


/ T

Pattern Description

Behavioral Design pattern, aka Objects for States, used to
represent object state and its behavior.

Used to model the dynamic nature of a system.

It is the sequences of states an object goes through in response
to events during its lifetime.

States of objects are a period of time which the object satisfies a
condition, performs an activity or waits for an event.

Allows objects to alter behavior at runtime when their internal
state changes.

Provides an efficient and clean way to modify an object’s State
and its behavior.

State machines are used to model behavior of any class, use case
or an entire system using a state diagram.



// e
Related Patterns

Often is a Singleton

Similar to the Strategy implementation,
e Builds upon Strategy but differs in intent
e Strategy is a bind-once pattern, State is dynamic

Almost identical in structure to the Bridge



Generic Example

Client

L

rA
|
I

Contaxt currant State
r = — —trgohext() in context
l +setStatelin Stata) +gohlext{in context)
| AN
I
current.goMext{this); Ij StateOne StateTwo StateThree
HgoNaxt{in context)

context satStateStataTwo);




Define Context Class

Define the context class that is used to interface with
the State class.

Context class points to the current state

The state is changed by changing what state the
Context state points to.

Context

HgoNext()
+setState(in State)




Define Base and Concrete Classes

* Next define the State abstract base class and the
derived classes.

* Each derived class represents the “states” and contains
the behavior that pertains to that “state”.

State

+goNext(in context)

JAN

StateOne StateTwo StateThree

++goNext(in context)




o

My Implementation — Control a Character

Implement a Game Control pad.
Client has not provided input yet, the Context is
“Waiting for Input”.
Client presses a button and interacts with the Context class instructing
it to change states.

Context Class changes the state of our Character to reflect the state we
would like to change to.

o Up

e Down

o Left

e Right

e Power Up - Center button is a “Power Up” state.

Each state performs its behavior and will return the Character back to
its default state of “Waiting for Input”.

What “Character” should we use.



Implementation cont’d

e Pacman is in a sad “state” of affairs

* Lets use a State Machine to add direction to his life.

mn PACMAN TLRNS 30

THIRTY YEARS SAME THING
DAY AFTER DAY.
EVER FEEL LIKE YOU ARE
STUCK IN A MAZE GOING
NOWHERE IN LIFE?

© 5/22/10 BEARTOONS.COM BEARMANCARTOONS@YAHOO.COM



UML Class Diagram







P
Cich st itk i hmiif it iih i A At h At A AR i s £ e h T~

Class: ControlCharacter

public class ControlCharacter {
public static wvoid main(3tring[] args) {
CharacterStateContext myFPacMan = new CharacterStateContext();

Svstem.out.printlo("\nWelcome to Facman's life.™);
myPacHan.writeDirection() :

while (true) {
String inputMovement = Systenm.console () .readline ("Flease input direction for wyour 1life: "):;

if (inputMovement.eguals ("1") ) {
myPacHan.setState (new DirectionLeft()):

¥

else if (inputMovement.equals("r")) {
myPacHan.setState (new DirectionBight()):

}

else if(inputMovement.equals("a")){
myPacHan.setState (new DirectionUp()):

}

elze if(inputMovement.egquals ("d")){
myPacHan.setState (new DirectionDown()):

¥

elze if (inputMovement.equals("p")){
myFPacHan.setS5tate (new PowerUp()):

}
else if (inputMovement.egquals("e™)){
break:
}
else {
Svstem.out.println("\nUnkwon Command, stop drinking and clear your head.‘\n"):
}

myPacHan.writeDirection() ;



Class: CharacterStateContext

pukblic class CharacterStateContext
private CharacterMovement myState;

pukblic CharacterStateConteXt|()

zsetState (new WaitingDirection()):

pukblic wold setState (CharacterMovement newState)
thisz.myState = newState:;

pukblic wvolid writeDirection|()
thiz.myState.writeDirection(this);



Interface and State classes

* Note: More subclasses defined in the code files

interface CharacterMovement {
rukblic wvoid writeDirection (CharacterStateContext stateContext):

class WaitingDirection implements CharacterMovement {

rubklic void writeDirection (Characteritatelontext stateContext) {
Svasten.out.println("\nHelp PacMan find direction in life.%n 1-Left, r-ERight,

class Directionleft implements CharacterMovement

rukblic wvoid writeDirection (CharacterStatelontext statelContext) i
Svstenm.out.println("\nMoved one space LEFT, make another Season of TV.\n"):
stateContext.zetitate (new WeitingDirection()):

h

h
class DirectionBRight implements CharacterMovement {

rublic wvoid writeDirection (CharacterStatelontext statelContext) {

Svsten.out.println("\nMoved one space RIGHT, do movies for spare 225.%n")

stateContext.setitate (new WaitingDirection()):



g

Output from the Code

Lelcome to Pacman®s life.

Help PacMan find direction inm life.
l-Left,. »Right,., u—-Up. d-Down. p—PowerlUp?

Please input divection for yvour life:z 1

Moved one space LEFT. make another» Season of TU.
Please input direction for wvour life: »

Moved one s=pace RIGHT. do mowvies for spare S55.
Please input divrection for your life:z wn

Moved UP,. go to Uegas and trash hotel »ooms?.

Please input direction for wvour life: d

Moved DOWM,., lose hit TU show and goddesses.
Please input direction for wvour life: p
Chax»lie Sheen POWER UPY* Winning?

Please input direction for vour life: g
Unkwon Command,., stop derinking and clear» vgour
Help PacMan find direction in life.

l-Left,., »—Right. u—-Up,., d-Down. p—FPowerlUp?

Please input direction for your life: e




State Machines Give our Objects Direction in Life

* Winning!




Sources

Booch, Grady, James Rumbaugh, and Ivar Jacobson. The Unified
Modeling Language User Guide. Upper Saddle River, NJ: Addison-
Wesley, 2005. Print.

"State Design Pattern.” Design Patterns and Refactoring. Web. o5 Mar.
2011. <http://sourcemaking.com/design_patterns/state>.

"State Pattern.” Wikipedia, the Free Encyclopedia. Web. o5 Mar. 2011.
<http://en.wikipedia.org/wiki/State_pattern>.



