Lecture 8: Linear models and multivariate normal distributions

Instructor: Yen-Chi Chen

Reference: Casella and Berger Chapter 4.

8.1 Review of linear algebra

An $m \times n$ matrix $A=\left\{A_{i j}\right\}$ is an array of $n m$ elements such that

$$
A=\left(\begin{array}{cccc}
A_{11} & A_{12} & \cdots & A_{1 n} \\
A_{21} & A_{22} & \cdots & A_{2 n} \\
\vdots & \vdots & \vdots & \vdots \\
A_{m 1} & A_{m 2} & \cdots & A_{m n}
\end{array}\right)
$$

In this case, we can write $A \in \mathbb{R}^{m \times n}$. The matrix represents a linear mapping (linear transformation) $A: \mathbb{R}^{n} \rightarrow \mathbb{R}^{m}(x \mapsto A x)$, where $x \in \mathbb{R}^{n}$ is written as a column vector (i.e., an $n \times 1$ matrix) and

$$
A x=\left(\begin{array}{cccc}
A_{11} & A_{12} & \cdots & A_{1 n} \\
A_{21} & A_{22} & \cdots & A_{2 n} \\
\vdots & \vdots & \vdots & \vdots \\
A_{m 1} & A_{m 2} & \cdots & A_{m n}
\end{array}\right)\left(\begin{array}{c}
x_{1} \\
x_{2} \\
\vdots \\
x_{n}
\end{array}\right)=\left(\begin{array}{c}
\sum_{j} A_{1 j} x_{j} \\
\sum_{j} A_{2 j} x_{j} \\
\vdots \\
\sum_{j} A_{m j} x_{j}
\end{array}\right)
$$

Clearly, the above operation implies the linear addition, i.e., for any $a, b \in \mathbb{R}$ and $x, y \in \mathbb{R}^{n}, A(a x+b y)=$ $a A x+b A y$.

For two $m \times n$ matrices A, B, the addition $A+B$ is another $m \times n$ matrix such that $[A+B]_{i j}=A_{i j}+B_{i j}$. For an $m \times n$ matrix A and an $n \times p$ matrix B, the matrix multiplication $A B$ is an $m \times p$ matrix such that

$$
[A B]_{i j}=\sum_{k=1}^{n} A_{i k} B_{k j}
$$

A very important property is that $A B \neq B A$ in general even if $m=n=p$.

8.1.1 Useful characteristics of a matrix

Rank. The rank of a matrix A, denoted as $\operatorname{rank}(A)$, is the dimension of its column space. The column space is the vector space spanned by A_{+1}, \cdots, A_{+n}, the column vectors of A, i.e.,

$$
A_{+j}=\left(\begin{array}{c}
A_{1 j} \\
A_{2 j} \\
\vdots \\
A_{m j}
\end{array}\right)
$$

One can easily verify that $\operatorname{rank}(A) \leq \min \{m, n\}$. Also, $\operatorname{rank}(A B) \leq \min \{\operatorname{rank}(A), \operatorname{rank}(B)\}$.
Identity matrix. The $n \times n$ identity matrix \mathbf{I}_{n} is a matrix that has 1 's on its diagonal and 0 elsewhere. Namely, $\mathbb{I}_{n}=\operatorname{Diag}(1,1,1, \cdots, 1)$. One can easily see that for an $m \times n$ matrix A and $n \times m$ matrix B, $A \mathbf{I}_{n}=A$ and $\mathbf{I}_{n} B=B$.

Inverse. The inverse of an $n \times n$ (square) matrix A, denoted as A^{-1}, is an $n \times n$ matrix with the property that $A A^{-1}=A^{-1} A=\mathbf{I}_{n}$. Note: the inverse may not exist. When the inverse of A exists, A is called regular otherwise it is called singular. The followings are equivalent of a $n \times n$ square matrix A :

- A is regular/non-singular (i.e., has an inverse matrix).
- A is full rank, i.e., $\operatorname{rank}(A)=n$.
- The determinant of A is not 0 (we will define determinant later).

If both $n \times n$ matrices A, B are regular, then $A B$ is also regular with inverse $(A B)^{-1}=B^{-1} A^{-1}$. For a diagonal matrix $D=\operatorname{Diag}\left(d_{1}, \cdots, d_{n}\right)$, its inverse is $D^{-1}=\operatorname{Diag}\left(d_{1}^{-1}, \cdots, d_{n}^{-1}\right)$.

Transpose. For an $m \times n$ matrix A, its transpose, denoted as A^{T}, is an $n \times m$ matrix such that $\left[A^{T}\right]_{i j}=A_{j i}$. You can easily verify that $(A+B)^{T}=A^{T}+B^{T},(A B)^{T}=B^{T} A^{T}$, and $\left(A^{-1}\right)^{T}=\left(A^{T}\right)^{-1}$.

Trace. For an $n \times n$ matrix A, its trace, denoted as $\operatorname{Tr}(A)$, is $\operatorname{Tr}(A)=\sum_{i=1}^{n} A_{i i}$. One can easily verify that $\operatorname{Tr}(a A+b B)=a \operatorname{Tr}(A)+b \operatorname{Tr}(A)$ and $\operatorname{Tr}(A)=\operatorname{Tr}\left(A^{T}\right)$. Moreover, for an $m \times n$ matrix A and an $n \times m$ matrix $B, \operatorname{Tr}(A B)=\operatorname{Tr}(B A)$.

Triangular matrix. An $n \times n$ matrix A is upper triangular if $A_{i j}=0$ for all $i<j$. An $n \times n$ matrix A is lower triangular if A^{T} is upper triangular. A matrix is called triangular if it is either upper or lower triangular.

Determinant. For an $n \times n$ matrix A, its determinant, denoted as $|A|$, is

$$
\operatorname{det}(A)=\sum_{\pi} \epsilon(\pi) \prod_{i=1}^{n} A_{i \pi(i)}
$$

where π is all possible permutations of $\{1,2,3, \cdots, n\}$ and $\epsilon(\pi)= \pm 1$ according to if the permutation is even or odd permutation. Here are some useful properties of the $\operatorname{determinant}: \operatorname{det}(A B)=\operatorname{det}(A) \cdot \operatorname{det}(B)$ when they are both square matrices, $\operatorname{det}(A)^{-1}=\operatorname{det}\left(A^{-1}\right), \operatorname{det}\left(A^{T}\right)=\operatorname{det}(A), \operatorname{det}(A)=\prod_{i=1}^{n} A_{i i}$ if A is triangular.

Orthogonal matrix. An $n \times n$ matrix U is orthogonal if $U^{T} U=\mathbf{I}_{n}$. Namely, its column vectors form an orthonormal basis of \mathbb{R}^{n}. Note that one can easily see that this implies that $U^{T}=U^{-1}$ so $U U^{T}=\mathbf{I}_{n}$ as well.

Eigenvalues and eigenvectors. For an $n \times n$ matrix, its eigenvalues are the n roots $\lambda_{1}, \cdots, \lambda_{n}$ to the following polynomial equation:

$$
\operatorname{det}\left(A-\lambda \mathbf{I}_{n}\right)=0
$$

For each λ_{j}, there exists a vector u_{j} such that $\left(A-\lambda_{j} \mathbf{I}_{n}\right) u_{j}=0$ or $A u_{j}=\lambda_{j} u_{j}$. Such a vector u_{j} is called the eigenvector corresponding to λ_{j}. Note that if λ_{j} is distinct from other eigenvalues, then u_{j} is unique. Also note that the eigenvalues and eigenvector may not be real numbers/vectors.

8.1.2 Symmetric matrices

A square matrix $A \in \mathbb{R}^{n \times n}$ is symmetric if $A_{i j}=A_{j i}$, i.e., $A=A^{T}$. In what follows, we will review some useful properties of a symmetric matrix.

For a symmetric matrix $A \in \mathbb{R}^{n \times n}$, it has the following properties:

- Eigenvalues and eigenvectors are real numbers/vectors.
- For eigenvalues $\lambda_{j} \neq \lambda_{k}$, their corresponding eigenvectors u_{j}, u_{k} are orthogonal, i.e., $u_{j}^{T} u_{k}=0$.
- Spectral decomposition. Let $\lambda_{1}, \cdots, \lambda_{n}$ be the eigenvalues of A and u_{1}, \cdots, u_{n} be the corresponding eigenvectors. Let $\Lambda=\operatorname{Diag}\left(\lambda_{1}, \cdots, \lambda_{n}\right)$ and $U=\left[u_{1}, \cdots, u_{n}\right]$. Then

$$
A=U \Lambda U^{T}=\sum_{i=1}^{n} \lambda_{i} u_{i} u_{i}^{T}
$$

This is known as the spectral decomposition.

- Trace. The trace of A is $\operatorname{Tr}(A)=\sum_{i=1}^{n} \lambda_{i}$.
- Determinant. The determinant of A is $\operatorname{det}(A)=\prod_{i=1}^{n} \lambda_{i}$

Positive definite matrix. A particular important class of symmetric matrices is the positive definite (PD) matrices. A square matrix $A \in \mathbb{R}^{n \times n}$ is positive semi-definite (PSD) if

$$
x^{T} A x \geq 0
$$

for all $x \in \mathbb{R}^{n}$. It is positive definite if

$$
x^{T} A x>0
$$

for all $x \in \mathbb{R}^{n}$ and $x^{T} x>0$.
Here are some useful properties of PD and PSD matrices.

- The identity matrix is PD.
- A diagonal matrix D is PD if $D_{i i}>0$ for all i and is PSD if $D_{i i} \geq 0$ for all i.
- If $S \in \mathbb{R}^{n \times n}$ is PSD and $A \in \mathbb{R}^{m \times n}$ be any matrix, then $A S A^{T}$ is PSD.
- If $S \in \mathbb{R}^{n \times n}$ is PD and $A \in \mathbb{R}^{m \times n}$ be any matrix with $\operatorname{rank}(A)=m \leq n$, then $A S A^{T}$ is PD .
- $A A^{T}$ is PSD for any $m \times n$ matrix A.
- $A A^{T}$ is PD for any $m \times n$ matrix A with $\operatorname{rank}(A)=m \leq n$.
- A is $\mathrm{PD} \Rightarrow A$ is full rank $\Rightarrow A^{-1}$ exists $\Rightarrow A^{-1}=A^{-1} A A^{-1}$ is PD.
- A symmetric matrix A is $\operatorname{PSD}(\mathrm{PD})$ if all its eigenvalues $\lambda_{j} \geq 0(>0)$.
- If $A \in \mathbb{R}^{n \times n}$ is PD , then let its spectral decomposition be $A=U \Lambda U^{T}$. Then the square root of A, a matrix C such that $C C^{T}=A$, is $C=U \sqrt{\Lambda} U^{T}$, where $\sqrt{\Lambda}=\operatorname{Diag}\left(\sqrt{\Lambda_{11}}, \cdots, \sqrt{\Lambda_{n n}}\right)$.

Partitioned PD matrix. Suppose that $A \in \mathbb{R}^{n \times n}$ is a PD matrix and we suppose that it can be decomposed into 4 submatrices

$$
A=\left(\begin{array}{ll}
S_{11} & S_{12} \\
S_{21} & S_{22}
\end{array}\right)
$$

where $S_{i j} \in \mathbb{R}^{n_{i} \times n_{j}}$ with $i, j=1,2$ and $n=n_{1}+n_{2}$. Then we have the follow properties:

- S_{11} and S_{22} are both PD.
- Let $S_{11,2}=S_{11}-S_{12} S_{22}^{-1} S_{21}$. Then

$$
\left(\begin{array}{cc}
\mathbf{I}_{n_{1}} & -S_{12} S_{22}^{-1} \\
0 & \mathbf{I}_{n_{2}}
\end{array}\right)\left(\begin{array}{cc}
S_{11} & S_{12} \\
S_{21} & S_{22}
\end{array}\right)\left(\begin{array}{cc}
\mathbf{I}_{n_{1}} & 0 \\
-S_{22}^{-1} S_{21} & \mathbf{I}_{n_{2}}
\end{array}\right)=\left(\begin{array}{cc}
S_{11,2} & 0 \\
0 & S_{22}
\end{array}\right)
$$

so $S_{11,2}$ is PD as well.

- Following from the above result, we have

$$
\begin{aligned}
\left(\begin{array}{cc}
S_{11} & S_{12} \\
S_{21} & S_{22}
\end{array}\right) & =\left(\begin{array}{cc}
\mathbf{I}_{n_{1}} & S_{12} S_{22}^{-1} \\
0 & \mathbf{I}_{n_{2}}
\end{array}\right)\left(\begin{array}{cc}
S_{11,2} & 0 \\
0 & S_{22}
\end{array}\right)\left(\begin{array}{cc}
\mathbf{I}_{n_{1}} & 0 \\
S_{22}^{-1} S_{21} & \mathbf{I}_{n_{2}}
\end{array}\right) \\
\left(\begin{array}{cc}
S_{11} & S_{12} \\
S_{21} & S_{22}
\end{array}\right)^{-1} & =\left(\begin{array}{cc}
\mathbf{I}_{n_{1}} & 0 \\
-S_{22}^{-1} S_{21} & \mathbf{I}_{n_{2}}
\end{array}\right)\left(\begin{array}{cc}
S_{11,2}^{-1} & 0 \\
0 & S_{22}^{-1}
\end{array}\right)\left(\begin{array}{cc}
\mathbf{I}_{n_{1}} & -S_{12} S_{22}^{-1} \\
0 & \mathbf{I}_{n_{2}}
\end{array}\right)
\end{aligned}
$$

- Further, the above implies that

$$
A \text { is } \mathrm{PD} \Leftrightarrow S_{11,2}, S_{22} \text { are } \mathrm{PD} \Leftrightarrow S_{22,1}, S_{11} \text { are } \mathrm{PD} .
$$

- For any vector $x=\binom{x_{1}}{x_{2}} \in \mathbb{R}^{n}$ such that $x_{1} \in \mathbb{R}^{n_{1}}$ and $x_{2} \in \mathbb{R}^{n_{2}}$,

$$
x A^{-1} x=\left(x_{1}-S_{12} S_{22}^{-1} x_{2}\right) S_{11,2}^{-1}\left(x_{1}-S_{12} S_{22}^{-1} x_{2}\right)+x_{2} S_{22}^{-1} x_{2}
$$

Later we will see that the above results are very useful in analyzing the conditional normal distribution.

8.1.3 Projection matrices

An $n \times n$ matrix P is called a projection matrix if it is symmetric and idenpotent $\left(P^{2}=P\right)$.
P is a projection matrix if and only if there exists orthogonal matrix U such that

$$
P=U\left(\begin{array}{cc}
\mathbf{I}_{m} & 0 \\
0 & 0
\end{array}\right) U^{T}
$$

In this case $\operatorname{rank}(P)=m$.
Suppose that we can partition $U=\left[U_{1}, U_{2}\right]$, where $U_{1} \in \mathbb{R}^{n \times m}$ and $U_{2} \in \mathbb{R}^{n \times(n-m)}$. Then the above result implies that $P=U_{1} U_{1}^{T}$ and $P U_{1}=U_{1}$ and $P U_{2}=0$. This means that P project any vector in \mathbb{R}^{n} into the column space of U_{1} and is orthogonal to the column space of U_{2}. An interesting property is that $\operatorname{rank}(P)=\operatorname{Tr}(P)=m$.

Also, the matrix $\mathbf{I}_{n}-P$ is another projection matrix that projects any vector in \mathbb{R}^{n} to the space orthogonal to the column space of U_{1}. To see this, $P\left(\mathbf{I}_{n}-P\right)=P-P^{2}=0$.

8.2 Transforming multiple continuous random variables

In lecture 2, we have learned techniques to deal with transforming a single continuous random variable, i.e., investigating the distribution of $U=f(X)$ when we know the distribution of X. In this section, we will study a more general problem where we are transforming two or more (continuous) random variables.

We start with a simple case where we have two random variables X, Y and we know their joint PDF. Consider two random variables $U=f(X, Y)$ and $V=g(X, Y)$, where u, v are two known functions.

We now study the joint PDF of (U, V). By definition,

$$
\begin{aligned}
p_{U, V}(u, v) & =\frac{\partial^{2}}{\partial u \partial v} P(U \leq u, V \leq v) \\
& =\frac{\partial^{2}}{\partial u \partial v} P(f(X, Y) \leq u, g(X, Y) \leq v) \\
& =\frac{\partial^{2}}{\partial u \partial v} P((X, Y) \in R(u, v)) \\
& =\frac{\partial^{2}}{\partial u \partial v} \int_{R(u, v)} p_{X, Y}(x, y) d x d y
\end{aligned}
$$

where

$$
R(u, v)=\{(x, y): f(x, y) \leq u, g(x, y) \leq v\}
$$

In some simple scenarios, this region $R(u, v)$ has a nice form so that the probability $P((X, Y) \in R(u, v))$ has an analytical expression that we can take derivatives easily. However, this expression might still be hard to compute in general.

Example 1. Let $X, Y \sim$ Unif[0, 1]. Consider $U=\max \{X, Y\}, V=\min \{X, Y\}$. Note that there is an implicit constraint on $f_{U, V}$ that $f_{U, V}(u, v)=0$ if $v>u$. So we consider any pair $(u, v): v \leq u$. By a direct computation,

$$
\begin{aligned}
P(U \leq u, V \leq v) & =P(U \leq u)-P(U \leq u, V>v) \\
& =P(X \leq u, Y \leq u)-P(X \leq u, Y \leq u, X>v, Y>v) \\
& =P(X \leq u) P(Y \leq u)-P(v<X \leq u) P(v<Y \leq u) \\
& =u^{2}-(u-v)^{2}
\end{aligned}
$$

when $0 \leq v \leq u \leq 1$. Thus,

$$
p_{U, V}(u, v)=\frac{\partial^{2}}{\partial u \partial v} P(U \leq u, V \leq v)=2 I(0 \leq v \leq u \leq 1)
$$

Example 2. Consider $X, Y \sim \operatorname{Exp}(1)$ and let $U=X+Y$ and $V=\frac{X}{X+Y}$. Note that $(U, V) \in[0, \infty) \times[0,1]$. So we consider any $u \geq 0$ and $v \in[0,1]$. The joint CDF is

$$
\begin{aligned}
P(U \leq u, V \leq v) & =P(X+Y \leq u, X \leq v(X+Y)) \\
& =P\left(Y \leq u-X, Y \geq \frac{1-v}{v} X\right) \\
& =\mathbb{E}\left[I\left(Y \leq u-X, Y \geq \frac{1-v}{v} X\right)\right] \\
& =\mathbb{E}\left[\mathbb{E}\left[\left.I\left(Y \leq u-X, Y \geq \frac{1-v}{v} X\right) \right\rvert\, X\right]\right] \\
& =\mathbb{E}\left[P\left(Y \leq u-X, \left.Y \geq \frac{1-v}{v} X \right\rvert\, X\right)\right]
\end{aligned}
$$

Note that $I(E)$ is the indicator function such that it returns 1 if the event E is true and 0 otherwise; one
can easily see that $\mathbb{E}[I(E)]=P(E)$. Condition on X, the probability

$$
\begin{aligned}
P\left(Y \leq u-X, \left.Y \geq \frac{1-v}{v} X \right\rvert\, X\right) & =P\left(\left.\frac{1-v}{v} X \leq Y \leq u-X \right\rvert\, X\right) \\
& =\int_{y=\frac{1-v}{v} X}^{u-X} e^{-y} d y \\
& =e^{-\frac{1-v}{v} X}-e^{X-u}
\end{aligned}
$$

Thus, using the fact that $U \leq u, V \leq v \Rightarrow X \leq u v$, we have

$$
\begin{aligned}
P(U \leq u, V \leq v) & =\mathbb{E}\left[P\left(Y \leq u-X, \left.Y \geq \frac{1-v}{v} X \right\rvert\, X\right)\right] \\
& =\int_{0}^{u v}\left[e^{-\frac{1-v}{v} x}-e^{x-u}\right] e^{-x} d x \\
& =\int_{0}^{u v}\left[e^{-\frac{x}{v}}-e^{-u}\right] d x \\
& =v\left(1-e^{-u}-u e^{-u}\right)
\end{aligned}
$$

By taking the derivative, we obtain

$$
p_{U, V}(u, v)=u e^{-u} I(0 \leq v \leq 1)=\underbrace{u e^{-u}}_{p_{U}(u)} \cdot \underbrace{I(0 \leq v \leq 1)}_{p_{V}(v)} .
$$

Thus, we conclude that $U \sim \operatorname{Gamma}(2,1)$ and $V \sim \operatorname{Uni}[0,1]$ and $U \perp V$.

8.2.1 Jacobian method

The Jacobian method is an elegant approach for substituting variables (change of varibales) in an integration. Consider $x \in \mathbb{R}^{n}$ and $y \in \mathbb{R}^{n}$ and assume that there is a 1-1 and onto mapping $T: \mathbb{R}^{n} \rightarrow \mathbb{R}^{n}$ for almost all x such that $y=T(x)$. We define the Jacobian matrix

$$
J_{T}(x)=\left(\frac{\partial T(x)}{\partial x}\right)=\left(\frac{\partial y}{\partial x}\right)=\left(\begin{array}{cccc}
\frac{\partial y_{1}}{\partial x_{1}} & \frac{\partial y_{2}}{\partial x_{1}} & \cdots & \frac{\partial y_{n}}{\partial x_{1}} \\
\frac{\partial y_{1}}{\partial x_{2}} & \frac{\partial y_{2}}{\partial x_{2}} & \cdots & \frac{\partial y_{n}}{\partial x_{2}} \\
\vdots & \vdots & \cdots & \vdots \\
\frac{\partial y_{1}}{\partial x_{n}} & \frac{\partial y_{2}}{\partial x_{n}} & \cdots & \frac{\partial y_{n}}{\partial x_{n}}
\end{array}\right) \in \mathbb{R}^{n \times n}
$$

The Jacobian is the absolute value of the determinant of this matrix, i.e., $\left|\operatorname{det}\left(J_{T}(x)\right)\right|=\left|\left(\frac{\partial y}{\partial x}\right)\right|=\left|\frac{\partial y}{\partial x}\right|$.

Theorem 8.1 Assume that $y=T(x)$, where T is 1-1 and onto for almost all x and the Jacobian $\operatorname{det}\left(J_{T}(x)\right) \neq$ 0 for all x. Let $A, B \subset \mathbb{R}^{n}$ be two subsets such that $B=\{T(x): x \in A\}$. Let f be an integrable function. Then

$$
\int_{A} f(x) d x=\int_{B} f\left(T^{-1}(y)\right)\left|\frac{\partial x}{\partial y}\right| d y
$$

Under the same condition, suppose X is a random variable with a PDF $p_{X}(x)$ and $Y=T(X)$. Then the PDF of Y is

$$
p_{Y}(y)=p_{X}\left(T^{-1}(y)\right)\left|\frac{\partial x}{\partial y}\right|
$$

The Jacobian has a nice chain rule that if $z=S(y)$ and $y=T(x)$ such that S, T are both 1-1 and onto. Then

$$
\left|\frac{\partial z}{\partial x}\right|=\left|\frac{\partial z}{\partial y}\right|\left|\frac{\partial y}{\partial x}\right|
$$

Also, we have the inverse rule:

$$
\left|\frac{\partial y}{\partial x}\right|=\left|\frac{\partial x}{\partial y}\right|^{-1}
$$

Example: Gamma distributions. Consider X, Y are independently from Gamma distribution with parameter α, λ. Recall that the PDF of a Gamma (α, λ) is

$$
p(x)=\frac{\lambda^{\alpha}}{\Gamma(\alpha)} x^{\alpha-1} e^{-\lambda x} I(x \geq 0)
$$

Now we consider $U=X+Y$ and $W=\frac{X}{X+Y}$. In this case, the mapping $T(x, y)=(u, w)$ such that $T=\left(T_{1}, T_{2}\right)$ with $T_{1}(x, y)=x+y$ and $T_{2}(x, y)=\frac{x}{x+y}$. Thus, the inverse mapping $T^{-1}(u, w)=(x, y)$ will be $T_{1}^{-1}(u, w)=u w$ and $T_{2}^{-1}(u, w)=u-u w$. The Jacobian

$$
\begin{aligned}
\left|\frac{\partial(x, y)}{\partial(u, w)}\right| & =\left|\frac{\partial T^{-1}(u, w)}{\partial(u, w)}\right| \\
& =\left|\operatorname{det}\left(\left(\begin{array}{cc}
w & 1-w \\
u & -u
\end{array}\right)\right)\right| \\
& =u
\end{aligned}
$$

We already know the joint PDF $p_{X Y}(x, y)$ since they are independent Gamma. Thus,

$$
\begin{aligned}
p_{U W}(u, w) & =p_{X Y}\left(T_{1}^{-1}(u, w), T_{2}^{-1}(u, w)\right) u I(0 \leq w \leq 1, u \geq 0) \\
& =p_{X}\left(T_{1}^{-1}(u, w)\right) p_{Y}\left(T_{2}^{-1}(u, w)\right) u I(0 \leq w \leq 1, u \geq 0) \\
& =\frac{\lambda^{2 \alpha}}{\Gamma^{2}(\alpha)}(u w)^{\alpha-1} e^{-\lambda u w}(u-u w)^{\alpha-1} e^{-\lambda(u-u w)} u I(0 \leq w \leq 1, u \geq 0) \\
& =\frac{\lambda^{2 \alpha}}{\Gamma^{2}(\alpha)} u^{2 \alpha-1} e^{-\lambda u} I(u \geq 1) w^{\alpha-1}(1-w)^{\alpha-1} I(0 \leq w \leq 1) \\
& =p_{U}(u) p_{W}(w)
\end{aligned}
$$

such that $U \sim \operatorname{Gamma}(2 \alpha, \lambda)$ and $W \sim \operatorname{Beta}(\alpha, \alpha)$.
Example: Polar coordinate. A common reparametrization of two variable X, Y is via the polar coordinate R, Θ. Specifically, we choose $R=\sqrt{X^{2}+Y^{2}}$ and $\Theta \in[0,2 \pi]$ such that

$$
X=R \cos (\Theta), \quad Y=R \sin (\Theta)
$$

In this case, $T(x, y)=(r, \theta)$ is $1-1$ and onto for almost all points (x, y) except $(0,0)$ so we can still apply the Jacobian trick. You can easily work out that

$$
\left|\frac{\partial(x, y)}{\partial(r, \theta)}\right|=r
$$

so if we know the PDF of X, Y as $p_{X, Y}(x, y)$, then

$$
p_{R, \Theta}(r, \theta)=p_{X, Y}(r \cos (\theta), r \sin (\theta)) r
$$

If the joint PDF of (X, Y) is radial, i.e., $p_{X, Y}(x, y)=g\left(x^{2}+y^{2}\right)$, then $p_{R, \Theta}(r, \theta)=g\left(r^{2}\right) r$ so $R \perp \Theta$ and $\Theta \sim \operatorname{Uni}[0,2 \pi]$.

8.3 Random vector and covariance matrix

A random vector is a vector of random variables. Let $X \in \mathbb{R}^{n}$ be a random vector. We often express X as a column vector, i.e.,

$$
X=\left(\begin{array}{c}
X_{1} \\
X_{2} \\
\vdots \\
X_{n}
\end{array}\right)
$$

The expectation/expected value of X is the elementwise expectation:

$$
\mathbb{E}[X]=\left(\begin{array}{c}
\mathbb{E}\left[X_{1}\right] \\
\mathbb{E}\left[X_{2}\right] \\
\vdots \\
\mathbb{E}\left[X_{n}\right]
\end{array}\right)
$$

Similar to random variables, the expectation is an linear operation of random vectors. Namely, for two random vectors $X, Y \in \mathbb{R}^{n}$ and two real numbers a, b,

$$
\mathbb{E}[a X+b Y]=a \mathbb{E}[X]+b \mathbb{E}[Y]
$$

An important characteristic of a random vector is the variance-covariance matrix (often we just called it the covariance matrix):

$$
\begin{aligned}
\operatorname{Cov}(X) & =\mathbb{E}\left[(X-\mathbb{E}[X])(X-\mathbb{E}[X])^{T}\right] \\
& =\left(\begin{array}{ccccc}
\operatorname{Var}\left(X_{1}\right) & \operatorname{Cov}\left(X_{1}, X_{2}\right) & \operatorname{Cov}\left(X_{1}, X_{3}\right) & \cdots & \operatorname{Cov}\left(X_{1}, X_{n}\right) \\
\operatorname{Cov}\left(X_{2}, X_{1}\right) & \operatorname{Var}\left(X_{2}\right) & \operatorname{Cov}\left(X_{2}, X_{3}\right) & \cdots & \operatorname{Cov}\left(X_{2}, X_{n}\right) \\
\vdots & \vdots & \vdots & \cdots & \vdots \\
\operatorname{Cov}\left(X_{n}, X_{1}\right) & \operatorname{Cov}\left(X_{n}, X_{2}\right) & \operatorname{Cov}\left(X_{n}, X_{3}\right) & \cdots & \operatorname{Var}\left(X_{n}\right)
\end{array}\right) .
\end{aligned}
$$

Using the fact that $\operatorname{Var}\left(X_{i}\right)=\operatorname{Cov}\left(X_{i}, X_{i}\right)$, elements in the above matrix can be written as $\operatorname{Cov}(X)_{i j}=$ $\operatorname{Cov}\left(X_{i}, X_{j}\right)$.

Here are some nice properties of the covariance matrices.

- $\operatorname{Cov}(X)=\mathbb{E}\left[X X^{T}\right]-\mathbb{E}[X] \mathbb{E}[X]^{T}$
- For a matrix $A \in \mathbb{R}^{m \times n}$ and a vector $b \in \mathbb{R}^{m}$,

$$
\operatorname{Cov}(A X+b)=A \operatorname{Cov}(X) A^{T}
$$

- For a vector $a \in \mathbb{R}^{n}, \operatorname{Var}\left(a^{T} X\right)=a^{T} \operatorname{Cov}(X) a$.
- The covariance matrix is positive semi-definite (PSD).
- The covariance matrix is PD if the only vector $a \in \mathbb{R}^{n}$ such that $\operatorname{Var}\left(a^{T} X\right)=0$ is $a=0$.

The covariance matrix immediately implies some useful properties of the sample mean. Suppose X_{1}, \cdots, X_{n} are IID with mean u and variance σ^{2}. Then $\bar{X}_{n}=\frac{1}{n} \sum_{i=1}^{n} X_{i}=a^{T} X$, where $a_{j}=\frac{1}{n}$. As a result,

$$
\operatorname{Var}\left(\bar{X}_{n}\right)=a^{T} \operatorname{Cov}(X) a=\frac{1}{n^{2}} \sum_{i=1}^{n} \operatorname{Var}\left(X_{i}\right)=\frac{\sigma^{2}}{n}
$$

Now, suppose that the random variables are not independent but instead, they have correlation $\operatorname{Cov}\left(X_{i}, X_{j}\right)=$ ρ when $i \neq j$. Then the variance of the sample mean will be

$$
\begin{aligned}
\operatorname{Var}\left(\bar{X}_{n}\right) & =a^{T} \operatorname{Cov}(X) a \\
& =\left(\begin{array}{llll}
\frac{1}{n} & \frac{1}{n} & \cdots & \frac{1}{n}
\end{array}\right)\left(\begin{array}{cccc}
\sigma^{2} & \sigma^{2} \rho & \cdots & \sigma^{2} \rho \\
\sigma^{2} \rho & \sigma^{2} & \cdots & \sigma^{2} \rho \\
\vdots & \vdots & \cdots & \vdots \\
\sigma^{2} \rho & \sigma^{2} \rho & \cdots & \sigma^{2}
\end{array}\right)\left(\begin{array}{c}
\frac{1}{n} \\
\frac{1}{n} \\
\vdots \\
\frac{1}{n}
\end{array}\right) \\
& =\frac{1}{n^{2}}\left(n \sigma^{2}+n(n-1) \sigma^{2} \rho\right) \\
& =\frac{\sigma^{2}}{n}(1+(n-1) \rho)
\end{aligned}
$$

8.4 The multivariate normal distribution

Recall that for a standard Normal random variable Z_{1}, its PDF is

$$
p_{0}(z)=\frac{1}{\sqrt{2 \pi}} e^{-z^{2} / 2}
$$

Thus, for iid random variables Z_{1}, \cdots, Z_{n}, we can represent them as a random vector Z and its joint PDF will be

$$
p\left(z_{1}, \cdots, z_{n}\right)=\prod_{i=1}^{n} \frac{1}{\sqrt{2 \pi}} e^{-z_{i}^{2} / 2}=\left(\frac{1}{2 \pi}\right)^{n / 2} e^{-\frac{1}{2} \sum_{i=1}^{n} z_{i}^{2}}=\left(\frac{1}{2 \pi}\right)^{n / 2} e^{-\frac{1}{2} z^{T} z}
$$

Now we consider a linear transformation that $A \in \mathbb{R}^{n \times n}$ is an invertible square matrix and $\mu \in \mathbb{R}^{n}$ is a vector and $X=A Z+\mu$. Since Z is a random vector, X will also be a random vector. Using the fact that $Z=A^{-1}(X-\mu)$ and the Jacobian method, you can show that the PDF of X is

$$
\begin{aligned}
p\left(x_{1}, \cdots, x_{n}\right) & =\left(\frac{1}{2 \pi}\right)^{n / 2} e^{-\frac{1}{2}(x-\mu)^{T}\left[A^{-1}\right]^{T} A^{-1}(x-\mu)} \frac{1}{\sqrt{\operatorname{det}\left(A A^{T}\right)}} \\
& =\left(\frac{1}{2 \pi}\right)^{n / 2} \frac{1}{\sqrt{\operatorname{det}\left(A A^{T}\right)}} e^{-\frac{1}{2}(x-\mu)^{T}\left[A A^{T}\right]^{-1}(x-\mu)} \\
& =\left(\frac{1}{2 \pi}\right)^{n / 2} \frac{1}{\sqrt{\operatorname{det}(\Sigma)}} e^{-\frac{1}{2}(x-\mu)^{T} \Sigma^{-1}(x-\mu)}
\end{aligned}
$$

where $\Sigma=\operatorname{Cov}(X)=A A^{T}$ is the covariance matrix of X. Note that $\mathbb{E}[X]=\mu$ by construction. In this case, we will say that X is from a multivariate normal distribution with a mean (vector) μ and a covariance $\operatorname{matrix} \Sigma$. For abbreviation, we often write $X \sim N_{n}(\mu, \Sigma)$.

Linearity. The linear transformation of multivariate normal is still normal. Namely,

$$
Y=C X+b \sim N_{n}\left(C \mu+b, C \Sigma C^{T}\right)
$$

for non-singular matrix $C \in \mathbb{R}^{n \times n}$ and any vector $b \in \mathbb{R}^{n}$. Also, for a vector $a \in \mathbb{R}^{n}$,

$$
a^{T} X \sim N\left(a^{T} \mu, a^{T} \Sigma a\right)
$$

Independence \Leftrightarrow uncorrelation. You can easily verify that if X follows a multivariate normal, then

$$
X_{i} \perp X_{j} \Leftrightarrow \operatorname{Cov}\left(X_{i}, X_{j}\right) \equiv \Sigma_{i j}=0
$$

Namely, pairwise independent is the same as being uncorrelated.
Marginal is normal. Suppose we partition X into two blocks

$$
X=\binom{X_{1}}{X_{2}}
$$

where $X_{1} \in \mathbb{R}^{n_{1}}$ and $X_{2} \in \mathbb{R}^{n_{2}}$. Let μ_{1}, μ_{2} be the mean vector correspond to each of the block and $\Sigma=\left(\begin{array}{ll}\Sigma_{11} & \Sigma_{12} \\ \Sigma_{21} & \Sigma_{22}\end{array}\right)$. Then you can easily verify that

$$
W_{1} \sim N_{n_{1}}\left(\mu_{1}, \Sigma_{11}\right), \quad W_{2} \sim N_{n_{2}}\left(\mu_{2}, \Sigma_{22}\right)
$$

so the marginals of the random vector are also multivariate normals.
Conditional is normal. Following the partition in the marginal case, the conditional distribution of $X_{1} \mid X_{2}$ is

$$
X_{1} \mid X_{2} \sim N_{n_{1}}\left(\mu_{1}+\Sigma_{12} \Sigma_{22}^{-1}\left(X_{2}-\mu_{2}\right), \Sigma_{11,2}\right)
$$

where $\Sigma_{11,2}=\Sigma_{11}-\Sigma_{12} \Sigma_{22}^{-1} \Sigma_{21}$. You can compare this to the partitioned of PD matrix in Section 8.1.2.
Regression is linear and covariance is constant. Suppose that we have bivariate normal random vector $\left(X_{1}, Y_{2}\right)$. Then the regression function (conditional mean) is

$$
\mathbb{E}\left[X_{1} \mid X_{2}\right]=\mu_{1}+\Sigma_{12} \Sigma_{22}^{-1}\left(X_{2}-\mu_{2}\right)
$$

and the conditional variance

$$
\operatorname{Var}\left(X_{1} \mid X_{2}\right)=\Sigma_{11}-\Sigma_{12} \Sigma_{22}^{-1} \Sigma_{21}
$$

where $\Sigma_{i j}=\operatorname{Cov}\left(X_{i}, X_{j}\right)$. This follows directly from the properties of conditional normals.

8.4.1 Chi-square distribution

Let $X=\left(X_{1}, \cdots, X_{n}\right)^{T}$ be a multivariate normal vector with mean 0 and identity covariance matrix. Then the random variable

$$
W_{n}=\sum_{i=1}^{n} X_{i}^{2}=X^{T} X=\|X\|^{2}
$$

has a distribution called the χ^{2} distribution with a degree of freedom n. In this case, we write $W_{n} \sim \chi_{n}^{2}$. The χ_{n}^{2} is the same as $\Gamma\left(\frac{n}{2}, \frac{1}{2}\right)$ and $\mathbb{E}\left(W_{n}\right)=n$ and $\operatorname{Var}\left(W_{n}\right)=2 n$.

Normalizing a Gaussian vector. Suppose a random vector $Y \sim N(\mu, \Sigma)$, then

$$
Z=\Sigma^{-\frac{1}{2}}(Y-\mu) \sim N\left(0, \mathbf{I}_{n}\right)
$$

so

$$
Z^{T} Z=(Y-\mu)^{T} \Sigma^{-1}(Y-\mu) \sim \chi_{n}^{2}
$$

Projection property. Here is an interesting property of a projection matrix. Lete $X \sim N\left(\mu, \mathbf{I}_{n}\right)$ be a multivariate normal vector in \mathbb{R}^{n}. Let $P \in \mathbb{R}^{n \times n}$ be a projection matrix with $\operatorname{rank}(P)=\operatorname{Tr}(P)=m<n$. Then

$$
(X-\mu)^{T} P(X-\mu) \sim \chi_{m}^{2}
$$

You can prove the above result using the decomposition in Section 8.1.3.
IID normals. Suppose $X_{1}, \cdots, X_{n} \sim N\left(\mu, \sigma^{2}\right)$ form an IID random sample. Let $\bar{X}_{n}=\frac{1}{n} \sum_{i=1}^{n} X_{i}$ be the sample mean and $S_{n}^{2}=\frac{1}{n-1} \sum_{i=1}^{n}\left(X_{i}-\bar{X}_{n}\right)^{2}$ be the sample variance. Then we have the following results:

- \bar{X}_{n} and S_{n}^{2} are independent.
- $\bar{X}_{n} \sim N\left(\mu, \sigma^{2} / n\right)$.
- $(n-1) \frac{S_{n}^{2}}{\sigma^{2}} \sim \chi_{n-1}^{2}$.

The above results are based on the following insight. Let $X=\left(X_{1}, \cdots, X_{n}\right)^{T}$ be a multivariate normal formed by the IID elements. Let $e_{n}=\frac{1}{\sqrt{n}}(1,1, \cdots, 1)^{T}$ be a unit vector. Define two projection matrices $P=e_{n} e_{n}^{T}$ and $Q=\mathbf{I}_{n}-e_{n} e_{n}^{T}$. One can easily see that $P Q=Q P=0$ so the two projection matrices are orthogonal. This, together with the fact that $\operatorname{Cov}(X)=\sigma^{2} \mathbf{I}_{n}$, implies that $P X$ and $Q X$ are independent. Moreover, one can easily see that \bar{X}_{n} is a function of $P X$ and S_{n}^{2} is a function of $Q X$ so they are independent. The last assertion is based on the fact that $S_{n}^{2}=\frac{1}{n-1}[Q X]^{T} Q X$.

