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Abstract

The problem of parameter and state estimation of a class of nonlinear systems is
addressed. An adaptive identifier and observer are used to estimate the parameters
and the state variables simultaneously. The proposed method is derived using a new
formulation. Uncertainty sets are defined for the parameters and a set of auxiliary
variables for the state variables. An algorithm is developed to update these sets
using the available information. The algorithm proposed guarantees the convergence
of parameters and the state variables to their true value. In addition to its application
in difficult estimation problems, the algorithm has also been adapted to handle fault
detection problems.

The technique of estimation is applied to two broad classes of systems. The first
involves a class of continuous time nonlinear systems subject to bounded unknown
exogenous disturbance with constant parameters. Using the proposed set-based adap-
tive estimation, the parameters are updated only when an improvement in the pre-
cision of the parameter estimates can be guaranteed. The formulation provides ro-
bustness to parameter estimation error and bounded disturbance. The parameter
uncertainty set and the uncertainty associated with an auxiliary variable is updated
such that the set is guaranteed to contain the unknown true values.

The second class of system considered is a class of nonlinear systems with time-
varying parameters. Using a generalization of the set-based adaptive estimation tech-
nique proposed, the estimates of the parameters and state are updated to guarantee
convergence to a neighborhood of their true value. The algorithm proposed can also
be extended to detect the fault in the system, injected by drastic change in the
time-varying parameter values. To study the practical applicability of the developed
method, the estimation of state variables and time-varying parameters of salt in a
stirred tank process has been performed. The results of the experimental application
demonstrate the ability of the proposed techniques to estimate the state variables and
time-varying parameters of an uncertain practical system.
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Chapter 1

Introduction

1.1 Motivation

Effective monitoring of a process is possible only when accurate information on the

state variables and parameters of the process are available. Example of process state

variables are concentrations of the reacting species in a reactor, temperature and

molecular weight distribution in a polymerization process. These variables uniquely

define the states of the process and in many cases may directly/indirectly define the

final product quality. Rate of heat production in a reactor, overall heat coefficient in

jacketed reactors and specific growth rate in bioreactors are the examples of process

parameters. Information on the parameters of a process provides a better understand-

ing of the process dynamics and also allow for the development of an accurate and

representative models of process.

In practice, due to inadequacy of available sensors or operational limitations, some

of the essential process state variables cannot be measured frequently. In addition im-

portant process parameters may have to be estimated from available measurements.
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CHAPTER 1. INTRODUCTION 2

In such cases, estimates of the inaccessible, but essential, state variables and parame-

ters of the process are usually obtained by employing state and parameter estimation

methods. Many techniques exist for the estimation of states for a variety of classes

of dynamical systems that can achieve accurate state estimates in a variety of con-

ditions. However, these techniques rely on the knowledge of the system parameters.

Uncertainty in the model parameters for instance can generate (possibly large) bias in

the estimation of the unmeasured state variables. In cases where large uncertainties

of the process parameters exist, it is imperative to use techniques that are able to

combine state observation with parameter estimation.

The motivation for this research arises from the need to develop reliable state and

parameter estimation methods that are capable of providing continuous and accurate

estimates of inaccessible state variables and parameters of a nonlinear process in a

presence of (a) exogenous disturbance, (b) time-varying parameters and (c) random

fault occurrences in the system, all of which are frequently encountered in practice.

1.2 Organization of the Dissertation

Chapter 2: Chapter 2 is divided into two parts. First, the technical preliminar-

ies required to develop the parameter and state estimation methodology proposed in

Chapter 3 are introduced. The topics include Persistence of Excitation (PE), Lya-

punov Stability, Projection Algorithm, Observability, State Observers and Adaptive

identifiers. The second section contains a review of the past and recent works in the

field of parameter and state estimation of nonlinear systems.
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Chapter 3: In this chapter, we consider the problem of parameter identifica-

tion and state estimation of a continuous-time nonlinear system subject to exogenous

disturbance. The formulation is developed to provide robustness to parameter esti-

mation error and bounded disturbance. The uncertainty associated with an auxiliary

variable defined for state estimation is updated such that the set is guaranteed to

contain the unknown true values. A simulation example is used to illustrate the de-

veloped procedure and ascertain the theoretical results.

Chapter 4: In this chapter, the adaptive observer is used to solve the problem of

simultaneous state estimation and time-varying parameter estimation of a continuous-

time nonlinear system. Using a set-based adaptive estimation, the estimates for the

parameters and the state variables are updated to guarantee convergence. The algo-

rithm is proposed to detect a fault in the system triggered by a drastic change in the

time-varying parameters. A simulation example is used to illustrate the developed

procedure and ascertain the theoretical results.

Chapter 5: Based on the results in Chapter 4, the estimation technique is applied

to a mixing tank problem with two inlet streams of different concentration, mixing

to give a product steam of a particular concentration. The developed method is used

to estimate state and time varying parameters of the experimental process. The es-

timation routine employed guarantees convergence of state and parameters to their

true values.

Chapter 6: A summary of the design procedure given in Chapter 3 and 4 is
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provided, and conclusions are drawn based on the investigations of Chapters 3, 4 and

5. Suggestions for directions of future work are given.



Chapter 2

Literature Review

The proposed design methodology for simultaneous parameter and state estimation

of class of a nonlinear systems is largely developed from the concepts of linear system

theory, parameter identifiers, projection algorithm and adaptive observers. In this

chapter, these concepts are briefly introduced for the understanding of this thesis

work. The detailed discussion regarding the relationships between the concepts are

discussed in Chapter 3. This chapter also summarizes the recent and early works by

researchers active in robust adaptive estimation techniques that are of importance in

relation to this thesis..

2.1 Technical Preliminaries

2.1.1 Persistence of Excitation

The concept of persistent excitation (PE), when it arose in the 1960s in the context

of system identification. The term PE was coined to express the property of the

5



CHAPTER 2. LITERATURE REVIEW 6

input signal to the plant that guarantees that all the modes of the plant are excited.

In the late 1970s, it became clear that the concept of PE also played an important

role in the convergence of the controller parameters to their desired values. Recent

work on robustness of the adaptive systems in the presence of bounded disturbance,

time-varying parameters, and unmodeled dynamics of the plant revealed that the

concept of PE is also intimately related to speed of convergence on the parameters to

their final values, as well as the bounds on the magnitudes of the parameter errors.

In both linear and nonlinear adaptive systems, parameter convergence is related to

the satisfaction of persistence of excitation condition, which can be defined in the

continuous time as follows.

Definition 2.1.1. [Ioannau and Sun, 1996], [Khalil, 1992]: A vector function φ : is

said to be persistently exciting if there exist positive constants α1, α2 and T0 such that

α1I ≥
∫ t+T0

t
φ(τ)φ(τ)Tdτ ≥ α2I, ∀t ≥ 0 (2.1)

Although the matrix φ(τ)φ(τ)T may be singular at every instant τ , the PE con-

dition requires that φ span a entire nθ dimensional space as τ varies from t to t+ T0,

that is, integral of matrix φ(τ)φ(τ)T should attain full rank over any interval of some

length T0 or in other words, (2.1) requires that φ(t) varies such that the integral of the

matrix φ(τ)φ(τ)T is uniformly positive definite over any time interval [t, t+ T0]. The

properties of PE signals as well as various other equivalent definitions and interpreta-

tions are given in the literature [Sastry and Bodson, 1989; Eykhoff, 1974; Anderson,

1977; Narendra and Annaswamy, 1989].

In adaptive linear systems, the PE condition is converted to the sufficient richness

(SR) condition on the reference input signal. Necessary and sufficient conditions for
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parameter convergence are then developed in terms of the reference signal. A popular

result implies that exponential convergence is achieved whenever the reference signal

contains enough frequencies, i.e., whenever the spectral density of the signal is nonzero

in at least nθ points, where nθ is the number of unknown parameters in the adaptive

scheme. Otherwise, convergence to a characterizable subspace of the parameter space

is achieved [Boyd and Sastry, 1986].

Despite the fact that the theory of parameter convergence for linear systems is

well established, very few results are available for nonlinear systems. This is mainly

because the familiar tools in linear adaptive control cannot be directly extended to

nonlinear systems. In most of the available results, stability and performance prop-

erties are proved by assuming that a vector function, which depends on closed-loop

signals is persistently exciting. However, the means of verifying this PE condition a

priori for a given nonlinear system remains an open problem, in general. In [Lin and

Kanellakopoulos, 1998], a procedure is provided for determining a priori whether

or not a specific reference signal is sufficiently rich for a specific output feedback

nonlinear system, and hence whether or not parameter estimates will converge. Nev-

ertheless, the main result in [Lin and Kanellakopoulos, 1998] is that the presence

of nonlinearities in the plant usually reduces the SR condition requirement on the

reference signal and thus enhances parameter convergence.

2.1.2 Lyapunov Stability

Lyapunov stability analysis plays an important role in the stability analysis of dy-

namical systems described by ordinary differential equations. This technique is very
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useful and convenient in practice because the stability of the system can be deter-

mined directly from the differential equations describing the system. In other words,

the Lyapunov method enables one to determine the nature of stability of an equi-

librium point of the system without explicitly integrating the ordinary differential

equations. In addition, the Lyapunov analysis is applicable to continuous-time and

discrete-time systems, linear and nonlinear systems, time-invariant and time-varying

systems.

From the classical theory of mechanics, a vibratory system is stable if its total

energy is continually decreasing until an equilibrium state is reached. A physical

example that illustrates this concept is a simple pendulum in which the equations of

motion described by the forces acting on the system, vanish at steady state [Khalil,

2002]. The method of Lyapunov, is based on the following behavior. If the system

has an asymptotically stable equilibrium state, then the stored energy of the system

decays with increasing time until it finally reaches its minimum value at the equilib-

rium state. For a general system, however it is not simple to describe its dynamics

through an ”energy function”. To overcome this difficulty, the ”Lyapunov function”

which acts as a fictitious energy function, was introduced [Ogata, 1987].

The Lyapunov function, denoted by V (.), is a scalar, positive definite function.

It is generally assumed to be continuous with continuous partial derivatives. When

taken along the system’s trajectory, the time derivative of the Lyapunov function is

negative definite or negative semidefinite. These desired properties of the Lyapunov

function can be formally stated in the stability theorem described by [Khalil, 2002]

for a non-autonomous system.
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Theorem 2.1.1. [Khalil, 1992] Consider the non-autonomous system

ẋ(t) = f(t, x(t)) (2.2)

where f : [0,∞)×D → Rn is piecewise continuous in t and locally Lipschitz in x(t)

on [0,∞)×D, and D ⊂ Rn is a neighborhood of origin x(t) = 0. Let x(t) = 0 be an

equilibrium point for the system (2.2) at t = 0 and D = {x(t) ∈ Rn
∣∣∣ ||x(t)|| < r}.

Let V : [0,∞)×D → R be a continuously differentiable function such that

α1(||x(t)||) ≤ V (t, x(t)) ≤ α2(||x(t)||)

V̇ (t, x(t)) = ∂V

∂t
+ ∂V

∂x
f(t, x(t)) ≤ 0

∫ t+ε

t
V̇
(
τ, ϕ(τ, t, x(t))

)
dτ ≤ −λV (t, x(t)), 0 < λ < 1

∀t ≤ 0,∀x(t) ∈ D, for some ε > 0, where α1(.) and α2(.) are class K functions defined

in [0, r) and ϕ(τ, t, x(t)) is the solution of the system that starts at (t, x(t)). Then,

the origin is uniformly asymptotically stable.

If all the assumptions hold globally and α1(.) belongs to class K∞, then the origin is

globally uniformly asymptotically stable.

If

αj(r) = Kjr
ς , Kj > 0, ς > 0, j = 1, 2

then the origin is exponentially stable.

Now that the stability considerations based on Lyapunov theory are defined, the

next step consists of finding a convenient Lyapunov function to design the adaptive

updating laws, such that Theorem 2.1.1 is satisfied.
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2.1.3 Projection Algorithm

It is important to mention that, in general, the parameters that characterize a system,

have a physical meaning and are bounded above and/or below. For this reason, it is

desired to constrain the parameter estimates to lie inside a bounded set. An effective

method for keeping the parameter estimates within some defined bounds is to use a

projection algorithm.

In many practical problems where θ represents the parameters of a physical plant,

we may have some a priori knowledge as to where θ is located in Rn. This knowledge

usually comes in terms of upper or lower bounds for the elements of θ or in terms of

a well defined subset of Rn, etc. Using this a priori information, adaptive laws can

be designed that are constrained to search for estimates of θ in the set where θ is

located. Intuitively such a procedure may improve the convergence and reduce the

time taken in convergence when initial values of the parameter is chosen to be far

away from the unknown θ.

In [Krstic et al., 1995], a projection operator is defined for the general convex

parameter set Π. Consider a convex set Πε =
{
θ̂ ∈ Rp

∣∣∣P(θ̂) ≤ ε

}
, where the convex

function P : Rp → R is assumed to be smooth. The set Πε is the union of the set

Π =
{
θ̂ ∈ Rp

∣∣∣P(θ̂) ≤ 0
}

and a boundary around it. The interior of Π is denoted by

Π̊, and ∇θ̂P represents an outward normal vector at θ̂ ∈ ∂Π. The projection operator

is defined as follows

Proj(τ) =


τ, θ̂ ∈ Π̊ or ∇θ̂PT τ ≤ 0(
I − c(θ̂)Γ∇θ̂P∇θ̂P

T

∇θ̂PT∇θ̂P

)
τ, θ̂ ∈ Πε \ Π̊ and ∇θ̂PT τ > 0

(2.3)
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c(θ̂) = min
{

1, P(θ̂)
ε

}

Here, Γ belongs to G of all positive definite symmetric p × p matrices and τ is the

vector of nominal update laws that is, in the absence of the projection algorithm the

update law would be ˙̂
θ = τ .

The properties of the projection operator, Proj{τ, θ̂,Γ}, are given by

1. The mapping Proj : Rp×Πε×G → Rp is locally lipschitz in its arguments τ, θ̂,Γ.

2. Proj{τ}TΓ−1Proj{τ} ≤ τTΓ−1τ, ∀θ̂ ∈ Πε.

3. Let Γ(t), τ(t) be continuously differentiable and

θ̂ = Proj{τ}, θ̂(t)(0) ∈ Πε.

Then, on its domain of the definition, the solution θ̂(t) remains in Πε.

4. θ̃TΓ−1Proj{τ} ≤ θ̃TΓ−1τ, ∀θ̂ ∈ Πε, θ ∈ Π.

The adaptive laws with the projection modification given by (2.3) retain all the prop-

erties established in the absence of the projection and guarantee that θ̂ ∈ Πε ∀ t ≥

0 provided θ̂(0) = θ̂0 ∈ Πε and θ ∈ Πε.

2.1.4 Observability

Consider a continuous time linear system of the form

ẋ = Ax+Bu, (2.4a)

y = Cx, (2.4b)
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where x ∈ Rn is a state vector, u ∈ Rn is the control input, y ∈ Rn are the out-

puts, and matrices, A,B and C are of appropriate dimensions. Observability is a

property of dynamical system, first introduced by [Kalman, 1960]. This property is

meant to express the availability of measurement data with respect to one’s ability

to reconstruct or make inferences regarding the values of unmeasured state variables.

Definition 2.1.2. A linear continuous time system given by (2.4) is ”observable”

if for any initial state x0 and some final time t, the initial state x0 can be uniquely

determined by knowledge of the inputs u and outputs y for all time t.

In other words, observability is related to the problem of determining the value

of the state vector knowing only the output y over some interval of time. This is a

question of determining when the mapping of the state into the output associates a

unique state with every output that can occur. If a system is observable, then its

initial state can be determined. If the initial state is known, then values of the states

at any time can be calculated. Hence, observability implies that values of the state

at any time are fully reconstructible as long as the inputs and outputs are known

exactly.

Observability can be checked by a matrix rank test performed on the system’s

observability matrix.

Theorem 2.1.2. The continuous time LTI system (2.4) is observable if and only if

the observability matrix is defined by

O(C,A) , [CT , (CA)T , · · · , (CA(n−1))T ]T

is of rank n.
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The concept of observability is central to the design of state observers and state

estimators, which are discussed in the next section.

2.1.5 State Observers

Many nonlinear control design and adaptive system techniques assume state feedback;

this implies that all the state variables are measured and are available for feedback.

In practice, this is not always true, either for economic or technical reasons, such

as sensor failures. In most cases,only a subset of the state variables are available

for measurement. Intuitively, we want to use the measured states or outputs of the

system and extend the state-dependent techniques to output-dependent techniques

for system design. The idea is similar to what has been widely applied in LTI systems,

i.e., build an observer that yields asymptotic estimates of the system state based on

the output of the system, and then update the control/ adaptation law using on-line

estimation of the unmeasured states.

In control theory, a state observer is a dynamical system whose outputs are the

estimates of the state variables of the system [Ioannau and Sun, 1996]. The main

criterion that observers must satisfy is that the estimation error x̃(t) = (x(t)− x̂(t))

tends to zero in the limit as t → ∞ where x̂(t) is the estimate of the state x(t) at

time t. If the dynamics of the plant give rise to a linear time-invariant system, then

there exists an estimator of the form

x̂(t) = Ax̂(t) + L(y − ŷ) +Bu, (2.5a)

ŷ = Cx̂+Du, (2.5b)
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which guarantees convergence of the state estimation error to zero, provided that the

plant is observable. The observer given by Eqs. (2.5a) and (2.5b) is referred to as a

Luenberger observer [Ioannau and Sun, 1996]. The matrix L is designed so that the

matrix (A−LC) is stable, which ensures the stability of the observer’s error dynamics.

In fact, the eigenvalues of (A − LC), and, therefore, the rate of convergence of x̃(t)

to zero can be arbitrarily chosen by designing L appropriately. Therefore, it follows

that x̂(t)→ x(t) exponentially fast as t→∞, with a rate that depends on the matrix

(A−LC). This result is valid for any matrix A and any initial condition x(0) as long

as (C,A) is an observable pair.

The problem of combined state and parameters estimation is considered in this

thesis. The general structure of the adaptive observer is shown in the Figure 2.1.

Throughout, it is assumed that the plant (2.5) is observable. The observability of

Plant

Parameter Estimation

State Observer
x̂yu

θ̂

Figure 2.1: General structure of the adaptive Luenberger observer.

(C,A) is used to guarantee the existence of the state space representation of the plant

in the observer form that in turn enables the design of a stable adaptive observer.

Moreover, the observability of (C,A) establishes the PE condition from the properties
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of the input u.

2.1.6 Adaptive Identifiers

The adaptive identifiers represent a class of real time parameter estimation schemes

that are used to estimates (typically) slow time-varying parameters of dynamical sys-

tems. Under suitable conditions, these identifiers can guarantee convergence of the

estimated parameters to the unknown parameter values. The design of such scheme

includes the selection of plant input so that a certain signal vector, is PE. Adaptive

identifier designs are natural extension of observer design for linear time invariant

(LTI) systems with unknown parameters. When the parameters of the system are

unknown, an adaptive identifier is designed to estimate the parameters of the dynami-

cal system. This was first accomplished in [Kreisselmeier, 1977; Kudva and Narendra,

1973]. Traditionally, an adaptive identifiers consists of a state prediction subject to

parameter estimations and a parameter update law. Different representations have

been discussed in detail for LTI systems [Ioannau and Sun, 1996; Narendra and An-

naswamy, 1989; Sastry and Bodson, 1989]. Basic methods used to design adaptive

laws include Lyapunov-based design, gradient methods, and recursive least squares

methods. Subsequently alternative techniques have been generalized to the design

of adaptive observers for nonlinear systems, linear time-varying systems and systems

with disturbances. Adaptive laws only become parameter identifiers if the input signal

u has to be chosen to be sufficiently rich so that the regressor vector φ is PE.
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2.2 Parameter Estimation in Nonlinear Systems

Parameter estimation is the process of attributing a parametric description to an

object, a physical process or an event based on measurements that are obtained

from that object (or process, or event). The measurements are made available by a

sensory system. Parameter estimation plays an important role in many disciplines.

In a dynamical system, if all parameters and all state variables at an initial time

are known, a prediction can be made as to the future state of the system. This is

called the forward problem. Unfortunately, for most experimental systems of interest,

only a subset of state variables and parameters can be measured simultaneously,

making prediction of the future state of the system difficult or impossible. The

field of parameter and state estimation, also known as inverse problem theory, is

a mature discipline [Tarantola, 2005; Levy, 2008; Beck and Arnold, 1974] concerned

with determining unmeasured states and parameters in an experimental system. This

is important since measurement of some of the parameters and states may not be

possible, yet knowledge of these unmeasured quantities is necessary for predictions of

the future state of the system. This field is important across a broad range of scientific

disciplines, including geosciences, biosciences, nanoscience, and many others.

2.3 State Estimation

State Estimators are deterministic/stochastic dynamic systems that are used to recon-

struct the inaccessible but important process state variables, from available measured

variables. The problem of state estimation in chemical processes has been studied

extensively since the mid 1970s. In particular, the extended Kalman Filter (EKF)
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has been used widely for state estimation [Bastin and Dochain, 1991]. The design of

an EKF is based on the linear approximation of a nonlinear process model.

It is generally recognized that, the linearization at each time step can introduce

large errors and even cause divergence of the filter [Wan and Van Der Merwe, 2000].

These concerns are especially acute in complex industrial set-ups [Wilson et al., 1998].

Although higher order Kalman filters exist, they are more difficult to implement and

prone to instability. Due to the complex nonlinear behavior of many chemical and

biochemical processes, reliable state estimation should be based on nonlinear models

that can capture the complex nonlinear behavior. Furthermore, several studies have

found that linear state estimators are inadequate for many nonlinear processes [Valluri

and Soroush, 1996] and [Tatiraju and Soroush, 1997], motivating the use of nonlinear

observers/estimators.

The Luenberger observer is well established method of estimating the state vari-

ables of a known observable system using input-output data,that can be adjusted

to handle to estimate the state of a linear time-invariant system with unknown pa-

rameters as well. The structure of the observer as the adaptive laws for updating

its parameters has to be chosen judiciously for this purpose. This was accomplished

in [Carroll and Lindorff, 1973; Kudva and Narendra, 1973; Luders and Narendra,

1974; Narendra and Annaswamy, 1989]. In 1977, an alternate method of generating

the estimates of the states and the parameters of the plant was suggested [Kreis-

selmeier, 1977] where the adaptive algorithms ensured faster rate of convergence of

the parameters estimates under certain conditions.

When the system further depends on some unknown parameters, the observer de-

sign has to be modified so that both state variables and parameters can be estimated,
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leading to so-called adaptive observers. Various results in that respect can be found,

going back to ([Luders and Narendra, 1974], [Carroll and Lindorff, 1973] and [Kreis-

selmeier, 1977]) for linear systems, or ([Bastin and Gevers, 1988], [Marino, 1990]) for

nonlinear ones, but nonlinearities depending only on input/output.

Recently an alternative result on adaptive observation for linear time-varying sys-

tems [Zhang, 2002], an adaptive observer has been designed which guarantees global

exponential convergence for noise-free systems. The adaptive observer proposed pro-

vides robustness in the presence of modeling and measurement noises. In the paper

[Adetola and Guay, 2009], the authors considered a system with exogeneous distur-

bances and showed that parameter convergence can be guaranteed under certain con-

ditions of persistency of excitation condition. The authors proposed a novel set-based

adaptive estimation with an appropriate adaptation law for the unknown parameters.

The proof of the convergence of the estimates to their true values is achieved using

Lyapunov theories.

The problem of parameter estimation has been of considerable interest during the

last two decades [Niethammer et al., 2001] and [Xu and Hashimoto, 1993]. In most

applications, it is generally assumed that the parameters are essentially constant

over the identification process [Marino et al., 2000] and [Stephan et al., 1994]. A

number of situations arise where the time-varying behavior of unknown parameters

cannot be neglected. Control algorithm needs to be updated on-line to increase their

performance. Motivated by this interest, several approaches have been proposed to

simultaneously estimate the state and identify the parameters [Zhu and Pagilla, 2003],

[Kreisselmeier, 1986].
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2.4 Summary

Concepts and principles of parameter and state estimation are reviewed in this chap-

ter. An overview of recent developments in parameter and state estimation of systems

has been presented.

An interesting problem is presented when, in addition to unknown parameters,

states of the system are also unknown. For this problem, application of set based

adaptive observer technique is possible with simultaneous state estimation using Lu-

enberger observer. The convergence to true parameter and state values can be guar-

anteed by Lyapunov theories. Another motivating problem is the estimation of time

varying parameters and unknown state. The similar techniques can be applied to this

problem.

The following chapters present approaches, which are applicable to a class of

nonlinear system. Furthermore, develop an algorithm for the fault detection, in case

of sudden change of the parameters. Moreover, techniques suggested can be used to

estimate the new parameters and states of the system.



Chapter 3

Adaptive observers for nonlinear

systems

The main objective of this chapter is parameter identification and state estimation

of a class of continuous-time nonlinear system subject to exogenous disturbances.

Using a set-based adaptive estimation, the parameters are updated only when an

improvement in the precision of the parameter estimates can be guaranteed. The for-

mulation provides robustness to parameter estimation error and bounded disturbance.

A simulation example is used to illustrate the developed procedure and ascertain the

theoretical results.

3.1 Introduction

Parameter identification is an important problem in the theory of control systems.

The problem of simultaneous parameter identification and state estimation problem

has attracted the attention of various research groups. It is very useful in treating

20
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many practical problems such as fault detection, signal transmission or control, and,

more recently, for synchronization of chaotic systems. A Luenberger observer [Luen-

berger, 1964] allows asymptotic reconstruction of the state of a linear system from

measurements of input and output, provided that system parameters are known. For

the case where no a priori knowledge of the system parameters is available, adaptive

observers have been proposed [Kudva and Narendra, 1973]. Motivated by this inter-

est, several approaches have been proposed to simultaneously estimate the state and

identify the parameters [Zhu and Pagilla, 2003] and [Kreisselmeier, 1977].

This chapter is mainly influenced from the identification scheme presented in

[Adetola and Guay, 2010] and [Adetola, 2008], but is motivated from the state ob-

servation viewpoint, thus providing further insight into the interrelations of such

schemes. Following earlier works [Adetola and Guay, 2009] and [Adetola and Guay,

2010], for a class of nonlinear systems, a set-based adaptive identifier for parameters

is used. This method ensures convergence of the parameter to its true value provided

the true parameters fall within the initial uncertainty set. For state estimation, a

Luenberger-like observer is chosen to make the continuous-time error dynamics con-

verge to the origin, i.e e(t) → 0 as t → ∞. An identifier is also designed for state

estimation that ensures the convergence to true state with a condition that the ini-

tial estimate of the variables lie inside the initial uncertainty set. The algorithm in

[Adetola and Guay, 2009] is applied for state estimation, which ensures non-exclusion

of the true state. The notation adopted in [Adetola, 2008] is used throughout this

chapter.



CHAPTER 3. ADAPTIVE OBSERVERS FOR NONLINEAR SYSTEMS 22

3.2 Problem description

Consider a nonlinear system of the form

ẋ =Ax+ b(y)θ + ω(t)

y = Hx

(3.1)

where x ∈ Rn is the vector state variables, y ∈ Rr is the vector output variables,

θ ∈ Rp is vector of unknown parameter. It is assumed that θ to be uniquely iden-

tifiable lies within a known compact set Θ0 = B(θ0, zθ), the ball centered at θ0 is a

nominal parameter value, with radius zθ. The exogenous variable ω(t) represents a

bounded time-varying uncertainty, such that |ω(t)|< ω̄. The vector-valued function

b(y) is sufficiently smooth. The following assumptions are made about (3.1).

Assumption 2.1: The state variables x(t) ∈ X evolve on a compact subset of Rn.

Assumption 2.2: The system is observable.

The aim of this work is to provide the true estimates of plant parameters and esti-

mation of the state in the presence of unknown bounded disturbances.

3.3 State and uncertainty set estimation

3.3.1 State estimation

Let the estimator model for (3.1) be chosen as

˙̂x = Ax̂+ b(y)θ̂ +KHe+ cT
˙̂
θ, K > 0, (3.2)

ċT = (A−KH)cT + b(y), c(t0) = 0. (3.3)
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Define the state prediction error e = x − x̂ and the auxiliary variable η = e − cT θ̃.,

where θ̃ = θ − ˆtheta. And error dynamics is given by:

ė =(A−KH)e+ b(y)θ̃ − cT ˙̂
θ + ω(t). (3.4)

where e(t0) = x(t0)− x̂(t0). The η dynamics are given by:

η̇ = (A−KH)η + ω(t), η(t0) = e(t0) (3.5)

As ω(t) is not known, an estimate of η is generated by matrix differential equation

˙̂η = (A−KH)η̂, η̂(t0) = e(t0). (3.6)

with resulting estimation error η̃ = η − η̂ dynamics

˙̃η = (A−KH)η̃ + ω(t), η̃(t0) = 0. (3.7)

As w(t) is not known, an estimate of η is generated from (3.6) with resulting estima-

tion error η̃ = η − η̂ dynamics given by (3.7),η̃(t0) = η̃0 ∈ χ0, where χ , B(0, zη),

and zη is set radius found at the latest set update.

Lemma 3.3.1. [Desoer and Vidyasagar, 1975] Consider the system

ẋ(t) = Ax(t) + u(t)
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Suppose the equilibrium state xe = 0 of the homogeneous equation is exponentially

stable. Then,

1. if u ∈ Lp for 1 < p <∞, then x ∈ Lp

2. if u ∈ Lp for p= 1 or 2, then x→ 0 as t→∞.

Consider a Lyapunov function

Vη = 1
2 η̃

TP η̃ (3.8)

it follows from (3.7) that

V̇η = 1
2 η̃

TP ((A−KH)η̃ + ω(t)) + 1
2((A−KH)η̃ + ω(t))TP η̃ (3.9)

Using the following Ricatti equation

P (A−KH) + (A−KH)TP = −Q (3.10)

V̇η ≤ −
1
2 η̃

TQη̃ + η̃TPω(t) (3.11)

and

η̃TQη̃ ≤ λmax(Q)η̃T η̃ ≤ 2λmax(Q)
λmin(P )Vη (3.12)

By Young’s Inequality

η̃TPω(t) = 1
2 η̃

T η̃ + 1
2ω(t)TP TPω(t)

≤ 1
2λmin(P )Vη + ‖ P

TP ‖
2 ω̄

(3.13)
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from (3.11), (3.12) and (3.13)

V̇η ≤ −
1
2

(
2λmax(Q)
λmin(P ) −

1
2λmin(P )

)
Vη + ‖ P

TP ‖
2 ω̄ (3.14)

Considering (3.7), if ω(t) ∈ L2, then η̃ ∈ L2 (Lemma 3.3.1). Hence, the right hand

side of (3.14) is finite.

3.3.2 Set adaptation for η

An update law for the worst-case progress of the state in the presence of disturbance

is given by

zη =
√

Vzη
4λmin(P ) (3.15)

Vzη(t0) = 4λmax
(
P (t0)

)
(z0
η)2 (3.16)

V̇zη = −1
2

(
2λmax(Q)
λmin(P ) −

1
2λmin(P )

)
Vη + ‖ P

TP ‖
2 ω̄ (3.17)

where Vzη(t) represents the solution of the ordinary differential equation (3.17) with

initial condition (3.16). The state uncertainty set, defined by the ball χ(0, zη) is up-

dated using (3.7) and the error bound (3.15) according to the following algorithm:

Algorithm 3.3.1. Error bound zη, the uncertain ball χ , B(0, zη) is adapted on-line

with algorithm:

1. Initialize zη(ti−1) = z0
η , η̃(ti−1) = 0
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2. At time ti, update

χ =



(
0, χ(ti)

)
, ifzη(ti) ≤ zη(ti−1)− ‖ η̂(ti)− η̂(ti−1) ‖ − ω̄

λmin(A−KH)(
0, χ(ti−1)

)
, otherwise

3. Iterate back to step 2, incrementing i = i+ 1.

Algorithm 3.3.1 ensures that χ is only updated when zη value has decreased by

an amount which guarantees a contraction of the set. Moreover zη evolution given as

in (3.15) ensures non-exclusion of η̃ as given below.

Lemma 3.3.2. The evolution of χ = B(0, zη) under (3.6),(3.15) and Algorithm 3.3.1

is such that

1. χ(t2) ⊆ χ(t1), t0 ≤ t1 ≤ t2

2. η̃ ∈ χ(t0) =⇒ η̃ ∈ χ(t) ∀t ≥ t0

Proof. 1. If χ(ti+1) * χ(ti), then

sup
η̃∈χ(ti+1)

‖ η̃(ti) ‖≥ zη(ti) (3.18)

However, it follows from triangle inequality and Algorithm 3.3.1 that χ, at the
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time of update, obeys

sup
η̃∈χ(ti+1)

‖η̃(ti) ‖≤ sup
η̃∈χ(ti+1)

‖ η̃(ti+1) ‖ + ‖ η̃(ti+1)− η̃(ti) ‖

≤ zη(ti+1)+ ‖ η(ti+1)− η(ti) ‖ + ‖ η̂(ti+1)− η̂(ti) ‖

≤ zη(ti+1)+ ‖ η̂(ti+1)− η̂(ti) ‖

+ ‖ e(A−KH)(ti+1−ti)η(ti) +
∫ ti+1

ti
e(A−KH)(ti+1−τ)ω(τ)dτ − η(ti) ‖

≤ zη(ti+1)+ ‖ η̂(ti+1)− η̂(ti) ‖ + ‖ I − e(A−KH)(ti+1−ti) ‖ η(ti)

+
∫ ti+1

ti
e(A−KH)(ti+1−τ)ω(τ)dτ

≤ zη(ti+1)+ ‖ η̂(ti+1)− η̂(ti) ‖ + ω̄

λmin(A−KH)

≤ zη(ti).

which contradicts (3.18). Hence, χ update guarantees χ(ti+1) ⊆ χ(ti) and the

strict contraction claim follows from the fact that χ is held constant over the

update intervals τ ∈ (ti, ti+1).

2. We know Vη(t0) ≤ Vzη(t0) (by definition) and it follows from (3.14) and (3.17)

that V̇η(t) ≤ V̇zη(t). Hence, we have

Vη(t) ≤ Vzη(t) ∀t ≥ t0 (3.19)

and since Vη = 1
2 η̃

TP η̃, it follows that

‖ η̃TP η̃(t) ‖2≤ Vzη(t)
4λmin(P (t)) = z2

η(t) ∀t ≥ t0. (3.20)

Hence, if η̃ ∈ χ(t0), then η̃ ∈ B(0, zη(t)),∀t ≥ t0.
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3.4 Parameter and uncertainty set estimation

Following [Adetola, 2008], the parameter estimation scheme has been generated for

the above mentioned system.

3.4.1 Parameter adaptation

Let Σ ∈ Rnθ×nθ be generated from

Σ̇ = cHTHcT , Σ(t0) = αI � 0, (3.21)

The preferred parameter update law, based on Equations (3.2),(3.3) and (3.6), as

proposed in [Adetola and Guay, 2009] is given by

Σ̇−1 =− Σ−1cHTHcTΣ−1,

Σ−1(t0) = 1
α
I,

(3.22)

˙̂
θ =proj

{
γΣ−1cHTH(e− η̂), θ̂

}
,

θ̂(t0) = θ0 ∈ Θ0,

(3.23)

where Proj{φ, θ̂} denotes a Lipschitz projection operator [Krstic et al., 1995] such

that

− Proj{φ, θ̂}T θ̃ ≤ −φT θ̃, (3.24)

θ̂(t0) ∈ Θ0 =⇒ θ̂(t) ∈ Θ,∀t ≥ t0 (3.25)
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where Θ0 is initial uncertainty set. Θ , B(θ̂, zθ), where θ̂ and zθ are the parameter

estimate and set radius found at the latest set update respectively. The following

Lemma will prove useful in the analysis of the estimation scheme proposed above.

Lemma 3.4.1. [Adetola and Guay, 2009] The identifier law (3.22) and parameter

update law (3.23) is such that the estimation error θ̃ = θ− θ̂ is bounded. Moreover, if

∫ ∞
t0

[
‖ η̃ ‖2 − ‖ e− η̂ ‖2

]
dτ < +∞ (3.26)

and

lim
t→∞

λmin(Σ) =∞ (3.27)

are satisfied, then θ̃ converges to zero asymptotically.

Proof. Let Vθ̃ = 1
2 θ̃

TΣθ̃, it follows from (3.22), (3.23) and cT θ̃ = e− η̃ − η̂ that

V̇θ̃ = −γθ̃T cHTH(e− η̂) + 1
2 θ̃

T cHTHcT θ̃ (3.28)

By Young’s Inequality

V̇θ̃ ≤ −γ(e− η̂)THTH(e− η̂)+γη̃THTH(e− η̂) + 1
2(e− η̂)THTH(e− η̂ − η̃)

− 1
2 η̃

THTH(e− η̂ − η̃)
(3.29)

V̇θ̃ ≤ −(e− η̂)THTH(e− η̂)
(
γ − 1

2

)
+ 1

2 η̃
THTHη̃ + (γ − 1)η̃THTH(e− η̂)

V̇θ̃ ≤ η̃THTHη̃

[
1
2 + (γ − 1)

2

]
︸ ︷︷ ︸

L

−(e− η̂)THTH(e− η̂)
[(
γ − (γ − 1)

2

)
− 1

2

]
︸ ︷︷ ︸

M

V̇θ̃ ≤ −M(e− η̂)THTH(e− η̂) + Lη̃THTHη̃ (3.30)
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where M and L are positive constants, implying that θ̃ is bounded. Moreover, it

follows from (3.30) that

Vθ(t) = Vθ̃(t0) +
∫ t

t0
V̇θ̃(τ)dτ (3.31)

≤ Vθ̃(t0)−M
∫ t

t0
‖ e− η̂ ‖2 dτ + L

∫ t

t0
‖ η̃ ‖2 dτ (3.32)

Considering the dynamics of (3.7), if ω(t) ∈ L2, then η̃ ∈ L2 (Lemma 3.3.1). Hence,

the right hand side of (3.32) is finite in view of (3.26), and by (3.27) we have

limt→∞ θ̃(t) = 0

3.4.2 Parameter set adaptation

An update law that measures the worst-case progress of the parameter identifier in

the presence of a disturbance is given by

zθ =
√

Vzθ
4λmin(Σ) (3.33)

Vzθ(t0) = 4λmax
(

Σ(t0)
)

(z0
θ)2 (3.34)

V̇zθ = −M(e− η̂)THTH(e− η̂) + LVzη (3.35)

where Vzθ(t) represents the solution of the ordinary differential equation (3.35) with

the initial condition (3.34). The parameter uncertainty set, defined by the ball

B(θ̂c, zc) is updated using the parameter update law (3.23) and the error bound

(3.33) according to the following algorithm:

Algorithm 3.4.1. 1. Initialize zθ(ti−1) = z0
θ , θ̂(ti−1) = θ̂0
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2. At time ti, update

(
θ̂,Θ

)
=



(
θ̂(ti),Θ(ti)

)
, if zθ(ti) ≤ zθ(ti−1)− ‖ θ̂i − θ̂(ti−1) ‖(

θ̂(ti−1),Θ(ti−1)
)
, otherwise

3. Iterate back to step 2, incrementing i = i+ 1.

Algorithm 3.4.1 ensures that Θ is only updated when the value of zθ has decreased

by an amount which guarantees a contraction of the set. Moreover zθ evolution as

given in (3.33) ensures non-exclusion of θ as given below.

Lemma 3.4.2. The evolution of Θ = B(θ̂, zθ) under (3.22), (3.33) and Algorithm

3.4.1 is such that

1. Θ(t2) ⊆ Θ(t1), t0 ≤ t1 ≤ t2

2. θ ∈ Θ(t0) =⇒ θ ∈ Θ(t) ∀t ≥ t0

Proof. 1. If Θ(ti+1) * Θ(ti), then

sup
s∈Θ(ti+1)

‖ s− θ(ti) ‖≥ zθ(ti) (3.36)

However, it follows from triangle inequality and Algorithm 3.1 that Θ, at the
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time of update, obeys

sup
s∈Θ(ti+1)

‖ s− θ̂(ti) ‖≤ sup
s∈Θ(ti+1)

‖ s− θ̂(ti+1) ‖ + ‖ θ̂(ti+1)− θ̂(ti) ‖

≤ zθ(ti+1)+ ‖ θ̂(ti+1)− θ̂(ti) ‖

≤ zθ(ti),

which contradicts (3.36). Hence, Θ update guarantees Θ(ti+1) ⊆ Θ(ti). And Θ

is held constant over update intervals τ ∈ (ti, ti+1).

2. We know that Vθ̃(t0) ≤ Vzθ(t0) (by definition) and it follows from (3.30) and

(3.35) that V̇θ̃(t) ≤ V̇zθ(t). Hence, by the comparison lemma, we have

Vθ̃(t) ≤ Vzθ(t) ∀t ≥ t0 (3.37)

and since Vθ̃ = 1
2 θ̃

TΣθ̃, it follows that

‖ θ̃TΣθ̃(t) ‖2≤ Vzθ(t)
4λmin(Σ(t)) = z2

θ(t) ∀t ≥ t0. (3.38)

Hence, if θ ∈ Θ(t0), then θ ∈ B(θ̂(t), zθ(t)),∀t ≥ t0.
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3.5 Simulation Example

To illustrate the effectiveness of the proposed method, we consider the following

system subject to an additional disturbance

ẋ1 = (x2 + x2
3θ1 − x3θ3) + u1 + ω1

ẋ2 = (−x1 + x3 + x3θ2 + x3θ3) + u2 + ω2

ẋ3 = (−x1 − 2x2 − x3 + x3θ3) + u3 + ω3

y = Hx

where θT = [θ1, θ2, θ3], the input is taken as constant, u = [−0.001 0.001 0.002]T .

The true parameter values are θ = [2.9 3.1 0.7]T . The bounded noise term is

ω(t) = sin(0.01t)[1 1 1]T . The initial radius of the uncertainty set for θ is z0
θ =

19. The initial radius of the uncertainty set for η is z0
η = 10. Initial conditions

for state are x(0) = [0.1 0.03 0.04]. Initial estimates of the states are x̂(0) =

[0.4 0.12 0.16]T .The center of the parameter uncertainty set is assumed to be θ̂0
c =

[2.74 3.18 0.86]T at time t = 0. For this example, H = [0 0 0.2].

The set-based adaptive identifier is used to estimate the parameters and along

with an uncertainty that is guaranteed to contain the true value of the parameters.

Figure 3.1 shows the estimates of the parameters converging asymptotically to their

true values. Simultaneously an auxiliary variable is used to estimate the unmea-

sured state variables. The estimation of the unknown states follows the true state

value as shown in Figure 3.3 and the error associated with state prediction is shown
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in Figure 3.2. The proposed technique updates the estimates only when estima-

tion improvement is guaranteed. The proposed uncertainty set update for parameter

identification and state estimation, guarantees to contain the true values at all time

instants. As depicted in Figure 3.4, the uncertainty bound zθ reduces over time and

the true parameter always lies within the uncertainty set as the distance between

true and estimated parameters, δθ is always less than zθ. The radius of uncertainty

set for η̃ i.e zη is also decreasing with time as shown in Figure 3.5. It also shows the

non-exclusion of the η̃, δη < zη, which ensures that the true state of the system is

estimated.
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Figure 3.1: Time course plot of the true parameter: θ dashed lines(−−) and parameter
estimates: θ̂ solid lines (−).
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Figure 3.2: Time course plot of the state estimation error e = x− x̂.
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Figure 3.3: Time course plot of the estimated state: x̂ dashed lines(−−) and true
state: x solid lines (−).
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Figure 3.4: The progression of the radius of parameter uncertainty set at time steps
when set is updated.
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Figure 3.5: The progression of the radius of uncertainty set for η at time steps when
set is updated.



Chapter 4

Systems with Time-varying

Parameters

Most of the methods for identification of parameters assume constant parameters.

However the parameters of practical plants are often time-varying and control sys-

tems must rely on the online estimation of the uncertain parameters to ensure a

certain degree of closed-loop performance. In this chapter, the set-based technique

developed in Chapter 3 is modified for time varying parameters. Apart from estima-

tion, algorithm is developed for fault detection in the system. This method is applied

to a non-linear system to demonstrate the effectiveness.

4.1 Introduction

In most practical situations, process parameters cannot be assumed to be constant.

Some time-varying behaviour of the parameters must be considered. In [Adetola

and Guay, 2010], the authors proposed a novel set-based adaptive estimation with an

40
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appropriate adaptation law for the unknown parameters. Following the same concepts

developed in Chapter 3 for nonlinear systems identification and constant parameter

estimation, the proposed method is derived using a new formulation. The proof of the

convergence of the estimates to their true values is achieved using Lyapunov theories.

Apart from parameter identification and state estimation, another important ap-

plication area of the proposed design is the problem of fault detection. In particular,

if the value of the parameter is outside some acceptable bounds, then a fault should

be identified and hence this detection can be used to apply a different control in

physical plant.

In this chapter, following earlier works [Adetola and Guay, 2009] and [Adetola and

Guay, 2010], a set-based adaptive identifier for time-varying parameters is proposed.

This method ensures convergence of the parameter to its mean value provided the true

parameters fall within the initial uncertainty set. For state estimation, a Luenberger-

like observer is chosen to ensure that the continuous-time error dynamics converge to

zero asymtotically, i.e e(t) → 0 when t → ∞. The algorithm in [Adetola and Guay,

2009] is modified for both parameter and state estimation to detect the abrupt change

in the parameters, which ensures non-exclusion of the true parameter and true state

respectively.

This chapter is organized as follows. The problem description is given in Section

4.2. The parameter estimation routine is presented in Section 4.4. State estimation

and uncertainty set adaptation are detailed in Section 4.3. This is followed by a

simulation example in Section 4.5.



CHAPTER 4. SYSTEMS WITH TIME-VARYING PARAMETERS 42

4.2 Problem description

Consider a nonlinear system

ẋ =Ax+ b(y)θ(t)

y = Hx

(4.1)

where x ∈ Rn is the state, y ∈ Rr is the output, θ(t) ∈ Rp is an unknown time varying

bounded parameter vector assumed to be uniquely identifiable lying within a known

compact set Θ0 = B(θ0, zθ), where θ0 is a nominal parameter value, zθ is the radius of

the parameter uncertainty set. The vector-valued function b(y) is sufficiently smooth.

The following assumptions are made about (4.1).

Assumption 2.1: The state variables x(t) ∈ X a compact subset of Rn.

Assumption 2.2: The system is observable.

Assumption 2.3: The time varying parameters is such that it satisfies
∫∞

0 θ(τ)dτ =

constant.

The aim of this work is to provide estimates of the time varying parameters and the

state variables, simultaneously.
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4.3 State and uncertainty set estimation

4.3.1 State estimation

Let the estimator model for (4.1) be chosen as

˙̂x = Ax̂+ b(y)θ̂(t) +KHe+ wT
˙̂
θ(t), K > 0, (4.2)

Let

θ(t) = θ0 + µ(t),

where θ0 is the average value and µ(t) is a time varying component of the parameters,

such that ‖ µ(t) ‖≤ c1.

ẇT = (A−KH)wT + b(y), w(t0) = 0. (4.3)

resulting in the state prediction error e = x−x̂ and an auxiliary variable η = e−wT θ̃(t)

dynamics:

ė =(A−KH)e+ b(y)θ̃(t) + b(y)µ(t)− wT ˙̂
θ(t) (4.4)

where e(t0) = x(t0)− x̂(t0),

η̇ = (A−KH)η + b(y)µ(t), η(t0) = e(t0) (4.5)
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An estimate of η is generated from

˙̂η = (A−KH)η̂, η̂(t0) = e(t0) (4.6)

with resulting estimation error η̃ = η − η̂ dynamics

˙̃η = (A−KH)η̃ + b(y)µ(t), η̃(t0) = 0. (4.7)

An estimate of η is generated from (4.6) with resulting estimation error η̃ = η − η̂

dynamics given by (4.7), η̃(t0) = η̃0 ∈ χ0, where χ , B(0, zη), and zη is set radius

found at the latest set update.

Lemma 4.3.1. [Desoer and Vidyasagar, 1975] Consider the system

ẋ(t) = Ax(t) + u(t)

Suppose the equilibrium state xe = 0 of the homogeneous equation is exponentially

stable. Then,

1. if u ∈ Lp for 1 < p <∞, then x ∈ Lp

2. if u ∈ Lp for p= 1 or 2, then x→ 0 as t→∞.

Consider a Lyapunov function

Vη = 1
2 η̃

TP η̃ (4.8)
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it follows from (4.7) that

V̇η =1
2 η̃

TP

[
(A−KH)η̃ + b(y)µ(t)

]
+ 1

2

[
(A−KH)η̃ + b(y)µ(t)

]T
P η̃ (4.9)

V̇η =1
2 η̃

T

[
P (A−KH) + (A−KH)TP

]
η̃ + 1

2 η̃
TPb(y)µ(t) + 1

2µ(t)T b(y)TP η̃ (4.10)

Using the following Ricatti equation

P (A−KH) + (A−KH)TP = −Q (4.11)

V̇η = −1
2 η̃

TQη̃ + η̃TPb(y)µ(t) (4.12)

and

η̃TQη̃ ≤ 2λmax(Q)
λmin(P )Vη (4.13)

By Young’s Inequality

η̃TPb(y)µ(t) ≤ c1Vη
λmin(P ) + c1b(y)T b(y)

2λmax(P TP )
(4.14)

from (4.12), (4.13) and (4.14)

V̇η ≤ −
[

2λmax(Q)
λmin(P ) Vη

]
+
[

c1Vη
λmin(P ) + c1b(y)T b(y) ‖ P TP ‖

2

]
(4.15)

V̇η ≤ −
[

2λmax(Q)
λmin(P ) −

c1

λmin(P )

]
Vη + c1b(y)T b(y) ‖ P TP ‖

2 (4.16)

Considering (4.7), if µ(t) ∈ L2, then η̃ ∈ L2 (Lemma 4.3.1). Hence, the right hand

side of (4.16) is finite.
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4.3.2 Set adaptation for η

An update law for the worst-case progress of the η in the presence of time varying

parameters is given by

zη =
√

Vzη
4λmin(P ) (4.17)

Vzη(t0) = 4λmax
(
P (t0)

)
(z0
η)2 (4.18)

V̇zη = −
[

2λmax(Q)
λmin(P ) −

c1

λmin(P )

]
Vη + c1b(y)T b(y) ‖ P TP ‖

2 (4.19)

where Vzη(t) represents the solution of the ordinary differential equation (4.19) with

initial condition (4.18). The state uncertainty set, defined by the ball B(0, zη) is

updated using (4.6) and the error bound (4.17) according to the following algorithm:

Algorithm 4.3.1. Error bound zη, the uncertain ball χ , B(0, zη) is adapted online

with algorithm:

1. Initialize zη(ti−1) = z0
η , η̃(ti−1) = 0

2. At time ti, update

χ =



(
0, χ(ti)

)
, ifzη(ti) ≤ zη(ti−1)− ‖ η̂(ti)− η̂(ti−1) ‖ − ‖b(y)µ(t)‖

λmin(A−KH)(
0, χ(ti−1)

)
, otherwise

3. Iterate back to step 2, incrementing i = i+ 1.
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Algorithm 4.3.1 ensures that χ is only updated when zη value has decreased by

an amount which guarantees a contraction of the set. Moreover zη evolution given as

in (3.15) ensures non-exclusion of η̃ as given below.

Lemma 4.3.2. The evolution of χ = B(0, zη) under (4.7),(4.17) and Algorithm 4.3.1

is such that

1. χ(t2) ⊆ χ(t1), t0 ≤ t1 ≤ t2

2. η̃ ∈ χ(t0) =⇒ η̃ ∈ χ(t) ∀t ≥ t0

Proof. 1. If χ(ti+1) * χ(ti), then

sup
η̃∈χ(ti+1)

‖ η̃(ti) ‖≥ zη(ti) (4.20)

However, it follows from triangle inequality and Algorithm 4.3.1 that χ, at the

time of update, obeys

sup
η̃∈χ(ti+1)

‖η̃(ti) ‖≤ sup
η̃∈χ(ti+1)

‖ η̃(ti+1) ‖ + ‖ η̃(ti+1)− η̃(ti) ‖

≤ zη(ti+1)+ ‖ η(ti+1)− η(ti) ‖ + ‖ η̂(ti+1)− η̂(ti) ‖

≤ zη(ti+1)+ ‖ η̂(ti+1)− η̂(ti) ‖

+ ‖ e(A−KH)(ti+1−ti)η(ti) +
∫ ti+1

ti
e(A−KH)(ti+1−τ)b(y)µ(τ)dτ − η(ti) ‖

≤ zη(ti+1)+ ‖ η̂(ti+1)− η̂(ti) ‖ + ‖ I − e(A−KH)(ti+1−ti) ‖ η(ti)

+
∫ ti+1

ti
e(A−KH)(ti+1−τ)b(y)µ(τ)dτ

≤ zη(ti+1)+ ‖ η̂(ti+1)− η̂(ti) ‖ + ‖ b(y)c1 ‖
λmin(A−KH)

≤ zη(ti),
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which contradicts (4.20). Hence, χ update guarantees χ(ti+1) ⊆ χ(ti) and the

strict contraction claim follows from the fact that χ is held constant over the

update intervals τ ∈ (ti, ti+1).

2. We know Vη(t0) ≤ Vzη(t0) (by definition) and it follows from (4.16) and (4.19)

that V̇η(t) ≤ V̇zη(t). Hence, by the comparison lemma, we have

Vη(t) ≤ Vzη(t) ∀t ≥ t0 (4.21)

and since Vη = 1
2 η̃

TP η̃, it follows that

‖ η̃TP η̃(t) ‖2≤ Vzη(t)
4λmin(P (t)) = z2

η(t) ∀t ≥ t0. (4.22)

Hence, if η̃ ∈ χ(t0), then η̃ ∈ B(0, zη(t)),∀t ≥ t0.

4.4 Parameter and uncertainty set estimation

Following [Adetola, 2008], the parameter estimation scheme has been generated for

the above mentioned system.

4.4.1 Parameter adaptation

Let Σ ∈ Rnθ×nθ be generated from

Σ̇ = wHTHwT , Σ(t0) = αI � 0, (4.23)
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based on Equations (4.2),(4.3) and (4.6), the prefered parameter update law as pro-

posed in [Adetola and Guay, 2009] is given by

Σ̇−1 =− Σ−1wHTHwTΣ−1,

Σ−1(t0) = 1
α
I,

(4.24)

˙̂
θ(t) =proj

{
γΣ−1wHTH(e− η̂), θ̂(t)

}
,

θ̂(t0) = θ0 ∈ Θ0,

(4.25)

where Proj{φ, θ̂(t)} denotes a Lipschitz projection operator [Krstic et al., 1995] such

that

− Proj{φ, θ̂(t)}T θ̃(t) ≤ −φT θ̃(t), (4.26)

θ̂(t0) ∈ Θ0 =⇒ θ̂(t) ∈ Θ,∀t ≥ t0 (4.27)

where Θ , B(θ̂(t), zθ), where θ̂(t) and zθ are the parameter estimate and set radius

found at the latest set update respectively.

Theorem 4.4.1. [Adetola and Guay, 2009] The identifier law (4.24) and parameter

update law (4.25) is such that the estimation error θ̃(t) = θ(t) − θ̂(t) is bounded.

Moreover, if ∫ ∞
t0

[
‖ η̃ ‖2 − ‖ e− η̂ ‖2

]
dτ < +∞ (4.28)

where, c ∈ R and

lim
t→∞

λmin(Σ) =∞ (4.29)

are satisfied, then θ̃ converges to zero asymptotically.
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Proof. Consider a Lyapunov function,

Vθ̃(t) = 1
2 θ̃(t)

TΣθ̃(t)

it follows from (4.24), (4.25) and wT θ̃(t) = e− η̃ − η̂ that

V̇θ̃(t) = θ̃(t)TΣ(t) ˙̃θ(t) + 1
2 θ̃(t)

TwHTHwT θ̃(t) (4.30)

If we assume convergence of θ̂ to average value of parameters, then θ̃ = θ0− θ̂, where

θ0 is the mean value of the parameter and by Young’s Inequality

V̇θ̃(t) ≤− γ(e− η̂)THTH(e− η̂) + γη̃THTH(e− η̂)

+ 1
2(e− η̂)THTH(e− η̂ − η̃)− 1

2 η̃
THTH(e− η̂ − η̃)

(4.31)

V̇θ̃(t) ≤− (e− η̂)THTH(e− η̂)
(
γ − 1

2

)
+ 1

2 η̃
THTHη̃

+ (γ − 1)η̃THTH(e− η̂)

V̇θ̃(t) ≤ η̃THTHη̃

[
1
2 + (γ − 1)

2

]
︸ ︷︷ ︸

L

−(e− η̂)THTH(e− η̂)
[(
γ − (γ − 1)

2

)
− 1

2

]
︸ ︷︷ ︸

M

V̇θ̃(t) ≤ −M(e− η̂)THTH(e− η̂) + Lη̃THTHη̃ (4.32)

where M and L are positive constants, implying that θ̃(t) is bounded. Moreover, it

follows from (4.32) that

Vθ(t)(t) = Vθ̃(t)(t0) +
∫ t

t0
V̇θ̃(t)(τ)dτ (4.33)
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Vθ(t)(t) ≤ −M
∫ t

t0
(e− η̂)THTH(e− η̂)dτ + L

∫ t

t0
η̃THTHη̃dτ (4.34)

Considering the dynamics of (4.7), if θ̇(t) ∈ L2, then η̃ ∈ L2 (Lemma 4.3.1). Hence,

the right hand side of (4.34) is finite in view of (4.28), and by (4.29) we have

limt→∞ θ̃(t) = 0

4.4.2 Parameter set adaptation

An update law that measures the worst-case progress of the parameter identifier in

the presence of a disturbance is given by

zθ(t) =
√

Vzθ(t)
4λmin(Σ) (4.35)

Vzθ(t)(t0) = 4λmax
(

Σ(t0)
)

(z0
θ)2 (4.36)

V̇zθ(t) = −M(e− η̂)THTH(e− η̂) + LVzη (4.37)

where Vzθ(t) represents the solution of the ordinary differential equation (4.37) with

the initial condition (4.36). Moreover from η = e− wT θ̃(t)

|e| ≤ |η|+ |w||θ̃|

|e| ≤ zη + 2|w|zθ (4.38)

From (4.38) and Algorithm proposed below, it is ensured that time-varying param-

eters are inside the uncertainty set. The parameter uncertainty set, defined by the

ball B(θ̂c, zc) is updated using the parameter update law (4.25) and the error bound

(4.35) according to the following algorithm:
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Algorithm 4.4.1. 1. Intialize zθ(ti−1) = z0
θ , θ̂(ti−1) = θ̂0

2. If |e| > zη +2|w|zθ, increase zθ to arbitrarily large value to keep the true param-

eter inside the uncertainity set.

3. At time ti, update

(
θ̂,Θ

)
=



(
θ̂(ti),Θ(ti)

)
, if zθ(ti) ≤ zθ(ti−1)− ‖ θ̂i − θ̂(ti−1) ‖(

θ̂(ti−1),Θ(ti−1)
)
, otherwise

4. Iterate back to step 2, incrementing i = i+ 1.

Algorithm 4.4.1 ensures that Θ is only updated when the value of zθ has decreased

by an amount which guarantees a contraction of the set. Moreover zθ evolution as

given in (4.35) ensures non-exclusion of θ(t) as given below.

Lemma 4.4.1. The evolution of Θ = B(θ̂, zθ) under (4.24), (4.35) and Algorithm

4.4.1 is such that

1. Θ(t2) ⊆ Θ(t1), t0 ≤ t1 ≤ t2, excluding the update of set radius by step 2 of

algorithm.

2. θ ∈ Θ(t0) =⇒ θ ∈ Θ(t) ∀t ≥ t0

Proof. 1. If Θ(ti+1) * Θ(ti), then

sup
s∈Θ(ti+1)

‖ s− θ(ti) ‖≥ zθ(ti) (4.39)
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However, it follows from triangle inequality and Algorithm 3.1 that Θ, at the

time of update, obeys

sup
s∈Θ(ti+1)

‖ s− θ̂(ti) ‖ ≤ sup
s∈Θ(ti+1)

‖ s− θ̂(ti+1) ‖ + ‖ θ̂(ti+1)− θ̂(ti) ‖

≤ zθ(ti+1)+ ‖ θ̂(ti+1)− θ̂(ti) ‖

≤ zθ(ti),

which contradicts (4.39). Hence, Θ update guarantees Θ(ti+1) ⊆ Θ(ti). And Θ

is held constant over update intervals τ ∈ (ti, ti+1).

2. We know that Vθ̃(t0) ≤ Vzθ(t0) (by definition) and it follows from (4.32) and

(4.37) that V̇θ̃(t) ≤ V̇zθ(t). Hence, by the comparison lemma, we have

Vθ̃(t)(t) ≤ Vzθ(t)(t) ∀t ≥ t0 (4.40)

and since Vθ̃(t) = 1
2 θ̃(t)

TΣθ̃(t), it follows that

‖ θ̃(t)TΣθ̃(t) ‖2≤ Vzθ(t)
4λmin(Σ(t)) = z2

θ(t) ∀t ≥ t0. (4.41)

Hence, if θ(t) ∈ Θ(t0), then θ(t) ∈ B(θ̂(t), zθ(t)),∀t ≥ t0.
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4.5 Simulation Example

To illustrate the effectiveness of the proposed method, we consider the following

system

ẋ1 = (x2 + x3θ1(t)− x3θ3) + u1

ẋ2 = (−x1 + x3 + x3θ2 + x3θ3) + u2

ẋ3 = (−x1 − 2x2 − x3 + x3
2θ3) + u3

y = Hx

where θ(t)T = [θ1(t), θ2, θ3], the input is taken as constant, u = [−0.001 0.001 0.002]T .

The true parameter values are θ(t) = [(sin(0.1t)+1.9) 3.1 0.7]T . The initial radius

of the uncertainty set for θ is z0
θ = 100. The initial radius of the uncertainty set for

η is z0
η = 100. Initial conditions for state are x0 = [1 0.3 0.4]T . Initial estimates

of the state are x̂0 = [5 1.5 2]T .The center of the parameter uncertainty set is

assumed to be θ̂0
c = [3.5 4 2]T at time t = 0. For this example, H = [0 0 4].

The set-based technique developed in this chapter is applied to the above men-

tioned simulation example. The adaptive identifier is used to estimate the time-

varying parameters and an uncertainty set is defined such that it guarantees to con-

tain the true value of the parameters. Figure 4.1 shows the estimates of the time

varying parameters converging asymptotically to the mean values. If the value of the

parameter moves outside some acceptable bounds, the algorithm is capable of fault

detection. To demonstrate this feature, the mean value of the parameters is forcibly

changed to new value. The algorithm detects the fault and the estimates converge

to the new mean value of the parameters. Simultaneously an auxiliary variable is
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used to estimate the unmeasured state variables. The proposed technique updates

the estimates only when estimation improvement is guaranteed. The estimates of the

unknown states follows the true state value as shown in Figure 4.3. The straight line

shows that the error is in the neighborhood of zero. The error associated with state

prediction is shown in Figure 4.2. As the uncertainty in the system is injected forcibly

by changing the parameters, the algorithm detects the fault and starts updating the

state estimates such that the error associated with the state variables converge to

zero. The proposed uncertainty set update for parameter identification and state

estimation, guarantees to contain the true values at all time instants. As depicted

in Figure 4.4, the uncertainty bound zθ reduces over time and the true parameter

always lies within the uncertainty set. Similarly, the distance between the true and

estimated parameters, δθ is always less than zθ. As a result of fault detection, the

value of zθ is reset to a large value to ensure the non-exclusion of true parameter

values. Similarly, the radius of uncertainty set for η i.e zη is also decreasing with time

as shown in Figure 4.5. It also shows the non-exclusion of the true values of the auxil-

iary variables η, δη < zη, which ensures that the true state of the system is estimated.

The algorithm detects the forced uncertainty, and ensures the non-exclusion of state

from uncertainty set. In this case, the size of the uncertainty, zη, is set to 100 when

a fault due to the parameters is detected.
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Figure 4.1: Time course plot of the true parameter: θ dashed lines(−−) and parameter
estimates: θ̂ solid lines (−).
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Figure 4.2: Time course plot of the state estimation error e = x− x̂.
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Figure 4.3: Time course plot of the estimated state: x̂ dashed lines(−−) and true
state: x solid lines (−).
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Figure 4.4: The progression of the radius of parameter uncertainty set at time steps
when set is updated.
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Figure 4.5: The progression of the radius of uncertainty set for η at time steps when
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Chapter 5

Application: Mixing Tank Problem

The purpose of this chapter is to investigate the performance of the method proposed

in Chapter 4 on a simple mixing tank experimental problem. It is a low dimensional

problem, and meets all the necessary assumptions from Chapter 4. The model struc-

ture of the experimental set up is shown to fit the class of the systems considered in

the earlier chapters. The performance of the estimators is tested by comparing the

estimations generated by the method with the experimental data.

5.1 System Description

5.1.1 Model development

The flow diagram for this example is shown in Figure 5.1. The experimental set up

consists of two inlet streams and one outlet stream. The flow rate of inlet deionized

water stream is represented by F1 (lit/min) and concentration of salt is denoted by C1

(g/lit). The salt stream is pumping the salt solution in the mixing tank at a flow rate
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of F2 (lit/min) and the concentration of salt in the stream is C2 (g/lit). A constant

rpm stirrer is used for mixing the streams in the tank, C4 (g/lit) is the concentration

of the salt present in the tank. The flow rate of the outlet stream is represented by

F3(lit/min) and the concentration of salt in the product stream is C3 (g/lit). The

cross-sectional area of the mixing tank is A (cm2). h (cm) represents the level of

solution in the mixing tank.

F1, C1 F2, C2

F3, C3

h

C4

Figure 5.1: Experiment notations

A mass balance yields:

F1 + F2 = F3 + dh

dt
A

and the tank height dynamics can be described by the ordinary differential equation

ḣ = 1
A

[F1 + F2 − F3]
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A salt balance on the system is given by

F2C2 = F3C3 + hA
dC4

dt

that yields the salt concentration dynamics:

Ċ4 = F2C2

Ah
− F3C3

Ah

The following assumptions have been made to simplify the model of the system.

1. The feed has a uniform composition throughout the operation.

2. Mixing is perfect which implies that the exit stream has the same composition

as in the tank, C3 = C4.

3. There is no salt content in stream 1, which implies C1 = 0.

The model can be restated as follows:

 ḣ

Ċ3

 =

 1
A

1
A
− 1
A

0 C2
Ah
−C3
Ah



F1

F2

F3



The above structure can be written as

ẋ = b(y)θ (5.1a)

y = Hx (5.1b)
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where

ẋ =

 ḣ

Ċ3

 ,

b(y) =

 1
A

1
A
− 1
A

0 C2
Ah
−C3
Ah


and

θ =


F1

F2

F3


5.1.2 Process Flow Diagram

Figure 5.2 depicts the process flow diagram of the experimental set up along with the

position of sensors. The water pump 1 is an inlet pump. The flow rate of this pump

can be regulated manually using a rotameter. Pump 2 is pumping salt solution of

known concentration from a storage tank to the mixing tank. The solution is well

mixed with the help of a stirrer and the mixed solution is pumped out with Pump 3.

The flow rates of pumps 2 and 3 are regulated automatically with the help of inputs

generated in the Simulink and transmitted through MCC (Multiple Control Circuit)

as shown in the Figure 5.2.

The height in the mixing tank is measured by a pressure transmitter ’a’, located

at the bottom of the mixing tank. The outlet flow salt concentration is measured by

conductivity meter ’b’, located at the outlet stream. The information of these two

attributes is transmitted to Simulink through MCC.



CHAPTER 5. APPLICATION: MIXING TANK PROBLEM 65

MCC Simulink

Storage Tank

1

3

2

ba

Figure 5.2: Process flow diagram of experimental set up.

5.2 Procedure

5.2.1 Calibration

All the pumps and sensors in the set up are first calibrated. The outputs from the

system are recorded in mA(milli Amperes). The relation of the physical attributes to

the recorded mA is assumed to be linear. Calibration curve are generated for height,

concentration of output stream and flow rates of different pumps. They are given by:

height (cm) = 19.865× (Value recorded in Simulink)− 20.038, (5.2)

concentration(g/lit) = 2.5922× (Conductivity recorded in Simulink)−7.1697, (5.3)
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for outlet pump,

flow rate(lit/min) = 0.3019× (Setting on the pump) + 0.0121, (5.4)

for salt inlet pump,

flow rate(lit/min) = 0.1549× (Setting on the pump) + 0.0067. (5.5)

Equations (5.2), (5.3), (5.4) and (5.5) are the relation of height, concentration,

outlet pump and intlet pump respectively to the respective signals recorded by the

sensors. These relations had been used to calculate the height of solution in the

mixing tank, concentration of salt in the outlet stream and flow rates of the pumps,

from the corresponding signals generated by the sensors.

5.2.2 Experimental run

A 15 g/l salt solution is prepared in the storage tank. The initial conditions for the

experiments are chosen to be 10 g/l and 12 cm for the salt concentration and the

height, respectively. A solution of 10 g/l is prepared and is filled in the mixing tank

to a level of 12 cm. The initial conditions for the pumps are chosen such that the

level of the salt solution remains within reasonable limits of the initial conditions.

The deionized water from pump 1 is set to a constant flow rate of 0.4 l/min. The

salt solution is pumped by pump 2 at a flow rate of 0.6 l/min. F2 is set to F2 =

0.6 + 0.1sin(0.1t). The outlet flow rate is fixed at 1 l/min.

With the above mentioned initial conditions, the experiment is performed and

the data is recorded using the Simulink. The height and concentration of salt in
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the mixing tank is calculated using (5.2) and (5.3). This data is used as a reference

for comparing the estimated values with the true values of parameters and the state

variables. For this example H = [400 0; 0 100] .

5.2.3 Estimation

The primary aim of the experiment is to investigate the performance of the pro-

posed method for estimation of state and the time varying parameters of the system.

The method developed in Chapter 4 is used to generate the estimates of the plant

parameter and state variables and is compared with the data from the experiment.

Let the estimator model for (5.1) be chosen as

˙̂x = b(y)θ̂(t) +KHe+ wT
˙̂
θ(t), K > 0, (5.6)

Let

θ(t) = θ0 + µ(t) (5.7)

ẇT = −KHwT + b(y), w(t0) = 0. (5.8)

resulting in the state prediction error e = x−x̂ and an auxiliary variable η = e−wT θ̃(t)

dynamics:

ė =−KHe+ b(y)θ̃(t) + b(y)µ(t)− wT ˙̂
θ(t) (5.9)

where e(t0) = x(t0)− x̂(t0),

η̇ = −KHη + b(y)µ(t), η(t0) = e(t0) (5.10)
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An estimate of η is generated from

˙̂η = −KHη̂, η̂(t0) = e(t0) (5.11)

with resulting estimation error η̃ = η − η̂ dynamics

˙̃η = −KHη̃ + b(y)µ(t), η̃(t0) = 0. (5.12)

Let Σ ∈ Rnθ×nθ be generated from

Σ̇ = wHTHwT , Σ(t0) = αI � 0, (5.13)

based on Equations (5.6),(5.8) and (5.11), the preferred parameter update law as

proposed is given by

Σ̇−1 =− Σ−1wHTHwTΣ−1,

Σ−1(t0) = 1
α
I,

(5.14)

˙̂
θ(t) =proj

{
γΣ−1wHTH(e− η̂), θ̂(t)

}
,

θ̂(t0) = θ0 ∈ Θ0,

(5.15)

where Proj{φ, θ̂(t)} denotes a Lipschitz projection operator.

The parameter set is adapted at every step according to Section 4.4.2 and Algo-

rithm 4.4.1 is used to guarantee that the parameter estimates converge to the true

values.

Similarly, the estimates for auxiliary variable η is generated by (5.11) and the
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worst case progress of η is given by Section 4.3.2. Convergence of the estimates to

the true state variables is ensured by Algorithm 4.3.1.

The simulation is performed using the above mentioned technique. The initial

conditions mentioned in Section 5.2.2 are used.

5.3 Results and Discussion

The results obtained by the simulation are shown in the Figures 5.3 to 5.7. Figure

5.3 shows that the estimated flow rates are converging to the mean value of the true

flow rates. The estimate of F2 converges to its true mean value as expected, but the

difference between true mean value and estimated value is slightly greater than that

for F1 and F3. However, it is likely that the time varying behaviour of F2 contributes

to some unmodeled dynamics or delays, present in the pump. The parameter update

law and algorithm is successful in finding a very good estimate of the flow rates of

the system. Figure 5.4 depicts that the state estimates, i.e. height and concentration

of salt in the outlet stream, are in a small neighbourhood of their true values. The

height of the solution is well estimated by the method. Although, the estimate for

concentration follows the true state, there is a persistent error as shown in Figure 5.5.

The possible reason for this behaviour is the location of the salt solution inlet at the

bottom of the tank. Moreover, outlet of the tank is very close to the salt solution inlet

which may cause some turbulence and nonideal mixing near the outlet. As shown in

Figure 5.5, the estimation error for height is very small, and is decreasing with time.

As shown in Figure 5.6, the uncertainty bound zθ reduces over time and the true

parameter always lies within the uncertainty set as the distance between true and

estimated parameters, δθ is always less than zθ. Similarly, the radius of uncertainty
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set for η i.e zη is also decreasing with time as shown in Figure 5.7. It also shows the

non-exclusion of the true values of the auxiliary variables η, δη < zη, which ensures

that the true state of the system is estimated.
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Figure 5.3: Time course plot of the estimates of flow rates.
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Figure 5.4: Time course plot of the estimated state: x̂ dashed lines(−−) and true
state: x solid lines (−).
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Figure 5.5: Time course plot of the state estimation error e = x− x̂.
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Figure 5.6: The progression of the radius of parameter uncertainty set at time steps
when set is updated.
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Chapter 6

Conclusion and Future Work

A method is proposed for the simultaneous parameter estimation and state estima-

tion of a class of nonlinear systems with constant and/or time-varying parameters.

The problem of estimation has been divided into three broader steps. The first step is

the state and parameter estimation step. Estimation is performed by using: 1) adap-

tive law for estimating the parameters and 2) Luenberger observer for estimating the

state variables. The second step consists in developing techniques and conditions

under which one can guarantee convergence of the state and parameter estimates to

their unknown true value. The techniques proposed in this thesis exploits a Lyapunov

stability criterion to guarantee boundedness of the estimates and a set-update algo-

rithm to guarantee containment of the unknown parameter values in a computable

uncertainty set. The third step is fault detection. employs the state estimation and

parameter estimation uncertainty sets, to detect faults. The main contributions of

the work are: 1) A set-based technique for estimating unknown state variables in

the presence of unknown bounded disturbance. 2) Estimation of unknown param-

eters (constant and time-varying) using set-based technique. 3) An Algorithm has
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been developed to detect the faults in the system. 4) Application of the proposed

methodology to a practical problem of mixing tank.

A set-based adaptive estimation technique is proposed for simultaneous state es-

timation and parameter identification of a class of continuous-time nonlinear systems

subject to time-varying disturbances. The set-based adaptive identifier for parameters

is used to estimate the parameters along with an uncertainty set that is guaranteed

to contain the true value of the parameters. Simultaneously an auxiliary variable is

used to estimate the unmeasured state variables. Sufficient conditions are given that

ensure the convergence of the adaptive observer. The proposed technique updates

the uncertainty sets only when estimation improvement is guaranteed. The proposed

uncertainty set update for parameter identification and state estimation, guarantees

to contain the true values at all time instants. The method guarantees convergence

of the parameter estimation error to zero and determines the unknown state of the

system in the presence of unknown bounded disturbances. The estimation and iden-

tification algorithms have been implemented to a simulation example.

The time-varying parameter problem has been addressed with a modification of

the adaptive estimation technique proposed for simultaneous state estimation and pa-

rameter identification of a class of continuous-time nonlinear systems with constant

parameters. The adaptive identifier along with an uncertainty set update algorithm is

defined such that it guarantees the convergence of the parameter estimates and state

estimates to true value. Sufficient conditions are given that guarantee the conver-

gence of the adaptive observers. The proposed uncertainty set update for parameter

identification and state estimation, guarantees containment of the true values at all

time instants. The method guarantees convergence of the parameter estimation error
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to zero and significantly determines the unknown state of the system. The algorithm

detects faults in the system, induced by changing the true parameter value. The al-

gorithm resets the radius of uncertainty set for the parameters as well as the auxiliary

variable η to an arbitrarily large value to ensure non-exclusion of true values. As soon

as the algorithm detects the fault, it updates the estimates until the convergence to

the new parameter and state values has been achieved. The estimation and identi-

fication algorithms have been implemented to a simulation example to demonstrate

its effectiveness.

The estimation of simple mixing tank with time varying flow rate. The system

consists of two inlet streams of different flow rate and concentration of salt. The

flow rate of salt stream is time-varying. The parameter and state estimation scheme

for time-varying parameters is applied to this practical example. The data obtained

from the experimental run is used to compare the estimates with the true value. It

is demonstrated that the proposed method estimates the state of the system as well

as the time varying parameters accurately, despite imperfect mixing effects of the

solutions.

Future research work should be dedicated to the analysis of the robustness of the

adaptive identifier and observer for time-varying parameters. It would be desirable

to study the stability properties of the method with respect to the bounded unknown

disturbances and unmodeled dynamics. The method proposed in this work guaran-

tees the time-varying parameter convergence to the mean value. Another interesting

problem would be to find a systematic method for estimating the true value of the

time-varying parameter. This could prove useful to relax the assumptions on the
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magnitude of the rate of change of parameters. As the algorithm developed is capa-

ble of detecting faults, future work can be directed in investigating its application to

practical fault detection and isolation problems.
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