State-Space Models and the Discrete-Time Realization Algorithm

5.1: Introduction to state-space models

- The coupled PDEs derived in earlier chapters of notes are too complex to be used in real-time applications.
- They are "infinite dimensional." For every point in time t, there are an infinite number of x - and r-dimension variables to solve for.
- i.e., $c_{s}(x, r, t), \bar{c}_{e}(x, t), \bar{\phi}_{s}(x, t), \bar{\phi}_{e}(x, t)$, for a pseudo-two dimensional model.

- We desire to create cell-scale ODEs that retain, as much as possible, the fidelity of the continuum-scale PDEs, but which reduce their order from infinite order to some (small) finite order.
- The result is a small coupled set of ODEs, which can be simulated very easily and quickly.
- In this chapter, we introduce "state-space" models, which is the final form of the reduced-order models we will develop.
- We then preview the approach to generate the state-space models from the PDEs of the variables of interest:
- We start by generating transfer functions for each PDE;
- We then use the "discrete-time realization algorithm" to convert transfer functions to state-space form.

A quick introduction to state-space models

- Transfer functions provide a system's input-output mapping only:

$$
u[k] \rightarrow G(z) \rightarrow y[k] .
$$

- State-space models provide access to what is going on inside the system, in addition to the input-output mapping.
- What's going on inside the system is called the system's "state".

DEFINITION: The internal state of a system at time k_{0} is the minimum amount of information at k_{0} that, together with the input $u[k], k \geq k_{0}$, uniquely determines the behavior of the system for all $k \geq k_{0}$.

- State-space models describe a system's dynamics via two equations:
- The "state equation" describes how the input influences the state;
- The "output equation" describes how the state and the input both directly influence the output.
- Discrete-time LTI state-space models have the following form:

$$
\begin{aligned}
\boldsymbol{x}[k+1] & =\boldsymbol{A} \boldsymbol{x}[k]+\boldsymbol{B} \boldsymbol{u}[k] \\
\boldsymbol{y}[k] & =\boldsymbol{C} \boldsymbol{x}[k]+\boldsymbol{D} \boldsymbol{u}[k]
\end{aligned}
$$

where $\boldsymbol{u}[k] \in \mathbb{R}^{m}$ is the input, $\boldsymbol{y}[k] \in \mathbb{R}^{p}$ is the output, and $\boldsymbol{x}[k] \in \mathbb{R}^{n}$ is the state vector.

- Different systems have different $n, \boldsymbol{A}, \boldsymbol{B}, \boldsymbol{C}$, and \boldsymbol{D}.
- A block diagram can help
visualize the signal flows:
EXAMPLE: Convert the following single-input single-output difference equation into a discrete-time state-space form,

$$
y[k]+a_{1} y[k-1]+a_{2} y[k-2]+a_{3} y[k-3]=b_{1} u[k-1]+b_{2} u[k-2]+b_{3} u[k-3] .
$$

- We're going to do the conversion by first recognizing that the transfer function of this system is,

$$
G(z)=\frac{b_{1} z^{2}+b_{2} z+b_{3}}{z^{3}+a_{1} z^{2}+a_{2} z+a_{3}}=\frac{Y(z)}{U(z)} .
$$

- Break up transfer function into two parts. $G_{p}(z)=V(z) / U(z)$ contains all of the poles:

$$
G_{p}(z)=\frac{1}{z^{3}+a_{1} z^{2}+a_{2} z+a_{3}}=\frac{V(z)}{U(z)}
$$

n! $\quad v[k+3]+a_{1} v[k+2]+a_{2} v[k+1]+a_{3} v[k]=u[k]$.

- Choose current and advanced versions of $v[k]$ as state (this is a choice: there are other equally valid choices, as we will see)

$$
x[k]=[v[k+2] v[k+1] v[k]]^{T} .
$$

- Then

$$
x[k+1]=\left[\begin{array}{c}
v[k+3] \\
v[k+2] \\
v[k+1]
\end{array}\right]=\left[\begin{array}{ccc}
-a_{1} & -a_{2} & -a_{3} \\
1 & 0 & 0 \\
0 & 1 & 0
\end{array}\right]\left[\begin{array}{c}
v[k+2] \\
v[k+1] \\
v[k]
\end{array}\right]+\left[\begin{array}{l}
1 \\
0 \\
0
\end{array}\right] u[k] .
$$

- We now add zeros, $G(z)=\left(b_{1} z^{2}+b_{2} z+b_{3}\right) G_{p}(z)$. Equivalently,

$$
Y(z)=\left[b_{1} z^{2}+b_{2} z+b_{3}\right] V(z),
$$

$$
\text { or, } y[k]=b_{1} v[k+2]+b_{2} v[k+1]+b_{3} v[k] .
$$

- In summary, we have the state-space model:

$$
\begin{aligned}
x[k+1] & =\left[\begin{array}{ccc}
-a_{1} & -a_{2} & -a_{3} \\
1 & 0 & 0 \\
0 & 1 & 0
\end{array}\right] x[k]+\left[\begin{array}{l}
1 \\
0 \\
0
\end{array}\right] u[k] \\
y[k] & =\left[\begin{array}{lll}
b_{1} & b_{2} & b_{3}
\end{array}\right] x[k]+[0] u[k] .
\end{aligned}
$$

- Note: There are many other equally valid state-space models of this particular transfer function. We will soon see how they are related.
- Many discrete-time transfer functions are not strictly proper. Solve by polynomial long division, and setting D equal to the quotient.
- MATLAB command [A, B, C, D] =tf2ss (num, den, Ts) converts a rational-polynomial transfer function form to state-space form.

5.2: Working with state-space systems

State-space to transfer function

- In the prior example, we saw it is possible to convert from a difference equation (or transfer function) to a state-space form quite easily.
- Now, we'll see that the opposite translation is also straightforward.
- Start with the state equations

$$
\begin{aligned}
\boldsymbol{x}[k+1] & =\boldsymbol{A} \boldsymbol{x}[k]+\boldsymbol{B} \boldsymbol{u}[k] \\
\boldsymbol{y}[k] & =\boldsymbol{C} \boldsymbol{x}[k]+\boldsymbol{D} \boldsymbol{u}[k] .
\end{aligned}
$$

- Take the z-transform of both sides of both equations

$$
\begin{aligned}
z \boldsymbol{X}(z)-z \boldsymbol{x}[0] & =\boldsymbol{A} \boldsymbol{X}(z)+\boldsymbol{B} \boldsymbol{U}(z) \\
\boldsymbol{Y}(z) & =\boldsymbol{C} \boldsymbol{X}(z)+\boldsymbol{D} \boldsymbol{U}(z),
\end{aligned}
$$

or

$$
\begin{aligned}
(z \boldsymbol{I}-\boldsymbol{A}) \boldsymbol{X}(z) & =\boldsymbol{B} \boldsymbol{U}(z)+z \boldsymbol{x}[0] \\
\boldsymbol{X}(z) & =(z \boldsymbol{I}-\boldsymbol{A})^{-1} \boldsymbol{B} \boldsymbol{U}(z)+(z \boldsymbol{I}-\boldsymbol{A})^{-1} z \boldsymbol{x}[0] .
\end{aligned}
$$

- This gives,

$$
\boldsymbol{Y}(z)=\underbrace{\left[\boldsymbol{C}(z \boldsymbol{I}-\boldsymbol{A})^{-1} \boldsymbol{B}+\boldsymbol{D}\right]}_{\text {transer function of system }} \boldsymbol{U}(z)+\underbrace{\boldsymbol{C}(z \boldsymbol{I}-\boldsymbol{A})^{-1} z \boldsymbol{x}[0]}_{\text {response to initial conditions }} .
$$

- So,

$$
\boldsymbol{G}(z)=\frac{\boldsymbol{Y}(z)}{\boldsymbol{U}(z)}=\boldsymbol{C}(z \boldsymbol{I}-\boldsymbol{A})^{-1} \boldsymbol{B}+\boldsymbol{D} .
$$

- Note that $(z \boldsymbol{I}-\boldsymbol{A})^{-1}=\frac{\operatorname{adj}(z \boldsymbol{I}-\boldsymbol{A})}{\operatorname{det}(z \boldsymbol{I}-\boldsymbol{A})}$, so we can write a system's transfer function as

$$
\boldsymbol{G}(z)=\frac{\boldsymbol{C} \operatorname{adj}(z \boldsymbol{I}-\boldsymbol{A}) \boldsymbol{B}+\boldsymbol{D} \operatorname{det}(z \boldsymbol{I}-\boldsymbol{A})}{\operatorname{det}(z \boldsymbol{I}-\boldsymbol{A})} .
$$

- Extremely important observation: The poles of the system are where $\operatorname{det}(z \boldsymbol{I}-\boldsymbol{A})=0$, which (by definition) are the eigenvalues of \boldsymbol{A}.

Transformation

- State-space representations of a particular system's dynamics are not unique. Selection of state $\boldsymbol{x}[k]$ is somewhat arbitrary.
- To see this, analyze the transformation of

$$
\begin{aligned}
\boldsymbol{x}[k+1] & =\boldsymbol{A} \boldsymbol{x}[k]+\boldsymbol{B} \boldsymbol{u}[k] \\
\boldsymbol{y}[k] & =\boldsymbol{C} \boldsymbol{x}[k]+\boldsymbol{D} \boldsymbol{u}[k]
\end{aligned}
$$

where we let $\boldsymbol{x}[k]=\boldsymbol{T} \boldsymbol{w}[k]$, where \boldsymbol{T} is an invertible (similarity) transformation matrix. Then,

$$
\begin{aligned}
(\boldsymbol{T} \boldsymbol{w}[k+1]) & =\boldsymbol{A}(\boldsymbol{T} \boldsymbol{w}[k])+\boldsymbol{B} \boldsymbol{u}[k] \\
\boldsymbol{y}[k] & =\boldsymbol{C}(\boldsymbol{T} \boldsymbol{w}[k])+\boldsymbol{D} \boldsymbol{u}[k] .
\end{aligned}
$$

- Multiplying the first equation by \boldsymbol{T}^{-1} gives

$$
\begin{aligned}
\boldsymbol{w}[k+1] & =\underbrace{\boldsymbol{T}^{-1} \boldsymbol{A} \boldsymbol{T}}_{\overline{\boldsymbol{A}}} \boldsymbol{w}[k]+\underbrace{\boldsymbol{T}^{-1} \boldsymbol{B}}_{\overline{\boldsymbol{B}}} \boldsymbol{u}[k] \\
\boldsymbol{y}[k] & =\underbrace{\boldsymbol{C} \boldsymbol{T}}_{\overline{\boldsymbol{C}}} \boldsymbol{w}[k]+\underbrace{\boldsymbol{D}}_{\overline{\boldsymbol{D}}} \boldsymbol{u}[k] \\
\text { so, } \boldsymbol{w}[k+1] & =\overline{\boldsymbol{A}} \boldsymbol{w}[k]+\overline{\boldsymbol{B}} \boldsymbol{u}[k] \\
\boldsymbol{y}[k] & =\overline{\boldsymbol{C}} \boldsymbol{w}[k]+\overline{\boldsymbol{D}} \boldsymbol{u}[k] .
\end{aligned}
$$

- To show that $\boldsymbol{H}_{1}(z)=\boldsymbol{H}_{2}(z)$,

$$
\begin{aligned}
\boldsymbol{H}_{1}(z) & =\boldsymbol{C}(z \boldsymbol{I}-\boldsymbol{A})^{-1} \boldsymbol{B}+\boldsymbol{D} \\
& =\boldsymbol{C} \boldsymbol{T} \boldsymbol{T}^{-1}(z \boldsymbol{I}-\boldsymbol{A})^{-1} \boldsymbol{T} \boldsymbol{T}^{-1} \boldsymbol{B}+\boldsymbol{D}
\end{aligned}
$$

$$
\begin{aligned}
& =(\boldsymbol{C} \boldsymbol{T})\left[\boldsymbol{T}^{-1}(z \boldsymbol{I}-\boldsymbol{A}) \boldsymbol{T}\right]^{-1}\left(\boldsymbol{T}^{-1} \boldsymbol{B}\right)+\boldsymbol{D} \\
& =\overline{\boldsymbol{C}}(z \boldsymbol{I}-\overline{\boldsymbol{A}})^{-1} \overline{\boldsymbol{B}}+\overline{\boldsymbol{D}}=\boldsymbol{H}_{2}(z)
\end{aligned}
$$

- Transfer function not changed by similarity transform

CONCLUSION: Can arrive at state-space representations having identical input-output relationship but different $(\boldsymbol{A}, \boldsymbol{B}, \boldsymbol{C}, \boldsymbol{D})$ matrices.

EXAMPLE: Consider transforming the system

$$
\begin{array}{ll}
\boldsymbol{A}=\left[\begin{array}{ccc}
-a_{1} & -a_{2} & -a_{3} \\
1 & 0 & 0 \\
0 & 1 & 0
\end{array}\right], \quad \boldsymbol{B}=\left[\begin{array}{l}
1 \\
0 \\
0
\end{array}\right], \quad \text { with } \quad \boldsymbol{T}=\boldsymbol{T}^{-1}=\left[\begin{array}{lll}
0 & 0 & 1 \\
0 & 1 & 0 \\
1 & 0 & 0
\end{array}\right] . \\
\boldsymbol{C}=\left[\begin{array}{lll}
b_{1} & b_{2} & b_{3}
\end{array}\right], & \boldsymbol{D}=\left[\begin{array}{l}
0
\end{array}\right] .
\end{array}
$$

- Note that multiplying on the right by \boldsymbol{T} flips the original entries left-toright; multiplying on the left flips the original entries top-to-bottom.
- So, for this transformation matrix, we get:

$$
\begin{aligned}
& \overline{\boldsymbol{A}}=\boldsymbol{T}^{-1} \boldsymbol{A} \boldsymbol{T}=\left[\begin{array}{lll}
0 & 0 & 1 \\
0 & 1 & 0 \\
1 & 0 & 0
\end{array}\right]\left[\begin{array}{ccc}
-a_{1} & -a_{2} & -a_{3} \\
1 & 0 & 0 \\
0 & 1 & 0
\end{array}\right]\left[\begin{array}{lll}
0 & 0 & 1 \\
0 & 1 & 0 \\
1 & 0 & 0
\end{array}\right] \\
&=\left[\begin{array}{ccc}
0 & 1 & 0 \\
0 & 0 & 1 \\
-a_{3} & -a_{2} & -a_{1}
\end{array}\right] \\
& \overline{\boldsymbol{B}}=\boldsymbol{T}^{-1} \boldsymbol{B}=\left[\begin{array}{lll}
0 & 0 & 1 \\
0 & 1 & 0 \\
1 & 0 & 0
\end{array}\right]\left[\begin{array}{l}
1 \\
0 \\
0
\end{array}\right]=\left[\begin{array}{l}
0 \\
0 \\
1
\end{array}\right]
\end{aligned}
$$

$$
\begin{aligned}
& \overline{\boldsymbol{C}}=\boldsymbol{C} \boldsymbol{T}=\left[\begin{array}{lll}
b_{1} & b_{2} & b_{3}
\end{array}\right]\left[\begin{array}{lll}
0 & 0 & 1 \\
0 & 1 & 0 \\
1 & 0 & 0
\end{array}\right]=\left[\begin{array}{lll}
b_{3} & b_{2} & b_{1}
\end{array}\right] \\
& \overline{\boldsymbol{D}}=\boldsymbol{D}=0
\end{aligned}
$$

- We can find the transfer function of this new form as

$$
\left.\begin{array}{rl}
\boldsymbol{G}(z) & =\overline{\boldsymbol{C}}(z \boldsymbol{I}-\overline{\boldsymbol{A}})^{-1} \overline{\boldsymbol{B}}+\overline{\boldsymbol{D}} \\
& =\left[\begin{array}{lll}
b_{3} & b_{2} & b_{1}
\end{array}\right]\left(\left[\begin{array}{ccc}
z & 0 & 0 \\
0 & z & 0 \\
0 & 0 & z
\end{array}\right]-\left[\begin{array}{ccc}
0 & 1 & 0 \\
0 & 0 & 1 \\
-a_{3} & -a_{2} & -a_{1}
\end{array}\right]\right)^{-1}\left[\begin{array}{l}
0 \\
0 \\
1
\end{array}\right]+0 \\
& =\left[\begin{array}{lll}
b_{3} & b_{2} & b_{1}
\end{array}\right]\left(\left[\begin{array}{ccc}
z & -1 & 0 \\
0 & z & -1 \\
a_{3} & a_{2} & z+a_{1}
\end{array}\right]\right)^{-1}\left[\begin{array}{l}
0 \\
0 \\
1
\end{array}\right] \\
& \left.=\frac{\left[\begin{array}{lll}
b_{3} & b_{2} & b_{1}
\end{array}\right]\left[\begin{array}{cc}
z^{2}+a_{1} z+a_{2} & a_{1}+z \\
-a_{3} & z^{2}+a_{1} z \\
-a_{3} z & -a_{2} z-a_{3} \\
z^{2}
\end{array}\right]\left[\begin{array}{l}
0 \\
0 \\
1
\end{array}\right]}{\begin{array}{l}
z^{3}+a_{1} z^{2}+a_{2} z+a_{3} \\
b_{3}
\end{array} b_{2} b_{1}}\right] \\
& =\frac{z^{3}+a_{1} z^{2}+a_{2} z+a_{3}}{z} \\
z^{2}
\end{array}\right]=\frac{b_{1} z^{2}+b_{2} z+b_{3}}{z^{3}+a_{1} z^{2}+a_{2} z+a_{3}},
$$

which was the transfer function we started with before transformation.

5.3: Discrete-time Markov parameters

- It turns out that the discrete unit-pulse response of a state-space system has a special form that is important to us later.
- For example, let's look at the unit-pulse response of a single-input state-space system. (Note that, by definition, $x[0]=0$ when finding a unit-pulse response).
- We find that

$$
\begin{array}{rlrl}
\boldsymbol{y}[0] & =\boldsymbol{C} \boldsymbol{x}[0]+\boldsymbol{D} u[0]=\boldsymbol{D}, & \boldsymbol{x}[1]=\boldsymbol{B} \\
\boldsymbol{y}[1] & =\boldsymbol{C} \boldsymbol{x}[1]+\boldsymbol{D} u[1]=\boldsymbol{C} \boldsymbol{B}, & & \boldsymbol{x}[2]=\boldsymbol{A} \boldsymbol{B} \\
\boldsymbol{y}[2]=\boldsymbol{C} \boldsymbol{x}[2]+\boldsymbol{D} u[2]=\boldsymbol{C} \boldsymbol{A B}, & & \boldsymbol{x}[3]=\boldsymbol{A}^{2} \boldsymbol{B} \\
& \vdots & & \vdots \\
\boldsymbol{y}[k] & =\boldsymbol{C A}^{k-1} \boldsymbol{B}, & k \geq 1 .
\end{array}
$$

- These unit-pulse-response values, $\left\{\boldsymbol{D}, \boldsymbol{C} \boldsymbol{B}, \boldsymbol{C} \boldsymbol{A} \boldsymbol{B}, \boldsymbol{C} \boldsymbol{A}^{2} \boldsymbol{B}, \boldsymbol{C} \boldsymbol{A}^{3} \boldsymbol{B}, \ldots\right\}$ are called the Markov parameters of the system.
- This turns out to be of critical importance to realizing our transfer functions, as we will see.
- Specifically, we define the Markov parameters to be:

$$
\boldsymbol{g}_{k}= \begin{cases}\boldsymbol{D}, & k=0 \\ \boldsymbol{C} \boldsymbol{A}^{k-1} \boldsymbol{B}, & k>0\end{cases}
$$

CLARITY ISSUE: - For SISO systems, the Markov parameters are scalars.

- For a single-input multi-output (SIMO) system the Markov parameters are (column) vectors.
- The i th entry (row) of each Markov parameter is computed as the unit-pulse response from the input to the i th output.
- Equivalently, the entire vector Markov parameter is the unit-pulse response from the input to the vector output.
- For multi-input single-output (MISO) systems, the Markov parameters are row vectors.
- The j th entry (column) of each Markov parameter is computed via the unit-pulse response from the j th input to the output.
- For multi-input multi output (MIMO) systems, the Markov parameters are matrices.
- The (i, j) th entries yield the the unit-pulse response from the j th input to the i th output.
- Equivalently, the j th column of each Markov parameter is vector (as in the SIMO case) which is computed via the unit-pulse response from the j th input to the vector output.
example: Given the following discrete-time system, with zero initial condition, find the unit-pulse response:

$$
\boldsymbol{A}=\left[\begin{array}{cc}
0.5 & 0 \\
0 & 1
\end{array}\right], \quad \boldsymbol{B}=\left[\begin{array}{l}
1 \\
0
\end{array}\right], \quad \boldsymbol{C}=\left[\begin{array}{cc}
1 & -1
\end{array}\right], \quad \boldsymbol{D}=0
$$

- The Markov parameters are given by

$$
\begin{aligned}
\boldsymbol{g}_{k} & =\left\{\boldsymbol{D}, \boldsymbol{C} \boldsymbol{B}, \boldsymbol{C} \boldsymbol{A} \boldsymbol{B}, \boldsymbol{C} \boldsymbol{A}^{2} \boldsymbol{B}, \ldots\right\} \\
& =\{0,1,0.5,0.25, \ldots\}
\end{aligned}
$$

- MATLAB’s impulse.m command confirms this result:

```
A = [0.5 0; 0 1];
```

$\mathrm{B}=[1$; 0];
$\mathrm{C}=\left[\begin{array}{ll}1 & -1\end{array}\right] ; \mathrm{D}=0$;
sys $=s s(A, B, C, D,-1)$;
$\mathrm{y}=$ impulse(sys,0:15);
stem(0:15,y,'filled');

Before proceeding...

- We have now quickly previewed state-space models, with the claim that there will be a method to represent our battery models in that particular form.
- We now begin to investigate that claim-the first step is to create transfer-function models for the variables of interest.
- In this chapter, we look at representing c_{s} as a transfer function; in the next chapter we look at the remainder of the model equations.
- Note that in chapter 3 we used symbols without an over-line to indicate point-wise values for variables of interest: i.e., $c_{s}, c_{e}, \phi_{s}, \phi_{e}$.
- In chapter 4 we used symbols with an over-line to indicate volume average versions of these point-wise variables: i.e., $\bar{c}_{e}, \bar{\phi}_{s}$, and $\bar{\phi}_{e}$.
- We now drop the over-line notation, because otherwise the equations get so highly decorated that they are impossible to parse. We are still talking about the volume-average quantities of chapter 4.

5.4: Equations describing the solid dynamics

Finding the transfer function $\widetilde{C}_{s, e}(s) / J(s)$

- To find the transfer function for c_{s}, we follow the approach by Jacobsen and West ${ }^{1}$
- We start with the underlying partial-differential equation,

$$
\frac{\partial c_{s}(r, t)}{\partial t}=\frac{1}{r^{2}} \frac{\partial}{\partial r}\left(D_{s} r^{2} \frac{\partial c_{s}(r, t)}{\partial r}\right)
$$

with standard boundary conditions,

$$
D_{s} \frac{\partial c_{s}(0, t)}{\partial r}=0, \quad \text { and } \quad D_{s} \frac{\partial c_{s}\left(R_{s}, t\right)}{\partial r}=-j(t), \quad t \geq 0,
$$

and with initial equilibrium concentration,

$$
c_{s}(r, 0)=c_{s, 0}, \quad 0 \leq r \leq R_{s} .
$$

- Note that we run into problems solving this PDE directly if $c_{s, 0} \neq 0$.
- So, to enforce a homogeneous PDE in later steps, we define $\tilde{c}_{s}(r, t)=c_{s}(r, t)-c_{s, 0}$. The "tilde" notation denotes the difference between an absolute quantity and its equilibrium set-point.
- If we assume constant D_{s}, the differential equations become:

$$
\frac{\partial \tilde{c}_{s}(r, t)}{\partial t}=\frac{D_{s}}{r^{2}} \frac{\partial}{\partial r}\left(r^{2} \frac{\partial \tilde{c}_{s}(r, t)}{\partial r}\right)
$$

with boundary conditions,

$$
D_{s} \frac{\partial \tilde{c}_{s}(0, t)}{\partial r}=0, \quad \text { and } \quad D_{s} \frac{\partial \tilde{c}_{s}\left(R_{s}, t\right)}{\partial r}=-j(t), \quad t \geq 0
$$

and with initial equilibrium concentration,

$$
\tilde{c}_{s}(r, 0)=0, \quad 0 \leq r \leq R_{s} .
$$

${ }^{1}$ Jacobsen, T., and West, K., "Diffusion Impedance in Planar, Cylindrical and Spherical Symmetry," Electrochimica Acta, 40(2), 1995, pp. 255-62.

- We continue by taking the Laplace transform of the PDE:

$$
\begin{aligned}
s \widetilde{C}_{s}(r, s)-\tilde{c}_{0} & =\frac{D_{s}}{r^{2}} \frac{\partial}{\partial r}\left(r^{2} \frac{\partial}{\partial r} \widetilde{C}_{s}(r, s)\right) \\
s \widetilde{C}_{s}(r, s) & =\frac{D_{s}}{r^{2}}\left(2 r \frac{\partial \widetilde{C}_{s}(r, s)}{\partial r}+r^{2} \frac{\partial^{2} \widetilde{C}_{s}(r, s)}{\partial r^{2}}\right) .
\end{aligned}
$$

- This is a $2^{\text {nd }}$-order ordinary differential equation in r, which may be written

$$
\frac{\partial^{2} \widetilde{C}_{s}(r, s)}{\partial r^{2}}+\frac{2}{r} \frac{\partial \widetilde{C}_{s}(r, s)}{\partial r}-\frac{s}{D_{s}} \widetilde{C}_{s}(r, s)=0 .
$$

- This homogeneous differential equation has a solution of the form

$$
\begin{aligned}
\widetilde{C}_{s}(r, s) & =\frac{A}{r} \exp \left(r \sqrt{\frac{s}{D_{s}}}\right)+\frac{B}{r} \exp \left(-r \sqrt{\frac{s}{D_{s}}}\right) \\
& =\frac{A}{r} \exp (\beta(r))+\frac{B}{r} \exp (-\beta(r)),
\end{aligned}
$$

where we define $\beta(r)=r \sqrt{s / D_{s}}$. We note that $\beta(r)$ is also a function of s, but we omit this dependence in the notation for compactness.

- The constants A and B are chosen to satisfy the boundary conditions.
- Consider first the outer boundary condition at $r=R_{s}$, which is

$$
\left.D_{s} \frac{\partial \tilde{c}_{s}(r, t)}{\partial r}\right|_{r=R_{s}}=-j(t)
$$

- The equivalent Laplace-domain boundary condition is

$$
\left.D_{s} \frac{\partial \widetilde{C}_{s}(r, s)}{\partial r}\right|_{r=R_{s}}=-J(s)
$$

- To substitute this in, we will need to compute $\partial \widetilde{C}_{s}(r, s) / \partial r$

$$
\frac{\partial \widetilde{C}_{s}(r, s)}{\partial r}=\frac{A \sqrt{\frac{s}{D_{s}}} r \exp (\beta(r))-B \exp (-\beta(r))}{r^{2}}
$$

$$
\begin{aligned}
& -\frac{A \exp (\beta(r))+B \sqrt{\frac{s}{D_{s}}} r \exp (-\beta(r))}{r^{2}} \\
& =\frac{A(\beta(r)-1) \exp (\beta(r))-B(1+\beta(r)) \exp (-\beta(r))}{r^{2}} .
\end{aligned}
$$

- We substitute $r=R_{s}$ and the boundary condition

$$
\begin{aligned}
\left.\frac{\partial \widetilde{C}_{s}(r, s)}{\partial r}\right|_{r=R_{s}} & =\frac{A\left(\beta\left(R_{s}\right)-1\right) \exp \left(\beta\left(R_{s}\right)\right)-B\left(1+\beta\left(R_{s}\right)\right) \exp \left(-\beta\left(R_{s}\right)\right)}{R_{s}^{2}} \\
-\frac{J(s)}{D_{s}} & =\frac{A\left(\beta\left(R_{s}\right)-1\right) \exp \left(\beta\left(R_{s}\right)\right)-B\left(1+\beta\left(R_{s}\right)\right) \exp \left(-\beta\left(R_{s}\right)\right)}{R_{s}^{2}}
\end{aligned}
$$

- This gives us an expression for $J(s)$,

$$
J(s)=-\frac{D_{s}}{R_{s}^{2}}\left(A\left(\beta\left(R_{s}\right)-1\right) \exp \left(\beta\left(R_{s}\right)\right)-B\left(1+\beta\left(R_{s}\right)\right) \exp \left(-\beta\left(R_{s}\right)\right)\right)
$$

- If we immediately substitute the second boundary condition at $r=0$, we run into some divide-by-zero issues.
- So, instead, we substitute $r=r_{\delta}$, which we think of as a very small value. We will then later take the limit as $r_{\delta} \rightarrow 0$.

$$
0=\frac{A\left(\beta\left(r_{\delta}\right)-1\right) \exp \left(\beta\left(r_{\delta}\right)\right)-B\left(1+\beta\left(r_{\delta}\right)\right) \exp \left(-\beta\left(r_{\delta}\right)\right)}{r_{\delta}^{2}}
$$

- This allows us to write

$$
\begin{aligned}
\frac{A\left(\beta\left(r_{\delta}\right)-1\right) \exp \left(\beta\left(r_{\delta}\right)\right)}{r_{\delta}^{2}} & =\frac{B\left(1+\beta\left(r_{\delta}\right)\right) \exp \left(-\beta\left(r_{\delta}\right)\right)}{r_{\delta}^{2}} \\
A & =B \frac{\left(1+\beta\left(r_{\delta}\right)\right) \exp \left(-\beta\left(r_{\delta}\right)\right)}{\left(\beta\left(r_{\delta}\right)-1\right) \exp \left(\beta\left(r_{\delta}\right)\right)}
\end{aligned}
$$

- We now take the limit as $r_{\delta} \rightarrow 0$, and find that $A=-B$.
- We are now ready to construct the transfer function $\widetilde{C}_{s}(s, r) / J(s)$

$$
\begin{aligned}
\frac{\widetilde{C}_{s}(r, s)}{J(s)} & =\frac{-R_{s}^{2}}{D_{s} r}\left[\frac{A \exp (\beta(r))+B \exp (-\beta(r))}{A\left(\beta\left(R_{s}\right)-1\right) \exp \left(\beta\left(R_{s}\right)\right)-B\left(1+\beta\left(R_{s}\right)\right) \exp \left(-\beta\left(R_{s}\right)\right)}\right] \\
& =\frac{-R_{s}^{2}}{D_{s} r}\left[\frac{A}{-A}\right]\left[\frac{\exp (\beta(r))-\exp (-\beta(r))}{\left(1-\beta\left(R_{s}\right)\right) \exp \left(\beta\left(R_{s}\right)\right)-\left(1+\beta\left(R_{s}\right)\right) \exp \left(-\beta\left(R_{s}\right)\right)}\right] \\
& =\frac{R_{s}^{2}}{D_{s} r}\left[\frac{\exp (\beta(r))-\exp (-\beta(r))}{\left(1-\beta\left(R_{s}\right)\right) \exp \left(\beta\left(R_{s}\right)\right)-\left(1+\beta\left(R_{s}\right)\right) \exp \left(-\beta\left(R_{s}\right)\right)}\right] .
\end{aligned}
$$

- This expression can be used to determine the lithium concentration anywhere within the particle.
- However, we are most interested in determining the concentration at the surface of the particle, where $r=R_{s}$. So, we substitute $r=R_{s}$

$$
\frac{\widetilde{C}_{s, e}(s)}{J(s)}=\frac{R_{s}}{D_{s}}\left[\frac{\exp \left(\beta\left(R_{s}\right)\right)-\exp \left(-\beta\left(R_{s}\right)\right)}{\left(1-\beta\left(R_{s}\right)\right) \exp \left(\beta\left(R_{s}\right)\right)-\left(1+\beta\left(R_{s}\right)\right) \exp \left(-\beta\left(R_{s}\right)\right)}\right]
$$

- To compact the notation yet again, write $\beta\left(R_{s}\right)$ as simply β,

$$
\begin{aligned}
\frac{\widetilde{C}_{s, e}(s)}{J(s)} & =\frac{R_{s}}{D_{s}}\left[\frac{\exp (\beta)-\exp (-\beta)}{(1-\beta) \exp (\beta)-(1+\beta) \exp (-\beta)}\right] \\
& =\frac{R_{s}}{D_{s}}\left[\frac{\exp (\beta)-\exp (-\beta)}{\exp (\beta)-\exp (-\beta)-\beta[\exp (\beta)+\exp (-\beta)]}\right] \\
& =\frac{R_{s}}{D_{s}}\left[\frac{\frac{\exp (\beta)-\exp (-\beta)}{\exp (\beta)+\exp (-\beta)}}{\frac{\exp (\beta)-\exp (-\beta)}{\exp (\beta)+\exp (-\beta)}-\beta}\right] \\
& =\frac{R_{s}}{D_{s}}\left[\frac{\tanh (\beta)}{\tanh (\beta)-\beta}\right]=\frac{R_{s}}{D_{s}}\left[\frac{1}{1-\beta \operatorname{coth}(\beta)}\right]
\end{aligned}
$$

- To recap to this point, re-expanding notation, where $\beta(s, r)=r \sqrt{s / D_{s}}$,

$$
\widetilde{C}_{s, e}(s)=\frac{R_{s}}{D_{s}}\left[\frac{1}{1-\beta\left(s, R_{s}\right) \operatorname{coth}\left(\beta\left(s, R_{s}\right)\right)}\right] J(s) .
$$

5.5: Removing the integrator pole

- While not immediately obvious by looking at the transfer function, it turns out that $\widetilde{C}_{s, e}(s) / J(s)$ is unstable: There is a pole at $s=0$.
- This is intuitively clear, however, because we know that a step input will result in ever-increasing concentration.
- This will be important when we look at how to convert the transfer function to a state-space model.
- To make a stable transfer function, define $\Delta \widetilde{C}_{s, e}(s)=\widetilde{C}_{s, e}(s)-\widetilde{C}_{s, \text { avg }}(s)$, where $\widetilde{C}_{s, \text { avg }}(s)$ is the bulk (average) concentration in the solid, less $c_{s, 0}$.
- Note that we can write $\tilde{c}_{s, \text { avg }}\left(t_{1}\right)$ for some arbitrary point in time t_{1} as

$$
\tilde{c}_{s, \text { avg }}\left(t_{1}\right)=\int_{0}^{t_{1}} \frac{\text { Influx of } \mathrm{Li},\left[\mathrm{~mol} \mathrm{~s}^{-1}\right]}{\text { Volume of particle }\left[\mathrm{m}^{3}\right]} \mathrm{d} t .
$$

- Note two things:
- The volume of a sphere of radius R_{s} is $\frac{4}{3} \pi R_{s}^{3}\left[\mathrm{~m}^{3}\right]$;
- The influx of lithium is $-j(t)\left[\mathrm{mol} \mathrm{m}^{-2} \mathrm{~s}^{-1}\right]$, occurring over the surface area $4 \pi R_{s}^{2}\left[\mathrm{~m}^{2}\right]$.
- This gives

$$
\begin{aligned}
\tilde{c}_{s, \text { avg }}\left(t_{1}\right) & =\int_{0}^{t_{1}} \frac{-j(t) \cdot 4 \pi R_{s}^{2}}{\frac{4}{3} \pi R_{s}^{3}} \mathrm{~d} t \\
& =-\frac{3}{R_{s}} \int_{0}^{t_{1}} j(t) \mathrm{d} t \\
\frac{\mathrm{~d}}{\mathrm{~d} t} \tilde{c}_{s, \text { avg }}(t) & =-\frac{3}{R_{s}} j(t) .
\end{aligned}
$$

- Note that this result is perfectly general. We made no assumptions on how the lithium concentration is distributed inside the particle.
- Taking Laplace transforms, we find:

$$
\frac{\widetilde{C}_{s, \mathrm{avg}}(s)}{J(s)}=-\frac{3}{R_{s}} \frac{1}{s}
$$

- Therefore,

$$
\begin{aligned}
\frac{\Delta \widetilde{C}_{s, e}(s)}{J(s)} & =\frac{\widetilde{C}_{s, e}(s)}{J(s)}-\frac{\widetilde{C}_{s, \operatorname{avg}}(s)}{J(s)} \\
& =\frac{R_{s}}{D_{s}}\left[\frac{\tanh (\beta)}{\tanh (\beta)-\beta}\right]+\frac{3}{R_{s} s} \\
& =\frac{R_{s}}{D_{s}}\left[\frac{\tanh (\beta)+\frac{3 D_{s}}{s R_{s}^{2}}(\tanh (\beta)-\beta)}{\tanh (\beta)-\beta}\right] \\
& =\frac{R_{s}}{D_{s}}\left[\frac{\tanh (\beta)+\frac{3}{\beta^{2}}(\tanh (\beta)-\beta)}{\tanh (\beta)-\beta}\right] \\
& =\frac{R_{s}}{D_{s}}\left[\frac{\beta^{2} \tanh (\beta)+3(\tanh (\beta)-\beta)}{\beta^{2}(\tanh (\beta)-\beta)}\right] \\
& =\frac{R_{s}}{D_{s}}\left[\frac{\left(\beta^{2}+3\right) \tanh (\beta)-3 \beta}{\beta^{2}(\tanh (\beta)-\beta)}\right] .
\end{aligned}
$$

State-space realization problem

- It turns out that for this specific case, we can find all the poles and zeros using a simple numeric method, and use that information to make a discrete-time state-space model.
- For the transfer functions we develop in the next chapter, however, this cannot be done.
- So, we must turn to alternative implementation approaches.
- One method is to use nonlinear optimization to select poles and residues to attempt to match the frequency response of the transfer functions.
- This is fraught with problems.
- We next introduce another approach, which directly gives us a discrete-time state-space approximate model of our transfer functions.
- This system-identification problem for state-space systems is sometimes called the "realization problem."
- That is, we wish to find a realization (a set of $\boldsymbol{A}, \boldsymbol{B}, \boldsymbol{C}$, and \boldsymbol{D} matrices) that describe a system's dynamics.

5.6: State-space realization problem: Ho-Kalman method

- For now, we assume that we are able to find the Markov parameters of our transfer functions.

Problem: Given a system's Markov parameters, find the system dimension n and ($\boldsymbol{A}, \boldsymbol{B}, \boldsymbol{C}, \boldsymbol{D}$), up to similarity transforms.

- One of the first (maybe the first) state-space realization methods was introduced by Ho and Kalman. ${ }^{2}$
- It is key to the discrete-time realization algorithm we will develop.
- Notice that something curious happens when we multiply the following matrices together:

- For reasons beyond the scope of our discussion here, \mathcal{O} is called the "observability matrix" and \mathcal{C} is called the "controllability matrix."
${ }^{2}$ B.L. Ho and R.E. Kalman, "Effective Construction of Linear State Variable Models from Input/Output Functions," Regelungstechnik, vol. 14, no. 12, pp. 545-8, 1966.
- Notice that we get a Hankel matrix-a matrix having constant skew diagonals (an upside-down Toeplitz matrix).
- Note also that the values on the skew diagonals are the Markov parameters of the system (excluding g_{0} and g_{k} for $k>2 n-1$)

$$
\mathcal{H}=\mathcal{O C}=\left[\begin{array}{cccc}
\boldsymbol{g}_{1} & \boldsymbol{g}_{2} & \cdots & \boldsymbol{g}_{n} \\
\boldsymbol{g}_{2} & \boldsymbol{g}_{3} & & \\
\vdots & & \ddots & \vdots \\
\boldsymbol{g}_{n} & & \cdots & \boldsymbol{g}_{2 n-1}
\end{array}\right]
$$

- Ho-Kalman assumes that we know the Markov parameters.
- Knowledge of \boldsymbol{g}_{0} gives us \boldsymbol{D} directly.
- Knowledge of the rest of the Markov parameters will ultimately result in $\boldsymbol{A}, \boldsymbol{B}$, and \boldsymbol{C}.
- To use Ho-Kalman, we must first form the Hankel matrix \mathcal{H}.
- The next step is to factor $\mathcal{H}=\mathcal{O C}$ into its \mathcal{O} and \mathcal{C} components.
- The third step is to use \mathcal{O} and \mathcal{C} to find $\boldsymbol{A}, \boldsymbol{B}$, and \boldsymbol{C}.
issue i: We don't know n. So, how do we form \mathcal{H} in the first place? That is, when do we stop adding unit-pulse-response values to \mathcal{H} ?

PRELIMINARY ANSWER: The rank of \mathcal{H} is equal to n. Keep adding data until the rank doesn't increase.

ISSUE II: How do we compute $\boldsymbol{A}, \boldsymbol{B}$, and \boldsymbol{C} from \mathcal{O} and \mathcal{C} ?
ANSWER: \boldsymbol{C} is extracted as the first block row of $\mathcal{O} ; \boldsymbol{B}$ is extracted as the first block column of \mathcal{C}. We'll see how to get \boldsymbol{A} shortly.

ISSUE III: How do we do the factoring of \mathcal{H} into \mathcal{O} and \mathcal{C} ?

ANSWER: It doesn't matter, at least in principle. Any matrices \mathcal{O} and \mathcal{C} such that $\mathcal{O C}=\mathcal{H}$ are okay.

- To see this latter point, consider what happens to \mathcal{O} and \mathcal{C} when the state-space model undergoes a similarity transformation.
- Recall that $\overline{\boldsymbol{A}}=\boldsymbol{T}^{-1} \boldsymbol{A} \boldsymbol{T}, \overline{\boldsymbol{B}}=\boldsymbol{T}^{-1} \boldsymbol{B}$, and $\overline{\boldsymbol{C}}=\boldsymbol{C} \boldsymbol{T}$.
- The observability and controllability matrices of the new representation are

$$
\begin{aligned}
\overline{\mathcal{O}} & =\left[\begin{array}{c}
\overline{\boldsymbol{C}} \\
\overline{\boldsymbol{C}} \overline{\boldsymbol{A}} \\
\vdots \\
\overline{\boldsymbol{C}} \overline{\boldsymbol{A}}^{n-1}
\end{array}\right]=\left[\begin{array}{c}
\boldsymbol{C} \boldsymbol{T} \\
\boldsymbol{C} \boldsymbol{T} \boldsymbol{T}^{-1} \boldsymbol{A} \boldsymbol{T} \\
\vdots \\
\boldsymbol{C} \boldsymbol{T}\left(\boldsymbol{T}^{-1} \boldsymbol{A} \boldsymbol{T}\right)^{n-1}
\end{array}\right]=\boldsymbol{\mathcal { O } \boldsymbol { T }} \\
\overline{\mathcal{C}} & =\left[\begin{array}{lll}
\overline{\boldsymbol{B}} & \overline{\boldsymbol{A}} \overline{\boldsymbol{B}} & \cdots \\
\left.\overline{\boldsymbol{A}}^{n-1} \overline{\boldsymbol{B}}\right]
\end{array}\right] \\
& =\left[\begin{array}{lll}
\boldsymbol{T}^{-1} \boldsymbol{B} & \boldsymbol{T}^{-1} \boldsymbol{A} \boldsymbol{T} \boldsymbol{T}^{-1} \boldsymbol{B} & \cdots \\
\left(\boldsymbol{T}^{-1} \boldsymbol{A} \boldsymbol{T}\right)^{n-1} \boldsymbol{T}^{-1} \boldsymbol{B}
\end{array}\right]=\boldsymbol{T}^{-1} \mathcal{C} .
\end{aligned}
$$

- Therefore, $\overline{\mathcal{O}} \overline{\mathcal{C}}=(\mathcal{O} \boldsymbol{T})\left(\boldsymbol{T}^{-1} \mathcal{C}\right)=\mathcal{O C}$
- If we factor \mathcal{H} one way, we end up with a representation that has one set of \mathcal{O} and \mathcal{C}.
- If we factor \mathcal{H} any other way, we end up with a representation that has an alternate set of $\overline{\mathcal{O}}$ and $\overline{\mathcal{C}}$.
- But, these representations are related via a similarity transformation \boldsymbol{T}.
- That is, no matter how we factor \mathcal{H}, we end up with different $\boldsymbol{A}, \boldsymbol{B}$, and \boldsymbol{C} matrices, but the same input-output relationship (same transfer function, same unit-pulse response, but different state descriptions).
- For example, we could choose to let $\mathcal{O}=\boldsymbol{I}$, and then $\mathcal{C}=\mathcal{H}$. This will result in an $\boldsymbol{A}, \boldsymbol{B}$, and \boldsymbol{C} that are in "observability canonical form." (cf. ECE5520)
- Or, we could choose to let $\mathcal{C}=\boldsymbol{I}$, and then $\mathcal{O}=\mathcal{H}$. This will result in an $\boldsymbol{A}, \boldsymbol{B}$, and \boldsymbol{C} that are in "controllability canonical form."
issue iv: Is there a "best" way to factor \mathcal{H} ? Yes. . . enter the SVD.

5.7: Singular value decomposition

FACT: Any rectangular matrix $\boldsymbol{A} \in \mathbb{R}^{m \times n}$, where $\operatorname{rank}(\boldsymbol{A})=r$, can be factored into the form:

$$
\boldsymbol{A}=\boldsymbol{U} \boldsymbol{\Sigma} \boldsymbol{V}^{T} .
$$

- $\boldsymbol{U}=\left[\boldsymbol{u}_{1}, \ldots, \boldsymbol{u}_{r}\right] \in \mathbb{R}^{m \times r}$, and $\boldsymbol{U}^{T} \boldsymbol{U}=\boldsymbol{I}$, and \boldsymbol{u}_{i} are the left or output singular vectors of \boldsymbol{A}.
- $\boldsymbol{V}=\left[\boldsymbol{v}_{1}, \ldots, \boldsymbol{v}_{r}\right] \in \mathbb{R}^{n \times r}$, and $\boldsymbol{V}^{T} \boldsymbol{V}=\boldsymbol{I}$, and \boldsymbol{v}_{i} are the right or input singular vectors of \boldsymbol{A}.
- $\boldsymbol{\Sigma}=\operatorname{diag}\left(\sigma_{1}, \ldots, \sigma_{r}\right)$ where $\sigma_{1} \geq \cdots \geq \sigma_{r}>0$, and σ_{i} are the (nonzero) singular values of \boldsymbol{A}.
- The above is called a compact SVD. Most often, we compute a full SVD, where
- $\boldsymbol{U}=\left[\boldsymbol{u}_{1}, \ldots, \boldsymbol{u}_{m}\right] \in \mathbb{R}^{m \times m}$, and $\boldsymbol{U}^{T} \boldsymbol{U}=\boldsymbol{I}$,
- $\boldsymbol{V}=\left[\boldsymbol{v}_{1}, \ldots, \boldsymbol{v}_{n}\right] \in \mathbb{R}^{n \times n}$, and $\boldsymbol{V}^{T} \boldsymbol{V}=\boldsymbol{I}$,
- The matrix $\boldsymbol{\Sigma} \in \mathbb{R}^{m \times n}$ is "diagonal"

$$
\boldsymbol{\Sigma}=\left[\begin{array}{cccc}
\sigma_{1} & & 0 & 0 \\
& \ddots & & 0 \\
0 & & \sigma_{m} & 0
\end{array}\right] \text { or } \boldsymbol{\Sigma}=\left[\begin{array}{ccc}
\sigma_{1} & & 0 \\
& \ddots & \\
0 & & \sigma_{n}
\end{array}\right] \text { or } \boldsymbol{\Sigma}=\left[\begin{array}{ccc}
\sigma_{1} & & 0 \\
& \ddots & \\
0 & & \sigma_{n} \\
0 & 0 & 0
\end{array}\right]
$$

when $m<n, m=n$ and $m>n$, respectively.

- In this case, $\sigma_{1} \geq \cdots \geq \sigma_{r}>0$, and $\sigma_{i}=0$ for $i>r$.
- In MATLAB, svd.m and svds.m
- We often write the full SVD as partitioned:

$$
\boldsymbol{A}=\left[\begin{array}{l:l}
\boldsymbol{U}_{1} & \boldsymbol{U}_{2}
\end{array}\right]\left[\begin{array}{c:c}
\boldsymbol{\Sigma}_{1} & \mathbf{0}_{r \times(n-r)} \\
\hdashline \mathbf{0}_{(m-r) \times r} & \mathbf{0}_{(m-r) \times(n-r)}
\end{array}\right]\left[\begin{array}{l}
\boldsymbol{V}_{1}^{T} \\
\hdashline \boldsymbol{V}_{2}^{T}
\end{array}\right]
$$

where $\boldsymbol{A}=\boldsymbol{U}_{1} \boldsymbol{\Sigma}_{1} \boldsymbol{V}_{1}^{T}$ is the compact SVD.

- Note that the singular values are related to matrix norm. In particular, $\|\boldsymbol{A}\|=\sigma_{1}$.
- Can view operation $\boldsymbol{y}=\boldsymbol{A} \boldsymbol{x}$ as $\boldsymbol{y}=\left(\boldsymbol{U} \boldsymbol{\Sigma} \boldsymbol{V}^{T}\right) \boldsymbol{x}$, decomposing the operation into
- Computing coefficients of x along the input directions $\boldsymbol{v}_{1}, \ldots, \boldsymbol{v}_{r}$ (rotating by V^{T})
- v_{1} is the most sensitive (highest gain) input direction
- Scaling the coefficients by σ_{i} (dilation)
- Reconstituting along output directions $\boldsymbol{u}_{1}, \ldots, \boldsymbol{u}_{r}$.
- \boldsymbol{u}_{1} is the highest gain output direction. $\boldsymbol{A} \boldsymbol{v}_{1}=\sigma_{1} \boldsymbol{u}_{1}$.
- SVD gives a picture of gain as a function of input/output directions.

EXAMPLE: Consider $\boldsymbol{A} \in \mathbb{R}^{4 \times 4}$ with $\boldsymbol{\Sigma}=\operatorname{diag}(10,7,0.1,0.05)$.

- Input components along directions v_{1} and v_{2} are amplified (by about 10) and come out mostly along the plane spanned by \boldsymbol{u}_{1} and \boldsymbol{u}_{2}.
- Input components along directions $\boldsymbol{v}_{3}, \boldsymbol{v}_{4}$ are attenuated (by about 10).
- \| $\boldsymbol{A} \boldsymbol{x}\|/\| \boldsymbol{x} \|$ can range between 10 and 0.05 ; \boldsymbol{A} is nonsingular.
- For some applications you might say that \boldsymbol{A} is effectively rank 2 (this will be important for us later).

Low-rank approximations

- Suppose that $\boldsymbol{A} \in \mathbb{R}^{m \times n}$ and $\operatorname{rank}(\boldsymbol{A})=r$, with SVD

$$
\boldsymbol{A}=\boldsymbol{U} \boldsymbol{\Sigma} \boldsymbol{V}^{T}=\sum_{i=1}^{r} \sigma_{i} \boldsymbol{u}_{i} \boldsymbol{v}_{i}^{T}
$$

- We want to approximate \boldsymbol{A} by $\hat{\boldsymbol{A}}$, where $\operatorname{rank}(\hat{\boldsymbol{A}}) \leq p<r$ such that $\hat{\boldsymbol{A}} \approx \boldsymbol{A}$ in the sense that $\|\boldsymbol{A}-\hat{\boldsymbol{A}}\|$ is minimized.
- The optimal rank p approximator is $\hat{\boldsymbol{A}}=\sum_{i=1}^{p} \sigma_{i} \boldsymbol{u}_{i} \boldsymbol{v}_{i}^{T}$ and hence

$$
\|\boldsymbol{A}-\hat{\boldsymbol{A}}\|=\left\|\sum_{i=p+1}^{r} \sigma_{i} \boldsymbol{u}_{i} \boldsymbol{v}_{i}^{T}\right\|=\sigma_{p+1}
$$

because σ_{p+1} is the maximum remaining singular value.
INTERPRETATION: SVD dyads $\boldsymbol{u}_{i} \boldsymbol{v}_{i}^{T}$ are ranked in order of 'importance'; take p of them to get a rank p approximant.

APPLICATION: We can use this idea to simplify models (very useful). Suppose that

- $\boldsymbol{y}=\boldsymbol{A} \boldsymbol{x}+\boldsymbol{v}$ where $\boldsymbol{A} \in \mathbb{R}^{100 \times 30}$ has SVs $10,7,2,0.5,0.01, \ldots, 0.0001$.
- \|x\| is on the order of 1 , and unknown error or noise \boldsymbol{v} has norm on the order of 0.1.
- Then, the terms $\sigma_{i} \boldsymbol{u}_{i} \boldsymbol{v}_{i}^{T} \boldsymbol{x}$ for $i=5, \ldots, 30$ are substantially smaller than the noise term v.
- So, we can approximate $\boldsymbol{y}=\boldsymbol{A x}+\boldsymbol{v}$ by the much simplified model

$$
\boldsymbol{y}=\sum_{i=1}^{4} \sigma_{i} \boldsymbol{u}_{i} \boldsymbol{v}_{i}^{T} \boldsymbol{x}+\boldsymbol{v}
$$

5.8: Back to Ho-Kalman

- Recall Ho-Kalman "ISSUE ו," how do we form the Hankel matrix \mathcal{H} if we don't know the dimension of the system state n ?
- To address this issue, consider the infinite, skew-diagonal matrix \mathcal{H}_{∞} :

$$
\mathcal{H}_{\infty}=\left[\begin{array}{ccccc}
\boldsymbol{g}_{1} & \boldsymbol{g}_{2} & \boldsymbol{g}_{3} & \boldsymbol{g}_{4} & \cdots \\
\boldsymbol{g}_{2} & \boldsymbol{g}_{3} & \boldsymbol{g}_{4} & \boldsymbol{g}_{5} & \cdots \\
\boldsymbol{g}_{3} & \boldsymbol{g}_{4} & \boldsymbol{g}_{5} & g_{6} & \cdots \\
\boldsymbol{g}_{4} & \boldsymbol{g}_{5} & \boldsymbol{g}_{6} & \boldsymbol{g}_{7} & \cdots \\
\vdots & \vdots & \vdots & \vdots & \ddots
\end{array}\right]
$$

where the entries g_{k} correspond to the Markov parameters for the given system.

- This form is called an infinite Hankel matrix, or Hankel operator.
- We can also define a finite Hankel matrix, formed by the first k rows and l columns of \mathcal{H}

$$
\mathcal{H}_{k, l}=\left[\begin{array}{ccccc}
\boldsymbol{g}_{1} & \boldsymbol{g}_{2} & \boldsymbol{g}_{3} & \cdots & \boldsymbol{g}_{l} \\
\boldsymbol{g}_{2} & \boldsymbol{g}_{3} & \boldsymbol{g}_{4} & \cdots & \boldsymbol{g}_{l+1} \\
\boldsymbol{g}_{3} & \boldsymbol{g}_{4} & \boldsymbol{g}_{5} & \cdots & \boldsymbol{g}_{l+2} \\
\vdots & \vdots & \vdots & & \vdots \\
\boldsymbol{g}_{k} & \boldsymbol{g}_{k+1} & \boldsymbol{g}_{k+2} & \cdots & \boldsymbol{g}_{k+l-1}
\end{array}\right] .
$$

- This finite Hankel matrix factors into $\mathcal{H}_{k, l}=\mathcal{O}_{k} \mathcal{C}_{l}$ where:

$$
\mathcal{O}_{k}=\left[\begin{array}{c}
\boldsymbol{C} \\
\boldsymbol{C} \boldsymbol{A} \\
\vdots \\
\boldsymbol{C A}^{k-1}
\end{array}\right], \quad \boldsymbol{\mathcal { C }}_{l}=\left[\begin{array}{lllll}
\boldsymbol{B} & \boldsymbol{A} \boldsymbol{B} & \boldsymbol{A}^{2} \boldsymbol{B} & \cdots & \boldsymbol{A}^{l-1} \boldsymbol{B}
\end{array}\right] .
$$

- The approach we will take is to make a $\mathcal{H}_{k, l}$ of larger size than we expect for a hypothesized value of n. That is, $k>n$ and $l>n$.
- Therefore $\mathcal{O}_{k} \neq \mathcal{O}$ and $\mathcal{C}_{l} \neq \mathcal{C}$ even though the matrices have the same general form. We call \mathcal{O}_{k} the extended observability matrix and \mathcal{C}_{l} the extended controllability matrix.
- We then apply the SVD to $\mathcal{H}_{k, l}$

$$
\begin{aligned}
\mathcal{H}_{k, l} & =\boldsymbol{U} \boldsymbol{\Sigma} \boldsymbol{V}^{T}=\boldsymbol{U} \boldsymbol{\Sigma}^{1 / 2} \boldsymbol{\Sigma}^{1 / 2} \boldsymbol{V}^{T} \\
& =\boldsymbol{U} \boldsymbol{\Sigma}^{1 / 2} \boldsymbol{T} \boldsymbol{T}^{-1} \boldsymbol{\Sigma}^{1 / 2} \boldsymbol{V}^{T} \\
& =\underbrace{\left(\boldsymbol{U} \boldsymbol{\Sigma}^{1 / 2} \boldsymbol{T}\right)}_{\mathcal{O}_{k}} \underbrace{\left(\boldsymbol{T}^{-1} \boldsymbol{\Sigma}^{1 / 2} \boldsymbol{V}^{T}\right)}_{\mathcal{C}_{l}}
\end{aligned}
$$

- The first n non-zero singular values provide insight into model order.
- Problem: Noisy data yields more than n non-zero singular values.
- Need to look at a few and determine when there is a "significant" drop off in the magnitude of the SVDs.
- Note that this approach also gives us \mathcal{O}_{k} and \mathcal{C}_{l} automatically in a "balanced realization". Solves "ISSUE III" and "ISSUE IV".
- \boldsymbol{T} must be invertible, but selection of \boldsymbol{T} is otherwise arbitrary. Usually use $\boldsymbol{T}=\boldsymbol{I}$.
- How to decompose further into ($\boldsymbol{A}, \boldsymbol{B}, \boldsymbol{C}$) to solve "ISSUE II"?
- Note the shift property of a Hankel matrix. If we shift \mathcal{H} up by one block row, we get $\mathcal{H}_{k+1, l}^{\uparrow}=\mathcal{O}_{k} A \mathcal{C}_{l}$.

$$
\mathcal{H}_{k+1, l}^{\uparrow}=\left[\begin{array}{ccccc}
\boldsymbol{g}_{2} & \boldsymbol{g}_{3} & \boldsymbol{g}_{4} & \cdots & \boldsymbol{g}_{l+1} \\
\boldsymbol{g}_{3} & \boldsymbol{g}_{4} & \boldsymbol{g}_{5} & \cdots & \boldsymbol{g}_{l+2} \\
\vdots & \vdots & \vdots & & \vdots \\
\boldsymbol{g}_{k} & \boldsymbol{g}_{k+1} & \boldsymbol{g}_{k+2} & \cdots & \boldsymbol{g}_{k+l-1} \\
\boldsymbol{g}_{k+1} & \boldsymbol{g}_{k+2} & \boldsymbol{g}_{k+3} & \cdots & \boldsymbol{g}_{k+l}
\end{array}\right]
$$

$$
\begin{aligned}
& =\left[\begin{array}{ccccc}
\boldsymbol{C} A \boldsymbol{B} & \boldsymbol{C A}^{2} \boldsymbol{B} & \boldsymbol{C} \boldsymbol{A}^{3} \boldsymbol{B} & \cdots & \boldsymbol{C A}^{l} \boldsymbol{B} \\
\boldsymbol{C} \boldsymbol{A}^{2} \boldsymbol{B} & \boldsymbol{C A}^{3} \boldsymbol{B} & \boldsymbol{C} \boldsymbol{A}^{4} \boldsymbol{B} & & \boldsymbol{C} \boldsymbol{A}^{l+1} \boldsymbol{B} \\
\vdots & \vdots & \vdots & \ddots & \vdots \\
\boldsymbol{C} \boldsymbol{A}^{k-1} \boldsymbol{B} & \boldsymbol{C A}^{k} \boldsymbol{B} & \boldsymbol{C} \boldsymbol{A}^{k+1} \boldsymbol{B} & \cdots & \boldsymbol{C} \boldsymbol{A}^{k+l-2} \boldsymbol{B} \\
\boldsymbol{C A ^ { k } \boldsymbol { B }} & \boldsymbol{C A}^{k+1} \boldsymbol{B} & \boldsymbol{C} \boldsymbol{A}^{k+2} \boldsymbol{B} & \cdots & \boldsymbol{C} \boldsymbol{A}^{k+l-1} \boldsymbol{B}
\end{array}\right] \\
& =\mathcal{O}_{k+1}^{\uparrow} \mathcal{C}_{l}=\mathcal{O}_{k} \mathcal{C}_{l+1}^{\leftarrow}=\mathcal{O}_{k} \boldsymbol{A} \mathcal{C}_{l} .
\end{aligned}
$$

- Using the pseudo-inverse to solve for \boldsymbol{A} gives $\boldsymbol{A}=\mathcal{O}_{k}^{\dagger} \mathcal{H}_{k+1, l}^{\uparrow} \mathcal{C}_{l}^{\dagger}$.
- In MATLAB, we can compute either

Ahat $=$ pinv(Ok) \star HankelUp*pinv (Cl);
or

```
Ahat = (Ok\HankelUp)/Cl;
```

- As before, we extract \boldsymbol{B} from the first block column of the controllability matrix we derived via SVD.
- Also, extract \boldsymbol{C} from the first block row of the observability matrix we derived via SVD, and set $\boldsymbol{D}=\boldsymbol{g}_{0}$.

5.9: Ho-Kalman summary and example

STEP I: Collect the unit-pulse response values into two Hankel matrices

1. An original finite Hankel matrix
2. A shifted version matrix of the original Hankel matrix (same size)
sTEP II: Compute the SVD of the (unshifted) Hankel matrix

- Identify system order from the singular values
- May need to iterate on choice of Hankel matrix (discussed later)

STEP III: Compute the extended observability and controllability matrices

- Use appropriately dimensioned SVD components
- Typically use $\boldsymbol{T}=\boldsymbol{I}_{n}$

STEP IV: Identify the system matrices $(\boldsymbol{A}, \boldsymbol{B}, \boldsymbol{C}) . \boldsymbol{D}=\boldsymbol{g}_{0}$.
eXAMPLE: Suppose that a unit pulse yields the following response:

$$
y=(0,1,1,2,3,5,8,13,21,34,55,89, \cdots) .
$$

- We recognize this output as the Fibonacci sequence generated by $g_{k}=g_{k-1}+g_{k-2}$ with initial conditions $g_{0}=0$ and $g_{1}=1$.
- A typical realization for this sequence is given by the state-space system:

$$
\boldsymbol{A}=\left[\begin{array}{ll}
0 & 1 \\
1 & 1
\end{array}\right], \quad \boldsymbol{B}=\left[\begin{array}{l}
1 \\
1
\end{array}\right], \quad \boldsymbol{C}=\left[\begin{array}{ll}
1 & 0
\end{array}\right], \quad \boldsymbol{D}=0 .
$$

- We'll try to come up with an equivalent realization based on only the unit-pulse response.

```
% Define true system, compute the Markov parameters as "y"
A = [0 1; 1 1]; B = [1; 1]; C = [1 0]; D = 0; dt = 1;
sysTrue = ss(A,B,C,D,dt); % "typical" Fibonacci ss model
y = dt*impulse(sysTrue); % scale by dt to get unit-pulse response
```


- The Hankel matrices that we will require are:

$$
\mathcal{H}_{4,4}=\left[\begin{array}{cccc}
1 & 1 & 2 & 3 \\
1 & 2 & 3 & 5 \\
2 & 3 & 5 & 8 \\
3 & 5 & 8 & 13
\end{array}\right], \quad \mathcal{H}_{5,4}^{\uparrow}=\left[\begin{array}{cccc}
1 & 2 & 3 & 5 \\
2 & 3 & 5 & 8 \\
3 & 5 & 8 & 13 \\
5 & 8 & 13 & 21
\end{array}\right]
$$

```
% Form H{4,4} and shifted H{5,4}. Note: Do not include "zero-th"
% parameter (first element of y), which corresponds to the matrix D.
bigHankel = hankel(y(2:end)); % don't forget to omit h(0) term = y(1)
H = bigHankel(1:4,1:4); % for this example, keep only 4x4 portion
Hup = bigHankel(2:5,1:4); % shifted H{5,4}
```


- The SVD yields

$$
\sigma_{1}=54.56 \quad \sigma_{2}=0.43988 \quad \sigma_{i}=0, \quad i \geq 3
$$

which indicates that $n=2$.

```
% Compute singular values of Hankel matrix
[U,S,V] = svd(H);
% Identify system order off-line as }n=2\mathrm{ based on values of }
n = 2;
```

- We now extract the two left columns of \boldsymbol{U} and \boldsymbol{V}

$$
\boldsymbol{U}=\boldsymbol{V}=\left[\begin{array}{rr}
-0.1876 & 0.7947 \\
-0.3035 & -0.4911 \\
-0.4911 & 0.3035 \\
-0.7947 & -0.1876
\end{array}\right]
$$

- Compute the extended observability and controllability matrices

$$
\begin{aligned}
& \mathcal{C}_{l}=\boldsymbol{\Sigma}^{1 / 2} \boldsymbol{V}^{T}=\left[\begin{array}{rrrr}
-0.8507 & -1.3764 & -2.2270 & -3.6034 \\
0.5257 & -0.3249 & 0.2008 & -0.1241
\end{array}\right] \\
& \boldsymbol{\mathcal { O }}_{k}=\boldsymbol{U} \boldsymbol{\Sigma}^{1 / 2}=\boldsymbol{\mathcal { C }}_{l}^{T}
\end{aligned}
$$

```
% Compute extended observability and controllability matrices, sized to
% the order for the system inferred by the singular values.
Us = U(:,1:n); Ss = S(1:n,1:n); Vs = V(:,1:n);
Ok = Us*sqrtm(Ss); Cl = sqrtm(Ss)*Vs';
```

- Identify the system matrices ($\widehat{\boldsymbol{A}}, \widehat{\boldsymbol{B}}, \widehat{\boldsymbol{C}})$ up to similarity transform

$$
\begin{aligned}
& \widehat{\boldsymbol{A}}=\mathcal{O}_{k}^{\dagger} \mathcal{H}_{k+1, l}^{\uparrow} \mathcal{C}_{l}^{\dagger}=\left[\begin{array}{cc}
1.6180 & 0 \\
0 & -0.6180
\end{array}\right] \\
& \widehat{\boldsymbol{B}}=\mathcal{C}_{l}(1: n, 1: m)=\mathcal{C}_{l}(1: 2,1)=\left[\begin{array}{r}
-0.8057 \\
0.5257
\end{array}\right] \\
& \widehat{\boldsymbol{C}}=\mathcal{O}_{k}(1: p, 1: n)=\boldsymbol{\mathcal { O }}_{k}(1,1: 2)=[-0.80570 .5257] \\
& \widehat{\boldsymbol{D}}=g_{0}=0 .
\end{aligned}
$$

\% Identify system assuming $p=m=1$ (SISO), using shifted Hankel matrix Ahat $=(\mathrm{Ok} \backslash \mathrm{Hup}) / \mathrm{Cl} ; \operatorname{Bhat}=\mathrm{Cl}(:, 1) ; \operatorname{Chat}=\mathrm{Ok}(1,:) ;$ Dhat $=\mathrm{y}(1)$; sysEst $=$ ss(Ahat, Bhat, Chat, Dhat, dt);

- Now, let's compare the true and identified ("estimated") systems
- Same pole-zero mapping (eigenvalues...transfer function)
- Same unit-pulse responses

COMMENTS: Selecting an appropriate amount of output data to store may require iteration ("how big an \mathcal{H} do I need?")

- Until $\operatorname{rank}\left(\mathcal{H}_{k, l}\right)=\operatorname{rank}\left(\mathcal{H}_{k-1, l-1}\right)$, or
- Until the next singular value is "insignificant."
- Interesting to note that $\boldsymbol{A}=\boldsymbol{A}^{T}$ and that $\boldsymbol{B}=\boldsymbol{C}^{T}$ for the identified system in the example.
- This property holds for square Hankel matrices
- The identification process will work so long as the Hankel matrix dimensions exceed the system order (\mathcal{H} need not be square)

REMAINING QUESTION: From whence come the \boldsymbol{g}_{k} ?

- This is key to making the DRA work.

5.10: Discrete-Time Realization Algorithm (DRA)

- Given a continuous-time transfer function in the Laplace domain, $\boldsymbol{H}(s)=\boldsymbol{Y}(s) / \boldsymbol{U}(s)$, and a sampling period, T_{s}, we want to derive a reduced-order discrete-time state-space realization of the form

$$
\begin{aligned}
\boldsymbol{x}[k+1] & =\boldsymbol{A} \boldsymbol{x}[k]+\boldsymbol{B} \boldsymbol{u}[k] \\
\boldsymbol{y}[k] & =\boldsymbol{C} \boldsymbol{x}[k]+\boldsymbol{D} \boldsymbol{u}[k],
\end{aligned}
$$

- A sufficient condition for the DRA to operate is that $\boldsymbol{H}(s)$ be an element of the Hardy space \mathscr{H}_{∞}, which implies that it is a strictly stable and proper system.
- This is not a necessary condition, however, as we will later generalize the method to work with systems having isolated pole(s) on the imaginary axis.
- Note that we do not restrict $\boldsymbol{H}(s)$ to be formulated as a quotient of polynomials in the Laplace variable " s " (for which well-known methods exist to find the discrete-time system).
- We describe the algorithm in four steps, which we preview here, and discuss in more detail in the following subsections.

STEP 1: Sample the continuous-time transfer function $H(s)$ in the frequency domain at a high rate, and take the inverse discrete Fourier transform (IDFT) of the samples to get an approximation to the continuous-time impulse response $h(t)$.
STEP 2: Use $h(t)$ to approximate the continuous-time step response $h_{\text {step }}(t)$, also sampled at the high rate.

STEP 3: Compute discrete-time unit-pulse response g_{k} with inter-sample period T_{s} from continuous-time step response $h_{\text {step }}(t)$, assuming a sample and hold circuit connected to system input.
STEP 4: Generate a discrete-time state-space realization using the deterministic Ho-Kalman algorithm.

We note that a system having a pole at the origin does not meet the strictly-stable requirement. However, we also show that this pole can be automatically accounted for.

Building the DRA from the end to the beginning

STEP 3: If we have the system's unit-pulse response, we can use Ho-Kalman to find a state-space representation.

- But, how to find the unit pulse response? Let's assume that we know the continuous-time step response $h_{\text {step }}(t)$:

- The continuous-time response to a unit pulse of length T_{s} seconds is $h_{\text {pulse }}(t)=h_{\text {step }}(t)-h_{\text {step }}\left(t-T_{s}\right)$.
- The discrete-time response is found by sampling: $g_{k}=h_{\text {pulse }}\left(k T_{s}\right)$.

STEP 2: If we have the system's continuous-time step response, we can find a state-space representation.

- But, how to find the step response? Let's assume that we know the continuous-time impulse response $h(t)$. Then,

$$
h_{\text {step }}(t)=\int_{0}^{t} h(\tau) \mathrm{d} \tau
$$

- In fact, since the DRA is a numeric algorithm, we can't deal with continuous time directly. Instead, we select a fast sample frequency F_{1} such that $T_{1}=\frac{1}{F_{1}} \ll T_{s}$.
- Then, the finely sampled continuous-time step response is:

$$
h_{\text {step }}\left(k T_{1}\right)=T_{1} \sum_{i=0}^{k-1} h\left(i T_{1}\right) .
$$

STEP 1: Given the system's finely sampled continuous-time impulse response, we can find a state-space representation.

- How to find the finely sampled continuous-time impulse response?
- We approximate the continuous-time impulse response via a "discrete equivalent" approach (frequency-domain emulation).
- We use the bilinear transform to write a high-sample-rate discretetime approximation to the original continuous-time transfer function

$$
\left.H(z) \approx H(s)\right|_{s=\frac{2}{T_{1}} \frac{z-1}{z+1}}
$$

where T_{1} is the same emulation sampling period as before. ${ }^{3}$
${ }^{3}$ In order to arrive at an accurate estimation of the continuous time transfer function, the sampling frequency, $F_{1}=1 / T_{1}$, must be high enough to capture the system dynamics. As a rule of thumb, the sampling frequency must be at least 20 times the as great as the bandwidth of the system to get an rough approximation in the frequency domain. A higher emulation sampling frequency gives more accurate results.

- We now recognize that the discrete Fourier transform (DFT) of a sequence is related to its z-transform via the relationship

$$
\begin{aligned}
H[f]=\left.H(z)\right|_{z=\exp (j 2 \pi f / N)} & =\left.H(s)\right|_{\left.s=\frac{2}{T_{1}} \frac{[j \rho 2 \pi f / N-1}{e j 2 \pi f / N+1}\right]} \\
& =\left.H(s)\right|_{s=\frac{j 2}{T_{1}} \tan (\pi f / N)}, \quad 0 \leq f<N,
\end{aligned}
$$

where N is the number of points chosen for the underlying sequence, and is usually chosen to be a power of 2 for efficient computations.

- The inverse DFT of $H[f]$ gives $h\left(n T_{1}\right)$, which is the approximation of the continuous-time impulse response at the emulation sampling period, T_{1}

$$
h\left(n T_{1}\right)=\frac{1}{N} \sum_{f=0}^{N-1} H[f] e^{j 2 \pi f n / N},
$$

which is indexed from $n=0$ to $n=N-1$.

Examples of the DRA

- We will ultimately look at three examples to illustrate the DRA.
- The first two are rational-polynomial transfer functions, which we use because we can calculate the exact solution using other methods.
- We can then compare the exact solutions to the approximate solutions obtained by the DRA.
- The third does not have a closed-form solution, but we can use a 1-D parabolic-elliptic partial differential equation solver to find an accurate near-exact solution against which to compare the DRA solution.
- We find excellent agreement between the exact solutions and DRA solutions in all cases.

5.11: Example 1: Rational polynomial transfer function

- The DRA method is first applied to a simple second-order system.
- We require a discrete-time realization with the a sampling period of $T_{s}=0.1$ seconds from the continuous-time transfer function

$$
H_{1}(s)=\frac{s^{2}+20 s+100}{s^{2}+2 s+8}
$$

- We compute the Bode plot to estimate the system bandwidth.

```
omega = logspace(-1,3,100);
s = 1j*omega;
H = (s.^2+20*s+100)./(s.^2+2*s+8);
semilogx(omega,20*log10(abs(H)));
```

\% create freq. axis in rad/sec
\% create s = j*omega
\% compute cplx. freq. response
\% display the magnitude response

- Poles at $-1 \pm j 2.65 \mathrm{rad} \mathrm{s}^{-1}$, two zeros at $10 \mathrm{rad} \mathrm{s}^{-1}$.
- The magnitude response of $H_{1}(s)$ is shown in the figure.
- The system bandwidth is on the order of $3 \mathrm{rad} \mathrm{s}^{-1}$ (about 0.5 Hz).

STEP 1: The sampling frequency is selected as 256 Hz which is (much) greater than 20 times the system bandwidth.

- Transfer function is sampled at discrete frequencies; inverse DFT yields an approximate continuous-time impulse response.

```
F1 = 256; T1 = 1/F1;
minTlen = 6.5;
N = 2^(ceil(log2(minTlen*F1)));
f = 0:N-1;
s = (2j/T1)*tan(pi*f/N);
```

```
% Interp. freq. of 256 Hz
% min. h(t) length in sec.
% # of samples at rate F1
% normalized freq. vector
% substitute to get Hd[f]
```

```
Hd = (s.^2+20*s+100)./(s.^2+2*s+8);
hd = real(ifft(Hd)) * F1; % approximation to h(t)
td = T1*(0:N-1); % time vector for h(t)
plot(td,hd,'bx','markersize',8); hold on % plot h(t)
H1 = tf([1 20 100],[1 2 8]); % true transfer function
[himpTrue,timpTrue] = impulse(H1,5); % true impulse response
plot(timpTrue,himpTrue,'r'); axis([0 5 -10 26]); % plot on top
```

- The figure compares the approximate continuous-time impulse response computed via the inverse DFT to the exact continuous-time impulse response of $H_{1}(s)$.
- The solutions are coincident.

STEP 2: The approximation to the continuous-time step response is found by doing a cumulative summation of the impulse response.

```
hstep = T1*cumsum(hd);
plot(td,hstep,'bx','markersize',8); hold on
\% h_s (t)
\% plot h_s(t)
```

```
[hstepTrue,tstepTrue] = step(H1,5);
```

[hstepTrue,tstepTrue] = step(H1,5);
% true step resp.
% true step resp.
plot(tstepTrue,hstepTrue,'r'); axis([0 5 0 18]); % plot on top

```
plot(tstepTrue,hstepTrue,'r'); axis([0 5 0 18]); % plot on top
```

- The results are shown in the figure and show excellent agreement with the exact step response of the continuous time system.

STEP 3: We now resample the continuous-time approximate step response at the final sample rate T_{s}, and compute the discrete-time unit-pulse response as $h_{\text {step }}[k]-h_{\text {step }}[k-1]$

```
Ts = 0.1; tdisc = 0:Ts:6.5;
hdisc = [0 diff(interp1(td,hstep,tdisc))];
% final time vector
%h[k]
stem(tdisc,hdisc,'filled'); hold on
[himpDiscTrue,timpDiscTrue] = impulse(c2d(H1,Ts),5);
% next line scales IMPULSE in new MATLAB to give unit-pulse resp.
himpDiscTrue = Ts*himpDiscTrue;
plot(timpDiscTrue,himpDiscTrue,'r.','markersize',8);
axis([-0.01 5 -1 2.6]);
```

- Note that in new versions of MATLAB, the "impulse" command works differently from old versions for discrete-time systems.
- We need to scale MATLAB's output by T_{s} to compute the unit-pulse response that we
 desire.
- Again, there is excellent agreement between the approximate unit-pulse response and the exact solution, except at single point $t=0$.
- This is often the case because of some properties of the inverse DFT.
- But it causes no problems since the unit-pulse response value at $t=0$ is computed differently, using

$$
D=g_{0}=\lim _{s \rightarrow \infty} H(s) .
$$

step 4: The Ho-Kalman algorithm is used to find state-space realization from approximate discrete-time unit-pulse response of Step 3.

- 64 points from the discrete-time unit-pulse response are used, which allows a maximum Hankel matrix of 32×32.
- We first compute and plot the singular values of the Hankel matrix.

```
bigHankel = hankel(hdisc(2:66)); % don't forget to omit h(0) term!
% for this example, keep only 32x32 portion
Hankel = bigHankel(1:32,1:32);
HankelUp = bigHankel(2:33,1:32); % shifted Hankel matrix
[U, S, V] = svd(Hankel); % compute singular values
plot(log10(diag(S)),'bx','markersize',8); axis([0 33 -20 5]);
```

- Hankel-matrix SVD gives insight into the system's order.
- A log plot of the singular values is shown in the figure.
- The first two are almost three orders of magnitude greater than the third, so we select a reduced-order model dimension $p=2$.


```
n = 2; % select via singular values
Us = U(:,1:n); % Compute extended observability, controlability
Ss = S(1:n,1:n); % matrices, sized to the order for the system
Vs = V(:,1:n); % inferred by the singular values.
Ok = Us*sqrtm(Ss); Cl = sqrtm(Ss)*Vs';
Ahat = (Ok\HankelUp)/Cl;
    % calculate A from Ok, Cl
Bhat = Cl(1:n,1); Chat = Ok(1,1:n); % calculate B and C
Dhat = 1; % calculated manually
sysDRA = ss(Ahat,Bhat,Chat,Dhat,Ts); % final DRA ss model
```

- Truncating to the first two states only, the Ho-Kalman algorithm gives a state-space realization with the following A, B, and C matrices

$$
\widehat{\boldsymbol{A}}=\left[\begin{array}{rr}
0.8656 & -0.2367 \\
0.2367 & 0.8811
\end{array}\right], \widehat{\boldsymbol{B}}=\left[\begin{array}{r}
-1.624 \\
0.7692
\end{array}\right], \widehat{\boldsymbol{C}}=\left[\begin{array}{ll}
-1.624 & -0.7692
\end{array}\right] .
$$

- The $\widehat{\boldsymbol{D}}$ matrix is found from the initial value theorem and, for this example, is $\widehat{\boldsymbol{D}}=[1]$.
- We compare the true discrete-time unit-pulse response and the final DRA model unit-pulse response:

```
% next line scales IMPULSE in new MATLAB to give unit-pulse resp.
[himpDRA,timpDRA] = impulse(sysDRA,5); himpDRA = Ts*himpDRA;
stem(timpDRA,himpDRA,'filled'); hold on
plot(timpDiscTrue,himpDiscTrue,'r.','markersize',8);
axis([-0.01 5 -1 2.6]);
```

- The results agree very well (note that $h[0]$ has been corrected by the correct calculation of the $\widehat{\boldsymbol{D}}$ matrix in Step 4).

Discrete-time unit-pulse responses

- Because the unit-pulse responses agree very well, the response of the reduced-order model will also agree well with the exact response for any input signal $u[k]$.

5.12: Example 2: Dealing with a pole in $H(s)$ at the origin

- This example has a pole in $H(s)$ at $s=0$, so is not strictly stable, and violates the necessary conditions that make the DRA work.
- However, it is quite simple to deal with this case.
- We first subtract the pole at the origin from the transfer function,
- Then execute the DRA on the residual system,
- Then compute a final discrete-time state-space model that augments the DRA result with additional dynamics to implement the function of the s-domain pole at the origin.
- A pole at the origin is removed by first calculating the residue of this pole and then subtracting it from the original transfer function.

$$
H^{*}(s)=H(s)-\frac{\text { res }_{0}}{s} \quad \text { where } \quad \operatorname{res}_{0}=\lim _{s \rightarrow 0} s H(s)
$$

- The remainder of the DRA is executed using $H^{*}(s)$ instead of $H(s)$.
- To re-incorporate the effect of the pole at $s=0$ into the final reduced-order model, recall that this pole corresponds to an integrator. The discrete-time equivalent can be implemented as

$$
x_{i}[k+1]=x_{i}[k]+T_{s} u[k] .
$$

- We combine this with the DRA-produced state-space form

$$
\begin{aligned}
\underbrace{\left[\begin{array}{c}
\boldsymbol{x}[k+1] \\
x_{i}[k+1]
\end{array}\right]}_{\boldsymbol{x}_{\text {aug }}(k+1]} & =\underbrace{\left[\begin{array}{c:c}
\boldsymbol{\boldsymbol { A }} & \mathbf{0} \\
\mathbf{0} & 1
\end{array}\right]}_{\widehat{\boldsymbol{A}}_{\text {aug }}} \underbrace{\left[\begin{array}{c}
\boldsymbol{x}[k] \\
x_{i}[k]
\end{array}\right]}_{\left.\boldsymbol{x}_{\text {aug }} k\right]}+\underbrace{\left[\begin{array}{c}
\widehat{\boldsymbol{B}} \\
T_{s}
\end{array}\right]}_{\widehat{\boldsymbol{B}}_{\text {aug }}} \boldsymbol{u}[k] \\
\boldsymbol{y}[k] & =\underbrace{\left[\widehat{\boldsymbol{C}} \operatorname{res}_{0}\right]}_{\widehat{\boldsymbol{C}}_{\text {aug }}}]\left[\frac{\boldsymbol{x}[k]}{\left.\frac{x_{i}[k]}{x_{i}[k]}\right]+\boldsymbol{D} \boldsymbol{u}[k]}\right.
\end{aligned}
$$

where dotted lines delineate boundaries between block sub-matrices of the overall augmented state-space matrices $\widehat{\boldsymbol{A}}_{\text {aug }}, \widehat{\boldsymbol{B}}_{\text {aug }}$, and $\widehat{\boldsymbol{C}}_{\text {aug }}$.

Example 2: Rational polynomial transfer function with pole at origin

- In this example, we demonstrate how to handle a single pole at the origin. The continuous-time transfer function is given by

$$
H_{2}(s)=\frac{1}{s}\left(\frac{1}{s^{2}+6 s+8}\right) .
$$

- This system has real poles at 0,2 and $4 \mathrm{rad} \mathrm{s}^{-1}$.
- Desire a discrete-time transfer function with sample period $T_{s}=0.1 \mathrm{~s}$.
- Prior to Step 1 we remove the pole at the origin.
- This is accomplished by first calculating the residue for this pole.
- In this example, the residue can be computed analytically as

$$
\operatorname{res}_{0}=\lim _{s \rightarrow 0} s H(s)=0.125 .
$$

- In general, we find this residue by selecting a very small value for s and numerically computing res ${ }_{0}$, or by using a software tool like Mathematica to compute the limit.
- The reduced transfer function, $H_{2}^{*}(s)$ with the pole at the origin removed is

$$
H_{2}^{*}(s)=\frac{1}{s}\left(\frac{1}{s^{2}+6 s+8}\right)-\frac{0.125}{s} .
$$

- The figures below shows the magnitude plot of the original system and the system with the pole at the origin removed.

STEP 1. $H_{2}^{*}(s)$ is sampled at 256 Hz which is (much) more than 50 times greater than the system bandwidth. We could implement either

```
Hd=1./(s.^ 3+6*s.^2+8*s) - 0.125./s;
Hd(1) = - 6/64;
```

\% $H d[f]$
\% analytic solution
where $\lim _{s \rightarrow 0} H_{2}^{*}(s)=-6 / 64$, or compute by hand

$$
\begin{aligned}
H_{2}^{*}(s) & =\frac{1}{s}\left(\frac{1}{s^{2}+6 s+8}\right)-\frac{0.125}{s}\left(\frac{s^{2}+6 s+8}{s^{2}+6 s+8}\right) \\
& =-\frac{0.125}{s}\left(\frac{s^{2}+6 s}{s^{2}+6 s+8}\right)=-0.125\left(\frac{s+6}{s^{2}+6 s+8}\right),
\end{aligned}
$$

and implement

$$
\mathrm{Hd}=-0.125 *(s+6) . /\left(s .^{\wedge} 2+6 * s+8\right) ;
$$

- The approximate continuoustime impulse response is computed and plotted.

STEP 2: The approximation to the continuous-time step response of $H_{2}^{*}(s)$ is calculated as in the first example and plotted.

STEP 3: This step response is sampled at $T_{s}=0.1$ seconds, and differenced to yield the discrete-time unit-pulse response, plotted in the figure.

Discrete-time unit-pulse responses

step 4. The system Hankel matrix is generated from the discrete-time unit-pulse response found in Step 3.

- 64 discrete time points are used, resulting in a 32×32 Hankel matrix.
- The figure depicts the 32 singular values of the system Hankel matrix.
- The first two singular values are two orders of magnitude greater than the third, indicating that $H_{2}^{*}(s)$ is a second order system.

- The Ho-Kalman algorithm generates the $\widehat{\boldsymbol{A}}, \widehat{\boldsymbol{B}}$, and $\widehat{\boldsymbol{C}}$ matrices after truncating all but the first two states. We find that

$$
\begin{aligned}
& \widehat{\boldsymbol{A}}=\left[\begin{array}{rr}
0.8617 & -0.0906 \\
0.0906 & 0.6274
\end{array}\right], \quad \widehat{\boldsymbol{B}}=\left[\begin{array}{r}
0.1162 \\
-0.0340
\end{array}\right] \\
& \widehat{\boldsymbol{C}}=\left[\begin{array}{ll}
-0.1162 & -0.0340
\end{array}\right] .
\end{aligned}
$$

In this example, we also compute $\widehat{\boldsymbol{D}}=\lim _{s \rightarrow \infty} H_{2}^{*}(s)=0$, which can also be quite easily seen in the high-frequency response of $H_{2}^{*}(s)$.

- The state-space representation for $H_{2}^{*}(s)$ is augmented to include the pole at the origin to create a representation for $H_{s}(s)$.

```
Aaug = [Ahat, zeros(n,1); zeros(1,n), 1];
Baug = [Bhat; Ts];
Caug = [Chat, res0];
sysDRA = ss(Aaug,Baug,Caug,Dhat,Ts) % final DRA state-space sys.
```

- The discrete-time realization of $H_{2}(s)$ is

$$
\begin{array}{ll}
\widehat{\boldsymbol{A}}_{\text {aug }}=\left[\begin{array}{cc:c}
0.8617 & -0.0906 & 0 \\
0.0906 & 0.6274 & 0 \\
\hdashline 0 & 0 & 1
\end{array}\right], & \widehat{\boldsymbol{B}}_{\text {aug }}=\left[\begin{array}{r}
0.1162 \\
-0.0340 \\
\hdashline 0.1
\end{array}\right] \\
\widehat{\boldsymbol{C}}_{\text {aug }}=\left[\begin{array}{llll}
-0.1162 & -0.0340 & 0.125
\end{array}\right], & \widehat{\boldsymbol{D}}=[0] .
\end{array}
$$

Discrete-time unit-pulse responses

- The figure shows close comparison of the unit-pulse response found from the DRA and the exact solution.

5.13: Example 3: Transcendental transfer function

- In the first two examples, we used rational polynomials to illustrate the DRA method where order of the system is known a priori, and the exact answer could be calculated analytically.
- We now demonstrate the DRA with an infinite-order distributedparameter system: Specifically the Jacobsen-West transfer function of lithium diffusion in a single particle, where

$$
H_{3}(s)=\frac{\widetilde{C}_{s, e}(s)}{J(s)}=\frac{R_{s}}{D_{s}}\left[\frac{1}{1-R_{s} \sqrt{s / D_{s}} \operatorname{coth}\left(R_{s} \sqrt{s / D_{s}}\right)}\right]
$$

and where the integrator-removed transfer function is

$$
\begin{aligned}
H_{3}^{*}(s) & =\frac{\Delta \widetilde{C}_{s, e}(s)}{J(s)}=\frac{\widetilde{C}_{s, e}(s)}{J(s)}-\frac{\widetilde{C}_{s, \text { avg }}(s)}{J(s)} \\
& =\frac{\frac{s R_{s}^{2}}{D_{s}}+3-3 R_{s} \sqrt{\frac{s}{D_{s}}} \operatorname{coth}\left(R_{s} \sqrt{\frac{s}{D_{s}}}\right)}{s R_{s}\left(1-R_{s} \sqrt{\frac{s}{D_{s}}} \operatorname{coth}\left(R_{s} \sqrt{\frac{s}{D_{s}}}\right)\right)}
\end{aligned}
$$

where we have used the relationship

$$
\frac{\widetilde{C}_{s, \text { avg }}(s)}{J(s)}=\frac{\operatorname{res}_{0}}{s}=\frac{-3 / R_{s}}{s}
$$

- Parameter values for the transfer functions used in this example are listed in the table, from which we can compute that res ${ }_{0}=-3 \times 10^{5}$.

Parameter name	Interpretation	Value
T_{s}	Sampling period	1 s
R_{s}	Particle radius	$10^{-5} \mathrm{~m}$
D_{s}	Diffusivity	$10^{-12} \mathrm{~m}^{2} \mathrm{~s}^{-1}$

Initial lithium concentration $10000 \mathrm{molm}^{-3}$
STEP 1. The magnitude responses of $H_{3}(s)$ and $H_{3}^{*}(s)$ are shown below:

- $H_{3}^{*}(s)$ is sampled at 256 Hz for a total of 256 seconds.
- The frequency vector for $H_{3}^{*}(s)$ can be calculated as

```
beta = Rs*sqrt(s/Ds);
Hd=(Rs/Ds)*(1./(1-beta.*coth(beta))) + (3/Rs)./s;
Hd(1) = -Rs/(5*Ds); % analytic solution
```

where MATLAB numerically removes the integrator pole, or as

```
beta = Rs*sqrt(s/Ds);
Hd = (beta.^2+3-3*beta.* coth(beta))./(s.*Rs.*(1-beta.*coth(beta)));
Hd(1) = -Rs/(5*Ds); % analytic solution
```

- Note that both computations of Hd initially produce NaN for $s=0$ due to numeric attempts to evaluate zero divided by zero.
- This entry must be manually replaced by a value computed analytically

$$
\lim _{s \rightarrow 0} H_{3}^{*}(s)=\lim _{s \rightarrow 0} \frac{\frac{s R_{s}^{2}}{D_{s}}+3-3 R_{s} \sqrt{\frac{s}{D_{s}}} \operatorname{coth}\left(R_{s} \sqrt{\frac{s}{D_{s}}}\right)}{s R_{s}\left(1-R_{s} \sqrt{\frac{s}{D_{s}}} \operatorname{coth}\left(R_{s} \sqrt{\frac{s}{D_{s}}}\right)\right)}=-\frac{R_{s}}{5 D_{s}} .
$$

- Direct by-hand computation returns $0 / 0$. We must use l'Hôpital's rule repeatedly until an answer is reached.
- When using transcendental transfer functions, we recommend computer tools such as Mathematica for symbolic manipulation.
- The approximate continuous-time impulse response is shown.
- There is no known exact solution against which to compare this result.

STEP 2. The approximate continuous-time step response is calculated by performing a cumulative sum of the impulse response of Step 1.

- The figure shows approximated continuous-time step response.
- Again, there is no known exact solution against which to compare this result.

STEP 3: The approximate continuous-time step response is sampled at $T_{s}=1$ second, and differenced to produce the discrete-time unit-pulse response, shown here.

STEP 4. Hankel matrix is formed; singular values are plotted.

- $H_{3}^{*}(s)$ represents a distributedparameter system that actually has an infinite number of poles.
- However, only a few of them are

Singular values of Hankel matrix for $\mathrm{H}_{3}{ }^{*}(\mathrm{~s})$
 significant to the solution.

- In particular, we choose to use a reduced-order model dimension $n=2$ in the results we present here, imposing a tradeoff between the complexity and accuracy of the solution.
- The Ho-Kalman algorithm generates the $\widehat{\boldsymbol{A}}, \widehat{\boldsymbol{B}}$, and $\widehat{\boldsymbol{C}}$ matrices to approximate $H_{3}^{*}(s)$ after truncating all but the first two states.

$$
\begin{aligned}
& \widehat{\boldsymbol{A}}=\left[\begin{array}{ll}
0.4695 & 0.3296 \\
0.3296 & 0.4355
\end{array}\right], \quad \widehat{\boldsymbol{B}}=\left[\begin{array}{l}
919.1 \\
-220
\end{array}\right] \\
& \widehat{\boldsymbol{C}}=\left[\begin{array}{ll}
-919.1220
\end{array}\right] .
\end{aligned}
$$

- In this example, we also compute $\widehat{\boldsymbol{D}}=\lim _{s \rightarrow \infty} H_{3}^{*}(s)=0$, which can also be quite easily seen in the high-frequency response of $H_{3}^{*}(s)$.
- This state-space realization is augmented with the integrator state to give the final third-order model of the diffusion equation $H_{3}(s)$.

$$
\begin{array}{ll}
\widehat{\boldsymbol{A}}_{\text {aug }}=\left[\begin{array}{cc:c}
0.4695 & 0.3296 & 0 \\
0.3296 & 0.4355 & 0 \\
\hdashline 0 & 0 & 1
\end{array}\right], & \widehat{\boldsymbol{B}}_{\text {aug }}=\left[\begin{array}{c}
919.1 \\
-220 \\
\hdashline 1
\end{array}\right] \\
\widehat{\boldsymbol{C}}_{\text {aug }}=\left[\begin{array}{ll:l}
-919.1 & 220 & -3 \times 10^{5}
\end{array}\right], & \widehat{\boldsymbol{D}}=[0] .
\end{array}
$$

- We demonstrate the the DRA-produced model by simulating a 10 s discharge pulse where the surface lithium flux (leaving the particle) was $j=1 \times 10^{-5} \mathrm{molm}^{-2} \mathrm{~s}^{-1}$, followed by a 10 s rest.
- The augmented state-space model was simulated with this input to produce $\tilde{c}_{s, e}[k]$, and $c_{s, e}[k]$ was computed as $c_{s, e}[k]=\tilde{c}_{s, e}[k]+c_{s, 0}$.

```
cs0 = 10000;
uk = 1e-5*[ones(1,10),zeros(1,10)];
[cseTilde,tk] = lsim(sysDRA,uk);
cse = cseTilde + cs0;
```

- All discrete-time model states are initialized to zero.
- The output of this discrete-time realization to a 10 second discharge followed by a 10 second rest is shown.

- We compare this result against the "truth" produced by simulating the PDE using MATLAB's 1-D parabolic-elliptic PDE solver.

```
function [cse,t] = simCsePDE
    dr = 0.1e-6; % Radial resolution = 0.1 micro-meter
    dt = 0.001; % Time step in simulation, s
    Tfinal = 20; % Length of simulation, s
    Rp = 10e-6; % Radius of particle = 10 micro-meters
    Ds = 1e-12; % Solid diffusivity, m^2/s
    j = 1e-5; % mol/m^2/s
    x = 0:dr:Rp; % locations for solution
    t = 0:dt:Tfinal; % time steps for solution
    options = odeset('RelTol',1e-8,'AbsTol',1e-10);
    sol = pdepe(2,@csefun,@cseic,@csebc,x,t,options);
    cse = sol(:,end,1);
    function[c,f,s] = csefun(~,~,~,DuDx)
```

```
        c = 1/Ds; f = DuDx; s = 0;
        end
    function u0 = cseic(~,~)
    c0= 10000; u0= c0;
end
    function[pl,ql,pr,qr] = csebc(~,~,~, ~,t)
    pl = 0; ql = 1; qr = Ds; pr = 0;
    if t<Tfinal/2, pr=j; end
end
end
```

- The code comprises nested functions, where the main function initializes variables and calls MATLAB's solver with pointers (function handles) to nested helper functions:
- csefun implements the parameter values of the PDE;
- cseic implements the initial conditions; and
- csebc implements the boundary conditions.
- Note that we achieve good results with the PDE solver only if a fine time-step is used: here, we have used a 1 ms step size, which makes the PDE solver execute much more slowly than the DRA-produced model.

Where from here?

- We have now seen the form that the final model will take, and examples of the general methodology to go from the PDE continuum-scale model to the reduced-order model.
- We now proceed to develop transfer functions for all cell variables of interest, and see how well the overall cell model works.

