)u_j = 0$ or $Au_j = \lambda_j u_j$. Such a vector u_j is called the *eigenvector* corresponding to λ_j . Note that if λ_j is distinct from other eigenvalues, then u_j is unique. Also note that the eigenvalues and eigenvector may not be real numbers/vectors.

8.1.2 Symmetric matrices

A square matrix $A \in \mathbb{R}^{n \times n}$ is symmetric if $A_{ij} = A_{ji}$, i.e., $A = A^T$. In what follows, we will review some useful properties of a symmetric matrix.

For a symmetric matrix $A \in \mathbb{R}^{n \times n}$, it has the following properties:

- Eigenvalues and eigenvectors are real numbers/vectors.
- For eigenvalues $\lambda_j \neq \lambda_k$, their corresponding eigenvectors u_j, u_k are orthogonal, i.e., $u_j^T u_k = 0$.
- Spectral decomposition. Let $\lambda_1, \dots, \lambda_n$ be the eigenvalues of A and u_1, \dots, u_n be the corresponding eigenvectors. Let $\Lambda = \text{Diag}(\lambda_1, \dots, \lambda_n)$ and $U = [u_1, \dots, u_n]$. Then

$$A = U\Lambda U^T = \sum_{i=1}^n \lambda_i u_i u_i^T.$$

This is known as the spectral decomposition.

- **Trace.** The trace of A is $Tr(A) = \sum_{i=1}^{n} \lambda_i$.
- **Determinant.** The determinant of A is $det(A) = \prod_{i=1}^{n} \lambda_i$

Positive definite matrix. A particular important class of symmetric matrices is the *positive definite (PD)* matrices. A square matrix $A \in \mathbb{R}^{n \times n}$ is *positive semi-definite (PSD)* if

$$x^T A x \ge 0$$

for all $x \in \mathbb{R}^n$. It is positive definite if

$$x^T A x > 0$$

for all $x \in \mathbb{R}^n$ and $x^T x > 0$.

Here are some useful properties of PD and PSD matrices.

- The identity matrix is PD.
- A diagonal matrix D is PD if $D_{ii} > 0$ for all i and is PSD if $D_{ii} \ge 0$ for all i.
- If $S \in \mathbb{R}^{n \times n}$ is PSD and $A \in \mathbb{R}^{m \times n}$ be any matrix, then ASA^T is PSD.
- If $S \in \mathbb{R}^{n \times n}$ is PD and $A \in \mathbb{R}^{m \times n}$ be any matrix with $\mathsf{rank}(A) = m \leq n$, then ASA^T is PD.
- AA^T is PSD for any $m \times n$ matrix A.
- AA^T is PD for any $m \times n$ matrix A with $rank(A) = m \leq n$.
- A is PD \Rightarrow A is full rank \Rightarrow A^{-1} exists \Rightarrow $A^{-1} = A^{-1}AA^{-1}$ is PD.
- A symmetric matrix A is PSD (PD) if all its eigenvalues $\lambda_j \ge 0$ (> 0).
- If $A \in \mathbb{R}^{n \times n}$ is PD, then let its spectral decomposition be $A = U\Lambda U^T$. Then the square root of A, a matrix C such that $CC^T = A$, is $C = U\sqrt{\Lambda}U^T$, where $\sqrt{\Lambda} = \mathsf{Diag}(\sqrt{\Lambda_{11}}, \cdots, \sqrt{\Lambda_{nn}})$.

Partitioned PD matrix. Suppose that $A \in \mathbb{R}^{n \times n}$ is a PD matrix and we suppose that it can be decomposed into 4 submatrices

$$A = \begin{pmatrix} S_{11} & S_{12} \\ S_{21} & S_{22} \end{pmatrix},$$

where $S_{ij} \in \mathbb{R}^{n_i \times n_j}$ with i, j = 1, 2 and $n = n_1 + n_2$. Then we have the follow properties:

• S_{11} and S_{22} are both PD.

• Let $S_{11,2} = S_{11} - S_{12}S_{22}^{-1}S_{21}$. Then

$$\begin{pmatrix} \mathbf{I}_{n_1} & -S_{12}S_{22}^{-1} \\ 0 & \mathbf{I}_{n_2} \end{pmatrix} \begin{pmatrix} S_{11} & S_{12} \\ S_{21} & S_{22} \end{pmatrix} \begin{pmatrix} \mathbf{I}_{n_1} & 0 \\ -S_{22}^{-1}S_{21} & \mathbf{I}_{n_2} \end{pmatrix} = \begin{pmatrix} S_{11,2} & 0 \\ 0 & S_{22} \end{pmatrix}$$

so $S_{11,2}$ is PD as well.

• Following from the above result, we have

$$\begin{pmatrix} S_{11} & S_{12} \\ S_{21} & S_{22} \end{pmatrix} = \begin{pmatrix} \mathbf{I}_{n_1} & S_{12}S_{22}^{-1} \\ 0 & \mathbf{I}_{n_2} \end{pmatrix} \begin{pmatrix} S_{11,2} & 0 \\ 0 & S_{22} \end{pmatrix} \begin{pmatrix} \mathbf{I}_{n_1} & 0 \\ S_{22}^{-1}S_{21} & \mathbf{I}_{n_2} \end{pmatrix} \\ \begin{pmatrix} S_{11} & S_{12} \\ S_{21} & S_{22} \end{pmatrix}^{-1} = \begin{pmatrix} \mathbf{I}_{n_1} & 0 \\ -S_{22}^{-1}S_{21} & \mathbf{I}_{n_2} \end{pmatrix} \begin{pmatrix} S_{11,2}^{-1} & 0 \\ 0 & S_{22}^{-1} \end{pmatrix} \begin{pmatrix} \mathbf{I}_{n_1} & -S_{12}S_{22}^{-1} \\ 0 & \mathbf{I}_{n_2} \end{pmatrix}$$

• Further, the above implies that

A is PD $\Leftrightarrow S_{11,2}, S_{22}$ are PD $\Leftrightarrow S_{22,1}, S_{11}$ are PD.

• For any vector
$$x = \begin{pmatrix} x_1 \\ x_2 \end{pmatrix} \in \mathbb{R}^n$$
 such that $x_1 \in \mathbb{R}^{n_1}$ and $x_2 \in \mathbb{R}^{n_2}$,
$$xA^{-1}x = (x_1 - S_{12}S_{22}^{-1}x_2)S_{11,2}^{-1}(x_1 - S_{12}S_{22}^{-1}x_2) + x_2S_{22}^{-1}x_2$$

Later we will see that the above results are very useful in analyzing the conditional normal distribution.

8.1.3 **Projection matrices**

An $n \times n$ matrix P is called a projection matrix if it is symmetric and idenpotent $(P^2 = P)$.

P is a projection matrix if and only if there exists orthogonal matrix U such that

$$P = U \begin{pmatrix} \mathbf{I}_m & 0\\ 0 & 0 \end{pmatrix} U^T.$$

In this case $\operatorname{rank}(P) = m$.

Suppose that we can partition $U = [U_1, U_2]$, where $U_1 \in \mathbb{R}^{n \times m}$ and $U_2 \in \mathbb{R}^{n \times (n-m)}$. Then the above result implies that $P = U_1 U_1^T$ and $PU_1 = U_1$ and $PU_2 = 0$. This means that P project any vector in \mathbb{R}^n into the column space of U_1 and is orthogonal to the column space of U_2 . An interesting property is that $\operatorname{rank}(P) = \operatorname{Tr}(P) = m$.

Also, the matrix $\mathbf{I}_n - P$ is another projection matrix that projects any vector in \mathbb{R}^n to the space orthogonal to the column space of U_1 . To see this, $P(\mathbf{I}_n - P) = P - P^2 = 0$.

8.2 Transforming multiple continuous random variables

In lecture 2, we have learned techniques to deal with transforming a single continuous random variable, i.e., investigating the distribution of U = f(X) when we know the distribution of X. In this section, we will study a more general problem where we are transforming two or more (continuous) random variables.

We start with a simple case where we have two random variables X, Y and we know their joint PDF. Consider two random variables U = f(X, Y) and V = g(X, Y), where u, v are two known functions.

We now study the joint PDF of (U, V). By definition,

$$p_{U,V}(u,v) = \frac{\partial^2}{\partial u \partial v} P(U \le u, V \le v)$$

= $\frac{\partial^2}{\partial u \partial v} P(f(X,Y) \le u, g(X,Y) \le v)$
= $\frac{\partial^2}{\partial u \partial v} P((X,Y) \in R(u,v))$
= $\frac{\partial^2}{\partial u \partial v} \int_{R(u,v)} p_{X,Y}(x,y) dx dy,$

where

$$R(u,v) = \{(x,y) : f(x,y) \le u, g(x,y) \le v\}.$$

In some simple scenarios, this region R(u, v) has a nice form so that the probability $P((X, Y) \in R(u, v))$ has an analytical expression that we can take derivatives easily. However, this expression might still be hard to compute in general.

Example 1. Let $X, Y \sim \text{Unif}[0, 1]$. Consider $U = \max\{X, Y\}, V = \min\{X, Y\}$. Note that there is an implicit constraint on $f_{U,V}$ that $f_{U,V}(u, v) = 0$ if v > u. So we consider any pair $(u, v) : v \le u$. By a direct computation,

$$P(U \le u, V \le v) = P(U \le u) - P(U \le u, V > v)$$

= $P(X \le u, Y \le u) - P(X \le u, Y \le u, X > v, Y > v)$
= $P(X \le u)P(Y \le u) - P(v < X \le u)P(v < Y \le u)$
= $u^2 - (u - v)^2$

when $0 \le v \le u \le 1$. Thus,

$$p_{U,V}(u,v) = \frac{\partial^2}{\partial u \partial v} P(U \le u, V \le v) = 2I(0 \le v \le u \le 1).$$

Example 2. Consider $X, Y \sim \mathsf{Exp}(1)$ and let U = X + Y and $V = \frac{X}{X+Y}$. Note that $(U, V) \in [0, \infty) \times [0, 1]$. So we consider any $u \ge 0$ and $v \in [0, 1]$. The joint CDF is

$$P(U \le u, V \le v) = P(X + Y \le u, X \le v(X + Y))$$

= $P\left(Y \le u - X, Y \ge \frac{1 - v}{v}X\right)$
= $\mathbb{E}\left[I\left(Y \le u - X, Y \ge \frac{1 - v}{v}X\right)\right]$
= $\mathbb{E}\left[\mathbb{E}\left[I\left(Y \le u - X, Y \ge \frac{1 - v}{v}X\right)|X\right]\right]$
= $\mathbb{E}\left[P\left(Y \le u - X, Y \ge \frac{1 - v}{v}X|X\right)\right].$

Note that I(E) is the indicator function such that it returns 1 if the event E is true and 0 otherwise; one

can easily see that $\mathbb{E}[I(E)] = P(E)$. Condition on X, the probability

$$P\left(Y \le u - X, Y \ge \frac{1 - v}{v} X | X\right) = P\left(\frac{1 - v}{v} X \le Y \le u - X | X\right)$$
$$= \int_{y = \frac{1 - v}{v} X}^{u - X} e^{-y} dy$$
$$= e^{-\frac{1 - v}{v} X} - e^{X - u}.$$

Thus, using the fact that $U \leq u, V \leq v \Rightarrow X \leq uv$, we have

$$P(U \le u, V \le v) = \mathbb{E}\left[P\left(Y \le u - X, Y \ge \frac{1 - v}{v}X|X\right)\right]$$
$$= \int_0^{uv} \left[e^{-\frac{1 - v}{v}x} - e^{x - u}\right]e^{-x}dx$$
$$= \int_0^{uv} \left[e^{-\frac{x}{v}} - e^{-u}\right]dx$$
$$= v(1 - e^{-u} - ue^{-u}).$$

By taking the derivative, we obtain

$$p_{U,V}(u,v) = ue^{-u}I(0 \le v \le 1) = \underbrace{ue^{-u}}_{p_U(u)} \cdot \underbrace{I(0 \le v \le 1)}_{p_V(v)}.$$

Thus, we conclude that $U \sim \mathsf{Gamma}(2,1)$ and $V \sim \mathsf{Uni}[0,1]$ and $U \perp V$.

8.2.1 Jacobian method

The Jacobian method is an elegant approach for substituting variables (change of varibales) in an integration. Consider $x \in \mathbb{R}^n$ and $y \in \mathbb{R}^n$ and assume that there is a 1-1 and onto mapping $T : \mathbb{R}^n \to \mathbb{R}^n$ for almost all x such that y = T(x). We define the Jacobian matrix

$$J_T(x) = \left(\frac{\partial T(x)}{\partial x}\right) = \left(\frac{\partial y}{\partial x}\right) = \begin{pmatrix} \frac{\partial y_1}{\partial x_1} & \frac{\partial y_2}{\partial x_1} & \cdots & \frac{\partial y_n}{\partial x_1} \\ \frac{\partial y_1}{\partial x_2} & \frac{\partial y_2}{\partial x_2} & \cdots & \frac{\partial y_n}{\partial x_2} \\ \vdots & \vdots & \cdots & \vdots \\ \frac{\partial y_1}{\partial x_n} & \frac{\partial y_2}{\partial x_n} & \cdots & \frac{\partial y_n}{\partial x_n} \end{pmatrix} \in \mathbb{R}^{n \times n}.$$

The Jacobian is the absolute value of the determinant of this matrix, i.e., $|\det(J_T(x))| = |\left(\frac{\partial y}{\partial x}\right)| = \left|\frac{\partial y}{\partial x}\right|$.

Theorem 8.1 Assume that y = T(x), where T is 1-1 and onto for almost all x and the Jacobian $det(J_T(x)) \neq 0$ for all x. Let $A, B \subset \mathbb{R}^n$ be two subsets such that $B = \{T(x) : x \in A\}$. Let f be an integrable function. Then

$$\int_{A} f(x) dx = \int_{B} f(T^{-1}(y)) \left| \frac{\partial x}{\partial y} \right| dy.$$

Under the same condition, suppose X is a random variable with a PDF $p_X(x)$ and Y = T(X). Then the PDF of Y is

$$p_Y(y) = p_X(T^{-1}(y)) \left| \frac{\partial x}{\partial y} \right|.$$

The Jacobian has a nice chain rule that if z = S(y) and y = T(x) such that S, T are both 1-1 and onto. Then

$$\left|\frac{\partial z}{\partial x}\right| = \left|\frac{\partial z}{\partial y}\right| \left|\frac{\partial y}{\partial x}\right|$$

Also, we have the inverse rule:

$$\left|\frac{\partial y}{\partial x}\right| = \left|\frac{\partial x}{\partial y}\right|^{-1}$$

Example: Gamma distributions. Consider X, Y are independently from Gamma distribution with parameter α, λ . Recall that the PDF of a Gamma (α, λ) is

$$p(x) = \frac{\lambda^{\alpha}}{\Gamma(\alpha)} x^{\alpha - 1} e^{-\lambda x} I(x \ge 0).$$

Now we consider U = X + Y and $W = \frac{X}{X+Y}$. In this case, the mapping T(x,y) = (u,w) such that $T = (T_1, T_2)$ with $T_1(x, y) = x + y$ and $T_2(x, y) = \frac{x}{x+y}$. Thus, the inverse mapping $T^{-1}(u, w) = (x, y)$ will be $T_1^{-1}(u, w) = uw$ and $T_2^{-1}(u, w) = u - uw$. The Jacobian

$$\begin{aligned} \frac{\partial(x,y)}{\partial(u,w)} &= \left| \frac{\partial T^{-1}(u,w)}{\partial(u,w)} \right| \\ &= \left| \det \left(\begin{pmatrix} w & 1-w \\ u & -u \end{pmatrix} \right) \right. \\ &= u. \end{aligned}$$

We already know the joint PDF $p_{XY}(x, y)$ since they are independent Gamma. Thus,

$$p_{UW}(u,w) = p_{XY}(T_1^{-1}(u,w), T_2^{-1}(u,w))uI(0 \le w \le 1, u \ge 0)$$

$$= p_X(T_1^{-1}(u,w))p_Y(T_2^{-1}(u,w))uI(0 \le w \le 1, u \ge 0)$$

$$= \frac{\lambda^{2\alpha}}{\Gamma^2(\alpha)}(uw)^{\alpha-1}e^{-\lambda uw}(u-uw)^{\alpha-1}e^{-\lambda(u-uw)}uI(0 \le w \le 1, u \ge 0)$$

$$= \frac{\lambda^{2\alpha}}{\Gamma^2(\alpha)}u^{2\alpha-1}e^{-\lambda u}I(u \ge 1)w^{\alpha-1}(1-w)^{\alpha-1}I(0 \le w \le 1)$$

$$= p_U(u)p_W(w)$$

such that $U \sim \mathsf{Gamma}(2\alpha, \lambda)$ and $W \sim \mathsf{Beta}(\alpha, \alpha)$.

Example: Polar coordinate. A common reparametrization of two variable X, Y is via the polar coordinate R, Θ . Specifically, we choose $R = \sqrt{X^2 + Y^2}$ and $\Theta \in [0, 2\pi]$ such that

$$X = R\cos(\Theta), \quad Y = R\sin(\Theta).$$

In this case, $T(x, y) = (r, \theta)$ is 1-1 and onto for almost all points (x, y) except (0, 0) so we can still apply the Jacobian trick. You can easily work out that

$$\left|\frac{\partial(x,y)}{\partial(r,\theta)}\right| = r$$

so if we know the PDF of X, Y as $p_{X,Y}(x,y)$, then

$$p_{R,\Theta}(r,\theta) = p_{X,Y}(r\cos(\theta), r\sin(\theta))r.$$

If the joint PDF of (X, Y) is radial, i.e., $p_{X,Y}(x, y) = g(x^2 + y^2)$, then $p_{R,\Theta}(r, \theta) = g(r^2)r$ so $R \perp \Theta$ and $\Theta \sim \text{Uni}[0, 2\pi]$.

8.3 Random vector and covariance matrix

A random vector is a vector of random variables. Let $X \in \mathbb{R}^n$ be a random vector. We often express X as a column vector, i.e.,

$$X = \begin{pmatrix} X_1 \\ X_2 \\ \vdots \\ X_n \end{pmatrix}.$$

The expectation/expected value of X is the elementwise expectation:

$$\mathbb{E}[X] = \begin{pmatrix} \mathbb{E}[X_1] \\ \mathbb{E}[X_2] \\ \vdots \\ \mathbb{E}[X_n] \end{pmatrix}.$$

Similar to random variables, the expectation is an linear operation of random vectors. Namely, for two random vectors $X, Y \in \mathbb{R}^n$ and two real numbers a, b,

$$\mathbb{E}[aX + bY] = a\mathbb{E}[X] + b\mathbb{E}[Y].$$

An important characteristic of a random vector is the *variance-covariance* matrix (often we just called it the covariance matrix):

$$\begin{split} \mathsf{Cov}(X) &= \mathbb{E}[(X - \mathbb{E}[X])(X - \mathbb{E}[X])^T] \\ &= \begin{pmatrix} \mathsf{Var}(X_1) & \mathsf{Cov}(X_1, X_2) & \mathsf{Cov}(X_1, X_3) & \cdots & \mathsf{Cov}(X_1, X_n) \\ \mathsf{Cov}(X_2, X_1) & \mathsf{Var}(X_2) & \mathsf{Cov}(X_2, X_3) & \cdots & \mathsf{Cov}(X_2, X_n) \\ \vdots & \vdots & \vdots & \ddots & \vdots \\ \mathsf{Cov}(X_n, X_1) & \mathsf{Cov}(X_n, X_2) & \mathsf{Cov}(X_n, X_3) & \cdots & \mathsf{Var}(X_n) \end{pmatrix}. \end{split}$$

Using the fact that $Var(X_i) = Cov(X_i, X_i)$, elements in the above matrix can be written as $Cov(X)_{ij} = Cov(X_i, X_j)$.

Here are some nice properties of the covariance matrices.

- $\operatorname{Cov}(X) = \mathbb{E}[XX^T] \mathbb{E}[X]\mathbb{E}[X]^T$
- For a matrix $A \in \mathbb{R}^{m \times n}$ and a vector $b \in \mathbb{R}^m$,

$$\mathsf{Cov}(AX+b) = A\mathsf{Cov}(X)A^T$$

- For a vector $a \in \mathbb{R}^n$, $Var(a^T X) = a^T Cov(X)a$.
- The covariance matrix is positive semi-definite (PSD).
- The covariance matrix is PD if the only vector $a \in \mathbb{R}^n$ such that $Var(a^T X) = 0$ is a = 0.

The covariance matrix immediately implies some useful properties of the sample mean. Suppose X_1, \dots, X_n are IID with mean u and variance σ^2 . Then $\bar{X}_n = \frac{1}{n} \sum_{i=1}^n X_i = a^T X$, where $a_j = \frac{1}{n}$. As a result,

$$\operatorname{Var}(\bar{X}_n) = a^T \operatorname{Cov}(X) a = \frac{1}{n^2} \sum_{i=1}^n \operatorname{Var}(X_i) = \frac{\sigma^2}{n}.$$

Now, suppose that the random variables are not independent but instead, they have correlation $Cov(X_i, X_j) = \rho$ when $i \neq j$. Then the variance of the sample mean will be

$$\begin{aligned} /\operatorname{ar}(\bar{X}_n) &= a^T \operatorname{Cov}(X) a \\ &= \begin{pmatrix} \frac{1}{n} & \frac{1}{n} & \cdots & \frac{1}{n} \end{pmatrix} \begin{pmatrix} \sigma^2 & \sigma^2 \rho & \cdots & \sigma^2 \rho \\ \sigma^2 \rho & \sigma^2 & \cdots & \sigma^2 \rho \\ \vdots & \vdots & \cdots & \vdots \\ \sigma^2 \rho & \sigma^2 \rho & \cdots & \sigma^2 \end{pmatrix} \begin{pmatrix} \frac{1}{n} \\ \vdots \\ \frac{1}{n} \end{pmatrix} \\ &= \frac{1}{n^2} (n\sigma^2 + n(n-1)\sigma^2 \rho) \\ &= \frac{\sigma^2}{n} (1 + (n-1)\rho). \end{aligned}$$

8.4 The multivariate normal distribution

Recall that for a standard Normal random variable Z_1 , its PDF is

$$p_0(z) = \frac{1}{\sqrt{2\pi}} e^{-z^2/2}.$$

Thus, for iid random variables Z_1, \dots, Z_n , we can represent them as a random vector Z and its joint PDF will be

$$p(z_1, \cdots, z_n) = \prod_{i=1}^n \frac{1}{\sqrt{2\pi}} e^{-z_i^2/2} = \left(\frac{1}{2\pi}\right)^{n/2} e^{-\frac{1}{2}\sum_{i=1}^n z_i^2} = \left(\frac{1}{2\pi}\right)^{n/2} e^{-\frac{1}{2}z^T z}.$$

Now we consider a linear transformation that $A \in \mathbb{R}^{n \times n}$ is an invertible square matrix and $\mu \in \mathbb{R}^n$ is a vector and $X = AZ + \mu$. Since Z is a random vector, X will also be a random vector. Using the fact that $Z = A^{-1}(X - \mu)$ and the Jacobian method, you can show that the PDF of X is

$$p(x_1, \cdots, x_n) = \left(\frac{1}{2\pi}\right)^{n/2} e^{-\frac{1}{2}(x-\mu)^T [A^{-1}]^T A^{-1}(x-\mu)} \frac{1}{\sqrt{\det(AA^T)}}$$
$$= \left(\frac{1}{2\pi}\right)^{n/2} \frac{1}{\sqrt{\det(AA^T)}} e^{-\frac{1}{2}(x-\mu)^T [AA^T]^{-1}(x-\mu)}$$
$$= \left(\frac{1}{2\pi}\right)^{n/2} \frac{1}{\sqrt{\det(\Sigma)}} e^{-\frac{1}{2}(x-\mu)^T \Sigma^{-1}(x-\mu)},$$

where $\Sigma = \mathsf{Cov}(X) = AA^T$ is the covariance matrix of X. Note that $\mathbb{E}[X] = \mu$ by construction. In this case, we will say that X is from a *multivariate normal distribution* with a mean (vector) μ and a covariance matrix Σ . For abbreviation, we often write $X \sim N_n(\mu, \Sigma)$.

Linearity. The linear transformation of multivariate normal is still normal. Namely,

$$Y = CX + b \sim N_n(C\mu + b, C\Sigma C^T)$$

for non-singular matrix $C \in \mathbb{R}^{n \times n}$ and any vector $b \in \mathbb{R}^n$. Also, for a vector $a \in \mathbb{R}^n$,

$$a^T X \sim N(a^T \mu, a^T \Sigma a).$$

Independence \Leftrightarrow **uncorrelation.** You can easily verify that if X follows a multivariate normal, then

$$X_i \perp X_j \Leftrightarrow \mathsf{Cov}(X_i, X_j) \equiv \Sigma_{ij} = 0.$$

Namely, pairwise independent is the same as being uncorrelated.

Marginal is normal. Suppose we partition X into two blocks

$$X = \begin{pmatrix} X_1 \\ X_2 \end{pmatrix},$$

where $X_1 \in \mathbb{R}^{n_1}$ and $X_2 \in \mathbb{R}^{n_2}$. Let μ_1, μ_2 be the mean vector correspond to each of the block and $\Sigma = \begin{pmatrix} \Sigma_{11} & \Sigma_{12} \\ \Sigma_{21} & \Sigma_{22} \end{pmatrix}$. Then you can easily verify that

$$W_1 \sim N_{n_1}(\mu_1, \Sigma_{11}), \quad W_2 \sim N_{n_2}(\mu_2, \Sigma_{22})$$

so the marginals of the random vector are also multivariate normals.

Conditional is normal. Following the partition in the marginal case, the conditional distribution of $X_1|X_2$ is

$$X_1|X_2 \sim N_{n_1}(\mu_1 + \Sigma_{12}\Sigma_{22}^{-1}(X_2 - \mu_2), \Sigma_{11,2}),$$

where $\Sigma_{11,2} = \Sigma_{11} - \Sigma_{12} \Sigma_{22}^{-1} \Sigma_{21}$. You can compare this to the partitioned of PD matrix in Section 8.1.2.

Regression is linear and covariance is constant. Suppose that we have bivariate normal random vector (X_1, Y_2) . Then the regression function (conditional mean) is

$$\mathbb{E}[X_1|X_2] = \mu_1 + \Sigma_{12}\Sigma_{22}^{-1}(X_2 - \mu_2),$$

and the conditional variance

$$Var(X_1|X_2) = \Sigma_{11} - \Sigma_{12}\Sigma_{22}^{-1}\Sigma_{21},$$

where $\Sigma_{ij} = \mathsf{Cov}(X_i, X_j)$. This follows directly from the properties of conditional normals.

8.4.1 Chi-square distribution

Let $X = (X_1, \dots, X_n)^T$ be a multivariate normal vector with mean 0 and identity covariance matrix. Then the random variable

$$W_n = \sum_{i=1}^n X_i^2 = X^T X = ||X||^2$$

has a distribution called the χ^2 distribution with a degree of freedom n. In this case, we write $W_n \sim \chi_n^2$. The χ_n^2 is the same as $\Gamma(\frac{n}{2}, \frac{1}{2})$ and $\mathbb{E}(W_n) = n$ and $\mathsf{Var}(W_n) = 2n$.

Normalizing a Gaussian vector. Suppose a random vector $Y \sim N(\mu, \Sigma)$, then

$$Z = \Sigma^{-\frac{1}{2}} (Y - \mu) \sim N(0, \mathbf{I}_n)$$

 \mathbf{SO}

$$Z^T Z = (Y - \mu)^T \Sigma^{-1} (Y - \mu) \sim \chi_n^2.$$

Projection property. Here is an interesting property of a projection matrix. Let $X \sim N(\mu, \mathbf{I}_n)$ be a multivariate normal vector in \mathbb{R}^n . Let $P \in \mathbb{R}^{n \times n}$ be a projection matrix with $\mathsf{rank}(P) = \mathsf{Tr}(P) = m < n$. Then

$$(X-\mu)^T P(X-\mu) \sim \chi_m^2.$$

You can prove the above result using the decomposition in Section 8.1.3.

IID normals. Suppose $X_1, \dots, X_n \sim N(\mu, \sigma^2)$ form an IID random sample. Let $\bar{X}_n = \frac{1}{n} \sum_{i=1}^n X_i$ be the sample mean and $S_n^2 = \frac{1}{n-1} \sum_{i=1}^n (X_i - \bar{X}_n)^2$ be the sample variance. Then we have the following results:

- \bar{X}_n and S_n^2 are independent.
- $\bar{X}_n \sim N(\mu, \sigma^2/n).$
- $(n-1)\frac{S_n^2}{\sigma^2} \sim \chi_{n-1}^2$.

The above results are based on the following insight. Let $X = (X_1, \dots, X_n)^T$ be a multivariate normal formed by the IID elements. Let $e_n = \frac{1}{\sqrt{n}}(1, 1, \dots, 1)^T$ be a unit vector. Define two projection matrices $P = e_n e_n^T$ and $Q = \mathbf{I}_n - e_n e_n^T$. One can easily see that PQ = QP = 0 so the two projection matrices are orthogonal. This, together with the fact that $\text{Cov}(X) = \sigma^2 \mathbf{I}_n$, implies that PX and QX are independent. Moreover, one can easily see that \bar{X}_n is a function of PX and S_n^2 is a function of QX so they are independent. The last assertion is based on the fact that $S_n^2 = \frac{1}{n-1}[QX]^TQX$.