
ECE4710/5710: Modeling, Simulation, and Identification of Battery Dynamics 5–1

State-Space Models and the

Discrete-Time Realization Algorithm

5.1: Introduction to state-space models

■ The coupled PDEs derived in earlier chapters of notes are too

complex to be used in real-time applications.

• They are “infinite dimensional.” For every point in time t , there are

an infinite number of x- and r- dimension variables to solve for.

• i.e., cs(x, r, t), c̄e(x, t), φ̄s(x, t), φ̄e(x, t), for a pseudo-two

dimensional model.

based
physics−

ODEs

cell scalecontinuum−

scale PDEs

created via model−

order reduction

direct parameter

measurement

direct parameter

measurement

scale PDEs

molecular micro−

scale PDEs
(particle−)

volume

averaging

empirical system ID

based
predictions

empiricallycell scale

ODEs

predictions

empirical
modeling

physics-

based

modeling

■ We desire to create cell-scale ODEs that retain, as much as possible,

the fidelity of the continuum-scale PDEs, but which reduce their order

from infinite order to some (small) finite order.

• The result is a small coupled set of ODEs, which can be simulated

very easily and quickly.

■ In this chapter, we introduce “state-space” models, which is the final

form of the reduced-order models we will develop.

Lecture notes prepared by G.L. Plett and J.L. Lee. Copyright © 2011–2018, G.L. Plett and J.L. Lee

ECE4710/5710, State-Space Models and the Discrete-Time Realization Algorithm 5–2

■ We then preview the approach to generate the state-space models

from the PDEs of the variables of interest:

• We start by generating transfer functions for each PDE;

• We then use the “discrete-time realization algorithm” to convert

transfer functions to state-space form.

A quick introduction to state-space models

■ Transfer functions provide a system’s input-output mapping only:

u[k] → G(z)→ y[k].

■ State-space models provide access to what is going on inside the

system, in addition to the input-output mapping.

• What’s going on inside the system is called the system’s “state”.

DEFINITION: The internal state of a system at time k0 is the minimum

amount of information at k0 that, together with the input u[k], k ≥ k0,

uniquely determines the behavior of the system for all k ≥ k0.

■ State-space models describe a system’s dynamics via two equations:

• The “state equation” describes how the input influences the state;

• The “output equation” describes how the state and the input both

directly influence the output.

■ Discrete-time LTI state-space models have the following form:

x[k + 1] = Ax[k] + Bu[k]

y[k] = C x[k] + Du[k],
where u[k] ∈ R

m is the input, y[k] ∈ R
p is the output, and x[k] ∈ R

n is

the state vector.

Lecture notes prepared by G.L. Plett and J.L. Lee. Copyright © 2011–2018, G.L. Plett and J.L. Lee

ECE4710/5710, State-Space Models and the Discrete-Time Realization Algorithm 5–3

■ Different systems have

different n, A, B, C, and D.

■ A block diagram can help

visualize the signal flows:

EXAMPLE: Convert the following single-input single-output difference

equation into a discrete-time state-space form,

y[k]+a1y[k−1]+a2y[k−2]+a3y[k−3] = b1u[k−1]+b2u[k−2]+b3u[k−3].

■ We’re going to do the conversion by first recognizing that the transfer

function of this system is,

G(z) = b1z2 + b2z + b3

z3 + a1z2 + a2z + a3

= Y (z)

U (z)
.

■ Break up transfer function into two parts. G p(z) = V (z)/U (z) contains

all of the poles:

G p(z) = 1

z3 + a1z2 + a2z + a3

= V (z)

U (z)

➠ v[k + 3] + a1v[k + 2] + a2v[k + 1] + a3v[k] = u[k].

■ Choose current and advanced versions of v[k] as state (this is a

choice: there are other equally valid choices, as we will see)

x[k] =
[

v[k + 2] v[k + 1] v[k]
]T

.

■ Then

x[k+1] =

v[k + 3]
v[k + 2]
v[k + 1]

 =

−a1 −a2 −a3

1 0 0

0 1 0

v[k + 2]
v[k + 1]

v[k]

+

1

0

0

 u[k].

Lecture notes prepared by G.L. Plett and J.L. Lee. Copyright © 2011–2018, G.L. Plett and J.L. Lee

ECE4710/5710, State-Space Models and the Discrete-Time Realization Algorithm 5–4

■ We now add zeros, G(z) =
(
b1z2 + b2z + b3

)
G p(z). Equivalently,

Y (z) =
[
b1z2 + b2z + b3

]
V (z),

or, y[k] = b1v[k + 2] + b2v[k + 1] + b3v[k].
■ In summary, we have the state-space model:

x[k + 1] =

−a1 −a2 −a3

1 0 0

0 1 0

 x[k] +

1

0

0

 u[k]

y[k] =
[

b1 b2 b3

]
x[k] +

[
0

]
u[k].

■ Note: There are many other equally valid state-space models of this

particular transfer function. We will soon see how they are related.

■ Many discrete-time transfer functions are not strictly proper. Solve by

polynomial long division, and setting D equal to the quotient.

■ MATLAB command [A,B,C,D]=tf2ss(num,den,Ts) converts a

rational-polynomial transfer function form to state-space form.

Lecture notes prepared by G.L. Plett and J.L. Lee. Copyright © 2011–2018, G.L. Plett and J.L. Lee

ECE4710/5710, State-Space Models and the Discrete-Time Realization Algorithm 5–5

5.2: Working with state-space systems

State-space to transfer function

■ In the prior example, we saw it is possible to convert from a difference

equation (or transfer function) to a state-space form quite easily.

■ Now, we’ll see that the opposite translation is also straightforward.

■ Start with the state equations

x[k + 1] = Ax[k] + Bu[k]

y[k] = C x[k] + Du[k].
■ Take the z-transform of both sides of both equations

zX(z)− zx[0] = AX(z)+ BU(z)

Y(z) = C X(z)+ DU(z),

or

(z I − A)X(z) = BU(z)+ zx[0]

X(z) = (z I − A)−1 BU(z)+ (z I − A)−1zx[0].
■ This gives,

Y(z) = [C(z I − A)−1 B + D]︸ ︷︷ ︸
transfer function of system

U(z)+ C(z I − A)−1zx[0]︸ ︷︷ ︸
response to initial conditions

.

■ So,

G(z) = Y(z)

U(z)
= C(z I − A)−1 B + D.

■ Note that (z I − A)−1 = adj(z I − A)

det(z I − A)
, so we can write a system’s

transfer function as

G(z) = C adj(z I − A)B + D det(z I − A)

det(z I − A)
.

Lecture notes prepared by G.L. Plett and J.L. Lee. Copyright © 2011–2018, G.L. Plett and J.L. Lee

ECE4710/5710, State-Space Models and the Discrete-Time Realization Algorithm 5–6

■ Extremely important observation: The poles of the system are where

det(z I − A) = 0, which (by definition) are the eigenvalues of A.

Transformation

■ State-space representations of a particular system’s dynamics are

not unique. Selection of state x[k] is somewhat arbitrary.

■ To see this, analyze the transformation of

x[k + 1] = Ax[k] + Bu[k]

y[k] = C x[k] + Du[k],

where we let x[k] = Tw[k], where T is an invertible (similarity)

transformation matrix. Then,

(Tw[k + 1]) = A (Tw[k])+ Bu[k]

y[k] = C (Tw[k])+ Du[k].

■ Multiplying the first equation by T−1 gives

w[k + 1] = T−1 AT︸ ︷︷ ︸
Ā

w[k] + T−1 B︸ ︷︷ ︸
B̄

u[k]

y[k] = CT︸︷︷︸
C̄

w[k] + D︸︷︷︸
D̄

u[k]

so, w[k + 1] = Āw[k] + B̄u[k]

y[k] = C̄w[k] + D̄u[k].

■ To show that H1(z) = H2(z),

H1(z) = C(z I − A)−1 B + D

= CT T−1(z I − A)−1T T−1 B + D

Lecture notes prepared by G.L. Plett and J.L. Lee. Copyright © 2011–2018, G.L. Plett and J.L. Lee

ECE4710/5710, State-Space Models and the Discrete-Time Realization Algorithm 5–7

= (CT)[T−1(z I − A)T]−1(T−1 B)+ D

= C̄(z I − Ā)−1 B̄ + D̄ = H2(z).

■ Transfer function not changed by similarity transform

CONCLUSION: Can arrive at state-space representations having identical

input-output relationship but different (A, B, C, D) matrices.

EXAMPLE: Consider transforming the system

A =

−a1 −a2 −a3

1 0 0

0 1 0

 , B =

1

0

0

 ,

C =
[

b1 b2 b3

]
, D =

[
0

]
with T = T−1 =

0 0 1

0 1 0

1 0 0

 .

■ Note that multiplying on the right by T flips the original entries left-to-

right; multiplying on the left flips the original entries top-to-bottom.

■ So, for this transformation matrix, we get:

Ā = T−1 AT =

0 0 1

0 1 0

1 0 0

−a1 −a2 −a3

1 0 0

0 1 0

0 0 1

0 1 0

1 0 0

=

0 1 0

0 0 1

−a3 −a2 −a1

B̄ = T−1 B =

0 0 1

0 1 0

1 0 0

1

0

0

 =

0

0

1

Lecture notes prepared by G.L. Plett and J.L. Lee. Copyright © 2011–2018, G.L. Plett and J.L. Lee

ECE4710/5710, State-Space Models and the Discrete-Time Realization Algorithm 5–8

C̄ = CT =
[

b1 b2 b3

]

0 0 1

0 1 0

1 0 0

 =

[
b3 b2 b1

]

D̄ = D = 0.

■ We can find the transfer function of this new form as

G(z) = C̄(z I − Ā)−1 B̄ + D̄

=
[

b3 b2 b1

]

z 0 0

0 z 0

0 0 z

−

0 1 0

0 0 1

−a3 −a2 −a1

−1

0

0

1

+ 0

=
[

b3 b2 b1

]

z −1 0

0 z −1

a3 a2 z + a1

−1

0

0

1

=

[
b3 b2 b1

]

z2 + a1z + a2 a1 + z 1

−a3 z2 + a1z z

−a3z −a2z − a3 z2

0

0

1

z3 + a1z2 + a2z + a3

=

[
b3 b2 b1

]

1

z

z2

z3 + a1z2 + a2z + a3

= b1z2 + b2z + b3

z3 + a1z2 + a2z + a3

,

which was the transfer function we started with before transformation.

Lecture notes prepared by G.L. Plett and J.L. Lee. Copyright © 2011–2018, G.L. Plett and J.L. Lee

ECE4710/5710, State-Space Models and the Discrete-Time Realization Algorithm 5–9

5.3: Discrete-time Markov parameters

■ It turns out that the discrete unit-pulse response of a state-space

system has a special form that is important to us later.

■ For example, let’s look at the unit-pulse response of a single-input

state-space system. (Note that, by definition, x[0] = 0 when finding a

unit-pulse response).

■ We find that

y[0] = C x[0] + Du[0] = D, x[1] = B

y[1] = Cx[1] + Du[1] = C B, x[2] = AB

y[2] = Cx[2] + Du[2] = C AB, x[3] = A2 B
...

...

y[k] = C Ak−1 B, k ≥ 1.

■ These unit-pulse-response values, {D, C B, C AB, C A2 B, C A3 B, . . .}
are called the Markov parameters of the system.

• This turns out to be of critical importance to realizing our transfer

functions, as we will see.

■ Specifically, we define the Markov parameters to be:

gk =

D, k = 0;

C Ak−1 B, k > 0.

CLARITY ISSUE: ■ For SISO systems, the Markov parameters are

scalars.

■ For a single-input multi-output (SIMO) system the Markov

parameters are (column) vectors.

Lecture notes prepared by G.L. Plett and J.L. Lee. Copyright © 2011–2018, G.L. Plett and J.L. Lee

ECE4710/5710, State-Space Models and the Discrete-Time Realization Algorithm 5–10

• The i th entry (row) of each Markov parameter is computed as

the unit-pulse response from the input to the i th output.

• Equivalently, the entire vector Markov parameter is the

unit-pulse response from the input to the vector output.

■ For multi-input single-output (MISO) systems, the Markov

parameters are row vectors.

• The j th entry (column) of each Markov parameter is computed

via the unit-pulse response from the j th input to the output.

■ For multi-input multi output (MIMO) systems, the Markov

parameters are matrices.

• The (i, j)th entries yield the the unit-pulse response from the j th

input to the i th output.

• Equivalently, the j th column of each Markov parameter is vector

(as in the SIMO case) which is computed via the unit-pulse

response from the j th input to the vector output.

EXAMPLE: Given the following discrete-time system, with zero initial

condition, find the unit-pulse response:

A =
[

0.5 0

0 1

]
, B =

[
1

0

]
, C =

[
1 −1

]
, D = 0.

■ The Markov parameters are given by

gk = {D, C B, C AB, C A2 B, . . .}

= {0, 1, 0.5, 0.25, . . .}.

Lecture notes prepared by G.L. Plett and J.L. Lee. Copyright © 2011–2018, G.L. Plett and J.L. Lee

ECE4710/5710, State-Space Models and the Discrete-Time Realization Algorithm 5–11

■ MATLAB’s impulse.m

command confirms this result:

A = [0.5 0; 0 1];

B = [1 ; 0];

C = [1 -1]; D = 0;

sys = ss(A,B,C,D,-1);

y = impulse(sys,0:15);

stem(0:15,y,'filled');
0 5 10 15

0

0.5

1.0

Time (samples)

V
a

lu
e

Unitpulse response of sample system

Before proceeding...

■ We have now quickly previewed state-space models, with the claim

that there will be a method to represent our battery models in that

particular form.

■ We now begin to investigate that claim—the first step is to create

transfer-function models for the variables of interest.

■ In this chapter, we look at representing cs as a transfer function; in the

next chapter we look at the remainder of the model equations.

• Note that in chapter 3 we used symbols without an over-line to

indicate point-wise values for variables of interest: i.e., cs, ce, φs, φe.

• In chapter 4 we used symbols with an over-line to indicate volume

average versions of these point-wise variables: i.e., c̄e, φ̄s, and φ̄e.

• We now drop the over-line notation, because otherwise the

equations get so highly decorated that they are impossible to

parse. We are still talking about the volume-average quantities of

chapter 4.

Lecture notes prepared by G.L. Plett and J.L. Lee. Copyright © 2011–2018, G.L. Plett and J.L. Lee

ECE4710/5710, State-Space Models and the Discrete-Time Realization Algorithm 5–12

5.4: Equations describing the solid dynamics

Finding the transfer function C̃s,e(s)/J (s)

■ To find the transfer function for cs, we follow the approach by

Jacobsen and West1

■ We start with the underlying partial-differential equation,

∂cs(r, t)

∂t
= 1

r2

∂

∂r

(
Dsr

2∂cs(r, t)

∂r

)
,

with standard boundary conditions,

Ds

∂cs(0, t)

∂r
= 0, and Ds

∂cs(Rs, t)

∂r
= − j (t), t ≥ 0,

and with initial equilibrium concentration,

cs(r, 0) = cs,0, 0 ≤ r ≤ Rs.

■ Note that we run into problems solving this PDE directly if cs,0 6= 0.

■ So, to enforce a homogeneous PDE in later steps, we define

c̃s(r, t) = cs(r, t)− cs,0. The “tilde” notation denotes the difference

between an absolute quantity and its equilibrium set-point.

■ If we assume constant Ds, the differential equations become:

∂ c̃s(r, t)

∂t
= Ds

r2

∂

∂r

(
r2∂ c̃s(r, t)

∂r

)
,

with boundary conditions,

Ds

∂ c̃s(0, t)

∂r
= 0, and Ds

∂ c̃s(Rs, t)

∂r
= − j (t), t ≥ 0,

and with initial equilibrium concentration,

c̃s(r, 0) = 0, 0 ≤ r ≤ Rs.

1 Jacobsen, T., and West, K., “Diffusion Impedance in Planar, Cylindrical and Spherical

Symmetry,” Electrochimica Acta, 40(2), 1995, pp. 255–62.

Lecture notes prepared by G.L. Plett and J.L. Lee. Copyright © 2011–2018, G.L. Plett and J.L. Lee

ECE4710/5710, State-Space Models and the Discrete-Time Realization Algorithm 5–13

■ We continue by taking the Laplace transform of the PDE:

sC̃s(r, s)− c̃0 =
Ds

r2

∂

∂r

(
r2 ∂

∂r
C̃s(r, s)

)

sC̃s(r, s) = Ds

r2

(
2r

∂C̃s(r, s)

∂r
+ r2∂

2C̃s(r, s)

∂r2

)
.

■ This is a 2nd-order ordinary differential equation in r , which may be

written

∂2C̃s(r, s)

∂r2
+ 2

r

∂C̃s(r, s)

∂r
− s

Ds

C̃s(r, s) = 0.

■ This homogeneous differential equation has a solution of the form

C̃s(r, s) = A

r
exp

(
r

√
s

Ds

)
+ B

r
exp

(
−r

√
s

Ds

)

= A

r
exp(β(r))+ B

r
exp(−β(r)),

where we define β(r) = r
√

s/Ds. We note that β(r) is also a function

of s, but we omit this dependence in the notation for compactness.

■ The constants A and B are chosen to satisfy the boundary conditions.

■ Consider first the outer boundary condition at r = Rs, which is

Ds

∂ c̃s(r, t)

∂r

∣∣∣∣
r=Rs

= − j (t).

■ The equivalent Laplace-domain boundary condition is

Ds

∂C̃s(r, s)

∂r

∣∣∣∣
r=Rs

= −J (s).

■ To substitute this in, we will need to compute ∂C̃s(r, s)/∂r

∂C̃s(r, s)

∂r
=

A
√

s
Ds

r exp(β(r))− B exp(−β(r))

r2

Lecture notes prepared by G.L. Plett and J.L. Lee. Copyright © 2011–2018, G.L. Plett and J.L. Lee

ECE4710/5710, State-Space Models and the Discrete-Time Realization Algorithm 5–14

−
A exp(β(r))+ B

√
s

Ds
r exp(−β(r))

r2

= A(β(r)− 1) exp(β(r))− B(1+ β(r)) exp(−β(r))

r2
.

■ We substitute r = Rs and the boundary condition

∂C̃s(r, s)

∂r

∣∣∣∣
r=Rs

= A(β(Rs)− 1) exp(β(Rs))− B(1+ β(Rs)) exp(−β(Rs))

R2
s

− J (s)

Ds

= A(β(Rs)− 1) exp(β(Rs))− B(1+ β(Rs)) exp(−β(Rs))

R2
s

.

■ This gives us an expression for J (s),

J (s) = −Ds

R2
s

(A(β(Rs)− 1) exp(β(Rs))− B(1+ β(Rs)) exp(−β(Rs))) .

■ If we immediately substitute the second boundary condition at r = 0,

we run into some divide-by-zero issues.

■ So, instead, we substitute r = rδ, which we think of as a very small

value. We will then later take the limit as rδ → 0.

0 = A(β(rδ)− 1) exp(β(rδ))− B(1+ β(rδ)) exp(−β(rδ))

r2
δ

.

■ This allows us to write

A(β(rδ)− 1) exp(β(rδ))

r2
δ

= B(1+ β(rδ)) exp(−β(rδ))

r2
δ

A = B
(1+ β(rδ)) exp(−β(rδ))

(β(rδ)− 1) exp(β(rδ))
.

■ We now take the limit as rδ→ 0, and find that A = −B.

■ We are now ready to construct the transfer function C̃s(s, r)/J (s)

Lecture notes prepared by G.L. Plett and J.L. Lee. Copyright © 2011–2018, G.L. Plett and J.L. Lee

ECE4710/5710, State-Space Models and the Discrete-Time Realization Algorithm 5–15

C̃s(r, s)

J (s)
= −R2

s

Dsr

[
A exp(β(r))+B exp(−β(r))

A(β(Rs)−1) exp(β(Rs))−B(1+β(Rs)) exp(−β(Rs))

]

= −R2
s

Dsr

[
A

−A

] [
exp(β(r))− exp(−β(r))

(1−β(Rs)) exp(β(Rs))−(1+β(Rs)) exp(−β(Rs))

]

= R2
s

Dsr

[
exp(β(r))− exp(−β(r))

(1−β(Rs)) exp(β(Rs))−(1+β(Rs)) exp(−β(Rs))

]
.

■ This expression can be used to determine the lithium concentration

anywhere within the particle.

■ However, we are most interested in determining the concentration at

the surface of the particle, where r = Rs. So, we substitute r = Rs

C̃s,e(s)

J (s)
= Rs

Ds

[
exp(β(Rs))− exp(−β(Rs))

(1− β(Rs)) exp(β(Rs))− (1+ β(Rs)) exp(−β(Rs))

]
.

■ To compact the notation yet again, write β(Rs) as simply β,

C̃s,e(s)

J (s)
= Rs

Ds

[
exp(β)− exp(−β)

(1− β) exp(β)− (1+ β) exp(−β)

]

= Rs

Ds

[
exp(β)− exp(−β)

exp(β)− exp(−β)− β
[
exp(β)+ exp(−β)

]
]

= Rs

Ds

[
exp(β)−exp(−β)

exp(β)+exp(−β)

exp(β)−exp(−β)

exp(β)+exp(−β)
− β

]

= Rs

Ds

[
tanh(β)

tanh(β)− β

]
= Rs

Ds

[
1

1− β coth(β)

]
.

■ To recap to this point, re-expanding notation, where β(s, r) = r
√

s/Ds,

C̃s,e(s) =
Rs

Ds

[
1

1− β(s, Rs) coth (β(s, Rs))

]
J (s).

Lecture notes prepared by G.L. Plett and J.L. Lee. Copyright © 2011–2018, G.L. Plett and J.L. Lee

ECE4710/5710, State-Space Models and the Discrete-Time Realization Algorithm 5–16

5.5: Removing the integrator pole

■ While not immediately obvious by looking at the transfer function, it

turns out that C̃s,e(s)/J (s) is unstable: There is a pole at s = 0.

• This is intuitively clear, however, because we know that a step

input will result in ever-increasing concentration.

• This will be important when we look at how to convert the transfer

function to a state-space model.

■ To make a stable transfer function, define

1C̃s,e(s) = C̃s,e(s)− C̃s,avg(s), where C̃s,avg(s) is the bulk (average)

concentration in the solid, less cs,0.

■ Note that we can write c̃s,avg(t1) for some arbitrary point in time t1 as

c̃s,avg(t1) =
∫ t1

0

Influx of Li, [mol s−1]

Volume of particle [m3]
dt .

■ Note two things:

• The volume of a sphere of radius Rs is
4

3
π R3

s [m3];

• The influx of lithium is − j (t) [mol m−2 s−1], occurring over the

surface area 4π R2
s [m2].

■ This gives

c̃s,avg(t1) =
∫ t1

0

− j (t) · 4π R2
s

4
3
π R3

s

dt

= − 3

Rs

∫ t1

0

j (t) dt

d

dt
c̃s,avg(t) = −

3

Rs

j (t).

Lecture notes prepared by G.L. Plett and J.L. Lee. Copyright © 2011–2018, G.L. Plett and J.L. Lee

ECE4710/5710, State-Space Models and the Discrete-Time Realization Algorithm 5–17

■ Note that this result is perfectly general. We made no assumptions on

how the lithium concentration is distributed inside the particle.

■ Taking Laplace transforms, we find:

C̃s,avg(s)

J (s)
= − 3

Rs

1

s
.

■ Therefore,

1C̃s,e(s)

J (s)
= C̃s,e(s)

J (s)
− C̃s,avg(s)

J (s)

= Rs

Ds

[
tanh(β)

tanh(β)− β

]
+ 3

Rss

= Rs

Ds

[
tanh(β)+ 3Ds

s R2
s
(tanh(β)− β)

tanh(β)− β

]

= Rs

Ds

[
tanh(β)+ 3

β2 (tanh(β)− β)

tanh(β)− β

]

= Rs

Ds

[
β2 tanh(β)+ 3 (tanh(β)− β)

β2 (tanh(β)− β)

]

= Rs

Ds

[
(β2 + 3) tanh(β)− 3β

β2 (tanh(β)− β)

]
.

State-space realization problem

■ It turns out that for this specific case, we can find all the poles and

zeros using a simple numeric method, and use that information to

make a discrete-time state-space model.

■ For the transfer functions we develop in the next chapter, however,

this cannot be done.

■ So, we must turn to alternative implementation approaches.

Lecture notes prepared by G.L. Plett and J.L. Lee. Copyright © 2011–2018, G.L. Plett and J.L. Lee

ECE4710/5710, State-Space Models and the Discrete-Time Realization Algorithm 5–18

• One method is to use nonlinear optimization to select poles and

residues to attempt to match the frequency response of the

transfer functions.

• This is fraught with problems.

• We next introduce another approach, which directly gives us a

discrete-time state-space approximate model of our transfer

functions.

■ This system-identification problem for state-space systems is

sometimes called the “realization problem.”

• That is, we wish to find a realization (a set of A, B, C, and D

matrices) that describe a system’s dynamics.

Lecture notes prepared by G.L. Plett and J.L. Lee. Copyright © 2011–2018, G.L. Plett and J.L. Lee

ECE4710/5710, State-Space Models and the Discrete-Time Realization Algorithm 5–19

5.6: State-space realization problem: Ho–Kalman method

■ For now, we assume that we are able to find the Markov parameters

of our transfer functions.

PROBLEM: Given a system’s Markov parameters, find the system

dimension n and (A, B, C, D), up to similarity transforms.

■ One of the first (maybe the first) state-space realization methods was

introduced by Ho and Kalman.2

■ It is key to the discrete-time realization algorithm we will develop.

■ Notice that something curious happens when we multiply the

following matrices together:

C

C A

C A2

...

C An−1

︸ ︷︷ ︸
O

[
B AB A2 B · · · An−1 B

]

︸ ︷︷ ︸
C

=

C B C AB C A2 B · · · C An−1 B

C AB C A2 B C A3 B

C A2 B C A3 B C A4 B
...

C An−1 B · · · C A2n−2 B

.

• For reasons beyond the scope of our discussion here, O is called

the “observability matrix” and C is called the “controllability matrix.”

2 B.L. Ho and R.E. Kalman, “Effective Construction of Linear State Variable Models from

Input/Output Functions,” Regelungstechnik, vol. 14, no. 12, pp. 545–8, 1966.

Lecture notes prepared by G.L. Plett and J.L. Lee. Copyright © 2011–2018, G.L. Plett and J.L. Lee

ECE4710/5710, State-Space Models and the Discrete-Time Realization Algorithm 5–20

■ Notice that we get a Hankel matrix—a matrix having constant skew

diagonals (an upside-down Toeplitz matrix).

■ Note also that the values on the skew diagonals are the Markov

parameters of the system (excluding g0 and gk for k > 2n − 1)

H = OC =

g1 g2 · · · gn

g2 g3
...

gn · · · g2n−1

.

■ Ho–Kalman assumes that we know the Markov parameters.

• Knowledge of g0 gives us D directly.

• Knowledge of the rest of the Markov parameters will ultimately

result in A, B, and C.

■ To use Ho–Kalman, we must first form the Hankel matrix H.

■ The next step is to factor H = OC into its O and C components.

■ The third step is to use O and C to find A, B, and C.

ISSUE I: We don’t know n. So, how do we form H in the first place? That

is, when do we stop adding unit-pulse-response values to H?

PRELIMINARY ANSWER: The rank of H is equal to n. Keep adding

data until the rank doesn’t increase.

ISSUE II: How do we compute A, B, and C from O and C?

ANSWER: C is extracted as the first block row of O; B is extracted as

the first block column of C. We’ll see how to get A shortly.

ISSUE III: How do we do the factoring of H into O and C?

Lecture notes prepared by G.L. Plett and J.L. Lee. Copyright © 2011–2018, G.L. Plett and J.L. Lee

ECE4710/5710, State-Space Models and the Discrete-Time Realization Algorithm 5–21

ANSWER: It doesn’t matter, at least in principle. Any matrices O and

C such that OC =H are okay.

■ To see this latter point, consider what happens to O and C when the

state-space model undergoes a similarity transformation.

• Recall that Ā = T−1 AT , B̄ = T−1 B, and C̄ = CT .

• The observability and controllability matrices of the new

representation are

SO =

SC
SCSA
...

SCSAn−1

=

CT

CT T−1 AT
...

CT (T−1 AT)n−1

= OT

SC =
[
SB SASB · · · SAn−1SB

]

=
[

T−1 B T−1 AT T−1 B · · · (T−1 AT)n−1T−1 B

]
= T−1

C.

■ Therefore, SOSC = (OT)(T−1
C) = OC

• If we factor H one way, we end up with a representation that has

one set of O and C.

• If we factor H any other way, we end up with a representation that

has an alternate set of Ō and C̄.

• But, these representations are related via a similarity

transformation T .

■ That is, no matter how we factor H, we end up with different A, B,

and C matrices, but the same input-output relationship (same transfer

function, same unit-pulse response, but different state descriptions).

Lecture notes prepared by G.L. Plett and J.L. Lee. Copyright © 2011–2018, G.L. Plett and J.L. Lee

ECE4710/5710, State-Space Models and the Discrete-Time Realization Algorithm 5–22

• For example, we could choose to let O = I , and then C =H. This

will result in an A, B, and C that are in “observability canonical

form.” (cf. ECE5520)

• Or, we could choose to let C = I , and then O =H. This will result

in an A, B, and C that are in “controllability canonical form.”

ISSUE IV: Is there a “best” way to factor H? Yes. . . enter the SVD.

Lecture notes prepared by G.L. Plett and J.L. Lee. Copyright © 2011–2018, G.L. Plett and J.L. Lee

ECE4710/5710, State-Space Models and the Discrete-Time Realization Algorithm 5–23

5.7: Singular value decomposition

FACT: Any rectangular matrix A ∈ R
m×n, where rank(A) = r , can be

factored into the form:

A = U6V T .

■ U = [u1, . . . , ur] ∈ R
m×r , and U T U = I , and ui are the left or

output singular vectors of A.

■ V = [v1, . . . , vr] ∈ R
n×r , and V T V = I , and vi are the right or input

singular vectors of A.

■ 6 = diag(σ1, . . . , σr) where σ1 ≥ · · · ≥ σr > 0, and σi are the

(nonzero) singular values of A.

■ The above is called a compact SVD. Most often, we compute a full

SVD, where

• U = [u1, . . . , um] ∈ R
m×m, and UT U = I ,

• V = [v1, . . . , vn] ∈ R
n×n, and V T V = I ,

• The matrix 6 ∈ R
m×n is “diagonal”

6 =

σ1 0 0
. . . 0

0 σm 0

 or 6 =

σ1 0
. . .

0 σn

 or 6 =

σ1 0
. . .

0 σn

0 0 0

when m < n, m = n and m > n, respectively.

• In this case, σ1 ≥ · · · ≥ σr > 0, and σi = 0 for i > r .

• In MATLAB, svd.m and svds.m

■ We often write the full SVD as partitioned:

Lecture notes prepared by G.L. Plett and J.L. Lee. Copyright © 2011–2018, G.L. Plett and J.L. Lee

ECE4710/5710, State-Space Models and the Discrete-Time Realization Algorithm 5–24

A =
[

U1 U2

]

 61 0r×(n−r)

0(m−r)×r 0(m−r)×(n−r)

 V T

1

V T
2

 ,

where A = U161V T
1 is the compact SVD.

■ Note that the singular values are related to matrix norm. In particular,

‖A‖ = σ1.

■ Can view operation y = Ax as y = (U6V T)x, decomposing the

operation into

• Computing coefficients of x along the input directions v1, . . . , vr

(rotating by V T)

◆ v1 is the most sensitive (highest gain) input direction

• Scaling the coefficients by σi (dilation)

• Reconstituting along output directions u1, . . . , ur .

◆ u1 is the highest gain output direction. Av1 = σ1u1.

■ SVD gives a picture of gain as a function of input/output directions.

EXAMPLE: Consider A ∈ R
4×4 with 6 = diag(10, 7, 0.1, 0.05).

■ Input components along directions v1 and v2 are amplified (by about

10) and come out mostly along the plane spanned by u1 and u2.

■ Input components along directions v3, v4 are attenuated (by about

10).

■ ‖Ax‖ / ‖x‖ can range between 10 and 0.05; A is nonsingular.

■ For some applications you might say that A is effectively rank 2 (this

will be important for us later).

Lecture notes prepared by G.L. Plett and J.L. Lee. Copyright © 2011–2018, G.L. Plett and J.L. Lee

ECE4710/5710, State-Space Models and the Discrete-Time Realization Algorithm 5–25

Low-rank approximations

■ Suppose that A ∈ R
m×n and rank(A) = r , with SVD

A = U6V T =
r∑

i=1

σi uiv
T
i .

■ We want to approximate A by Â, where rank(Â) ≤ p < r such that

Â ≈ A in the sense that
∥∥∥A− Â

∥∥∥ is minimized.

■ The optimal rank p approximator is Â =
p∑

i=1

σi uiv
T
i and hence

∥∥∥A− Â

∥∥∥ =

∥∥∥∥∥∥

r∑

i=p+1

σi uiv
T
i

∥∥∥∥∥∥
= σp+1

because σp+1 is the maximum remaining singular value.

INTERPRETATION: SVD dyads uiv
T
i are ranked in order of ‘importance’;

take p of them to get a rank p approximant.

APPLICATION: We can use this idea to simplify models (very useful).

Suppose that

■ y = Ax+ v where A ∈ R
100×30 has SVs 10, 7, 2, 0.5, 0.01, . . . , 0.0001.

■ ‖x‖ is on the order of 1, and unknown error or noise v has norm on

the order of 0.1.

■ Then, the terms σi uiv
T
i x for i = 5, . . . , 30 are substantially smaller

than the noise term v.

■ So, we can approximate y = Ax + v by the much simplified model

y =
4∑

i=1

σi uiv
T
i x + v.

Lecture notes prepared by G.L. Plett and J.L. Lee. Copyright © 2011–2018, G.L. Plett and J.L. Lee

ECE4710/5710, State-Space Models and the Discrete-Time Realization Algorithm 5–26

5.8: Back to Ho–Kalman

■ Recall Ho–Kalman “ISSUE I,” how do we form the Hankel matrix H if

we don’t know the dimension of the system state n?

■ To address this issue, consider the infinite, skew-diagonal matrix H∞:

H∞ =

g1 g2 g3 g4 · · ·
g2 g3 g4 g5 · · ·
g3 g4 g5 g6 · · ·
g4 g5 g6 g7 · · ·
...

...
...

... . . .

where the entries gk correspond to the Markov parameters for the

given system.

■ This form is called an infinite Hankel matrix, or Hankel operator.

■ We can also define a finite Hankel matrix, formed by the first k rows

and l columns of H

Hk,l =

g1 g2 g3 · · · gl

g2 g3 g4 · · · gl+1

g3 g4 g5 · · · gl+2
...

gk gk+1 gk+2 · · · gk+l−1

.

■ This finite Hankel matrix factors into Hk,l = OkCl where:

Ok =

C

C A
...

C Ak−1

, Cl =
[

B AB A2 B · · · Al−1 B

]
.

■ The approach we will take is to make a Hk,l of larger size than we

expect for a hypothesized value of n. That is, k > n and l > n.

Lecture notes prepared by G.L. Plett and J.L. Lee. Copyright © 2011–2018, G.L. Plett and J.L. Lee

ECE4710/5710, State-Space Models and the Discrete-Time Realization Algorithm 5–27

• Therefore Ok 6= O and Cl 6= C even though the matrices have the

same general form. We call Ok the extended observability matrix

and Cl the extended controllability matrix.

■ We then apply the SVD to Hk,l

Hk,l = U6V T = U6
1/2

6
1/2V T

= U6
1/2T T−1

6
1/2V T

= (U6
1/2T)︸ ︷︷ ︸

Ok

(T−1
6

1/2V T)︸ ︷︷ ︸
Cl

.

■ The first n non-zero singular values provide insight into model order.

• Problem: Noisy data yields more than n non-zero singular values.

• Need to look at a few and determine when there is a “significant”

drop off in the magnitude of the SVDs.

■ Note that this approach also gives us Ok and Cl automatically in a

“balanced realization”. Solves “ISSUE III” and “ISSUE IV”.

• T must be invertible, but selection of T is otherwise arbitrary.

Usually use T = I .

■ How to decompose further into (A, B, C) to solve “ISSUE II”?

■ Note the shift property of a Hankel matrix. If we shift H up by one

block row, we get H
↑
k+1,l = Ok ACl.

H
↑
k+1,l =

g2 g3 g4 · · · gl+1

g3 g4 g5 · · · gl+2
...

gk gk+1 gk+2 · · · gk+l−1

gk+1 gk+2 gk+3 · · · gk+l

Lecture notes prepared by G.L. Plett and J.L. Lee. Copyright © 2011–2018, G.L. Plett and J.L. Lee

ECE4710/5710, State-Space Models and the Discrete-Time Realization Algorithm 5–28

=

C AB C A2 B C A3 B · · · C Al B

C A2 B C A3 B C A4 B C Al+1 B
...

C Ak−1 B C Ak B C Ak+1 B · · · C Ak+l−2 B

C Ak B C Ak+1 B C Ak+2 B · · · C Ak+l−1 B

= O
↑
k+1Cl = OkC

←
l+1 = Ok ACl.

■ Using the pseudo-inverse to solve for A gives A = O
†
kH
↑
k+1,lC

†
l .

■ In MATLAB, we can compute either

Ahat = pinv(Ok)*HankelUp*pinv(Cl);

or

Ahat = (Ok\HankelUp)/Cl;

■ As before, we extract B from the first block column of the

controllability matrix we derived via SVD.

■ Also, extract C from the first block row of the observability matrix we

derived via SVD, and set D = g0.

Lecture notes prepared by G.L. Plett and J.L. Lee. Copyright © 2011–2018, G.L. Plett and J.L. Lee

ECE4710/5710, State-Space Models and the Discrete-Time Realization Algorithm 5–29

5.9: Ho–Kalman summary and example

STEP I: Collect the unit-pulse response values into two Hankel matrices

1. An original finite Hankel matrix

2. A shifted version matrix of the original Hankel matrix (same size)

STEP II: Compute the SVD of the (unshifted) Hankel matrix

■ Identify system order from the singular values

■ May need to iterate on choice of Hankel matrix (discussed later)

STEP III: Compute the extended observability and controllability matrices

■ Use appropriately dimensioned SVD components

■ Typically use T = In

STEP IV: Identify the system matrices (A, B, C). D = g0.

EXAMPLE: Suppose that a unit pulse yields the following response:

y = (0, 1, 1, 2, 3, 5, 8, 13, 21, 34, 55, 89, · · ·).

■ We recognize this output as the Fibonacci sequence generated by

gk = gk−1 + gk−2 with initial conditions g0 = 0 and g1 = 1.

■ A typical realization for this sequence is given by the state-space

system:

A =
[

0 1

1 1

]
, B =

[
1

1

]
, C =

[
1 0

]
, D = 0.

■ We’ll try to come up with an equivalent realization based on only the

unit-pulse response.

Lecture notes prepared by G.L. Plett and J.L. Lee. Copyright © 2011–2018, G.L. Plett and J.L. Lee

ECE4710/5710, State-Space Models and the Discrete-Time Realization Algorithm 5–30

% Define true system, compute the Markov parameters as "y"

A = [0 1; 1 1]; B = [1; 1]; C = [1 0]; D = 0; dt = 1;

sysTrue = ss(A,B,C,D,dt); % "typical" Fibonacci ss model

y = dt*impulse(sysTrue); % scale by dt to get unit-pulse response

■ The Hankel matrices that we will require are:

H4,4 =

1 1 2 3

1 2 3 5

2 3 5 8

3 5 8 13

, H
↑
5,4 =

1 2 3 5

2 3 5 8

3 5 8 13

5 8 13 21

.

% Form H{4,4} and shifted H{5,4}. Note: Do not include "zero-th"

% parameter (first element of y), which corresponds to the matrix D.

bigHankel = hankel(y(2:end)); % don't forget to omit h(0) term = y(1)

H = bigHankel(1:4,1:4); % for this example, keep only 4x4 portion

Hup = bigHankel(2:5,1:4); % shifted H{5,4}

■ The SVD yields

σ1 = 54.56 σ2 = 0.43988 σi = 0, i ≥ 3

which indicates that n = 2.

% Compute singular values of Hankel matrix

[U,S,V] = svd(H);

% Identify system order off-line as n = 2 based on values of S

n = 2;

■ We now extract the two left columns of U and V

U = V =

−0.1876 0.7947

−0.3035 −0.4911

−0.4911 0.3035

−0.7947 −0.1876

.

Lecture notes prepared by G.L. Plett and J.L. Lee. Copyright © 2011–2018, G.L. Plett and J.L. Lee

ECE4710/5710, State-Space Models and the Discrete-Time Realization Algorithm 5–31

■ Compute the extended observability and controllability matrices

Cl = 6
1/2V T =

[
−0.8507 −1.3764 −2.2270 −3.6034

0.5257 −0.3249 0.2008 −0.1241

]

Ok = U6
1/2 = C

T
l .

% Compute extended observability and controllability matrices, sized to

% the order for the system inferred by the singular values.

Us = U(:,1:n); Ss = S(1:n,1:n); Vs = V(:,1:n);

Ok = Us*sqrtm(Ss); Cl = sqrtm(Ss)*Vs';

■ Identify the system matrices (Â, B̂, Ĉ) up to similarity transform

Â = O
†
kH
↑
k+1,lC

†
l =

[
1.6180 0

0 −0.6180

]

B̂ = Cl(1 : n, 1 : m) = Cl(1 : 2, 1) =
[
−0.8057

0.5257

]

Ĉ = Ok(1 : p, 1 : n) = Ok(1, 1 : 2) =
[
−0.8057 0.5257

]

D̂ = g0 = 0.

% Identify system assuming p = m = 1 (SISO), using shifted Hankel matrix

Ahat = (Ok\Hup)/Cl; Bhat = Cl(:,1); Chat = Ok(1,:); Dhat = y(1);

sysEst = ss(Ahat, Bhat, Chat, Dhat, dt);

■ Now, let’s compare the true and identified (“estimated”) systems

• Same pole-zero mapping (eigenvalues...transfer function)

• Same unit-pulse responses

Lecture notes prepared by G.L. Plett and J.L. Lee. Copyright © 2011–2018, G.L. Plett and J.L. Lee

ECE4710/5710, State-Space Models and the Discrete-Time Realization Algorithm 5–32

−1 −0.5 0 0.5 1 1.5 2
−1

−0.5

0

0.5

1
Pole−zero map

Real axis

Im
a

g
in

a
ry

 a
x
is

1 2 3 4 5 6 7 8
0

5

10

15

20

25

Time step k

O
u

tp
u

t

Unitpulse responses

True system

Estimated system

COMMENTS: Selecting an appropriate amount of output data to store

may require iteration (“how big an H do I need?”)

■ Until rank(Hk,l)= rank(Hk−1,l−1), or

■ Until the next singular value is “insignificant.”

■ Interesting to note that A = AT and that B = CT for the identified

system in the example.

• This property holds for square Hankel matrices

• The identification process will work so long as the Hankel matrix

dimensions exceed the system order (H need not be square)

REMAINING QUESTION: From whence come the gk?

■ This is key to making the DRA work.

Lecture notes prepared by G.L. Plett and J.L. Lee. Copyright © 2011–2018, G.L. Plett and J.L. Lee

ECE4710/5710, State-Space Models and the Discrete-Time Realization Algorithm 5–33

5.10: Discrete-Time Realization Algorithm (DRA)

■ Given a continuous-time transfer function in the Laplace domain,

H(s) = Y(s)/U(s), and a sampling period, Ts, we want to derive a

reduced-order discrete-time state-space realization of the form

x[k + 1] = Ax[k] + Bu[k]

y[k] = C x[k] + Du[k],

■ A sufficient condition for the DRA to operate is that H(s) be an

element of the Hardy space H∞, which implies that it is a strictly

stable and proper system.

■ This is not a necessary condition, however, as we will later generalize

the method to work with systems having isolated pole(s) on the

imaginary axis.

■ Note that we do not restrict H(s) to be formulated as a quotient of

polynomials in the Laplace variable “s” (for which well-known methods

exist to find the discrete-time system).

■ We describe the algorithm in four steps, which we preview here, and

discuss in more detail in the following subsections.

STEP 1: Sample the continuous-time transfer function H(s) in the

frequency domain at a high rate, and take the inverse discrete

Fourier transform (IDFT) of the samples to get an approximation to

the continuous-time impulse response h(t).

STEP 2: Use h(t) to approximate the continuous-time step response

hstep(t), also sampled at the high rate.

Lecture notes prepared by G.L. Plett and J.L. Lee. Copyright © 2011–2018, G.L. Plett and J.L. Lee

ECE4710/5710, State-Space Models and the Discrete-Time Realization Algorithm 5–34

STEP 3: Compute discrete-time unit-pulse response gk with

inter-sample period Ts from continuous-time step response hstep(t),

assuming a sample and hold circuit connected to system input.

STEP 4: Generate a discrete-time state-space realization using the

deterministic Ho–Kalman algorithm.

■ We note that a system having a pole at the origin does not meet the

strictly-stable requirement. However, we also show that this pole can

be automatically accounted for.

Building the DRA from the end to the beginning

STEP 3: If we have the system’s unit-pulse response, we can use

Ho–Kalman to find a state-space representation.

■ But, how to find the unit pulse response? Let’s assume that we know

the continuous-time step response hstep(t):

unit−pulse response

step response

shifted step response

step function

shifted step functionsubtract

unit−pulse function

Ts

■ The continuous-time response to a unit pulse of length Ts seconds is

hpulse(t) = hstep(t)− hstep(t − Ts).

■ The discrete-time response is found by sampling: gk = hpulse(kTs).

STEP 2: If we have the system’s continuous-time step response, we can

find a state-space representation.

Lecture notes prepared by G.L. Plett and J.L. Lee. Copyright © 2011–2018, G.L. Plett and J.L. Lee

ECE4710/5710, State-Space Models and the Discrete-Time Realization Algorithm 5–35

■ But, how to find the step response? Let’s assume that we know the

continuous-time impulse response h(t). Then,

hstep(t) =
∫ t

0

h(τ) dτ .

■ In fact, since the DRA is a numeric algorithm, we can’t deal with

continuous time directly. Instead, we select a fast sample frequency

F1 such that T1 =
1

F1

≪ Ts.

■ Then, the finely sampled continuous-time step response is:

hstep(kT1) = T1

k−1∑

i=0

h(iT1).

STEP 1: Given the system’s finely sampled continuous-time impulse

response, we can find a state-space representation.

■ How to find the finely sampled continuous-time impulse response?

■ We approximate the continuous-time impulse response via a “discrete

equivalent” approach (frequency-domain emulation).

■ We use the bilinear transform to write a high-sample-rate discrete-

time approximation to the original continuous-time transfer function

H(z) ≈ H (s)|s= 2
T1

z−1
z+1

,

where T1 is the same emulation sampling period as before.3

3 In order to arrive at an accurate estimation of the continuous time transfer function, the

sampling frequency, F1 = 1/T1, must be high enough to capture the system dynamics.

As a rule of thumb, the sampling frequency must be at least 20 times the as great as

the bandwidth of the system to get an rough approximation in the frequency domain.

A higher emulation sampling frequency gives more accurate results.

Lecture notes prepared by G.L. Plett and J.L. Lee. Copyright © 2011–2018, G.L. Plett and J.L. Lee

ECE4710/5710, State-Space Models and the Discrete-Time Realization Algorithm 5–36

■ We now recognize that the discrete Fourier transform (DFT) of a

sequence is related to its z-transform via the relationship

H [f] = H(z)
∣∣
z=exp(j2π f/N) = H (s)|

s= 2
T1

[
e j2π f/N−1

e j2π f/N+1

]

= H (s)|s= 2 j
T1

tan(π f/N) , 0 ≤ f < N ,

where N is the number of points chosen for the underlying sequence,

and is usually chosen to be a power of 2 for efficient computations.

■ The inverse DFT of H [f] gives h(nT1), which is the approximation of

the continuous-time impulse response at the emulation sampling

period, T1

h(nT1) =
1

N

N−1∑

f=0

H [f]e j2π f n/N ,

which is indexed from n = 0 to n = N − 1.

Examples of the DRA

■ We will ultimately look at three examples to illustrate the DRA.

■ The first two are rational-polynomial transfer functions, which we use

because we can calculate the exact solution using other methods.

• We can then compare the exact solutions to the approximate

solutions obtained by the DRA.

■ The third does not have a closed-form solution, but we can use a 1-D

parabolic-elliptic partial differential equation solver to find an accurate

near-exact solution against which to compare the DRA solution.

■ We find excellent agreement between the exact solutions and DRA

solutions in all cases.

Lecture notes prepared by G.L. Plett and J.L. Lee. Copyright © 2011–2018, G.L. Plett and J.L. Lee

ECE4710/5710, State-Space Models and the Discrete-Time Realization Algorithm 5–37

5.11: Example 1: Rational polynomial transfer function

■ The DRA method is first applied to a simple second-order system.

■ We require a discrete-time realization with the a sampling period of

Ts = 0.1 seconds from the continuous-time transfer function

H1(s) =
s2 + 20s + 100

s2 + 2s + 8
.

■ We compute the Bode plot to estimate the system bandwidth.

omega = logspace(-1,3,100); % create freq. axis in rad/sec

s = 1j*omega; % create s = j*omega

H = (s.^2+20*s+100)./(s.^2+2*s+8); % compute cplx. freq. response

semilogx(omega,20*log10(abs(H))); % display the magnitude response

■ Poles at −1± j2.65 rad s−1, two

zeros at 10 rad s−1.

■ The magnitude response of

H1(s) is shown in the figure.

■ The system bandwidth is on the

order of 3 rad s−1 (about 0.5 Hz).
10

−1
10

0
10

1
10

2
10

3
0

5

10

15

20

25

30

M
a

g
n

it
u

d
e

 (
d

B
)

Bode magnitude plot for H1(s)

Frequency (rad s−1)

STEP 1: The sampling frequency is selected as 256 Hz which is (much)

greater than 20 times the system bandwidth.

■ Transfer function is sampled at discrete frequencies; inverse DFT

yields an approximate continuous-time impulse response.

F1 = 256; T1 = 1/F1; % Interp. freq. of 256 Hz

minTlen = 6.5; % min. h(t) length in sec.

N = 2^(ceil(log2(minTlen*F1))); % # of samples at rate F1

f = 0:N-1; % normalized freq. vector

s = (2j/T1)*tan(pi*f/N); % substitute to get Hd[f]

Lecture notes prepared by G.L. Plett and J.L. Lee. Copyright © 2011–2018, G.L. Plett and J.L. Lee

ECE4710/5710, State-Space Models and the Discrete-Time Realization Algorithm 5–38

Hd = (s.^2+20*s+100)./(s.^2+2*s+8); % Hd[f]

hd = real(ifft(Hd)) * F1; % approximation to h(t)

td = T1*(0:N-1); % time vector for h(t)

plot(td,hd,'bx','markersize',8); hold on % plot h(t)

H1 = tf([1 20 100],[1 2 8]); % true transfer function

[himpTrue,timpTrue] = impulse(H1,5); % true impulse response

plot(timpTrue,himpTrue,'r'); axis([0 5 -10 26]); % plot on top

■ The figure compares the

approximate continuous-time

impulse response computed

via the inverse DFT to the exact

continuous-time impulse

response of H1(s).

■ The solutions are coincident.
0 1 2 3 4 5

−10

−5

0

5

10

15

20

25

Time (s)

R
e

s
p

o
n

s
e

Exact

Approximate

Continuous-time impulse responses

STEP 2: The approximation to the continuous-time step response is

found by doing a cumulative summation of the impulse response.

hstep = T1*cumsum(hd); % h_s(t)

plot(td,hstep,'bx','markersize',8); hold on % plot h_s(t)

[hstepTrue,tstepTrue] = step(H1,5); % true step resp.

plot(tstepTrue,hstepTrue,'r'); axis([0 5 0 18]); % plot on top

■ The results are shown in the

figure and show excellent

agreement with the exact step

response of the continuous

time system.

0 1 2 3 4 5
0

5

10

15

Time (s)

R
e
s
p
o
n
s
e

Exact

Approximate

Continuous-time step responses

Lecture notes prepared by G.L. Plett and J.L. Lee. Copyright © 2011–2018, G.L. Plett and J.L. Lee

ECE4710/5710, State-Space Models and the Discrete-Time Realization Algorithm 5–39

STEP 3: We now resample the continuous-time approximate step

response at the final sample rate Ts, and compute the discrete-time

unit-pulse response as hstep[k] − hstep[k − 1]

Ts = 0.1; tdisc = 0:Ts:6.5; % final time vector

hdisc = [0 diff(interp1(td,hstep,tdisc))]; % h[k]

stem(tdisc,hdisc,'filled'); hold on

[himpDiscTrue,timpDiscTrue] = impulse(c2d(H1,Ts),5);

% next line scales IMPULSE in new MATLAB to give unit-pulse resp.

himpDiscTrue = Ts*himpDiscTrue;

plot(timpDiscTrue,himpDiscTrue,'r.','markersize',8);

axis([-0.01 5 -1 2.6]);

■ Note that in new versions of

MATLAB, the “impulse”

command works differently

from old versions for

discrete-time systems.

■ We need to scale MATLAB’s

output by Ts to compute the

unit-pulse response that we

desire.

0 1 2 3 4 5
−1

−0.5

0

0.5

1

1.5

2

2.5

Time (s)

R
e

s
p

o
n

s
e

Exact

Approximate

Discrete-time unit-pulse responses

■ Again, there is excellent agreement between the approximate

unit-pulse response and the exact solution, except at single point

t = 0.

■ This is often the case because of some properties of the inverse DFT.

■ But it causes no problems since the unit-pulse response value at

t = 0 is computed differently, using

D = g0 = lim
s→∞

H(s).

Lecture notes prepared by G.L. Plett and J.L. Lee. Copyright © 2011–2018, G.L. Plett and J.L. Lee

ECE4710/5710, State-Space Models and the Discrete-Time Realization Algorithm 5–40

STEP 4: The Ho–Kalman algorithm is used to find state-space realization

from approximate discrete-time unit-pulse response of Step 3.

■ 64 points from the discrete-time unit-pulse response are used, which

allows a maximum Hankel matrix of 32× 32.

■ We first compute and plot the singular values of the Hankel matrix.

bigHankel = hankel(hdisc(2:66)); % don't forget to omit h(0) term!

% for this example, keep only 32x32 portion

Hankel = bigHankel(1:32,1:32);

HankelUp = bigHankel(2:33,1:32); % shifted Hankel matrix

[U, S, V] = svd(Hankel); % compute singular values

plot(log10(diag(S)),'bx','markersize',8); axis([0 33 -20 5]);

■ Hankel-matrix SVD gives insight into the system’s order.

■ A log plot of the singular values

is shown in the figure.

■ The first two are almost three

orders of magnitude greater

than the third, so we select a

reduced-order model

dimension p = 2.
0 5 10 15 20 25 30

−15

−10

−5

0

Hankel matrix singular values

n

lo
g

1
0
(σ

n
)

n = 2; % select via singular values

Us = U(:,1:n); % Compute extended observability, controlability

Ss = S(1:n,1:n); % matrices, sized to the order for the system

Vs = V(:,1:n); % inferred by the singular values.

Ok = Us*sqrtm(Ss); Cl = sqrtm(Ss)*Vs';

Ahat = (Ok\HankelUp)/Cl; % calculate A from Ok, Cl

Bhat = Cl(1:n,1); Chat = Ok(1,1:n); % calculate B and C

Dhat = 1; % calculated manually

sysDRA = ss(Ahat,Bhat,Chat,Dhat,Ts); % final DRA ss model

Lecture notes prepared by G.L. Plett and J.L. Lee. Copyright © 2011–2018, G.L. Plett and J.L. Lee

ECE4710/5710, State-Space Models and the Discrete-Time Realization Algorithm 5–41

■ Truncating to the first two states only, the Ho–Kalman algorithm gives

a state-space realization with the following A, B, and C matrices

Â =
[

0.8656 −0.2367

0.2367 0.8811

]
, B̂ =

[
−1.624

0.7692

]
, Ĉ =

[
−1.624 −0.7692

]
.

■ The D̂ matrix is found from the initial value theorem and, for this

example, is D̂ = [1].
■ We compare the true discrete-time unit-pulse response and the final

DRA model unit-pulse response:

% next line scales IMPULSE in new MATLAB to give unit-pulse resp.

[himpDRA,timpDRA] = impulse(sysDRA,5); himpDRA = Ts*himpDRA;

stem(timpDRA,himpDRA,'filled'); hold on

plot(timpDiscTrue,himpDiscTrue,'r.','markersize',8);

axis([-0.01 5 -1 2.6]);

■ The results agree very well

(note that h[0] has been

corrected by the correct

calculation of the D̂ matrix in

Step 4).

0 1 2 3 4 5
−1

−0.5

0

0.5

1

1.5

2

2.5

Time (s)

R
e

s
p

o
n

s
e

Exact

Approximate

Discrete-time unit-pulse responses

■ Because the unit-pulse responses agree very well, the response of

the reduced-order model will also agree well with the exact response

for any input signal u[k].

Lecture notes prepared by G.L. Plett and J.L. Lee. Copyright © 2011–2018, G.L. Plett and J.L. Lee

ECE4710/5710, State-Space Models and the Discrete-Time Realization Algorithm 5–42

5.12: Example 2: Dealing with a pole in H(s) at the origin

■ This example has a pole in H(s) at s = 0, so is not strictly stable, and

violates the necessary conditions that make the DRA work.

■ However, it is quite simple to deal with this case.

• We first subtract the pole at the origin from the transfer function,

• Then execute the DRA on the residual system,

• Then compute a final discrete-time state-space model that

augments the DRA result with additional dynamics to implement

the function of the s-domain pole at the origin.

■ A pole at the origin is removed by first calculating the residue of this

pole and then subtracting it from the original transfer function.

H∗(s) = H(s)− res0

s
where res0 = lim

s→0
s H(s).

■ The remainder of the DRA is executed using H∗(s) instead of H(s).

■ To re-incorporate the effect of the pole at s = 0 into the final

reduced-order model, recall that this pole corresponds to an

integrator. The discrete-time equivalent can be implemented as

xi[k + 1] = xi[k] + Tsu[k].

■ We combine this with the DRA-produced state-space form[
x[k + 1]
xi[k + 1]

]

︸ ︷︷ ︸
xaug[k+1]

=
[

Â 0

0 1

]

︸ ︷︷ ︸
Âaug

[
x[k]
xi[k]

]

︸ ︷︷ ︸
xaug[k]

+
[

B̂

Ts

]

︸ ︷︷ ︸
B̂aug

u[k]

y[k] =
[

Ĉ res0

]

︸ ︷︷ ︸
Ĉaug

[
x[k]
xi[k]

]
+ Du[k]

Lecture notes prepared by G.L. Plett and J.L. Lee. Copyright © 2011–2018, G.L. Plett and J.L. Lee

ECE4710/5710, State-Space Models and the Discrete-Time Realization Algorithm 5–43

where dotted lines delineate boundaries between block sub-matrices

of the overall augmented state-space matrices Âaug, B̂aug, and Ĉaug.

Example 2: Rational polynomial transfer function with pole at origin

■ In this example, we demonstrate how to handle a single pole at the

origin. The continuous-time transfer function is given by

H2(s) =
1

s

(
1

s2 + 6s + 8

)
.

■ This system has real poles at 0, 2 and 4 rad s−1.

■ Desire a discrete-time transfer function with sample period Ts = 0.1 s.

■ Prior to Step 1 we remove the pole at the origin.

■ This is accomplished by first calculating the residue for this pole.

■ In this example, the residue can be computed analytically as

res0 = lim
s→0

s H(s) = 0.125.

■ In general, we find this residue by selecting a very small value for s

and numerically computing res0, or by using a software tool like

Mathematica to compute the limit.

■ The reduced transfer function, H∗2 (s) with the pole at the origin

removed is

H∗2 (s) = 1

s

(
1

s2 + 6s + 8

)
− 0.125

s
.

■ The figures below shows the magnitude plot of the original system

and the system with the pole at the origin removed.

Lecture notes prepared by G.L. Plett and J.L. Lee. Copyright © 2011–2018, G.L. Plett and J.L. Lee

ECE4710/5710, State-Space Models and the Discrete-Time Realization Algorithm 5–44

10
−1

10
0

10
1

10
2

−120

−100

−80

−60

−40

−20

0

M
a

g
n

it
u

d
e

 (
d

B
)

Bode magnitude plot for H2(s)

Frequency (rad s−1)
10

−1
10

0
10

1
10

2
−60

−50

−40

−30

−20

M
a

g
n

it
u

d
e

 (
d

B
)

Bode magnitude plot for H∗2 (s)

Frequency (rad s−1)

STEP 1. H∗2 (s) is sampled at 256 Hz which is (much) more than 50 times

greater than the system bandwidth. We could implement either

Hd = 1./(s.^3+6*s.^2+8*s) - 0.125./s; % Hd[f]

Hd(1) = -6/64; % analytic solution

where lim
s→0

H∗2 (s) = −6/64, or compute by hand

H∗2 (s) = 1

s

(
1

s2 + 6s + 8

)
− 0.125

s

(
s2 + 6s + 8

s2 + 6s + 8

)

= −0.125

s

(
s2 + 6s

s2 + 6s + 8

)
= −0.125

(
s + 6

s2 + 6s + 8

)
,

and implement

Hd = -0.125*(s+6)./(s.^2+6*s+8);

■ The approximate continuous-

time impulse response is

computed and plotted.

0 1 2 3 4 5

−0.12

−0.1

−0.08

−0.06

−0.04

−0.02

0

Time (s)

R
e
s
p
o
n
s
e

Exact

Approximate

Continuous-time impulse responses

Lecture notes prepared by G.L. Plett and J.L. Lee. Copyright © 2011–2018, G.L. Plett and J.L. Lee

ECE4710/5710, State-Space Models and the Discrete-Time Realization Algorithm 5–45

STEP 2: The approximation to the

continuous-time step response

of H∗2 (s) is calculated as in the

first example and plotted.

0 1 2 3 4 5
−0.1

−0.08

−0.06

−0.04

−0.02

0

Time (s)

R
e

s
p

o
n

s
e

Exact

Approximate

Continuous-time step responses

STEP 3: This step response is

sampled at Ts = 0.1 seconds,

and differenced to yield the

discrete-time unit-pulse

response, plotted in the figure.

0 1 2 3 4 5

−12

−10

−8

−6

−4

−2

0

Time (s)

Exact

Approximate

Discrete-time unit-pulse responses

R
e
s
p
o
n
s
e

(×
1

0
−

3
)

STEP 4. The system Hankel matrix is generated from the discrete-time

unit-pulse response found in Step 3.

■ 64 discrete time points are used, resulting in a 32×32 Hankel matrix.

■ The figure depicts the 32

singular values of the system

Hankel matrix.

■ The first two singular values

are two orders of magnitude

greater than the third, indicating

that H∗2 (s) is a second order

system.
0 5 10 15 20 25 30

−20

−15

−10

−5

0
Hankel matrix singular values

n

lo
g

1
0
(σ

n
)

Lecture notes prepared by G.L. Plett and J.L. Lee. Copyright © 2011–2018, G.L. Plett and J.L. Lee

ECE4710/5710, State-Space Models and the Discrete-Time Realization Algorithm 5–46

■ The Ho–Kalman algorithm generates the Â, B̂, and Ĉ matrices after

truncating all but the first two states. We find that

Â =
[

0.8617 −0.0906

0.0906 0.6274

]
, B̂ =

[
0.1162

−0.0340

]

Ĉ =
[
−0.1162 −0.0340

]
.

In this example, we also compute D̂ = lim
s→∞

H∗2 (s) = 0, which can also

be quite easily seen in the high-frequency response of H∗2 (s).

■ The state-space representation for H∗2 (s) is augmented to include the

pole at the origin to create a representation for Hs(s).

Aaug = [Ahat, zeros(n,1); zeros(1,n), 1];

Baug = [Bhat; Ts];

Caug = [Chat, res0];

sysDRA = ss(Aaug,Baug,Caug,Dhat,Ts) % final DRA state-space sys.

■ The discrete-time realization of H2(s) is

Âaug =

0.8617 −0.0906 0

0.0906 0.6274 0

0 0 1

 , B̂aug =

0.1162

−0.0340

0.1

Ĉaug =
[
−0.1162 −0.0340 0.125

]
, D̂ = [0].

■ The figure shows close

comparison of the unit-pulse

response found from the DRA

and the exact solution.

0 1 2 3 4

0

2

4

6

8

10

12

Time (s)

Exact

Approximate

Discrete-time unit-pulse responses

R
e
s
p
o
n
s
e

(×
1

0
−

3
)

Lecture notes prepared by G.L. Plett and J.L. Lee. Copyright © 2011–2018, G.L. Plett and J.L. Lee

ECE4710/5710, State-Space Models and the Discrete-Time Realization Algorithm 5–47

5.13: Example 3: Transcendental transfer function

■ In the first two examples, we used rational polynomials to illustrate the

DRA method where order of the system is known a priori, and the

exact answer could be calculated analytically.

■ We now demonstrate the DRA with an infinite-order distributed-

parameter system: Specifically the Jacobsen–West transfer function

of lithium diffusion in a single particle, where

H3(s) =
C̃s,e(s)

J (s)
= Rs

Ds

[
1

1− Rs

√
s/Ds coth(Rs

√
s/Ds)

]
,

and where the integrator-removed transfer function is

H∗3 (s) = 1C̃s,e(s)

J (s)
= C̃s,e(s)

J (s)
− C̃s,avg(s)

J (s)

=
s R2

s

Ds
+ 3− 3Rs

√
s

Ds
coth

(
Rs

√
s

Ds

)

s Rs

(
1− Rs

√
s

Ds
coth

(
Rs

√
s

Ds

)) ,

where we have used the relationship

C̃s,avg(s)

J (s)
= res0

s
=
−3/Rs

s
.

■ Parameter values for the transfer functions used in this example are

listed in the table, from which we can compute that res0 = −3× 105.

Parameter name Interpretation Value

Ts Sampling period 1 s

Rs Particle radius 10−5 m

Ds Diffusivity 10−12 m2 s−1

c(r, 0) Initial lithium concentration 10 000 mol m−3

STEP 1. The magnitude responses of H3(s) and H∗3 (s) are shown below:

Lecture notes prepared by G.L. Plett and J.L. Lee. Copyright © 2011–2018, G.L. Plett and J.L. Lee

ECE4710/5710, State-Space Models and the Discrete-Time Realization Algorithm 5–48

10
−4

10
−2

10
0

10
2

80

100

120

140

160

180

200

220

M
a

g
n

it
u

d
e

 (
d

B
)

Bode magnitude plot for H
3
(s)

Frequency (rad s−1)
10

−4
10

−2
10

0
10

2
80

90

100

110

120

130

M
a

g
n

it
u

d
e

 (
d

B
)

Bode magnitude plot for H
3
*(s)

Frequency (rad s−1)

■ H∗3 (s) is sampled at 256 Hz for a total of 256 seconds.

■ The frequency vector for H∗3 (s) can be calculated as

beta = Rs*sqrt(s/Ds);

Hd = (Rs/Ds)*(1./(1-beta.*coth(beta))) + (3/Rs)./s;

Hd(1) = -Rs/(5*Ds); % analytic solution

where MATLAB numerically removes the integrator pole, or as

beta = Rs*sqrt(s/Ds);

Hd = (beta.^2+3-3*beta.*coth(beta))./(s.*Rs.*(1-beta.*coth(beta)));

Hd(1) = -Rs/(5*Ds); % analytic solution

■ Note that both computations of Hd initially produce NaN for s = 0 due

to numeric attempts to evaluate zero divided by zero.

■ This entry must be manually replaced by a value computed

analytically

lim
s→0

H∗3 (s) = lim
s→0

s R2
s

Ds
+ 3− 3Rs

√
s

Ds
coth

(
Rs

√
s

Ds

)

s Rs

(
1− Rs

√
s

Ds
coth

(
Rs

√
s

Ds

)) = − Rs

5Ds

.

■ Direct by-hand computation returns 0/0. We must use l’Hôpital’s rule

repeatedly until an answer is reached.

■ When using transcendental transfer functions, we recommend

computer tools such as Mathematica for symbolic manipulation.

Lecture notes prepared by G.L. Plett and J.L. Lee. Copyright © 2011–2018, G.L. Plett and J.L. Lee

ECE4710/5710, State-Space Models and the Discrete-Time Realization Algorithm 5–49

■ The approximate

continuous-time impulse

response is shown.

■ There is no known exact

solution against which to

compare this result. 0 2 4 6 8 10
−6

−5

−4

−3

−2

−1

0
x 10

6

Time (sec)

R
e

s
p

o
n

s
e

Continuous−time impulse response for H
3
*(s)

Approximate via DRA Step 1

STEP 2. The approximate continuous-time step response is calculated by

performing a cumulative sum of the impulse response of Step 1.

■ The figure shows approximated

continuous-time step response.

■ Again, there is no known exact

solution against which to

compare this result.
0 10 20 30 40 50

−2

−1.5

−1

−0.5

0
x 10

6

Time (sec)

R
e
s
p
o
n
s
e

Continuous−time step response for H
3
*(s)

Approximate via DRA Step 2

STEP 3: The approximate

continuous-time step response

is sampled at Ts = 1 second,

and differenced to produce the

discrete-time unit-pulse

response, shown here. 0 5 10 15 20 25
−10

−8

−6

−4

−2

0
x 10

5

Time (sec)

R
e
s
p
o
n
s
e

Approximate discrete−time impulse resp. for H
3
*(s)

Approximate via DRA Step 2

Lecture notes prepared by G.L. Plett and J.L. Lee. Copyright © 2011–2018, G.L. Plett and J.L. Lee

ECE4710/5710, State-Space Models and the Discrete-Time Realization Algorithm 5–50

STEP 4. Hankel matrix is formed;

singular values are plotted.

■ H∗3 (s) represents a distributed-

parameter system that actually

has an infinite number of poles.

■ However, only a few of them are

significant to the solution.

0 20 40 60 80 100 120 140
−10

−5

0

5

10

lo
g

(σ
)

Singular values of Hankel matrix for H
3
*(s)

n

n

■ In particular, we choose to use a reduced-order model dimension

n = 2 in the results we present here, imposing a tradeoff between the

complexity and accuracy of the solution.

■ The Ho–Kalman algorithm generates the Â, B̂, and Ĉ matrices to

approximate H∗3 (s) after truncating all but the first two states.

Â =
[

0.4695 0.3296

0.3296 0.4355

]
, B̂ =

[
919.1

−220

]

Ĉ =
[
−919.1 220

]
.

■ In this example, we also compute D̂ = lim
s→∞

H∗3 (s) = 0, which can also

be quite easily seen in the high-frequency response of H∗3 (s).

■ This state-space realization is augmented with the integrator state to

give the final third-order model of the diffusion equation H3(s).

Âaug =

0.4695 0.3296 0

0.3296 0.4355 0

0 0 1

 , B̂aug =

919.1

−220

1

Ĉaug =
[
−919.1 220 −3× 105

]
, D̂ = [0].

Lecture notes prepared by G.L. Plett and J.L. Lee. Copyright © 2011–2018, G.L. Plett and J.L. Lee

ECE4710/5710, State-Space Models and the Discrete-Time Realization Algorithm 5–51

■ We demonstrate the the DRA-produced model by simulating a 10 s

discharge pulse where the surface lithium flux (leaving the particle)

was j = 1× 10−5 mol m−2 s−1, followed by a 10 s rest.

■ The augmented state-space model was simulated with this input to

produce c̃s,e[k], and cs,e[k] was computed as cs,e[k] = c̃s,e[k] + cs,0.

cs0 = 10000;

uk = 1e-5*[ones(1,10),zeros(1,10)];

[cseTilde,tk] = lsim(sysDRA,uk);

cse = cseTilde + cs0;

■ All discrete-time model states

are initialized to zero.

■ The output of this discrete-time

realization to a 10 second

discharge followed by a 10

second rest is shown. 0 5 10 15 20
9950

9960

9970

9980

9990

10000

Time (sec)

C
o
n
c
e
n
tr

a
ti
o
n
 (

m
o
l/
m

3
)

Simulation of Example 3a: Surface Concentration

Exact PDE solution

DRA model with order=3

■ We compare this result against the “truth” produced by simulating the

PDE using MATLAB’s 1-D parabolic-elliptic PDE solver.

function [cse,t] = simCsePDE

dr = 0.1e-6; % Radial resolution = 0.1 micro-meter

dt = 0.001; % Time step in simulation, s

Tfinal = 20; % Length of simulation, s

Rp = 10e-6; % Radius of particle = 10 micro-meters

Ds = 1e-12; % Solid diffusivity, m^2/s

j = 1e-5; % mol/m^2/s

x = 0:dr:Rp; % locations for solution

t = 0:dt:Tfinal; % time steps for solution

options = odeset('RelTol',1e-8,'AbsTol',1e-10);

sol = pdepe(2,@csefun,@cseic,@csebc,x,t,options);

cse = sol(:,end,1);

function[c,f,s] = csefun(~,~,~,DuDx)

Lecture notes prepared by G.L. Plett and J.L. Lee. Copyright © 2011–2018, G.L. Plett and J.L. Lee

ECE4710/5710, State-Space Models and the Discrete-Time Realization Algorithm 5–52

c = 1/Ds; f = DuDx; s = 0;

end

function u0 = cseic(~,~)

c0 = 10000; u0 = c0;

end

function[pl,ql,pr,qr] = csebc(~,~,~,~,t)

pl = 0; ql = 1; qr = Ds; pr = 0;

if t<Tfinal/2, pr=j; end

end

end

■ The code comprises nested functions, where the main function

initializes variables and calls MATLAB’s solver with pointers (function

handles) to nested helper functions:

• csefun implements the parameter values of the PDE;

• cseic implements the initial conditions; and

• csebc implements the boundary conditions.

■ Note that we achieve good results with the PDE solver only if a fine

time-step is used: here, we have used a 1 ms step size, which makes

the PDE solver execute much more slowly than the DRA-produced

model.

Where from here?

■ We have now seen the form that the final model will take, and

examples of the general methodology to go from the PDE

continuum-scale model to the reduced-order model.

■ We now proceed to develop transfer functions for all cell variables of

interest, and see how well the overall cell model works.

Lecture notes prepared by G.L. Plett and J.L. Lee. Copyright © 2011–2018, G.L. Plett and J.L. Lee

