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The objective of this paper is to introduce applications of Bayesian filters to state estimation problems in heat transfer.
A brief description of state estimation problems within the Bayesian framework is presented. The Kalman filter, as well
as the following algorithms of the particle filter: sampling importance resampling and auxiliary sampling importance
resampling, are discussed and applied to practical problems in heat transfer.
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1. INTRODUCTION

State estimation problems, also designated as nonstationary inverse problems [1], are of great interest in innumerable
practical applications. In this kind of problem, the available measured data are used together with prior knowledge
about the physical phenomena and the measuring devices in order to sequentially produce estimates of the desired
dynamic variables. This is accomplished in such a manner that the error is minimized statistically [2].

State estimation problems are solved with the so-called Bayesian filters [1, 2]. In the Bayesian approach to statis-
tics, an attempt is made to utilize all available information in order to reduce the amount of uncertainty present in
an inferential or decision-making problem. As new information is obtained, it is combined with previous information
to form the basis for statistical procedures. The formal mechanism used to combine the new information with the
previously available information is known as Bayes’ theorem [1, 3].

The most widely known Bayesian filter method is the Kalman filter [1, 2, 4–9]. However, the application of the
Kalman filter is limited to linear models with additive Gaussian noises. Extensions of the Kalman filter were developed
in the past for less restrictive cases [1, 3, 6–8]. Similarly, Monte Carlo methods have been developed in order to
represent the posterior density in terms of random samples and associated weights. Such Monte Carlo methods, usually
denoted as particle filters, among other designations found in the literature, do not require the restrictive hypotheses
of the Kalman filter. Hence, particle filters can be applied to nonlinear models with non-Gaussian errors [1, 4, 8–18].

In this paper, we present the application of the Kalman filter and of two different algorithms of the Particle filter,
namely the sampling importance resampling and auxiliary sampling importance resampling [1–18], to state estimation
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problems in heat transfer [19–30]. Before focusing on the applications of interest, the state estimation problem is
defined and the Kalman and particle filters are described.

2. STATE ESTIMATION PROBLEM

In order to define the state estimation problem, consider a model for the evolution of the vectorx in the following
form [9]:

xk = fk(xk−1,vk−1) (1)

where the subscriptk = 1, 2, . . ., denotes a time instanttk in a dynamic problem. The vectorx ∈ Rnx is called the
state vector and contains the variables to be dynamically estimated. This vector advances in accordance with the state
evolution model given by Eq. (1), wheref is, in the general case, a nonlinear function of the state variablesx and of
the state noise vectorv ∈ Rnv .

Consider also that measurementszk ∈ Rnz are available attk, k = 1, 2, . . .. The measurements are related to the
state variablesx through the general, possibly nonlinear, functionh in the form

zk = hk(xk,nk) (2)

wheren ∈ Rnn is the measurement noise. Equation (2) is referred to as the observation (measurement) model.
The state estimation problem aims at obtaining information aboutxk based on the state evolution model (1) and

on the measurementsz1:k = zi, i = 1, . . . , k given by the observation model (2) [1–18].
The evolution-observation model given by Eqs. (1) and (2) are based on the following assumptions [1, 4]:

1. The sequencexk for k = 1, 2, . . ., is a Markovian process; that is,

π(xk|x0,x1, . . . ,xk−1) = π(xk|xk−1) (3)

2. The sequencezk for k = 1, 2, . . ., is a Markovian process with respect to the history ofxk; that is,

π(zk|x0,x1, . . . ,xk) = π(zk|xk) (4)

3. The sequencexk depends on the past observations only through its own history; that is,

π(xk|xk−1, z1:k−1) = π(xk|xk−1) (5)

whereπ(a|b) denotes the conditional probability ofa whenb is given.
In addition, for the evolution-observation model given by Eqs. (1) and (2) it is assumed that fori 6= j the noise

vectorsvi andvj , as well asni andnj , are mutually independent and also mutually independent of the initial state
x0. The vectorsvi andnj are also mutually independent for alli andj [1].

Different problems can be considered with the above evolution-observation model, namely [1]:

1. The prediction problem, concerned with the determination ofπ(xk|z1:k−1);

2. The filtering problem, concerned with the determination ofπ(xk|z1:k);

3. The fixed-lag smoothing problem, concerned with the determination ofπ(xk|z1:k+p), wherep ≥ 1 is the fixed
lag;

4. The whole-domain smoothing problem, concerned with the determination ofπ(xk|z1:K), wherez1:K = zi, i =
1, . . . ,K is the complete sequence of measurements.

This paper deals only with the filtering problem. By assuming thatπ(x0|z0) = π(x0) is available, the posterior
probability densityπ(xk|z1:k) is then obtained with Bayesian filters in two steps [1–18]: prediction and update, as
illustrated in Fig. 1. The Kalman filter and the particle filter used in this work are discussed in Sections 3 and 4,
respectively.
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FIG. 1: Prediction and update steps for the Bayesian filter [1].

3. THE KALMAN FILTER

For the application of the Kalman filter, it is assumed that the evolution and observation models given by Eqs. (1) and
(2) are linear. Also, it is assumed that the noises in such models are Gaussian, with known means and covariances, and
that they are additive. Therefore, the posterior densityπ(xk|z1:k) at tk, k = 1, 2, . . . is Gaussian and the Kalman filter
results in the optimal solution to the state estimation problem; that is, the posterior density is calculated exactly [1, 2,
4–9]. With the foregoing hypotheses, the evolution and observation models can be written respectively as

xk = Fkxk−1 + vk−1 (6)

zk = Hkxk + nk (7)

whereF andH are known matrices for the linear evolutions of the statex and of the observationz, respectively. By
assuming that the noisesv andn have zero means and covariance matricesQ andR, respectively, the prediction and
update steps of the Kalman filter for Eqs. (6) and (7) are given by [1, 2, 4–9]:

Prediction:
x−k = Fkx̂k−1 (8)

P−k = FkPk−1FT
k + Qk (9)

Update:
Kk = P−k HT

k (HkP−k HT
k + Rk)−1 (10)

x̂k = x−k + Kk(zk −Hkx−k ) (11)

Pk = (I−KkHk)P−k (12)

The matrixK is called Kalman’s gain matrix. Note above that, after predicting the state variablex and its covari-
ance matrixP with Eqs. (8) and (9), a posteriori estimates for such quantities are obtained in the update step with the
utilization of the measurementsz.
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For other cases in which the hypotheses of linear Gaussian evolution-observation models are not valid, the use
of the Kalman filter does not result in optimal solutions because the posterior density is not analytic. The application
of Monte Carlo techniques then appears as the most general and robust approach to nonlinear and/or non-Gaussian
distributions. This is the case despite the availability of the so-called extended Kalman filter and its variations, which
generally involves a linearization of the problem [1, 4, 8–18]. A Monte Carlo filter is described Section 4.

4. PARTICLE FILTER

The particle filter method [1, 4, 8–18] is a Monte Carlo technique for the solution of the state estimation problem.
The particle filter, is also known as the bootstrap filter, condensation algorithm, interacting particle approximations,
survival of the fittest and sequential Monte Carlo method [9]. The key idea is to represent the required posterior
density function by a set of random samples (particles) with associated weights and to compute the estimates based on
these samples and weights. As the number of samples becomes very large, this Monte Carlo characterization becomes
an equivalent representation of the posterior probability function and the solution approaches the optimal Bayesian
estimate. The particle filter algorithms generally make use of an importance density, which is a density proposed to
represent another one that cannot be exactly computed, that is, the sought posterior density in the present case. Then,
samples are drawn from the importance density instead of the actual density.

Let xi
0:k, i = 0, . . . , N be the particles with associated weightswi

k, i = 0, . . . , N andx0:k = xj , j = 0, . . . , k
be the set of all state variables up totk, whereN is the number of particles. The weights are normalized so that
N∑

i=1

wi
k = 1. Then, the posterior density attk can be discretely approximated by [1, 4, 8–18]:

π(x0:k|z1:k) ≈
N∑

i=1

wi
kδ(x0:k − xi

0:k) (13)

whereδ(.) is the Diracδ function. Similarly, its marginal distribution, which is of interest for the filtering problem,
can be approximated by

π(xk|z1:k) ≈
N∑

i=1

wi
kδ(xk − xi

k) (14)

with weights computed from [9]:

wi
k ∝ wi

k−1

π(zk|xi
k)π(xi

k|xi
k−1)

q(xi
k|xi

k−1, zk)
(15)

where, for the derivation of Eq. (15), the importance densityq(xi
k|xi

1:k−1, z1:k) was assumed to be given byq(xi
k|xi

k−1,
zk); that is, it depends only onxi

k−1 andzk, instead of the whole histories of each particle and of the measurements.
The optimal choice of the importance density, which minimizes the variance of the importance weights conditioned

uponxi
k−1 andzk, is given byq(xi

k|xi
k−1, zk) = π(xi

k|xi
k−1, zk). However, for most practical problems, this optimal

choice is not analytically tractable and a suboptimal importance density is taken as the transitional prior; that is,
q(xi

k|xi
k−1, zk) = π(xi

k|xi
k−1) [9], so that Eq. (15) reduces to

wi
k ∝ wi

k−1π(zk|xi
k) (16)

The sequential application of the particle filter might result in the degeneracy phenomenon, where after a few states
all but very few particles have negligible weight [1, 4, 8–18]. The degeneracy implies that a large computational effort
is devoted to updating particles whose contribution to the approximation of the posterior density function is almost
zero. This problem can be overcome with a resampling step in the application of the particle filter. Resampling involves
a mapping of the random measure{xi

k, wi
k} into {xi∗

k , N−1} with uniform weights; it deals with the elimination of
particles originally with low weights and the replication of particles with high weights. Resampling can be performed
if the number of effective particles (particles with large weights) falls below a certain threshold number [1, 4, 8–18].

International Journal for Uncertainty Quantification



State Estimation Problems in Heat Transfer 243

Alternatively, resampling can also be applied indistinctively at every instanttk, as in the SIR algorithm described
in [8, 9]. Such algorithm can be summarized in the steps presented in Table 1, as applied to the system evolution from
tk−1 to tk [8, 9].

In the first step of the SIR algorithm presented in Table 1, it should be noted that the weights are given directly
by the likelihood functionπ(zk|xi

k). Such is the case because in this algorithm the resampling step is applied at each
time instant and then the weightswi

k−1 are uniform [see Eq. (16)].
Although the resampling step reduces the effects of the degeneracy problem, it may lead to a loss of diversity

and the resultant sample may contain many repeated particles. Hence, despite the fact that in the SIR algorithm the
weights are easily computed and the importance density can be easily sampled, the particles may experience a fast loss
of diversity. Indeed, this problem, known as sample impoverishment, can be severe in the case of small state evolution
noise [1, 8, 9, 18]. In addition, in the SIR algorithm the state space is explored without the information conveyed by
the measurements; that is, the particles at each time instant are generated through the sole application of the transition
prior π(xi

k|xi
k−1) (see step 1 in Table 1). With the ASIR algorithm, an attempt is made to overcome these drawbacks

by performing the resampling step at timetk−1, with the available measurement at timetk [9]. The resampling is
based on some point estimateµi

k that characterizesπ(xk|xi
k−1), which can be the mean ofπ(xk|xi

k−1) or simply a
sample ofπ(xk|xi

k−1). If the state evolution model noise is small, thenπ(xk|xi
k−1) is generally well characterized by

µi
k, so that the weightswi

k are more even and the ASIR algorithm is less sensitive to outliers than the SIR algorithm.
On the other hand, if the state evolution model noise is large, then the single point estimateµi

k in the state space
may not characterize wellπ(xk|xi

k−1) and the ASIR algorithm may not be as effective as the SIR algorithm. The
ASIR algorithm can be summarized in the steps presented in Table 2, as applied to the system evolution fromtk−1 to
tk [8, 9].

A drawback of the particle filter is related to the large computational costs due to the Monte Carlo method, which
may not allow its application to be used for complicated physical problems. On the other hand, more involved algo-
rithms than the ones presented above have been developed [9, 18], which can reduce the number of particles required
for an appropriate representation of the posterior density, thus resulting in the reduction of associated computational
times, especially when associated with parallel computing techniques. In addition, the use of reduced models or
response surfaces for the solution of the direct problem appear as promising approaches for the reduction of the
computational time, thus enabling the use of sampling methods for more involved cases.

TABLE 1: Sampling importance resampling algorithm [8, 9]

Step 1

For i = 1, · · · , N draw new particlesxi
k from the prior densityπ

(
xk

∣∣xi
k−1

)
and then

use the likelihood density to calculate the corresponding weightswi
k = π

(
zk

∣∣xi
k

)
.

Step 2

Calculate the total weightTw =
N∑

i=1

wi
k and then normalize the particle weights; that is,

for i = 1, · · · , N letwi
k = T−1

w wi
k

Step 3
Resample the particles as follows:
Construct the cumulative sum of weights (CSW) by computingci = ci−1 + wi

k for
i = 1, · · · , N , with c0 = 0.
Let i = 1 and draw a starting pointu1 from the uniform distributionU

[
0, N−1

]
For j = 1, · · · , N

Move along the CSW by makinguj = u1 + N−1 (j − 1)
While uj > ci makei = i + 1.

Assign samplexj
k = xi

k

Assign samplewj
k = N−1
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TABLE 2: Auxiliary sampling importance resampling algorithm [8, 9]

Step 1
For i = 1, . . . , N draw new particlesxi

k from the prior densityπ(xk|xi
k−1) and then

calculate some characterizationµi
k of xk, givenxi

k−1. Then use the likelihood density to
calculate the corresponding weightswi

k = π(zk|µi
k)wi

k−1

Step 2
Calculate the total weightt = Σiw

i
k and then normalize the particle weights; that is, for

i = 1, . . . , N let wi
k = t−1wi

k

Step 3
Resample the particles as follows:
Construct the cumulative sum of weights (CSW) by computingci = ci−1 + wi

k for
i = 1, . . . , N , with c0 = 0
Let i = 1 and draw a starting pointu1 from the uniform distributionU [0, N−1]
For j = 1, . . . , N
Move along the CSW by makinguj = u1 + N−1(j − 1)
While uj > ci makei = i + 1
Assign samplexj

k = xi
k

Assign samplewj
k = N−1

Assign parentij = i
Step 4

For j = 1, . . . , N draw particlesxj
k from the prior densityπ(xk|xij

k−1), using the parent
ij , and then use the likelihood density to calculate the correspondent weights
wj

k = π(zk|xj
k)/π(zk|µij

k )
Step 5

Calculate the total weightt = Σjw
j
k and then normalize the particle weights; that is, for

j = 1, . . . , N let wj
k = t−1wj

k

5. APPLICATIONS

In this section, we apply the Bayesian filters described above to state estimation problems in heat transfer that have
been recently addressed by our group. These problems include: (i) the estimation of a position-dependent transient
heat source in a plate [26]; (ii) the estimation of the temperature field in oil pipelines [29]; (iii) the estimation of a
transient line source and the solidification front in a phase-change problem [24]; and (iv) the estimation of the transient
boundary heat flux in a natural convection problem [25]. For all cases, simulated temperature measurements were used
in the inverse analysis. The problems examined are described below, and the results obtained are then discussed.

5.1 Estimation of a Position-Dependent Transient Heat Source in a Plate [26]

We present here the estimation of a transient heat source term that also varies spatially by using the Kalman filter. The
physical problem involves two-dimensional transient heat conduction in a plate, with constant thermal conductivity
and volumetric heat capacity. Lateral boundaries are supposed to be insulated. This situation can be found when
performing experiments on a thin plate, with partial lumping across the plate. Both internal transient heat generation
and constant convective heat losses are taken into account. The mathematical formulation for this problem is given by

C
∂T

∂t
=

∂

∂x

(
k

∂T

∂x

)
+

∂

∂y

(
k

∂T

∂y

)
− h

e
(T − T∞) +

g(x, y, t)
e

in 0 < x < L, 0 < y < L, for t > 0 (17)

∂T

∂x
= 0 atx = 0 andx = L, for t > 0 (18)
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∂T

∂y
= 0 aty = 0 andy = L, for t > 0 (19)

T = T0 for t = 0, at0 < x < L and0 < y < L (20)

whereC andk are the volumetric heat capacity and thermal conductivity of the plate material, respectively,h is the
heat transfer coefficient at the surface of the plate,L ande are the width and thickness of the plate, respectively, and
g(x, y, t) is the sought volumetric heat source term. We assume that transient temperature measurements are available
at several positions(x, y) at the plate surface. The temperature measurements are supposedly taken with an infrared
camera. Such a measurement technique is quite powerful because it can provide accurate non-intrusive measurements,
with fine spatial resolutions and at large frequencies.

For the identification of the spatial and time varying heat source,g(x, y, t), we apply the so-called nodal strategy,
which is briefly described below. Such a strategy makes use of the nonconservative form of Eq. (17), which is rewritten
as follows:

∂T

∂t
= a∇2T −H(T − T∞) + G(x, y, t) (21)

whereH = h/eC, G(x, y, t) = g(x, y, t)/eC, anda = k/C is the thermal diffusivity of the material.
An explicit discretization of Eq. (21) by using finite differences results in

Y k+1
i,j = Lk

i,ja
k
i,j −∆t(T k

i,j − T∞)H + ∆tGk
i,j (22)

where the subscripts(i, j) denotes the finite-difference node atxi = i∆x, i = 1, . . . , I andyi = j∆y, j = 1, . . . , J
and the superscriptk denotes the timetk = k∆t, k = 1, . . . , K. The other quantities appearing in Eq. (22) are given
by

Y k+1
i = T k+1

i − T k
i (23)

Lk
i,j = ∆t

[
T k

i−1,j − 2T k
i,j + T k

i+1,j

(∆x)2
+

T k
i,j−1 − 2T k

i,j + T k
i,j+1

(∆y)2

]
(24)

Equation (23) defines the forward temperature difference in time, while Eq. (24) approximates the Laplacian of
temperature at timetk and node(i, j).

Equation (22) is now rewritten in the form of a state evolution model, for the application of the Kalman filter, by
reordering sequentially all the nodes(i, j) with the indexm = 1, . . . , M , whereM = IJ . Then, Eq. (22) becomes

Tk+1 = Tk + JkPk (25)

where

Jk =




Lk
1 −∆t(T k

1 − T∞) ∆t 0 0
0 0 0 Lk

2 −∆t(T k
2 − T∞)

...
0 · · ·

∆t

· · ·

0

0 Lk
M −∆t(T k

M − T∞) ∆t


 (26)

Tk =




T k
1

T k
2
...

T k
M


 (27)

Volume 2, Number 3, 2012



246 Orlande et al.

Pk =







ak
1

Hk
1

Gk
1







ak
2

Hk
2

Gk
2




...


ak
M

Hk
M

Gk
M







(28)

The vector of parameters defined by Eq. (28) contains at each node,a, which is the thermal diffusivity,H, which
is the heat transfer convective coefficient divided by the heat capacity and thickness of the plate, andG, which is the
local heat source divided by the heat capacity and thickness of the plate.

The sensitivity matrix defined by Eq. (26) is a function of the temperature field and thus depends on the unknown
parameters. This fact would yield a nonlinear estimation procedure. One way to circumvent this problem is to use a
predictive error model, where the measured data are directly passed to the model. Hence, with the spatial resolution
and frequency of measurements made available by infrared cameras, the sensitivity matrix can be approximately
computed with the measurements and the estimation problem becomes linear.

In order to demonstrate the Kalman filter approach for estimating the transient heat sourc termGk
m, we make use

of the following test case involving a slab with thicknesse = 2 × 10−3 m. The slab is composed of a material with
thermal propertiesk = 10 W m−1 K−1 andC = 3.76× 106 J m−3 K−1, subjected to heat source that varies in time
in accordance with a double step function. In order to avoid the inverse crime of using the same direct solution for the
generation of the simulated measurements and for the solution of the inverse problem, a finite-volume solution was
developed that yields the simulated exact data. For the solution of the inverse problem, the slab was discretized with
I = J = 60 internal nodes and 70 time steps. The values of the source termGk

m at each of these volumes and times
steps were then estimated. The final time was taken as 1.4 s, and the time step was chosen as 0.02 s. The spatial grid was
chosen as∆x = ∆y = 500µ m, so that the width and length of the plate were 0.03 m. The heat transfer coefficient
was assumed to have a uniform value of 5 W m−2 K−1 over the plate, throughout the duration of the experiment.
The plate was assumed to be initially at the uniform temperature of 20◦C. The measured variables are assumed to
be the transient temperatures inside the medium at the finite volume nodes. The errors in the simulated measured
temperatures are additive, uncorrelated, normally distributed, with zero mean, and constant standard deviation of
0.2◦C, which is typical of measurements taken with an infrared camera. A random walk model was used for the
evolution of the source termGk

m.
Figures 2 and 3 present the spatial variation of the heat source term used to generate the simulated measurements

and its estimation with the Kalman filter, respectively. The transient variation of the heat source term at a specific
discretization node is presented in Fig. 4. These figures show that the Kalman filter can very accurately estimate the
transient variation of the heat source term, although some lagging is observed near the discontinuities in Fig. 4.

5.2 Estimation of the Temperature field in Oil Pipelines [29]

Flow assurance in the petroleum industry is one of the challenges for the development of subsea field layouts due to a
combination of factors, involving among others, the dynamic nature of the produced multiphase fluids, high internal
hydrostatic pressures, and low external environmental temperatures. Thermal management of equipment and pipeline
systems are of great importance for the prediction and prevention of solid deposits. In general, the subsea systems are
designed to transport the produced fluids without experiencing significant heat losses to the surroundings. Recently,
new technologies have emerged for monitoring and controlling critical parameters associated with the flow assurance.
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FIG. 2: Exact spatial variation of the heat source.

FIG. 3: Estimated spatial variation of the heat source.

FIG. 4: Estimated transient variation of the heat source.
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One of these technologies is based on the use of optical fibers, for the measurement of the temperature profile along
the pipeline.

This example aims at the application of the SIR algorithm presented above, for the accurate prediction of the
unsteady temperature field of the produced fluid inside a typical multilayered pipeline, during shutdown periods. The
physical problem involves a typical pipeline cross section. It is represented by a circular domain filled by the stagnant
petroleum fluid, which is bounded by a multilayered wall, such as in a pipe-in-pipe system (see Fig. 5).

The dimensionless mathematical formulation of this heat conduction problem in cylindrical coordinates is given
by

Pi(θ)Ci(θ)
∂θi(R, τ)

∂τ
=

1
R

∂

∂R

[
RKi(θ)

∂θi(R, τ)
∂R

]
in Ri < R < Ri+1, for τ > 0, i = 1, . . . , N (29)

whereθi is the dimensionless temperature,Ki is the dimensionless thermal conductivity,Pi is the dimensionless
density, andCi is dimensionless specific heat in theith layer. The inner and outer dimensionless radius of theith layer
areRi andRi+1, respectively, whereR1 corresponds to the centerline.

Equation (29) is subjected to the following boundary and interface conditions:

KN (θ)
∂θN

∂R
+ BiθN = 0 at R = RN+1 (30)

θi = θi+1 at R = Ri+1 (31)

Ki(θ)
∂θi

∂R
= Ki+1(θ)

∂θi+1

∂R
at R = Ri+1, for i = 1, . . . , (N − 1) (32)

The initial conditions for the dimensionless temperatures in each layer are

θi(R, 0) = θio(R) in Ri ≤ R ≤ Ri+1, for τ = 0, i = 1, . . . , N (33)

Dimensionless groups were defined as

θi(R, τ) =
Ti(r, t)− T∞

T1o − T∞
(34)

R =
ri

r?
(35)

FIG. 5: Subsea layout for the physical problem.
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Pi =
ρi

ρ?
(36)

Ci =
cpi

cp
?

(37)

Ki =
ki

k?
(38)

τ =
k?

ρ?cp
?

t

r?2 (39)

Bi =
hr?

kN
(40)

Here,T∞ is the surrounding environment temperature,r? is the external radius,T1o is the uniform initial fluid
temperature,k? is the reference thermal conductivity,ρ? is the reference density,c?

p is the reference specific heat, and
h is the heat transfer coefficient at the outer surface of the pipeline.

For the test cases presented below, we consider the pipe-in-pipe to be made of an inner steel pipe with internal
and external diameters of 0.2 m and 0.25 m, respectively. The outer pipe is also made of steel, with internal and
external diameters of 0.35 and 0.40 m, respectively. The thermophysical properties of steel are assumed as constant.
The annular space between the two concentric pipes is assumed to be filled with a thermal insulator with constant
thermophysical properties, approximating those for polypropylene. The stagnant petroleum fluid inside the inner pipe
has temperature-dependent properties, so that the state estimation problem is nonlinear.

The dimensionless temperature field in the pipe in pipe at a specific time is shown by the contour plot in Fig. 5.
White circles in Fig. 6 are used on purpose to separate the spatial domains containing the stagnant fluid, the inner steel
pipe, the thermal insulation, and the outer steel pipe.

The simulated temperature measurements used here are supposed to be taken at the outer surface of the inner pipe;
that is, atr = 0.125 m. The measurement errors are assumed to be additive, Gaussian, uncorrelated, with zero mean,
and a constant standard deviation of 2◦C. Such a standard deviation is characteristic of measurement systems used for
the present application. Errors in the evolution model are also supposed to be additive, Gaussian, uncorrelated, with
zero mean, and constant standard deviation of 4◦C. For the results presented below, 200 particles were used in the
SIR algorithm of the particle filter method presented in Table 1. Numerical experiments revealed that such number of
particles would be sufficient to represent the posterior distribution of the predicted states.

The mean values predicted for the dimensionless temperature field in the pipe-in-pipe system are presented in
Fig. 7, for the same dimensionless time of Fig. 6. A comparison of Figs. 6 and 7 reveals that the particle filter method

FIG. 6: Exact dimensionless temperature distribution.
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FIG. 7: Predicted dimensionless temperature distribution.

is capable of very accurately predicting the temperature field in the pipe-in-pipe system, even when the evolution
model errors are large.

The accuracy of the particle filter method, as applied to the prediction of the temperature field in the pipe-in-
pipe system by using one single measurement point, can also be ascertained through the analysis of the estimated
standard deviation of the predicted states. Figure 8 presents the contour plots of the estimated standard deviations,
corresponding to the predictions presented in Fig. 7. Note that the standard deviations are relatively small as compared
to the values of the predicted temperatures. Also, the largest standard deviations are generally observed in the stagnant
fluid region. The smallest values of the standard deviation are found in the internal and external pipes, as a result of
the small temperature gradients in these regions.

5.3 Estimation of a Transient Line Source and the Solidification Front in a Phase Change
Problem [24]

The main objective of this nonlinear state estimation problem is to compare the performance of the SIR and the ASIR
algorithms. The physical problem analyzed consists of a one-dimensional transient solidification problem in a semi-

FIG. 8: Standard deviation for the estimated dimensionless.
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infinite medium in cylindrical coordinates. Initially, the entire medium is at a uniform temperature in the liquid phase
and, at the initial time a heat sink is applied atr = 0. The material then starts to solidify atr = 0, and a solidification
front moves away from the origin. The physical properties of liquid and solid phases are assumed constant. The
material undergoing solidification is assumed to be a pure substance, so that phase change occurs at the temperature
Tm. Transient temperature measurements taken at one single point inside the solidifying medium are used to estimate
the location of the solidification front, as well as the intensity of a line heat sink.

The mathematical formulation for the solid phase is given as

1
r

∂

∂r

[
r
∂Ts(r, t)

∂r

]
=

1
αs

∂Ts(r, t)
∂t

in 0 < r < S(t) and t > 0 (41)

and for the liquid phase as

1
r

∂

∂r

[
r
∂Tl(r, t)

∂r

]
=

1
αl

∂Tl(r, t)
∂t

in S(t) < r < ∞ and t > 0 (42)

Tl(r, t) → Ti in r →∞ and t > 0 (43)

Tl = Ti at t = 0 and r > 0 (44)

At the interface between liquid and solid phases, the following conditions must be satisfied:

Ts = Tl = Tm at r = S(t) and t > 0 (45)

ks
∂Ts

∂r
− kl

∂Tl

∂r
= ρL

∂S(t)
∂t

at r = S(t) and t > 0 (46)

and at the centerline the following condition is satisfied:

lim
r→0

[
2πrks

∂Ts

∂r

]
= Q (47)

An analytical solution can be obtained for this physical problem, and it is given by [31]:

Ts(r, t) = Tm +
Q

4πks

[
Ei

( −r2

4αst

)
− Ei(−λ2)

]
0 < r < S(t) (48)

Tl(r, t) = Ti − (Ti − Tm)
Ei [(−λ2αs)/αl]

[
Ei

( −r2

4αst

)]
S(t) < r < ∞ (49)

where the eigenvaluesλ and the solidification frontS(t) are given respectively by

Q

4π
e−λ2

+
kl(Ti − Tm)

Ei[(−λ2αs)/αl]
e(−λ2αs)/αl = λ2αsρL (50)

S(t) = 2λ
√

αst (51)

In the above equationsTi is the uniform initial temperature,Tm is the melting temperature of the material,L is the
latent heat of solidification of the material,ρ is the density, andks andkl are the thermal conductivities of the solid
and liquid phases, respectively,αs andαl are the thermal diffusivities of the solid and liquid phases, respectively, and
Tl are temperatures of the solid and liquid phases, respectively,Q is the strength of the line heat sink, andEi denotes
the exponential integral function.

The physical problem defined by Eqs. (41)–(47) was solved for the following data, corresponding to solidifying
water:Ti = 25◦C, Tm = 0◦C, αs = 0.00118 m2/s, αl = 0.000146 m2/s, ks = 2.22 W/(m◦C), kl = 0.61 W/(m◦C),
ρ = 997.1 kg/m3, L = 80 J/kg. The line heat sink was supposed to have a constant value ofQ = 50 W/m. In this
work, the measurements (for the observation model) were obtained atr = 0.01 m. The simulated noisy measurements
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were uncorrelated, additive, Gaussian, with zero mean and constant standard deviation equal to 5% of the maximum
temperature.

A random walk model was used for the evolution model of the unknown line heat sink, as given by Eq. (52),
where the subscriptk denotes the time instanttk. In Eq. (52),σ is the standard deviation for the line heat sink, taken
to be equal to 0.25 W/m, whileωk is a random variable with normal distribution, zero mean, and unitary standard
deviation. Equation (53) shows the evolution model for the solidification front, obtained by rewriting Eq. (51) in an
appropriate form for the application of the particle filter algorithms presented above. Uncertainties in the evolution
model for the solidification front were also taken into account, as additive, Gaussian, with zero mean, and standard
deviationσs. In Eq. (53),ω?

k is a random variable with normal distribution, zero mean, and unitary standard deviation

Qk = Qk−1 + σωk (52)

S(tk) = S(tk−1) + 2λ
√

αs(
√

tk −
√

tk−1) + σsω
?
k (53)

The two algorithms of the particle filter presented above were applied to the problem of estimating the transient
line heat sink as well as the solidification front. Table 3 summarizes the cases examined as well as their results for CPU
time and root-mean-square (rms) errors. Table 3 shows that the SIR algorithm resulted on computational times varying
from 0.008 to 11.047 min, when the number of particles varied from 100 to 5000. Also, the variation of the rms in the
estimation of the solidification front varied from 9×10−3 to 1×10−4 m, by increasing the number of particles from
100 to 5000. On the other hand, by applying the ASIR algorithm with only 100 particles, the computational time was
of 0.161 min, with an rms error of 2×10−5 m in the estimation the solidification front. Also in Table 3, one can note
that the rms error for recovering the line heat sink was much smaller for the ASIR algorithm than for SIR algorithm.
Thus, the ASIR algorithm was capable of recovering the unknown quantities more accurately, faster, and with a much
smaller number of particles than those required for the SIR algorithm.

Figures 9 and 10 present the estimated solidification front and line heat sink intensity, respectively, obtained
with the ASIR algorithm. Clearly, the estimated quantities are in excellent agreement with the exact ones. The 99%
confidence intervals of the estimated solidification front and heat sink intensity are also presented in Figs. 9 and 10.

5.4 Estimation of the Transient Boundary Heat Flux in a Natural Convection Problem [25]

The physical problem now under examination involves the transient laminar natural convection of a fluid inside a two-
dimensional square cavity. The fluid is initially at rest and at the uniform temperatureTc. At time zero, the bottom,
and top surfaces are subjected to time-dependent heat fluxesq1(t) andq2(t), respectively. The left and right surfaces
are subjected to constant temperaturesTc andTh, respectively. The fluid properties are assumed constant, except for
the density in the buoyancy term, where we consider Boussinesq’s approximation valid.

The mathematical formulation for this physical problem can be written in vector form in terms of the following
conservation equation in the generalized Cartesian coordinates:

∂(ρϕ)
∂t

+
∂(uρϕ)

∂x
+

∂(vρϕ)
∂y

= ∇ • (Γϕ∇ϕ) + S (54)

TABLE 3: Computational time and rms errors

Filter No. particles CPU time (min)
rms error for the

solidification front (m)
rms error for the line

heat sink intensity (W/m)
SIR 100 0.008 9×10−3 1.55
SIR 1000 0.997 2×10−3 1.78
SIR 5000 11.047 1×10−4 0.34

ASIR 100 0.161 7.9×10−5 0.15
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FIG. 9: Estimated solidification front.

FIG. 10: stimated intensity of the heat sink.

The general conservation variable, as well as the diffusion coefficient and the source term for the mass, momentum,
and energy conservation equations, are given in vector form, respectively, as

ϕ =




1
u(x, y, t)
v(x, y, t)
T (x, y, t)


 (55)

Γϕ =




0 0 0 0
0 µ 0 0
0 0 µ 0
0 0 0 K/Cp


 (56)

Sϕ =




0

−∂P (x, y, t)
∂x

−∂P (x, y, t)
∂y

− ρg{1− β[T (x, y, t)− Tref ]}
0




(57)
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We note in the Eq. (57) that the positivey-axis in the physical domain was supposed to be aligned with the opposite
direction of the gravitational acceleration vector. These equations are solved, subjected to the following boundary and
initial conditions

T = Tc at x = 1, 1 < y < H, for t > 0 (58)

T = Th at x = W , 1 < y < H, for t > 0 (59)

u = v = 0 at x = 1 and x = W , 1 < y < H, for t > 0 (60)

u = v = 0 at y = 1 and y = H, 1 < x < W , for t > 0 (61)

K
∂T

∂y
= −q1(t) at y = 1, 1 < x < W , for t > 0 (62)

K
∂T

∂y
= q2(t) at y = H, 1 < x < W , for t > 0 (63)

u = v = 0 for t = 0 in the region (64)

T = Tc for t = 0 in the region (65)

We applied the ASIR algorithm to estimate the time-varying heat flux applied at the top wall of a square cavity,
which is filled with airρ = 1.19 kg/m3; K = 0.026 W/m K;cp = 1035.02 J/kg K;µ = 1.8×10−5 kg/m s; andβ =
0.00341 K−1. The bottom wall of the cavity was kept thermally insulated, and the left and right walls were subjected
to constant temperatures equal to 2 and 12◦C, respectively. The width and height of the cavity were equal to 0.046 m,
which resulted in a Rayleigh (Ra) number equal to 105, where

Ra=
ρ2Cpgβ(Th − Tc)W 3

µK
(66)

The state estimation problem consists thus in predicting the behavior of the state variableq2(t) at the top wall
of the cavity. However, because the heat flux affects the temperature field through the energy equation and also the
mass and momentum equations through the buoyancy source term, Eqs. (54)–(65), the state vector is composed of the
discretized heat fluxq2(t), plus all velocity components and temperature values in each finite control volume inside
the cavity. Because of the amount of computational resources involved for the solution of this problem, we used a
very course finite volume grid (11×11 volumes) to demonstrate the feasibility of the method. The total number of
state variables is thus: 1 for the heat fluxq2(t), 11×11 for theu component of the velocity field, 11×11 for thev
component of the velocity field, and 11×11 for the temperatureT , resulting in 364 state variables.

The evolution model for the velocity and temperature values was given by the discretized form of mass, momen-
tum, and energy equations, where the state noise was supposed to be additive, uncorrelated, Gaussian, with zero mean,
and a standard deviation equal to 1% of the state variable values. For the heat fluxq2(t), a random walk evolution
model was used.

For the observation model, we used simulated temperature measurements, where an experimental error with stan-
dard deviation equal to 1% of the local value of the temperature was used. Such measurements were taken at the top
and bottom walls of the cavity, in 11points equally spaced at each wall.

Figure 11 shows the estimated values ofq2(t) with a linear exact variation, for two different number of particles
and two different measurement frequencies. The average values at each time are shown by the symbols with error
bars corresponding to a 99% confidence interval. For the case with 10 particles and a measurement frequency of
1 Hz, there was an initial delay of almost 200 s in the estimation of such heat flux. However, when the number of
particles was increased to 100, with the same measurement rate of 1 Hz, the particle filter was able to fully recover the
unknown heat flux. When more particles were used, the uncertainty bars were more uniform during the whole time
period examined, whereas for 10 particles there was a fluctuation in the associated uncertainty level of the estimated
heat flux. One can also see in Fig. 11 that, when the frequency was increased from 1 to 10 Hz, the results became
worse, with a larger fluctuation of the average heat flux and larger estimated uncertainties. This is due to the ill-posed
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FIG. 11: Estimated heat flux with the linear profile.

character of the inverse problem, which becomes more sensitive to perturbations at higher measurement frequencies
when sequential methods, such as the ones under examination, are utilized.

Figure 12 shows the exact and recovered temperature profiles, while Fig. 13 shows the exact and recovered stream-
lines. One can note the excellent estimates of the temperature and velocity fields, despite the fact that the streamlines
at 100 s, for the test case with 10 particles and a measurement frequency of 1 Hz, were not fully well captured. This
is due to the initial delay of∼200 s to estimate the heat flux in this case, as discussed above.

6. CONCLUSIONS

In this paper, we presented the application of the Kalman filter and two algorithms of the particle filter, to the solution
of state estimation problems in heat transfer. The particle filter was coded in the form of the SIR algorithm and of the
ASIR algorithm. The problems examined in this paper included: (i) The estimation of a position-dependent transient
heat source in a plate, (ii) the estimation of the temperature field in oil pipelines, (iii) the estimation of a transient
line source and the solidification front in a phase change problem, and (iv) the estimation of the transient boundary
heat flux in a natural convection problem. For all cases, simulated temperature measurements were used in the inverse
analysis.

For linear-Gaussian models, the Kalman filter results in optimal solutions, which can be obtained in smaller
computational times than with the particle filters. On the other hand, in nonlinear and/or non-Gaussian models, the
basic hypotheses required for the application of the Kalman filter are not valid. The particle filter thus appears in the
literature as an accurate estimation technique of general use.
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FIG. 12: Real and estimated temperature profiles with the linear heat flux variation.

FIG. 13: Real and estimated streamlines with the linear heat flux profile.

The two algorithms of the particle filter examined here were successfully applied to the solution of nonlinear
state estimation problems. Such Monte Carlo techniques provided accurate estimation results, even for strict cases
involving large errors in the evolution and observation models. However, numerical experiments revealed that a drastic
reduction on the number of particles used to represent the posterior density function could be achieved by using the
ASIR algorithm instead of the SIR algorithm. Therefore, the ASIR algorithm appears as a robust and efficient tool for
complicated problems, such as the one dealing with natural convection examined above.
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