
STAT 512: Statistical Inference Autumn 2020

Lecture 8: Linear models and multivariate normal distributions
Instructor: Yen-Chi Chen

Reference: Casella and Berger Chapter 4.

8.1 Review of linear algebra

An m× n matrix A = {Aij} is an array of nm elements such that

A =


A11 A12 · · · A1n

A21 A22 · · · A2n

...
...

...
...

Am1 Am2 · · · Amn

 .

In this case, we can write A ∈ Rm×n. The matrix represents a linear mapping (linear transformation)
A : Rn → Rm (x 7→ Ax), where x ∈ Rn is written as a column vector (i.e., an n× 1 matrix) and

Ax =


A11 A12 · · · A1n

A21 A22 · · · A2n

...
...

...
...

Am1 Am2 · · · Amn



x1

x2

...
xn

 =


∑
j A1jxj∑
j A2jxj

...∑
j Amjxj


Clearly, the above operation implies the linear addition, i.e., for any a, b ∈ R and x, y ∈ Rn, A(ax + by) =
aAx+ bAy.

For two m× n matrices A,B, the addition A+B is another m× n matrix such that [A+B]ij = Aij +Bij .
For an m× n matrix A and an n× p matrix B, the matrix multiplication AB is an m× p matrix such that

[AB]ij =

n∑
k=1

AikBkj .

A very important property is that AB 6= BA in general even if m = n = p.

8.1.1 Useful characteristics of a matrix

Rank. The rank of a matrix A, denoted as rank(A), is the dimension of its column space. The column space
is the vector space spanned by A+1, · · · , A+n, the column vectors of A, i.e.,

A+j =


A1j

A2j

...
Amj

 .
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One can easily verify that rank(A) ≤ min{m,n}. Also, rank(AB) ≤ min{rank(A), rank(B)}.

Identity matrix. The n × n identity matrix In is a matrix that has 1’s on its diagonal and 0 elsewhere.
Namely, In = Diag(1, 1, 1, · · · , 1). One can easily see that for an m × n matrix A and n × m matrix B,.
AIn = A and InB = B.

Inverse. The inverse of an n× n (square) matrix A, denoted as A−1, is an n× n matrix with the property
that AA−1 = A−1A = In. Note: the inverse may not exist. When the inverse of A exists, A is called regular
otherwise it is called singular. The followings are equivalent of a n× n square matrix A:

• A is regular/non-singular (i.e., has an inverse matrix).

• A is full rank, i.e., rank(A) = n.

• The determinant of A is not 0 (we will define determinant later).

If both n × n matrices A,B are regular, then AB is also regular with inverse (AB)−1 = B−1A−1. For a
diagonal matrix D = Diag(d1, · · · , dn), its inverse is D−1 = Diag(d−1

1 , · · · , d−1
n ).

Transpose. For an m×n matrix A, its transpose, denoted as AT , is an n×m matrix such that [AT ]ij = Aji.
You can easily verify that (A+B)T = AT +BT , (AB)T = BTAT , and (A−1)T = (AT )−1.

Trace. For an n× n matrix A, its trace, denoted as Tr(A), is Tr(A) =
∑n
i=1Aii. One can easily verify that

Tr(aA+ bB) = aTr(A)+ bTr(A) and Tr(A) = Tr(AT ). Moreover, for an m×n matrix A and an n×m matrix
B, Tr(AB) = Tr(BA).

Triangular matrix. An n × n matrix A is upper triangular if Aij = 0 for all i < j. An n × n matrix
A is lower triangular if AT is upper triangular. A matrix is called triangular if it is either upper or lower
triangular.

Determinant. For an n× n matrix A, its determinant, denoted as |A|, is

det(A) =
∑
π

ε(π)

n∏
i=1

Aiπ(i),

where π is all possible permutations of {1, 2, 3, · · · , n} and ε(π) = ±1 according to if the permutation is
even or odd permutation. Here are some useful properties of the determinant: det(AB) = det(A) · det(B)
when they are both square matrices, det(A)−1 = det(A−1), det(AT ) = det(A), det(A) =

∏n
i=1Aii if A is

triangular.

Orthogonal matrix. An n× n matrix U is orthogonal if UTU = In. Namely, its column vectors form an
orthonormal basis of Rn. Note that one can easily see that this implies that UT = U−1 so UUT = In as
well.

Eigenvalues and eigenvectors. For an n × n matrix, its eigenvalues are the n roots λ1, · · · , λn to the
following polynomial equation:

det(A− λIn) = 0.

For each λj , there exists a vector uj such that (A− λjIn)uj = 0 or Auj = λjuj . Such a vector uj is called
the eigenvector corresponding to λj . Note that if λj is distinct from other eigenvalues, then uj is unique.
Also note that the eigenvalues and eigenvector may not be real numbers/vectors.

8.1.2 Symmetric matrices

A square matrix A ∈ Rn×n is symmetric if Aij = Aji, i.e., A = AT . In what follows, we will review some
useful properties of a symmetric matrix.
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For a symmetric matrix A ∈ Rn×n, it has the following properties:

• Eigenvalues and eigenvectors are real numbers/vectors.

• For eigenvalues λj 6= λk, their corresponding eigenvectors uj , uk are orthogonal, i.e., uTj uk = 0.

• Spectral decomposition. Let λ1, · · · , λn be the eigenvalues of A and u1, · · · , un be the corresponding
eigenvectors. Let Λ = Diag(λ1, · · · , λn) and U = [u1, · · · , un]. Then

A = UΛUT =

n∑
i=1

λiuiu
T
i .

This is known as the spectral decomposition.

• Trace. The trace of A is Tr(A) =
∑n
i=1 λi.

• Determinant. The determinant of A is det(A) =
∏n
i=1 λi

Positive definite matrix. A particular important class of symmetric matrices is the positive definite (PD)
matrices. A square matrix A ∈ Rn×n is positive semi-definite (PSD) if

xTAx ≥ 0

for all x ∈ Rn. It is positive definite if
xTAx > 0

for all x ∈ Rn and xTx > 0.

Here are some useful properties of PD and PSD matrices.

• The identity matrix is PD.

• A diagonal matrix D is PD if Dii > 0 for all i and is PSD if Dii ≥ 0 for all i.

• If S ∈ Rn×n is PSD and A ∈ Rm×n be any matrix, then ASAT is PSD.

• If S ∈ Rn×n is PD and A ∈ Rm×n be any matrix with rank(A) = m ≤ n, then ASAT is PD.

• AAT is PSD for any m× n matrix A.

• AAT is PD for any m× n matrix A with rank(A) = m ≤ n.

• A is PD ⇒ A is full rank ⇒ A−1 exists ⇒ A−1 = A−1AA−1 is PD.

• A symmetric matrix A is PSD (PD) if all its eigenvalues λj ≥ 0 (> 0).

• If A ∈ Rn×n is PD, then let its spectral decomposition be A = UΛUT . Then the square root of A, a
matrix C such that CCT = A, is C = U

√
ΛUT , where

√
Λ = Diag(

√
Λ11, · · · ,

√
Λnn).

Partitioned PD matrix. Suppose that A ∈ Rn×n is a PD matrix and we suppose that it can be decomposed
into 4 submatrices

A =

(
S11 S12

S21 S22

)
,

where Sij ∈ Rni×nj with i, j = 1, 2 and n = n1 + n2. Then we have the follow properties:

• S11 and S22 are both PD.
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• Let S11,2 = S11 − S12S
−1
22 S21. Then(

In1
−S12S

−1
22

0 In2

)(
S11 S12

S21 S22

)(
In1

0
−S−1

22 S21 In2

)
=

(
S11,2 0

0 S22

)
so S11,2 is PD as well.

• Following from the above result, we have(
S11 S12

S21 S22

)
=

(
In1

S12S
−1
22

0 In2

)(
S11,2 0

0 S22

)(
In1

0
S−1

22 S21 In2

)
(
S11 S12

S21 S22

)−1

=

(
In1 0

−S−1
22 S21 In2

)(
S−1

11,2 0

0 S−1
22

)(
In1

−S12S
−1
22

0 In2

)

• Further, the above implies that

A is PD ⇔ S11,2, S22 are PD ⇔ S22,1, S11 are PD .

• For any vector x =

(
x1

x2

)
∈ Rn such that x1 ∈ Rn1 and x2 ∈ Rn2 ,

xA−1x = (x1 − S12S
−1
22 x2)S−1

11,2(x1 − S12S
−1
22 x2) + x2S

−1
22 x2.

Later we will see that the above results are very useful in analyzing the conditional normal distribution.

8.1.3 Projection matrices

An n× n matrix P is called a projection matrix if it is symmetric and idenpotent (P 2 = P ).

P is a projection matrix if and only if there exists orthogonal matrix U such that

P = U

(
Im 0
0 0

)
UT .

In this case rank(P ) = m.

Suppose that we can partition U = [U1, U2], where U1 ∈ Rn×m and U2 ∈ Rn×(n−m). Then the above
result implies that P = U1U

T
1 and PU1 = U1 and PU2 = 0. This means that P project any vector in Rn

into the column space of U1 and is orthogonal to the column space of U2. An interesting property is that
rank(P ) = Tr(P ) = m.

Also, the matrix In−P is another projection matrix that projects any vector in Rn to the space orthogonal
to the column space of U1. To see this, P (In − P ) = P − P 2 = 0.

8.2 Transforming multiple continuous random variables

In lecture 2, we have learned techniques to deal with transforming a single continuous random variable, i.e.,
investigating the distribution of U = f(X) when we know the distribution of X. In this section, we will
study a more general problem where we are transforming two or more (continuous) random variables.
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We start with a simple case where we have two random variables X,Y and we know their joint PDF. Consider
two random variables U = f(X,Y ) and V = g(X,Y ), where u, v are two known functions.

We now study the joint PDF of (U, V ). By definition,

pU,V (u, v) =
∂2

∂u∂v
P (U ≤ u, V ≤ v)

=
∂2

∂u∂v
P (f(X,Y ) ≤ u, g(X,Y ) ≤ v)

=
∂2

∂u∂v
P ((X,Y ) ∈ R(u, v))

=
∂2

∂u∂v

∫
R(u,v)

pX,Y (x, y)dxdy,

where

R(u, v) = {(x, y) : f(x, y) ≤ u, g(x, y) ≤ v}.

In some simple scenarios, this region R(u, v) has a nice form so that the probability P ((X,Y ) ∈ R(u, v)) has
an analytical expression that we can take derivatives easily. However, this expression might still be hard to
compute in general.

Example 1. Let X,Y ∼ Unif[0, 1]. Consider U = max{X,Y }, V = min{X,Y }. Note that there is an
implicit constraint on fU,V that fU,V (u, v) = 0 if v > u. So we consider any pair (u, v) : v ≤ u. By a direct
computation,

P (U ≤ u, V ≤ v) = P (U ≤ u)− P (U ≤ u, V > v)

= P (X ≤ u, Y ≤ u)− P (X ≤ u, Y ≤ u,X > v, Y > v)

= P (X ≤ u)P (Y ≤ u)− P (v < X ≤ u)P (v < Y ≤ u)

= u2 − (u− v)2

when 0 ≤ v ≤ u ≤ 1. Thus,

pU,V (u, v) =
∂2

∂u∂v
P (U ≤ u, V ≤ v) = 2I(0 ≤ v ≤ u ≤ 1).

Example 2. Consider X,Y ∼ Exp(1) and let U = X + Y and V = X
X+Y . Note that (U, V ) ∈ [0,∞)× [0, 1].

So we consider any u ≥ 0 and v ∈ [0, 1]. The joint CDF is

P (U ≤ u, V ≤ v) = P (X + Y ≤ u,X ≤ v(X + Y ))

= P

(
Y ≤ u−X,Y ≥ 1− v

v
X

)
= E

[
I

(
Y ≤ u−X,Y ≥ 1− v

v
X

)]
= E

[
E
[
I

(
Y ≤ u−X,Y ≥ 1− v

v
X

)
|X
]]

= E
[
P

(
Y ≤ u−X,Y ≥ 1− v

v
X|X

)]
.

Note that I(E) is the indicator function such that it returns 1 if the event E is true and 0 otherwise; one
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can easily see that E[I(E)] = P (E). Condition on X, the probability

P

(
Y ≤ u−X,Y ≥ 1− v

v
X|X

)
= P (

1− v
v

X ≤ Y ≤ u−X|X)

=

∫ u−X

y= 1−v
v X

e−ydy

= e−
1−v
v X − eX−u.

Thus, using the fact that U ≤ u, V ≤ v ⇒ X ≤ uv, we have

P (U ≤ u, V ≤ v) = E
[
P

(
Y ≤ u−X,Y ≥ 1− v

v
X|X

)]
=

∫ uv

0

[e−
1−v
v x − ex−u]e−xdx

=

∫ uv

0

[e−
x
v − e−u]dx

= v(1− e−u − ue−u).

By taking the derivative, we obtain

pU,V (u, v) = ue−uI(0 ≤ v ≤ 1) = ue−u︸ ︷︷ ︸
pU (u)

· I(0 ≤ v ≤ 1)︸ ︷︷ ︸
pV (v)

.

Thus, we conclude that U ∼ Gamma(2, 1) and V ∼ Uni[0, 1] and U ⊥ V .

8.2.1 Jacobian method

The Jacobian method is an elegant approach for substituting variables (change of varibales) in an integration.
Consider x ∈ Rn and y ∈ Rn and assume that there is a 1-1 and onto mapping T : Rn → Rn for almost all
x such that y = T (x). We define the Jacobian matrix

JT (x) =
(
∂T (x)
∂x

)
=
(
∂y
∂x

)
=


∂y1
∂x1

∂y2
∂x1

· · · ∂yn
∂x1

∂y1
∂x2

∂y2
∂x2

· · · ∂yn
∂x2

...
... · · ·

...
∂y1
∂xn

∂y2
∂xn

· · · ∂yn
∂xn

 ∈ Rn×n.

The Jacobian is the absolute value of the determinant of this matrix, i.e., |det(JT (x))| = |
(
∂y
∂x

)
| =

∣∣∣ ∂y∂x ∣∣∣.
Theorem 8.1 Assume that y = T (x), where T is 1-1 and onto for almost all x and the Jacobian det(JT (x)) 6=
0 for all x. Let A,B ⊂ Rn be two subsets such that B = {T (x) : x ∈ A}. Let f be an integrable function.
Then ∫

A

f(x)dx =

∫
B

f(T−1(y))

∣∣∣∣∂x∂y
∣∣∣∣ dy.

Under the same condition, suppose X is a random variable with a PDF pX(x) and Y = T (X). Then the
PDF of Y is

pY (y) = pX(T−1(y))

∣∣∣∣∂x∂y
∣∣∣∣ .
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The Jacobian has a nice chain rule that if z = S(y) and y = T (x) such that S, T are both 1-1 and onto.
Then ∣∣∣∣∂z∂x

∣∣∣∣ =

∣∣∣∣∂z∂y
∣∣∣∣ ∣∣∣∣∂y∂x

∣∣∣∣ .
Also, we have the inverse rule: ∣∣∣∣∂y∂x

∣∣∣∣ =

∣∣∣∣∂x∂y
∣∣∣∣−1

.

Example: Gamma distributions. Consider X,Y are independently from Gamma distribution with
parameter α, λ. Recall that the PDF of a Gamma (α, λ) is

p(x) =
λα

Γ(α)
xα−1e−λxI(x ≥ 0).

Now we consider U = X + Y and W = X
X+Y . In this case, the mapping T (x, y) = (u,w) such that

T = (T1, T2) with T1(x, y) = x + y and T2(x, y) = x
x+y . Thus, the inverse mapping T−1(u,w) = (x, y) will

be T−1
1 (u,w) = uw and T−1

2 (u,w) = u− uw. The Jacobian∣∣∣∣ ∂(x, y)

∂(u,w)

∣∣∣∣ =

∣∣∣∣∂T−1(u,w)

∂(u,w)

∣∣∣∣
=

∣∣∣∣det((w 1− w
u −u

))∣∣∣∣
= u.

We already know the joint PDF pXY (x, y) since they are independent Gamma. Thus,

pUW (u,w) = pXY (T−1
1 (u,w), T−1

2 (u,w))uI(0 ≤ w ≤ 1, u ≥ 0)

= pX(T−1
1 (u,w))pY (T−1

2 (u,w))uI(0 ≤ w ≤ 1, u ≥ 0)

=
λ2α

Γ2(α)
(uw)α−1e−λuw(u− uw)α−1e−λ(u−uw)uI(0 ≤ w ≤ 1, u ≥ 0)

=
λ2α

Γ2(α)
u2α−1e−λuI(u ≥ 1)wα−1(1− w)α−1I(0 ≤ w ≤ 1)

= pU (u)pW (w)

such that U ∼ Gamma(2α, λ) and W ∼ Beta(α, α).

Example: Polar coordinate. A common reparametrization of two variable X,Y is via the polar coordinate
R,Θ. Specifically, we choose R =

√
X2 + Y 2 and Θ ∈ [0, 2π] such that

X = R cos(Θ), Y = R sin(Θ).

In this case, T (x, y) = (r, θ) is 1-1 and onto for almost all points (x, y) except (0, 0) so we can still apply the
Jacobian trick. You can easily work out that ∣∣∣∣∂(x, y)

∂(r, θ)

∣∣∣∣ = r

so if we know the PDF of X,Y as pX,Y (x, y), then

pR,Θ(r, θ) = pX,Y (r cos(θ), r sin(θ))r.

If the joint PDF of (X,Y ) is radial, i.e., pX,Y (x, y) = g(x2 + y2), then pR,Θ(r, θ) = g(r2)r so R ⊥ Θ and
Θ ∼ Uni[0, 2π].
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8.3 Random vector and covariance matrix

A random vector is a vector of random variables. Let X ∈ Rn be a random vector. We often express X as
a column vector, i.e.,

X =


X1

X2

...
Xn

 .

The expectation/expected value of X is the elementwise expectation:

E[X] =


E[X1]
E[X2]

...
E[Xn]

 .

Similar to random variables, the expectation is an linear operation of random vectors. Namely, for two
random vectors X,Y ∈ Rn and two real numbers a, b,

E[aX + bY ] = aE[X] + bE[Y ].

An important characteristic of a random vector is the variance-covariance matrix (often we just called it
the covariance matrix):

Cov(X) = E[(X − E[X])(X − E[X])T ]

=


Var(X1) Cov(X1, X2) Cov(X1, X3) · · · Cov(X1, Xn)

Cov(X2, X1) Var(X2) Cov(X2, X3) · · · Cov(X2, Xn)
...

...
... · · ·

...
Cov(Xn, X1) Cov(Xn, X2) Cov(Xn, X3) · · · Var(Xn)

 .

Using the fact that Var(Xi) = Cov(Xi, Xi), elements in the above matrix can be written as Cov(X)ij =
Cov(Xi, Xj).

Here are some nice properties of the covariance matrices.

• Cov(X) = E[XXT ]− E[X]E[X]T

• For a matrix A ∈ Rm×n and a vector b ∈ Rm,

Cov(AX + b) = ACov(X)AT .

• For a vector a ∈ Rn, Var(aTX) = aTCov(X)a.

• The covariance matrix is positive semi-definite (PSD).

• The covariance matrix is PD if the only vector a ∈ Rn such that Var(aTX) = 0 is a = 0.

The covariance matrix immediately implies some useful properties of the sample mean. Suppose X1, · · · , Xn

are IID with mean u and variance σ2. Then X̄n = 1
n

∑n
i=1Xi = aTX, where aj = 1

n . As a result,

Var(X̄n) = aTCov(X)a =
1

n2

n∑
i=1

Var(Xi) =
σ2

n
.
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Now, suppose that the random variables are not independent but instead, they have correlation Cov(Xi, Xj) =
ρ when i 6= j. Then the variance of the sample mean will be

Var(X̄n) = aTCov(X)a

=
(

1
n

1
n · · · 1

n

)

σ2 σ2ρ · · · σ2ρ
σ2ρ σ2 · · · σ2ρ

...
... · · ·

...
σ2ρ σ2ρ · · · σ2




1
n
1
n
...
1
n


=

1

n2
(nσ2 + n(n− 1)σ2ρ)

=
σ2

n
(1 + (n− 1)ρ).

8.4 The multivariate normal distribution

Recall that for a standard Normal random variable Z1, its PDF is

p0(z) =
1√
2π
e−z

2/2.

Thus, for iid random variables Z1, · · · , Zn, we can represent them as a random vector Z and its joint PDF
will be

p(z1, · · · , zn) =

n∏
i=1

1√
2π
e−z

2
i /2 =

(
1

2π

)n/2
e−

1
2

∑n
i=1 z

2
i =

(
1

2π

)n/2
e−

1
2 z

T z.

Now we consider a linear transformation that A ∈ Rn×n is an invertible square matrix and µ ∈ Rn is a
vector and X = AZ + µ. Since Z is a random vector, X will also be a random vector. Using the fact that
Z = A−1(X − µ) and the Jacobian method, you can show that the PDF of X is

p(x1, · · · , xn) =

(
1

2π

)n/2
e−

1
2 (x−µ)T [A−1]TA−1(x−µ) 1√

det(AAT )

=

(
1

2π

)n/2
1√

det(AAT )
e−

1
2 (x−µ)T [AAT ]−1(x−µ)

=

(
1

2π

)n/2
1√

det(Σ)
e−

1
2 (x−µ)T Σ−1(x−µ),

where Σ = Cov(X) = AAT is the covariance matrix of X. Note that E[X] = µ by construction. In this
case, we will say that X is from a multivariate normal distribution with a mean (vector) µ and a covariance
matrix Σ. For abbreviation, we often write X ∼ Nn(µ,Σ).

Linearity. The linear transformation of multivariate normal is still normal. Namely,

Y = CX + b ∼ Nn(Cµ+ b, CΣCT )

for non-singular matrix C ∈ Rn×n and any vector b ∈ Rn. Also, for a vector a ∈ Rn,

aTX ∼ N(aTµ, aTΣa).

Independence ⇔ uncorrelation. You can easily verify that if X follows a multivariate normal, then

Xi ⊥ Xj ⇔ Cov(Xi, Xj) ≡ Σij = 0.
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Namely, pairwise independent is the same as being uncorrelated.

Marginal is normal. Suppose we partition X into two blocks

X =

(
X1

X2

)
,

where X1 ∈ Rn1 and X2 ∈ Rn2 . Let µ1, µ2 be the mean vector correspond to each of the block and

Σ =

(
Σ11 Σ12

Σ21 Σ22

)
. Then you can easily verify that

W1 ∼ Nn1(µ1,Σ11), W2 ∼ Nn2(µ2,Σ22)

so the marginals of the random vector are also multivariate normals.

Conditional is normal. Following the partition in the marginal case, the conditional distribution of X1|X2

is
X1|X2 ∼ Nn1

(µ1 + Σ12Σ−1
22 (X2 − µ2),Σ11,2),

where Σ11,2 = Σ11 − Σ12Σ−1
22 Σ21. You can compare this to the partitioned of PD matrix in Section 8.1.2.

Regression is linear and covariance is constant. Suppose that we have bivariate normal random vector
(X1, Y2). Then the regression function (conditional mean) is

E[X1|X2] = µ1 + Σ12Σ−1
22 (X2 − µ2),

and the conditional variance
Var(X1|X2) = Σ11 − Σ12Σ−1

22 Σ21,

where Σij = Cov(Xi, Xj). This follows directly from the properties of conditional normals.

8.4.1 Chi-square distribution

Let X = (X1, · · · , Xn)T be a multivariate normal vector with mean 0 and identity covariance matrix. Then
the random variable

Wn =

n∑
i=1

X2
i = XTX = ‖X‖2

has a distribution called the χ2 distribution with a degree of freedom n. In this case, we write Wn ∼ χ2
n.

The χ2
n is the same as Γ(n2 ,

1
2 ) and E(Wn) = n and Var(Wn) = 2n.

Normalizing a Gaussian vector. Suppose a random vector Y ∼ N(µ,Σ), then

Z = Σ−
1
2 (Y − µ) ∼ N(0, In)

so
ZTZ = (Y − µ)TΣ−1(Y − µ) ∼ χ2

n.

Projection property. Here is an interesting property of a projection matrix. Lete X ∼ N(µ, In) be a
multivariate normal vector in Rn. Let P ∈ Rn×n be a projection matrix with rank(P ) = Tr(P ) = m < n.
Then

(X − µ)TP (X − µ) ∼ χ2
m.

You can prove the above result using the decomposition in Section 8.1.3.

IID normals. Suppose X1, · · · , Xn ∼ N(µ, σ2) form an IID random sample. Let X̄n = 1
n

∑n
i=1Xi be the

sample mean and S2
n = 1

n−1

∑n
i=1(Xi − X̄n)2 be the sample variance. Then we have the following results:
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• X̄n and S2
n are independent.

• X̄n ∼ N(µ, σ2/n).

• (n− 1)
S2
n

σ2 ∼ χ2
n−1.

The above results are based on the following insight. Let X = (X1, · · · , Xn)T be a multivariate normal
formed by the IID elements. Let en = 1√

n
(1, 1, · · · , 1)T be a unit vector. Define two projection matrices

P = ene
T
n and Q = In − eneTn . One can easily see that PQ = QP = 0 so the two projection matrices are

orthogonal. This, together with the fact that Cov(X) = σ2In, implies that PX and QX are independent.
Moreover, one can easily see that X̄n is a function of PX and S2

n is a function of QX so they are independent.
The last assertion is based on the fact that S2

n = 1
n−1 [QX]TQX.
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