
Thomas Vecchio

Pattern Description
 Behavioral Design pattern, aka Objects for States, used to

represent object state and its behavior.
 Used to model the dynamic nature of a system.
 It is the sequences of states an object goes through in response

to events during its lifetime.
 States of objects are a period of time which the object satisfies a

condition, performs an activity or waits for an event.
 Allows objects to alter behavior at runtime when their internal

state changes.
 Provides an efficient and clean way to modify an object’s State

and its behavior.
 State machines are used to model behavior of any class, use case

or an entire system using a state diagram.

Related Patterns
 Often is a Singleton

 Similar to the Strategy implementation,

 Builds upon Strategy but differs in intent

 Strategy is a bind-once pattern, State is dynamic

 Almost identical in structure to the Bridge

Generic Example

Define Context Class
 Define the context class that is used to interface with

the State class.

 Context class points to the current state

 The state is changed by changing what state the
Context state points to.

Define Base and Concrete Classes
 Next define the State abstract base class and the

derived classes.

 Each derived class represents the “states” and contains
the behavior that pertains to that “state”.

My Implementation – Control a Character
 Implement a Game Control pad.
 Client has not provided input yet, the Context is

“Waiting for Input”.

 Client presses a button and interacts with the Context class instructing
it to change states.

 Context Class changes the state of our Character to reflect the state we
would like to change to.
 Up
 Down
 Left
 Right
 Power Up - Center button is a “Power Up” state.

 Each state performs its behavior and will return the Character back to
its default state of “Waiting for Input”.

 What “Character” should we use.

Implementation cont’d
 Pacman is in a sad “state” of affairs

 Lets use a State Machine to add direction to his life.

UML Class Diagram

State Diagram

Class: ControlCharacter

Class: CharacterStateContext

Interface and State classes
 Note: More subclasses defined in the code files

Output from the Code

State Machines Give our Objects Direction in Life

 Winning!

Sources
 Booch, Grady, James Rumbaugh, and Ivar Jacobson. The Unified

Modeling Language User Guide. Upper Saddle River, NJ: Addison-
Wesley, 2005. Print.

 "State Design Pattern." Design Patterns and Refactoring. Web. 05 Mar.
2011. <http://sourcemaking.com/design_patterns/state>.

 "State Pattern." Wikipedia, the Free Encyclopedia. Web. 05 Mar. 2011.
<http://en.wikipedia.org/wiki/State_pattern>.

