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Generalized additive models

Consider a linear regression problem:

Yi = β0 + β1xi1 + β2xi2 + εi ,

where e1, . . . , en
iid∼ N(0, σ2).

* Diagnostics (residual plots, added variable plots) might
indicate poor fit of the basic model above.

* Remedial measures might include transforming the response,
transforming one or both predictors, or both.

* One also might consider adding quadratic terms and/or an
interaction term.

* Note: we only consider transforming continuous predictors!
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When considering a transformation of one predictor, an added
variable plot can suggest a transformation (e.g. log(x), 1/x) that
might work if the other predictor is “correctly” specified.

In general, a transformation is given by a function x∗ = g(x). Say
we decide that xi1 should be log-transformed and the reciprocal of
xi2 should be used. Then the resulting model is

Yi = β0 + β1 log(xi1) + β2/xi2 + εi

= β0 + gβ1(xi1) + gβ2(xi2) + εi ,

where gβ1(x) and gβ2(x) are two functions specified by β1 and β2.
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Here we are specifying forms for g1(x |β1) and g2(x |β2) based on
exploratory data analysis, but we could from the outset specify
models for g1(x |θ1) and g2(x |θ2) that are rich enough to capture
interesting and predictively useful aspects of how the predictors
affect the response and estimate these functions from the data.

One example of this is through a basis expansion; for the jth
predictor the transformation is:

gj(x) =

Kj∑
k=1

θjkψjk(x),

where {ψjk(·)}Kj

k=1 are B-spline basis functions, or sines/cosines,
etc. This approach has gained more favor from Bayesians, but is
not the approach taken in SAS PROC GAM. PROC GAM makes
use of cubic smoothing splines.

This is an example of “nonparametric regression,” which ironically
connotes the inclusion of lots of parameters rather than fewer.
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Smoothing spline

For simple bivariate regression data {(xi , yi )}ni=1, a cubic spline
smoother g(x) minimizes

n∑
i=1

(yi − g(xi ))2 + λ

∫ ∞
−∞

g ′′(x)2dx .

Good fit is achieved by minimizing the sum of squares∑n
i=1(yi − g(xi ))2. The

∫∞
−∞ g ′′(x)2dx term measures how wiggly

g(x) is and λ ≥ 0 is how much we will penalize g(x) for being
wiggly.

A spline trades off between goodness of fit and wiggliness.

Although not obvious, the solution to this minimization is a cubic
spline: a piecewise cubic polynomial with the pieces joined at the
unique xi values.
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Choosing λ

Hastie and Tibshirani (1986, 1990) point out that the meaning of
λ depends on the units xi is measured in, but that λ can be picked
to yield an “effective degrees of freedom” df or an “effective
number of parameters” being used in g(x). Then the complexity
of g(x) is equivalent to (df − 1)-degree polynomial, but with the
coefficients “spread out” more yielding a more flexible function
that fits data better.

Alternatively, λ can be picked through cross validation, by
minimizing

CV (λ) =
n∑

i=1

(yi − g−iλ (xi ))2.

Both options are available in SAS.
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Generalized additive model

We have {(xi , yi )}ni=1, where y1, . . . , yn are normal, Bernoulli, or
Poisson. The generalized additive model (GAM) is given by

h{E (Yi )} = β0 + g1(xi1) + · · ·+ gk(xik),

for p predictor variables. Yi is a member of an exponential family
such as binomial, Poisson, normal, etc. h is a link function.

Each of g1(x), . . . , gp(x) are modeled via cubic smoothing splines,
each with their own smoothness parameters λ1, . . . , λp either
specified as df1, . . . , dfp or estimated through cross-validation. The
model is fit through “backfitting.” See Hastie and Tibshirani
(1990) or the SAS documentation for details.
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PROC GAM in SAS

SAS actually fits the model

h{E (Yi )} = β0 + β1xi1 + g̃1(xi1)︸ ︷︷ ︸
g1(xi1)

+ · · ·+ βkxik + g̃k(xik)︸ ︷︷ ︸
gk (xik )

,

where g̃1(·), . . . , g̃k(·) have the linear part detrended.

SAS provides plots of the g̃1(·), . . . , g̃k(·) as well as tests
H0 : g̃j(·) = 0 for j = 1, . . . , k. These tests are that a
transformation is not required for each variable, i.e. linear is okay.

Unfortunately, if we reject H0 : g̃j(·) = 0, the best plot to look at is
of gj(x) = βjx + g̃j(x) versus x spanning the range of x1j , . . . , xnj .
This is provided in the R package GAM (also in DPpcakge for R, a
Bayesian version), but not from SAS.
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Satellite counts Yi

Let’s fit a GAM to the crab mating data:

proc gam plots(unpack)=components(clm) data=crabs;

class spine color;

model satell=param(color) spline(weight) / dist=poisson;

run;

This fits the model
Yi ∼ Pois(µi ),

log(µi ) = β0+β1I{ci = 1}+β2I{ci = 2}+β3I{ci = 3}+β4wti+g4(wti ).
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SAS output

Output:

The GAM Procedure

Dependent Variable: satell

Regression Model Component(s): color

Smoothing Model Component(s): spline(weight)

Summary of Input Data Set

Number of Observations 173

Number of Missing Observations 0

Distribution Poisson

Link Function Log

Class Level Information

Class Levels Values

color 4 1, 2, 3, 4

Iteration Summary and Fit Statistics

Number of local scoring iterations 6

Local scoring convergence criterion 3.011103E-11

Final Number of Backfitting Iterations 1

Final Backfitting Criterion 2.286359E-10

The Deviance of the Final Estimate 532.81821791
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SAS parameter estimates

Regression Model Analysis

Parameter Estimates

Parameter Standard

Parameter Estimate Error t Value Pr > |t|

Intercept -0.50255 0.23759 -2.12 0.0359

color 1 0.36148 0.20850 1.73 0.0848

color 2 0.21891 0.16261 1.35 0.1801

color 3 -0.01158 0.18063 -0.06 0.9490

color 4 0 . . .

Linear(weight) 0.56218 0.07894 7.12 <.0001

Smoothing Model Analysis

Analysis of Deviance

Sum of

Source DF Squares Chi-Square Pr > ChiSq

Spline(weight) 3.00000 18.986722 18.9867 0.0003
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The Analysis of Deviance table gives a χ2-test from comparing the
deviance between the full model and the model with this variable
dropped: here the model with color (categorical) plus only a linear
effect in weight. We see that weight is significantly nonlinear at
the 5% level. The default df = 3 corresponds to a smoothing
spline with the complexity of a cubic polynomial.

The following plot has the estimated smoothing spline function
with the linear effect subtracted out. The plot includes a 95%
confidence band for the whole curve. We visually inspect where
this band does not include zero to get an idea of where significant
nonlinearity occurs. This plot can suggest simpler transformations
of predictor variables than use of the full-blown smoothing spline:
here maybe a quadratic?
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The band shows a pronounced deviation from linearity for weight.
The plot spans the range of weight values in the data set and
becomes highly variable at the ends. Do you think extrapolation is
a good idea using GAMs?

Note: You can get predicted values out of SAS with CIs. Just
stick to representative values.
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PROC TRANSREG for normal data

PROC GAM handles Poisson, Bernoulli, normal, and gamma data.
If you only have normal data, PROC TRANSREG will fit a very
general transformation model, for example

h(Yi ) = β0 + g1(xi1) + g2(xi2) + εi ,

and provide estimates of h(·), g1(·), and g2(·).

h(·) can simply be the Box-Cox family, indexed by λ, or a very
general spline function.
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Electrical components

* Consider time-to-failure in minutes of n = 50 electrical
components.

* Each component was manufactured using a ratio of two types
of materials; this ratio was fixed at 0.1, 0.2, 0.3, 0.4, and 0.5.

* Ten components were observed to fail at each of these
manufacturing ratios in a designed experiment.

* It is of interest to model the failure-time as a function of the
ratio, to determine if a significant relationship exists, and if so
to describe the relationship simply.
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SAS code: data & plot

data elec;

input ratio time @@;

datalines;

0.5 34.9 0.5 9.3 0.5 6.0 0.5 3.4 0.5 14.9

0.5 9.0 0.5 19.9 0.5 2.3 0.5 4.1 0.5 25.0

0.4 16.9 0.4 11.3 0.4 25.4 0.4 10.7 0.4 24.1

0.4 3.7 0.4 7.2 0.4 18.9 0.4 2.2 0.4 8.4

0.3 54.7 0.3 13.4 0.3 29.3 0.3 28.9 0.3 21.1

0.3 35.5 0.3 15.0 0.3 4.6 0.3 15.1 0.3 8.7

0.2 9.3 0.2 37.6 0.2 21.0 0.2 143.5 0.2 21.8

0.2 50.5 0.2 40.4 0.2 63.1 0.2 41.1 0.2 16.5

0.1 373.0 0.1 584.0 0.1 1080.1 0.1 300.8 0.1 130.8

0.1 280.2 0.1 679.2 0.1 501.6 0.1 1134.3 0.1 562.6

;

ods pdf; ods graphics on;

proc sgscatter; plot time*ratio; run;

ods graphics off; ods pdf close;
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SAS code: fit h(Yi ) = β0 + g1(xi1) + εi

ods pdf; ods graphics on;

proc transreg data=elec solve ss2 plots=(transformation obp residuals);

model spline(time) = spline(ratio); run;

ods graphics off; ods pdf close;
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What to do?

* The “best” fitted transformations look like log or square roots
for both time and ratio.

* The log is also suggested by Box-Cox for time (not shown).
Code: model boxcox(time) = spline(ratio)

* Refit the model with these simple functions:

* model log(time) = log(ratio)
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GAM in R

The package gam was written by Trevor Hastie (one of the
inventors of GAM) and (in your instructor’s opinion) is easier to
use and gives nicer output that SAS PROC GAM.

Just as in PROC GAM, you tell the function gam which predictors
to consider a transformation for and which to leave alone. Note
that it does not make sense to consider a transformation of a
categorical predictor.

The gam function gives plots of the full transformation gj(·), not
just the “wiggly” part g̃j(·).
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O-ring data

Motivation: explosion of USA Space Shuttle Challenger on
January 28, 1986.

Rogers commission concluded that the Challenger accident
was caused by gas leak through the 6 o-ring joints of the
shuttle.

Dalal, Fowlkes & Hoadley (1989) looked at number distressed
o-rings (among 6) versus launch temperature (Temperture)
and pressure (Pressure) for 23 previous shuttle flights,
launched at temperatures between 53F and 81F.

27 / 30



O-ring variables

Data frame with 138 observations on the following 4 variables.

ThermalDistress: a numeric vector indicating wether the
o-ring experienced thermal distress.

Temperature: a numeric vector giving the launch temperature
(degrees F).

Pressure: a numeric vector giving the leak-check pressure
(psi).

Flight: a numeric vector giving the temporal order of flight.

Dalal, S.R., Fowlkes, E.B., and Hoadley, B. (1989). Risk analysis
of space shuttle : Pre-Challenger prediction of failure. Journal of
the American Statistical Association, 84, 945-957.
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Analysis in R

library(DPpackage); library(gam)

data(orings)

?orings

plot(orings) # note that pressure only has three values!

fit=gam(ThermalDistress~s(Temperature)+Pressure+s(Flight),

family=binomial(link=logit),data=orings)

par(mfrow=c(2,2))

plot(fit,se=TRUE)

summary(fit)

This fits the model

logit(πi ) = β0 + β1Ti + β2Pi + β3Fi + g̃1(Ti ) + g̃3(Fi ).
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More R examples

# example with linear log-odds

# parametric part significant, nonparametric part not significant

x=rnorm(1000,0,2); p=exp(x)/(1+exp(x)); y=rbinom(1000,1,p)

plot(x,y)

fit=gam(y~s(x),family=binomial(link=logit))

plot(fit,se=TRUE)

summary(fit)

fit$coef

# example with quadratic log-odds

# parametric part not significant, nonparametric part significant

p=exp(x^2)/(1+exp(x^2)); y=rbinom(1000,1,p)

plot(x,y)

fit=gam(y~s(x),family=binomial(link=logit))

plot(fit,se=TRUE)

summary(fit)
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