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State-Space Models and the

Discrete-Time Realization Algorithm

5.1: Introduction to state-space models

■ The coupled PDEs derived in earlier chapters of notes are too

complex to be used in real-time applications.

• They are “infinite dimensional.” For every point in time t , there are

an infinite number of x- and r- dimension variables to solve for.

• i.e., cs(x, r, t), c̄e(x, t), φ̄s(x, t), φ̄e(x, t), for a pseudo-two

dimensional model.
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■ We desire to create cell-scale ODEs that retain, as much as possible,

the fidelity of the continuum-scale PDEs, but which reduce their order

from infinite order to some (small) finite order.

• The result is a small coupled set of ODEs, which can be simulated

very easily and quickly.

■ In this chapter, we introduce “state-space” models, which is the final

form of the reduced-order models we will develop.
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■ We then preview the approach to generate the state-space models

from the PDEs of the variables of interest:

• We start by generating transfer functions for each PDE;

• We then use the “discrete-time realization algorithm” to convert

transfer functions to state-space form.

A quick introduction to state-space models

■ Transfer functions provide a system’s input-output mapping only:

u[k] → G(z)→ y[k].

■ State-space models provide access to what is going on inside the

system, in addition to the input-output mapping.

• What’s going on inside the system is called the system’s “state”.

DEFINITION: The internal state of a system at time k0 is the minimum

amount of information at k0 that, together with the input u[k], k ≥ k0,

uniquely determines the behavior of the system for all k ≥ k0.

■ State-space models describe a system’s dynamics via two equations:

• The “state equation” describes how the input influences the state;

• The “output equation” describes how the state and the input both

directly influence the output.

■ Discrete-time LTI state-space models have the following form:

x[k + 1] = Ax[k] + Bu[k]

y[k] = C x[k] + Du[k],
where u[k] ∈ R

m is the input, y[k] ∈ R
p is the output, and x[k] ∈ R

n is

the state vector.
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■ Different systems have

different n, A, B, C, and D.

■ A block diagram can help

visualize the signal flows:

EXAMPLE: Convert the following single-input single-output difference

equation into a discrete-time state-space form,

y[k]+a1y[k−1]+a2y[k−2]+a3y[k−3] = b1u[k−1]+b2u[k−2]+b3u[k−3].

■ We’re going to do the conversion by first recognizing that the transfer

function of this system is,

G(z) = b1z2 + b2z + b3

z3 + a1z2 + a2z + a3

= Y (z)

U (z)
.

■ Break up transfer function into two parts. G p(z) = V (z)/U (z) contains

all of the poles:

G p(z) = 1

z3 + a1z2 + a2z + a3

= V (z)

U (z)

➠ v[k + 3] + a1v[k + 2] + a2v[k + 1] + a3v[k] = u[k].

■ Choose current and advanced versions of v[k] as state (this is a

choice: there are other equally valid choices, as we will see)

x[k] =
[

v[k + 2] v[k + 1] v[k]
]T

.

■ Then

x[k+1] =




v[k + 3]
v[k + 2]
v[k + 1]


 =



−a1 −a2 −a3

1 0 0

0 1 0







v[k + 2]
v[k + 1]

v[k]


+




1

0

0


 u[k].
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■ We now add zeros, G(z) =
(
b1z2 + b2z + b3

)
G p(z). Equivalently,

Y (z) =
[
b1z2 + b2z + b3

]
V (z),

or, y[k] = b1v[k + 2] + b2v[k + 1] + b3v[k].
■ In summary, we have the state-space model:

x[k + 1] =



−a1 −a2 −a3

1 0 0

0 1 0


 x[k] +




1

0

0


 u[k]

y[k] =
[

b1 b2 b3

]
x[k] +

[
0

]
u[k].

■ Note: There are many other equally valid state-space models of this

particular transfer function. We will soon see how they are related.

■ Many discrete-time transfer functions are not strictly proper. Solve by

polynomial long division, and setting D equal to the quotient.

■ MATLAB command [A,B,C,D]=tf2ss(num,den,Ts) converts a

rational-polynomial transfer function form to state-space form.
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5.2: Working with state-space systems

State-space to transfer function

■ In the prior example, we saw it is possible to convert from a difference

equation (or transfer function) to a state-space form quite easily.

■ Now, we’ll see that the opposite translation is also straightforward.

■ Start with the state equations

x[k + 1] = Ax[k] + Bu[k]

y[k] = C x[k] + Du[k].
■ Take the z-transform of both sides of both equations

zX(z)− zx[0] = AX(z)+ BU(z)

Y(z) = C X(z)+ DU(z),

or

(z I − A)X(z) = BU(z)+ zx[0]

X(z) = (z I − A)−1 BU(z)+ (z I − A)−1zx[0].
■ This gives,

Y(z) = [C(z I − A)−1 B + D]︸ ︷︷ ︸
transfer function of system

U(z)+ C(z I − A)−1zx[0]︸ ︷︷ ︸
response to initial conditions

.

■ So,

G(z) = Y(z)

U(z)
= C(z I − A)−1 B + D.

■ Note that (z I − A)−1 = adj(z I − A)

det(z I − A)
, so we can write a system’s

transfer function as

G(z) = C adj(z I − A)B + D det(z I − A)

det(z I − A)
.
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■ Extremely important observation: The poles of the system are where

det(z I − A) = 0, which (by definition) are the eigenvalues of A.

Transformation

■ State-space representations of a particular system’s dynamics are

not unique. Selection of state x[k] is somewhat arbitrary.

■ To see this, analyze the transformation of

x[k + 1] = Ax[k] + Bu[k]

y[k] = C x[k] + Du[k],

where we let x[k] = Tw[k], where T is an invertible (similarity)

transformation matrix. Then,

(Tw[k + 1]) = A (Tw[k])+ Bu[k]

y[k] = C (Tw[k])+ Du[k].

■ Multiplying the first equation by T−1 gives

w[k + 1] = T−1 AT︸ ︷︷ ︸
Ā

w[k] + T−1 B︸ ︷︷ ︸
B̄

u[k]

y[k] = CT︸︷︷︸
C̄

w[k] + D︸︷︷︸
D̄

u[k]

so, w[k + 1] = Āw[k] + B̄u[k]

y[k] = C̄w[k] + D̄u[k].

■ To show that H1(z) = H2(z),

H1(z) = C(z I − A)−1 B + D

= CT T−1(z I − A)−1T T−1 B + D
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= (CT)[T−1(z I − A)T ]−1(T−1 B)+ D

= C̄(z I − Ā)−1 B̄ + D̄ = H2(z).

■ Transfer function not changed by similarity transform

CONCLUSION: Can arrive at state-space representations having identical

input-output relationship but different (A, B, C, D) matrices.

EXAMPLE: Consider transforming the system

A =



−a1 −a2 −a3

1 0 0

0 1 0


 , B =




1

0

0


 ,

C =
[

b1 b2 b3

]
, D =

[
0

]
with T = T−1 =




0 0 1

0 1 0

1 0 0


 .

■ Note that multiplying on the right by T flips the original entries left-to-

right; multiplying on the left flips the original entries top-to-bottom.

■ So, for this transformation matrix, we get:

Ā = T−1 AT =




0 0 1

0 1 0

1 0 0






−a1 −a2 −a3

1 0 0

0 1 0







0 0 1

0 1 0

1 0 0




=




0 1 0

0 0 1

−a3 −a2 −a1




B̄ = T−1 B =




0 0 1

0 1 0

1 0 0







1

0

0


 =




0

0

1



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C̄ = CT =
[

b1 b2 b3

]



0 0 1

0 1 0

1 0 0


 =

[
b3 b2 b1

]

D̄ = D = 0.

■ We can find the transfer function of this new form as

G(z) = C̄(z I − Ā)−1 B̄ + D̄

=
[

b3 b2 b1

]






z 0 0

0 z 0

0 0 z


−




0 1 0

0 0 1

−a3 −a2 −a1







−1 


0

0

1


+ 0

=
[

b3 b2 b1

]






z −1 0

0 z −1

a3 a2 z + a1







−1 


0

0

1




=

[
b3 b2 b1

]



z2 + a1z + a2 a1 + z 1

−a3 z2 + a1z z

−a3z −a2z − a3 z2







0

0

1




z3 + a1z2 + a2z + a3

=

[
b3 b2 b1

]



1

z

z2




z3 + a1z2 + a2z + a3

= b1z2 + b2z + b3

z3 + a1z2 + a2z + a3

,

which was the transfer function we started with before transformation.
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5.3: Discrete-time Markov parameters

■ It turns out that the discrete unit-pulse response of a state-space

system has a special form that is important to us later.

■ For example, let’s look at the unit-pulse response of a single-input

state-space system. (Note that, by definition, x[0] = 0 when finding a

unit-pulse response).

■ We find that

y[0] = C x[0] + Du[0] = D, x[1] = B

y[1] = Cx[1] + Du[1] = C B, x[2] = AB

y[2] = Cx[2] + Du[2] = C AB, x[3] = A2 B
...

...

y[k] = C Ak−1 B, k ≥ 1.

■ These unit-pulse-response values, {D, C B, C AB, C A2 B, C A3 B, . . .}
are called the Markov parameters of the system.

• This turns out to be of critical importance to realizing our transfer

functions, as we will see.

■ Specifically, we define the Markov parameters to be:

gk =





D, k = 0;

C Ak−1 B, k > 0.

CLARITY ISSUE: ■ For SISO systems, the Markov parameters are

scalars.

■ For a single-input multi-output (SIMO) system the Markov

parameters are (column) vectors.

Lecture notes prepared by G.L. Plett and J.L. Lee. Copyright © 2011–2018, G.L. Plett and J.L. Lee



ECE4710/5710, State-Space Models and the Discrete-Time Realization Algorithm 5–10

• The i th entry (row) of each Markov parameter is computed as

the unit-pulse response from the input to the i th output.

• Equivalently, the entire vector Markov parameter is the

unit-pulse response from the input to the vector output.

■ For multi-input single-output (MISO) systems, the Markov

parameters are row vectors.

• The j th entry (column) of each Markov parameter is computed

via the unit-pulse response from the j th input to the output.

■ For multi-input multi output (MIMO) systems, the Markov

parameters are matrices.

• The (i, j)th entries yield the the unit-pulse response from the j th

input to the i th output.

• Equivalently, the j th column of each Markov parameter is vector

(as in the SIMO case) which is computed via the unit-pulse

response from the j th input to the vector output.

EXAMPLE: Given the following discrete-time system, with zero initial

condition, find the unit-pulse response:

A =
[

0.5 0

0 1

]
, B =

[
1

0

]
, C =

[
1 −1

]
, D = 0.

■ The Markov parameters are given by

gk = {D, C B, C AB, C A2 B, . . .}

= {0, 1, 0.5, 0.25, . . .}.
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■ MATLAB’s impulse.m

command confirms this result:

A = [0.5 0; 0 1];

B = [1 ; 0];

C = [1 -1]; D = 0;

sys = ss(A,B,C,D,-1);

y = impulse(sys,0:15);

stem(0:15,y,'filled');
0 5 10 15

0

0.5

1.0

Time (samples)

V
a

lu
e

Unit­pulse response of sample system    

Before proceeding...

■ We have now quickly previewed state-space models, with the claim

that there will be a method to represent our battery models in that

particular form.

■ We now begin to investigate that claim—the first step is to create

transfer-function models for the variables of interest.

■ In this chapter, we look at representing cs as a transfer function; in the

next chapter we look at the remainder of the model equations.

• Note that in chapter 3 we used symbols without an over-line to

indicate point-wise values for variables of interest: i.e., cs, ce, φs, φe.

• In chapter 4 we used symbols with an over-line to indicate volume

average versions of these point-wise variables: i.e., c̄e, φ̄s, and φ̄e.

• We now drop the over-line notation, because otherwise the

equations get so highly decorated that they are impossible to

parse. We are still talking about the volume-average quantities of

chapter 4.
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5.4: Equations describing the solid dynamics

Finding the transfer function C̃s,e(s)/J (s)

■ To find the transfer function for cs, we follow the approach by

Jacobsen and West1

■ We start with the underlying partial-differential equation,

∂cs(r, t)

∂t
= 1

r2

∂

∂r

(
Dsr

2∂cs(r, t)

∂r

)
,

with standard boundary conditions,

Ds

∂cs(0, t)

∂r
= 0, and Ds

∂cs(Rs, t)

∂r
= − j (t), t ≥ 0,

and with initial equilibrium concentration,

cs(r, 0) = cs,0, 0 ≤ r ≤ Rs.

■ Note that we run into problems solving this PDE directly if cs,0 6= 0.

■ So, to enforce a homogeneous PDE in later steps, we define

c̃s(r, t) = cs(r, t)− cs,0. The “tilde” notation denotes the difference

between an absolute quantity and its equilibrium set-point.

■ If we assume constant Ds, the differential equations become:

∂ c̃s(r, t)

∂t
= Ds

r2

∂

∂r

(
r2∂ c̃s(r, t)

∂r

)
,

with boundary conditions,

Ds

∂ c̃s(0, t)

∂r
= 0, and Ds

∂ c̃s(Rs, t)

∂r
= − j (t), t ≥ 0,

and with initial equilibrium concentration,

c̃s(r, 0) = 0, 0 ≤ r ≤ Rs.

1 Jacobsen, T., and West, K., “Diffusion Impedance in Planar, Cylindrical and Spherical

Symmetry,” Electrochimica Acta, 40(2), 1995, pp. 255–62.
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■ We continue by taking the Laplace transform of the PDE:

sC̃s(r, s)− c̃0 =
Ds

r2

∂

∂r

(
r2 ∂

∂r
C̃s(r, s)

)

sC̃s(r, s) = Ds

r2

(
2r

∂C̃s(r, s)

∂r
+ r2∂

2C̃s(r, s)

∂r2

)
.

■ This is a 2nd-order ordinary differential equation in r , which may be

written

∂2C̃s(r, s)

∂r2
+ 2

r

∂C̃s(r, s)

∂r
− s

Ds

C̃s(r, s) = 0.

■ This homogeneous differential equation has a solution of the form

C̃s(r, s) = A

r
exp

(
r

√
s

Ds

)
+ B

r
exp

(
−r

√
s

Ds

)

= A

r
exp(β(r))+ B

r
exp(−β(r)),

where we define β(r) = r
√

s/Ds. We note that β(r) is also a function

of s, but we omit this dependence in the notation for compactness.

■ The constants A and B are chosen to satisfy the boundary conditions.

■ Consider first the outer boundary condition at r = Rs, which is

Ds

∂ c̃s(r, t)

∂r

∣∣∣∣
r=Rs

= − j (t).

■ The equivalent Laplace-domain boundary condition is

Ds

∂C̃s(r, s)

∂r

∣∣∣∣
r=Rs

= −J (s).

■ To substitute this in, we will need to compute ∂C̃s(r, s)/∂r

∂C̃s(r, s)

∂r
=

A
√

s
Ds

r exp(β(r))− B exp(−β(r))

r2
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−
A exp(β(r))+ B

√
s

Ds
r exp(−β(r))

r2

= A(β(r)− 1) exp(β(r))− B(1+ β(r)) exp(−β(r))

r2
.

■ We substitute r = Rs and the boundary condition

∂C̃s(r, s)

∂r

∣∣∣∣
r=Rs

= A(β(Rs)− 1) exp(β(Rs))− B(1+ β(Rs)) exp(−β(Rs))

R2
s

− J (s)

Ds

= A(β(Rs)− 1) exp(β(Rs))− B(1+ β(Rs)) exp(−β(Rs))

R2
s

.

■ This gives us an expression for J (s),

J (s) = −Ds

R2
s

(A(β(Rs)− 1) exp(β(Rs))− B(1+ β(Rs)) exp(−β(Rs))) .

■ If we immediately substitute the second boundary condition at r = 0,

we run into some divide-by-zero issues.

■ So, instead, we substitute r = rδ, which we think of as a very small

value. We will then later take the limit as rδ → 0.

0 = A(β(rδ)− 1) exp(β(rδ))− B(1+ β(rδ)) exp(−β(rδ))

r2
δ

.

■ This allows us to write

A(β(rδ)− 1) exp(β(rδ))

r2
δ

= B(1+ β(rδ)) exp(−β(rδ))

r2
δ

A = B
(1+ β(rδ)) exp(−β(rδ))

(β(rδ)− 1) exp(β(rδ))
.

■ We now take the limit as rδ→ 0, and find that A = −B.

■ We are now ready to construct the transfer function C̃s(s, r)/J (s)
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C̃s(r, s)

J (s)
= −R2

s

Dsr

[
A exp(β(r))+B exp(−β(r))

A(β(Rs)−1) exp(β(Rs))−B(1+β(Rs)) exp(−β(Rs))

]

= −R2
s

Dsr

[
A

−A

] [
exp(β(r))− exp(−β(r))

(1−β(Rs)) exp(β(Rs))−(1+β(Rs)) exp(−β(Rs))

]

= R2
s

Dsr

[
exp(β(r))− exp(−β(r))

(1−β(Rs)) exp(β(Rs))−(1+β(Rs)) exp(−β(Rs))

]
.

■ This expression can be used to determine the lithium concentration

anywhere within the particle.

■ However, we are most interested in determining the concentration at

the surface of the particle, where r = Rs. So, we substitute r = Rs

C̃s,e(s)

J (s)
= Rs

Ds

[
exp(β(Rs))− exp(−β(Rs))

(1− β(Rs)) exp(β(Rs))− (1+ β(Rs)) exp(−β(Rs))

]
.

■ To compact the notation yet again, write β(Rs) as simply β,

C̃s,e(s)

J (s)
= Rs

Ds

[
exp(β)− exp(−β)

(1− β) exp(β)− (1+ β) exp(−β)

]

= Rs

Ds

[
exp(β)− exp(−β)

exp(β)− exp(−β)− β
[
exp(β)+ exp(−β)

]
]

= Rs

Ds

[
exp(β)−exp(−β)

exp(β)+exp(−β)

exp(β)−exp(−β)

exp(β)+exp(−β)
− β

]

= Rs

Ds

[
tanh(β)

tanh(β)− β

]
= Rs

Ds

[
1

1− β coth(β)

]
.

■ To recap to this point, re-expanding notation, where β(s, r) = r
√

s/Ds,

C̃s,e(s) =
Rs

Ds

[
1

1− β(s, Rs) coth (β(s, Rs))

]
J (s).

Lecture notes prepared by G.L. Plett and J.L. Lee. Copyright © 2011–2018, G.L. Plett and J.L. Lee



ECE4710/5710, State-Space Models and the Discrete-Time Realization Algorithm 5–16

5.5: Removing the integrator pole

■ While not immediately obvious by looking at the transfer function, it

turns out that C̃s,e(s)/J (s) is unstable: There is a pole at s = 0.

• This is intuitively clear, however, because we know that a step

input will result in ever-increasing concentration.

• This will be important when we look at how to convert the transfer

function to a state-space model.

■ To make a stable transfer function, define

1C̃s,e(s) = C̃s,e(s)− C̃s,avg(s), where C̃s,avg(s) is the bulk (average)

concentration in the solid, less cs,0.

■ Note that we can write c̃s,avg(t1) for some arbitrary point in time t1 as

c̃s,avg(t1) =
∫ t1

0

Influx of Li, [mol s−1]

Volume of particle [m3]
dt .

■ Note two things:

• The volume of a sphere of radius Rs is
4

3
π R3

s [m3];

• The influx of lithium is − j (t) [mol m−2 s−1], occurring over the

surface area 4π R2
s [m2].

■ This gives

c̃s,avg(t1) =
∫ t1

0

− j (t) · 4π R2
s

4
3
π R3

s

dt

= − 3

Rs

∫ t1

0

j (t) dt

d

dt
c̃s,avg(t) = −

3

Rs

j (t).

Lecture notes prepared by G.L. Plett and J.L. Lee. Copyright © 2011–2018, G.L. Plett and J.L. Lee



ECE4710/5710, State-Space Models and the Discrete-Time Realization Algorithm 5–17

■ Note that this result is perfectly general. We made no assumptions on

how the lithium concentration is distributed inside the particle.

■ Taking Laplace transforms, we find:

C̃s,avg(s)

J (s)
= − 3

Rs

1

s
.

■ Therefore,

1C̃s,e(s)

J (s)
= C̃s,e(s)

J (s)
− C̃s,avg(s)

J (s)

= Rs

Ds

[
tanh(β)

tanh(β)− β

]
+ 3

Rss

= Rs

Ds

[
tanh(β)+ 3Ds

s R2
s
(tanh(β)− β)

tanh(β)− β

]

= Rs

Ds

[
tanh(β)+ 3

β2 (tanh(β)− β)

tanh(β)− β

]

= Rs

Ds

[
β2 tanh(β)+ 3 (tanh(β)− β)

β2 (tanh(β)− β)

]

= Rs

Ds

[
(β2 + 3) tanh(β)− 3β

β2 (tanh(β)− β)

]
.

State-space realization problem

■ It turns out that for this specific case, we can find all the poles and

zeros using a simple numeric method, and use that information to

make a discrete-time state-space model.

■ For the transfer functions we develop in the next chapter, however,

this cannot be done.

■ So, we must turn to alternative implementation approaches.
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• One method is to use nonlinear optimization to select poles and

residues to attempt to match the frequency response of the

transfer functions.

• This is fraught with problems.

• We next introduce another approach, which directly gives us a

discrete-time state-space approximate model of our transfer

functions.

■ This system-identification problem for state-space systems is

sometimes called the “realization problem.”

• That is, we wish to find a realization (a set of A, B, C, and D

matrices) that describe a system’s dynamics.
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5.6: State-space realization problem: Ho–Kalman method

■ For now, we assume that we are able to find the Markov parameters

of our transfer functions.

PROBLEM: Given a system’s Markov parameters, find the system

dimension n and (A, B, C, D), up to similarity transforms.

■ One of the first (maybe the first) state-space realization methods was

introduced by Ho and Kalman.2

■ It is key to the discrete-time realization algorithm we will develop.

■ Notice that something curious happens when we multiply the

following matrices together:



C

C A

C A2

...

C An−1




︸ ︷︷ ︸
O

[
B AB A2 B · · · An−1 B

]

︸ ︷︷ ︸
C

=




C B C AB C A2 B · · · C An−1 B

C AB C A2 B C A3 B

C A2 B C A3 B C A4 B
... . . . ...

C An−1 B · · · C A2n−2 B




.

• For reasons beyond the scope of our discussion here, O is called

the “observability matrix” and C is called the “controllability matrix.”

2 B.L. Ho and R.E. Kalman, “Effective Construction of Linear State Variable Models from

Input/Output Functions,” Regelungstechnik, vol. 14, no. 12, pp. 545–8, 1966.
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■ Notice that we get a Hankel matrix—a matrix having constant skew

diagonals (an upside-down Toeplitz matrix).

■ Note also that the values on the skew diagonals are the Markov

parameters of the system (excluding g0 and gk for k > 2n − 1)

H = OC =




g1 g2 · · · gn

g2 g3
... . . . ...

gn · · · g2n−1




.

■ Ho–Kalman assumes that we know the Markov parameters.

• Knowledge of g0 gives us D directly.

• Knowledge of the rest of the Markov parameters will ultimately

result in A, B, and C.

■ To use Ho–Kalman, we must first form the Hankel matrix H.

■ The next step is to factor H = OC into its O and C components.

■ The third step is to use O and C to find A, B, and C.

ISSUE I: We don’t know n. So, how do we form H in the first place? That

is, when do we stop adding unit-pulse-response values to H?

PRELIMINARY ANSWER: The rank of H is equal to n. Keep adding

data until the rank doesn’t increase.

ISSUE II: How do we compute A, B, and C from O and C?

ANSWER: C is extracted as the first block row of O; B is extracted as

the first block column of C. We’ll see how to get A shortly.

ISSUE III: How do we do the factoring of H into O and C?
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ANSWER: It doesn’t matter, at least in principle. Any matrices O and

C such that OC =H are okay.

■ To see this latter point, consider what happens to O and C when the

state-space model undergoes a similarity transformation.

• Recall that Ā = T−1 AT , B̄ = T−1 B, and C̄ = CT .

• The observability and controllability matrices of the new

representation are

SO =




SC
SCSA
...

SCSAn−1



=




CT

CT T−1 AT
...

CT (T−1 AT)n−1



= OT

SC =
[
SB SASB · · · SAn−1SB

]

=
[

T−1 B T−1 AT T−1 B · · · (T−1 AT )n−1T−1 B

]
= T−1

C.

■ Therefore, SOSC = (OT)(T−1
C) = OC

• If we factor H one way, we end up with a representation that has

one set of O and C.

• If we factor H any other way, we end up with a representation that

has an alternate set of Ō and C̄.

• But, these representations are related via a similarity

transformation T .

■ That is, no matter how we factor H, we end up with different A, B,

and C matrices, but the same input-output relationship (same transfer

function, same unit-pulse response, but different state descriptions).
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• For example, we could choose to let O = I , and then C =H. This

will result in an A, B, and C that are in “observability canonical

form.” (cf. ECE5520)

• Or, we could choose to let C = I , and then O =H. This will result

in an A, B, and C that are in “controllability canonical form.”

ISSUE IV: Is there a “best” way to factor H? Yes. . . enter the SVD.
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5.7: Singular value decomposition

FACT: Any rectangular matrix A ∈ R
m×n, where rank(A) = r , can be

factored into the form:

A = U6V T .

■ U = [u1, . . . , ur] ∈ R
m×r , and U T U = I , and ui are the left or

output singular vectors of A.

■ V = [v1, . . . , vr] ∈ R
n×r , and V T V = I , and vi are the right or input

singular vectors of A.

■ 6 = diag(σ1, . . . , σr) where σ1 ≥ · · · ≥ σr > 0, and σi are the

(nonzero) singular values of A.

■ The above is called a compact SVD. Most often, we compute a full

SVD, where

• U = [u1, . . . , um] ∈ R
m×m, and UT U = I ,

• V = [v1, . . . , vn] ∈ R
n×n, and V T V = I ,

• The matrix 6 ∈ R
m×n is “diagonal”

6 =




σ1 0 0
. . . 0

0 σm 0


 or 6 =




σ1 0
. . .

0 σn


 or 6 =




σ1 0
. . .

0 σn

0 0 0




when m < n, m = n and m > n, respectively.

• In this case, σ1 ≥ · · · ≥ σr > 0, and σi = 0 for i > r .

• In MATLAB, svd.m and svds.m

■ We often write the full SVD as partitioned:
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A =
[

U1 U2

]

 61 0r×(n−r)

0(m−r)×r 0(m−r)×(n−r)





 V T

1

V T
2


 ,

where A = U161V T
1 is the compact SVD.

■ Note that the singular values are related to matrix norm. In particular,

‖A‖ = σ1.

■ Can view operation y = Ax as y = (U6V T )x, decomposing the

operation into

• Computing coefficients of x along the input directions v1, . . . , vr

(rotating by V T )

◆ v1 is the most sensitive (highest gain) input direction

• Scaling the coefficients by σi (dilation)

• Reconstituting along output directions u1, . . . , ur .

◆ u1 is the highest gain output direction. Av1 = σ1u1.

■ SVD gives a picture of gain as a function of input/output directions.

EXAMPLE: Consider A ∈ R
4×4 with 6 = diag(10, 7, 0.1, 0.05).

■ Input components along directions v1 and v2 are amplified (by about

10) and come out mostly along the plane spanned by u1 and u2.

■ Input components along directions v3, v4 are attenuated (by about

10).

■ ‖Ax‖ / ‖x‖ can range between 10 and 0.05; A is nonsingular.

■ For some applications you might say that A is effectively rank 2 (this

will be important for us later).
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Low-rank approximations

■ Suppose that A ∈ R
m×n and rank(A) = r , with SVD

A = U6V T =
r∑

i=1

σi uiv
T
i .

■ We want to approximate A by Â, where rank( Â) ≤ p < r such that

Â ≈ A in the sense that
∥∥∥A− Â

∥∥∥ is minimized.

■ The optimal rank p approximator is Â =
p∑

i=1

σi uiv
T
i and hence

∥∥∥A− Â

∥∥∥ =

∥∥∥∥∥∥

r∑

i=p+1

σi uiv
T
i

∥∥∥∥∥∥
= σp+1

because σp+1 is the maximum remaining singular value.

INTERPRETATION: SVD dyads uiv
T
i are ranked in order of ‘importance’;

take p of them to get a rank p approximant.

APPLICATION: We can use this idea to simplify models (very useful).

Suppose that

■ y = Ax+ v where A ∈ R
100×30 has SVs 10, 7, 2, 0.5, 0.01, . . . , 0.0001.

■ ‖x‖ is on the order of 1, and unknown error or noise v has norm on

the order of 0.1.

■ Then, the terms σi uiv
T
i x for i = 5, . . . , 30 are substantially smaller

than the noise term v.

■ So, we can approximate y = Ax + v by the much simplified model

y =
4∑

i=1

σi uiv
T
i x + v.
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5.8: Back to Ho–Kalman

■ Recall Ho–Kalman “ISSUE I,” how do we form the Hankel matrix H if

we don’t know the dimension of the system state n?

■ To address this issue, consider the infinite, skew-diagonal matrix H∞:

H∞ =




g1 g2 g3 g4 · · ·
g2 g3 g4 g5 · · ·
g3 g4 g5 g6 · · ·
g4 g5 g6 g7 · · ·
...

...
...

... . . .




where the entries gk correspond to the Markov parameters for the

given system.

■ This form is called an infinite Hankel matrix, or Hankel operator.

■ We can also define a finite Hankel matrix, formed by the first k rows

and l columns of H

Hk,l =




g1 g2 g3 · · · gl

g2 g3 g4 · · · gl+1

g3 g4 g5 · · · gl+2
... ... ... ...

gk gk+1 gk+2 · · · gk+l−1




.

■ This finite Hankel matrix factors into Hk,l = OkCl where:

Ok =




C

C A
...

C Ak−1




, Cl =
[

B AB A2 B · · · Al−1 B

]
.

■ The approach we will take is to make a Hk,l of larger size than we

expect for a hypothesized value of n. That is, k > n and l > n.
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• Therefore Ok 6= O and Cl 6= C even though the matrices have the

same general form. We call Ok the extended observability matrix

and Cl the extended controllability matrix.

■ We then apply the SVD to Hk,l

Hk,l = U6V T = U6
1/2

6
1/2V T

= U6
1/2T T−1

6
1/2V T

= (U6
1/2T )︸ ︷︷ ︸

Ok

(T−1
6

1/2V T )︸ ︷︷ ︸
Cl

.

■ The first n non-zero singular values provide insight into model order.

• Problem: Noisy data yields more than n non-zero singular values.

• Need to look at a few and determine when there is a “significant”

drop off in the magnitude of the SVDs.

■ Note that this approach also gives us Ok and Cl automatically in a

“balanced realization”. Solves “ISSUE III” and “ISSUE IV”.

• T must be invertible, but selection of T is otherwise arbitrary.

Usually use T = I .

■ How to decompose further into (A, B, C) to solve “ISSUE II”?

■ Note the shift property of a Hankel matrix. If we shift H up by one

block row, we get H
↑
k+1,l = Ok ACl.

H
↑
k+1,l =




g2 g3 g4 · · · gl+1

g3 g4 g5 · · · gl+2
... ... ... ...

gk gk+1 gk+2 · · · gk+l−1

gk+1 gk+2 gk+3 · · · gk+l




Lecture notes prepared by G.L. Plett and J.L. Lee. Copyright © 2011–2018, G.L. Plett and J.L. Lee



ECE4710/5710, State-Space Models and the Discrete-Time Realization Algorithm 5–28

=




C AB C A2 B C A3 B · · · C Al B

C A2 B C A3 B C A4 B C Al+1 B
... ... ... . . . ...

C Ak−1 B C Ak B C Ak+1 B · · · C Ak+l−2 B

C Ak B C Ak+1 B C Ak+2 B · · · C Ak+l−1 B




= O
↑
k+1Cl = OkC

←
l+1 = Ok ACl.

■ Using the pseudo-inverse to solve for A gives A = O
†
kH
↑
k+1,lC

†
l .

■ In MATLAB, we can compute either

Ahat = pinv(Ok)*HankelUp*pinv(Cl);

or

Ahat = (Ok\HankelUp)/Cl;

■ As before, we extract B from the first block column of the

controllability matrix we derived via SVD.

■ Also, extract C from the first block row of the observability matrix we

derived via SVD, and set D = g0.
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5.9: Ho–Kalman summary and example

STEP I: Collect the unit-pulse response values into two Hankel matrices

1. An original finite Hankel matrix

2. A shifted version matrix of the original Hankel matrix (same size)

STEP II: Compute the SVD of the (unshifted) Hankel matrix

■ Identify system order from the singular values

■ May need to iterate on choice of Hankel matrix (discussed later)

STEP III: Compute the extended observability and controllability matrices

■ Use appropriately dimensioned SVD components

■ Typically use T = In

STEP IV: Identify the system matrices (A, B, C). D = g0.

EXAMPLE: Suppose that a unit pulse yields the following response:

y = (0, 1, 1, 2, 3, 5, 8, 13, 21, 34, 55, 89, · · · ).

■ We recognize this output as the Fibonacci sequence generated by

gk = gk−1 + gk−2 with initial conditions g0 = 0 and g1 = 1.

■ A typical realization for this sequence is given by the state-space

system:

A =
[

0 1

1 1

]
, B =

[
1

1

]
, C =

[
1 0

]
, D = 0.

■ We’ll try to come up with an equivalent realization based on only the

unit-pulse response.
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% Define true system, compute the Markov parameters as "y"

A = [0 1; 1 1]; B = [1; 1]; C = [1 0]; D = 0; dt = 1;

sysTrue = ss(A,B,C,D,dt); % "typical" Fibonacci ss model

y = dt*impulse(sysTrue); % scale by dt to get unit-pulse response

■ The Hankel matrices that we will require are:

H4,4 =




1 1 2 3

1 2 3 5

2 3 5 8

3 5 8 13




, H
↑
5,4 =




1 2 3 5

2 3 5 8

3 5 8 13

5 8 13 21




.

% Form H{4,4} and shifted H{5,4}. Note: Do not include "zero-th"

% parameter (first element of y), which corresponds to the matrix D.

bigHankel = hankel(y(2:end)); % don't forget to omit h(0) term = y(1)

H = bigHankel(1:4,1:4); % for this example, keep only 4x4 portion

Hup = bigHankel(2:5,1:4); % shifted H{5,4}

■ The SVD yields

σ1 = 54.56 σ2 = 0.43988 σi = 0, i ≥ 3

which indicates that n = 2.

% Compute singular values of Hankel matrix

[U,S,V] = svd(H);

% Identify system order off-line as n = 2 based on values of S

n = 2;

■ We now extract the two left columns of U and V

U = V =




−0.1876 0.7947

−0.3035 −0.4911

−0.4911 0.3035

−0.7947 −0.1876




.
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■ Compute the extended observability and controllability matrices

Cl = 6
1/2V T =

[
−0.8507 −1.3764 −2.2270 −3.6034

0.5257 −0.3249 0.2008 −0.1241

]

Ok = U6
1/2 = C

T
l .

% Compute extended observability and controllability matrices, sized to

% the order for the system inferred by the singular values.

Us = U(:,1:n); Ss = S(1:n,1:n); Vs = V(:,1:n);

Ok = Us*sqrtm(Ss); Cl = sqrtm(Ss)*Vs';

■ Identify the system matrices ( Â, B̂, Ĉ) up to similarity transform

Â = O
†
kH
↑
k+1,lC

†
l =

[
1.6180 0

0 −0.6180

]

B̂ = Cl(1 : n, 1 : m) = Cl(1 : 2, 1) =
[
−0.8057

0.5257

]

Ĉ = Ok(1 : p, 1 : n) = Ok(1, 1 : 2) =
[
−0.8057 0.5257

]

D̂ = g0 = 0.

% Identify system assuming p = m = 1 (SISO), using shifted Hankel matrix

Ahat = (Ok\Hup)/Cl; Bhat = Cl(:,1); Chat = Ok(1,:); Dhat = y(1);

sysEst = ss(Ahat, Bhat, Chat, Dhat, dt);

■ Now, let’s compare the true and identified (“estimated”) systems

• Same pole-zero mapping (eigenvalues...transfer function)

• Same unit-pulse responses
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COMMENTS: Selecting an appropriate amount of output data to store

may require iteration (“how big an H do I need?”)

■ Until rank(Hk,l)= rank(Hk−1,l−1), or

■ Until the next singular value is “insignificant.”

■ Interesting to note that A = AT and that B = CT for the identified

system in the example.

• This property holds for square Hankel matrices

• The identification process will work so long as the Hankel matrix

dimensions exceed the system order (H need not be square)

REMAINING QUESTION: From whence come the gk?

■ This is key to making the DRA work.
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5.10: Discrete-Time Realization Algorithm (DRA)

■ Given a continuous-time transfer function in the Laplace domain,

H(s) = Y(s)/U(s), and a sampling period, Ts, we want to derive a

reduced-order discrete-time state-space realization of the form

x[k + 1] = Ax[k] + Bu[k]

y[k] = C x[k] + Du[k],

■ A sufficient condition for the DRA to operate is that H(s) be an

element of the Hardy space H∞, which implies that it is a strictly

stable and proper system.

■ This is not a necessary condition, however, as we will later generalize

the method to work with systems having isolated pole(s) on the

imaginary axis.

■ Note that we do not restrict H(s) to be formulated as a quotient of

polynomials in the Laplace variable “s” (for which well-known methods

exist to find the discrete-time system).

■ We describe the algorithm in four steps, which we preview here, and

discuss in more detail in the following subsections.

STEP 1: Sample the continuous-time transfer function H(s) in the

frequency domain at a high rate, and take the inverse discrete

Fourier transform (IDFT) of the samples to get an approximation to

the continuous-time impulse response h(t).

STEP 2: Use h(t) to approximate the continuous-time step response

hstep(t), also sampled at the high rate.
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STEP 3: Compute discrete-time unit-pulse response gk with

inter-sample period Ts from continuous-time step response hstep(t),

assuming a sample and hold circuit connected to system input.

STEP 4: Generate a discrete-time state-space realization using the

deterministic Ho–Kalman algorithm.

■ We note that a system having a pole at the origin does not meet the

strictly-stable requirement. However, we also show that this pole can

be automatically accounted for.

Building the DRA from the end to the beginning

STEP 3: If we have the system’s unit-pulse response, we can use

Ho–Kalman to find a state-space representation.

■ But, how to find the unit pulse response? Let’s assume that we know

the continuous-time step response hstep(t):

unit−pulse response

step response

shifted step response         

step function

shifted step functionsubtract

unit−pulse function

Ts

■ The continuous-time response to a unit pulse of length Ts seconds is

hpulse(t) = hstep(t)− hstep(t − Ts).

■ The discrete-time response is found by sampling: gk = hpulse(kTs).

STEP 2: If we have the system’s continuous-time step response, we can

find a state-space representation.
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■ But, how to find the step response? Let’s assume that we know the

continuous-time impulse response h(t). Then,

hstep(t) =
∫ t

0

h(τ ) dτ .

■ In fact, since the DRA is a numeric algorithm, we can’t deal with

continuous time directly. Instead, we select a fast sample frequency

F1 such that T1 =
1

F1

≪ Ts.

■ Then, the finely sampled continuous-time step response is:

hstep(kT1) = T1

k−1∑

i=0

h(iT1).

STEP 1: Given the system’s finely sampled continuous-time impulse

response, we can find a state-space representation.

■ How to find the finely sampled continuous-time impulse response?

■ We approximate the continuous-time impulse response via a “discrete

equivalent” approach (frequency-domain emulation).

■ We use the bilinear transform to write a high-sample-rate discrete-

time approximation to the original continuous-time transfer function

H(z) ≈ H (s)|s= 2
T1

z−1
z+1

,

where T1 is the same emulation sampling period as before.3

3 In order to arrive at an accurate estimation of the continuous time transfer function, the

sampling frequency, F1 = 1/T1, must be high enough to capture the system dynamics.

As a rule of thumb, the sampling frequency must be at least 20 times the as great as

the bandwidth of the system to get an rough approximation in the frequency domain.

A higher emulation sampling frequency gives more accurate results.
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■ We now recognize that the discrete Fourier transform (DFT) of a

sequence is related to its z-transform via the relationship

H [ f ] = H(z)
∣∣
z=exp( j2π f/N ) = H (s)|

s= 2
T1

[
e j2π f/N−1

e j2π f/N+1

]

= H (s)|s= 2 j
T1

tan(π f/N ) , 0 ≤ f < N ,

where N is the number of points chosen for the underlying sequence,

and is usually chosen to be a power of 2 for efficient computations.

■ The inverse DFT of H [ f ] gives h(nT1), which is the approximation of

the continuous-time impulse response at the emulation sampling

period, T1

h(nT1) =
1

N

N−1∑

f=0

H [ f ]e j2π f n/N ,

which is indexed from n = 0 to n = N − 1.

Examples of the DRA

■ We will ultimately look at three examples to illustrate the DRA.

■ The first two are rational-polynomial transfer functions, which we use

because we can calculate the exact solution using other methods.

• We can then compare the exact solutions to the approximate

solutions obtained by the DRA.

■ The third does not have a closed-form solution, but we can use a 1-D

parabolic-elliptic partial differential equation solver to find an accurate

near-exact solution against which to compare the DRA solution.

■ We find excellent agreement between the exact solutions and DRA

solutions in all cases.
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5.11: Example 1: Rational polynomial transfer function

■ The DRA method is first applied to a simple second-order system.

■ We require a discrete-time realization with the a sampling period of

Ts = 0.1 seconds from the continuous-time transfer function

H1(s) =
s2 + 20s + 100

s2 + 2s + 8
.

■ We compute the Bode plot to estimate the system bandwidth.

omega = logspace(-1,3,100); % create freq. axis in rad/sec

s = 1j*omega; % create s = j*omega

H = (s.^2+20*s+100)./(s.^2+2*s+8); % compute cplx. freq. response

semilogx(omega,20*log10(abs(H))); % display the magnitude response

■ Poles at −1± j2.65 rad s−1, two

zeros at 10 rad s−1.

■ The magnitude response of

H1(s) is shown in the figure.

■ The system bandwidth is on the

order of 3 rad s−1 (about 0.5 Hz).
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STEP 1: The sampling frequency is selected as 256 Hz which is (much)

greater than 20 times the system bandwidth.

■ Transfer function is sampled at discrete frequencies; inverse DFT

yields an approximate continuous-time impulse response.

F1 = 256; T1 = 1/F1; % Interp. freq. of 256 Hz

minTlen = 6.5; % min. h(t) length in sec.

N = 2^(ceil(log2(minTlen*F1))); % # of samples at rate F1

f = 0:N-1; % normalized freq. vector

s = (2j/T1)*tan(pi*f/N); % substitute to get Hd[f]
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Hd = (s.^2+20*s+100)./(s.^2+2*s+8); % Hd[f]

hd = real(ifft(Hd)) * F1; % approximation to h(t)

td = T1*(0:N-1); % time vector for h(t)

plot(td,hd,'bx','markersize',8); hold on % plot h(t)

H1 = tf([1 20 100],[1 2 8]); % true transfer function

[himpTrue,timpTrue] = impulse(H1,5); % true impulse response

plot(timpTrue,himpTrue,'r'); axis([0 5 -10 26]); % plot on top

■ The figure compares the

approximate continuous-time

impulse response computed

via the inverse DFT to the exact

continuous-time impulse

response of H1(s).

■ The solutions are coincident.
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STEP 2: The approximation to the continuous-time step response is

found by doing a cumulative summation of the impulse response.

hstep = T1*cumsum(hd); % h_s(t)

plot(td,hstep,'bx','markersize',8); hold on % plot h_s(t)

[hstepTrue,tstepTrue] = step(H1,5); % true step resp.

plot(tstepTrue,hstepTrue,'r'); axis([0 5 0 18]); % plot on top

■ The results are shown in the

figure and show excellent

agreement with the exact step

response of the continuous

time system.
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STEP 3: We now resample the continuous-time approximate step

response at the final sample rate Ts, and compute the discrete-time

unit-pulse response as hstep[k] − hstep[k − 1]

Ts = 0.1; tdisc = 0:Ts:6.5; % final time vector

hdisc = [0 diff(interp1(td,hstep,tdisc))]; % h[k]

stem(tdisc,hdisc,'filled'); hold on

[himpDiscTrue,timpDiscTrue] = impulse(c2d(H1,Ts),5);

% next line scales IMPULSE in new MATLAB to give unit-pulse resp.

himpDiscTrue = Ts*himpDiscTrue;

plot(timpDiscTrue,himpDiscTrue,'r.','markersize',8);

axis([-0.01 5 -1 2.6]);

■ Note that in new versions of

MATLAB, the “impulse”

command works differently

from old versions for

discrete-time systems.

■ We need to scale MATLAB’s

output by Ts to compute the

unit-pulse response that we

desire.
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■ Again, there is excellent agreement between the approximate

unit-pulse response and the exact solution, except at single point

t = 0.

■ This is often the case because of some properties of the inverse DFT.

■ But it causes no problems since the unit-pulse response value at

t = 0 is computed differently, using

D = g0 = lim
s→∞

H(s).
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STEP 4: The Ho–Kalman algorithm is used to find state-space realization

from approximate discrete-time unit-pulse response of Step 3.

■ 64 points from the discrete-time unit-pulse response are used, which

allows a maximum Hankel matrix of 32× 32.

■ We first compute and plot the singular values of the Hankel matrix.

bigHankel = hankel(hdisc(2:66)); % don't forget to omit h(0) term!

% for this example, keep only 32x32 portion

Hankel = bigHankel(1:32,1:32);

HankelUp = bigHankel(2:33,1:32); % shifted Hankel matrix

[U, S, V] = svd(Hankel); % compute singular values

plot(log10(diag(S)),'bx','markersize',8); axis([0 33 -20 5]);

■ Hankel-matrix SVD gives insight into the system’s order.

■ A log plot of the singular values

is shown in the figure.

■ The first two are almost three

orders of magnitude greater

than the third, so we select a

reduced-order model

dimension p = 2.
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n = 2; % select via singular values

Us = U(:,1:n); % Compute extended observability, controlability

Ss = S(1:n,1:n); % matrices, sized to the order for the system

Vs = V(:,1:n); % inferred by the singular values.

Ok = Us*sqrtm(Ss); Cl = sqrtm(Ss)*Vs';

Ahat = (Ok\HankelUp)/Cl; % calculate A from Ok, Cl

Bhat = Cl(1:n,1); Chat = Ok(1,1:n); % calculate B and C

Dhat = 1; % calculated manually

sysDRA = ss(Ahat,Bhat,Chat,Dhat,Ts); % final DRA ss model
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■ Truncating to the first two states only, the Ho–Kalman algorithm gives

a state-space realization with the following A, B, and C matrices

Â =
[

0.8656 −0.2367

0.2367 0.8811

]
, B̂ =

[
−1.624

0.7692

]
, Ĉ =

[
−1.624 −0.7692

]
.

■ The D̂ matrix is found from the initial value theorem and, for this

example, is D̂ = [1].
■ We compare the true discrete-time unit-pulse response and the final

DRA model unit-pulse response:

% next line scales IMPULSE in new MATLAB to give unit-pulse resp.

[himpDRA,timpDRA] = impulse(sysDRA,5); himpDRA = Ts*himpDRA;

stem(timpDRA,himpDRA,'filled'); hold on

plot(timpDiscTrue,himpDiscTrue,'r.','markersize',8);

axis([-0.01 5 -1 2.6]);

■ The results agree very well

(note that h[0] has been

corrected by the correct

calculation of the D̂ matrix in

Step 4).
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■ Because the unit-pulse responses agree very well, the response of

the reduced-order model will also agree well with the exact response

for any input signal u[k].
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5.12: Example 2: Dealing with a pole in H(s) at the origin

■ This example has a pole in H(s) at s = 0, so is not strictly stable, and

violates the necessary conditions that make the DRA work.

■ However, it is quite simple to deal with this case.

• We first subtract the pole at the origin from the transfer function,

• Then execute the DRA on the residual system,

• Then compute a final discrete-time state-space model that

augments the DRA result with additional dynamics to implement

the function of the s-domain pole at the origin.

■ A pole at the origin is removed by first calculating the residue of this

pole and then subtracting it from the original transfer function.

H∗(s) = H(s)− res0

s
where res0 = lim

s→0
s H(s).

■ The remainder of the DRA is executed using H∗(s) instead of H(s).

■ To re-incorporate the effect of the pole at s = 0 into the final

reduced-order model, recall that this pole corresponds to an

integrator. The discrete-time equivalent can be implemented as

xi[k + 1] = xi[k] + Tsu[k].

■ We combine this with the DRA-produced state-space form[
x[k + 1]
xi[k + 1]

]

︸ ︷︷ ︸
xaug[k+1]

=
[

Â 0

0 1

]

︸ ︷︷ ︸
Âaug

[
x[k]
xi[k]

]

︸ ︷︷ ︸
xaug[k]

+
[

B̂

Ts

]

︸ ︷︷ ︸
B̂aug

u[k]

y[k] =
[

Ĉ res0

]

︸ ︷︷ ︸
Ĉaug

[
x[k]
xi[k]

]
+ Du[k]

Lecture notes prepared by G.L. Plett and J.L. Lee. Copyright © 2011–2018, G.L. Plett and J.L. Lee



ECE4710/5710, State-Space Models and the Discrete-Time Realization Algorithm 5–43

where dotted lines delineate boundaries between block sub-matrices

of the overall augmented state-space matrices Âaug, B̂aug, and Ĉaug.

Example 2: Rational polynomial transfer function with pole at origin

■ In this example, we demonstrate how to handle a single pole at the

origin. The continuous-time transfer function is given by

H2(s) =
1

s

(
1

s2 + 6s + 8

)
.

■ This system has real poles at 0, 2 and 4 rad s−1.

■ Desire a discrete-time transfer function with sample period Ts = 0.1 s.

■ Prior to Step 1 we remove the pole at the origin.

■ This is accomplished by first calculating the residue for this pole.

■ In this example, the residue can be computed analytically as

res0 = lim
s→0

s H(s) = 0.125.

■ In general, we find this residue by selecting a very small value for s

and numerically computing res0, or by using a software tool like

Mathematica to compute the limit.

■ The reduced transfer function, H∗2 (s) with the pole at the origin

removed is

H∗2 (s) = 1

s

(
1

s2 + 6s + 8

)
− 0.125

s
.

■ The figures below shows the magnitude plot of the original system

and the system with the pole at the origin removed.
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STEP 1. H∗2 (s) is sampled at 256 Hz which is (much) more than 50 times

greater than the system bandwidth. We could implement either

Hd = 1./(s.^3+6*s.^2+8*s) - 0.125./s; % Hd[f]

Hd(1) = -6/64; % analytic solution

where lim
s→0

H∗2 (s) = −6/64, or compute by hand

H∗2 (s) = 1

s

(
1

s2 + 6s + 8

)
− 0.125

s

(
s2 + 6s + 8

s2 + 6s + 8

)

= −0.125

s

(
s2 + 6s

s2 + 6s + 8

)
= −0.125

(
s + 6

s2 + 6s + 8

)
,

and implement

Hd = -0.125*(s+6)./(s.^2+6*s+8);

■ The approximate continuous-

time impulse response is

computed and plotted.
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STEP 2: The approximation to the

continuous-time step response

of H∗2 (s) is calculated as in the

first example and plotted.
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STEP 3: This step response is

sampled at Ts = 0.1 seconds,

and differenced to yield the

discrete-time unit-pulse

response, plotted in the figure.
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STEP 4. The system Hankel matrix is generated from the discrete-time

unit-pulse response found in Step 3.

■ 64 discrete time points are used, resulting in a 32×32 Hankel matrix.

■ The figure depicts the 32

singular values of the system

Hankel matrix.

■ The first two singular values

are two orders of magnitude

greater than the third, indicating

that H∗2 (s) is a second order

system.
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■ The Ho–Kalman algorithm generates the Â, B̂, and Ĉ matrices after

truncating all but the first two states. We find that

Â =
[

0.8617 −0.0906

0.0906 0.6274

]
, B̂ =

[
0.1162

−0.0340

]

Ĉ =
[
−0.1162 −0.0340

]
.

In this example, we also compute D̂ = lim
s→∞

H∗2 (s) = 0, which can also

be quite easily seen in the high-frequency response of H∗2 (s).

■ The state-space representation for H∗2 (s) is augmented to include the

pole at the origin to create a representation for Hs(s).

Aaug = [Ahat, zeros(n,1); zeros(1,n), 1];

Baug = [Bhat; Ts];

Caug = [Chat, res0];

sysDRA = ss(Aaug,Baug,Caug,Dhat,Ts) % final DRA state-space sys.

■ The discrete-time realization of H2(s) is

Âaug =




0.8617 −0.0906 0

0.0906 0.6274 0

0 0 1


 , B̂aug =




0.1162

−0.0340

0.1




Ĉaug =
[
−0.1162 −0.0340 0.125

]
, D̂ = [0].

■ The figure shows close

comparison of the unit-pulse

response found from the DRA

and the exact solution.
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5.13: Example 3: Transcendental transfer function

■ In the first two examples, we used rational polynomials to illustrate the

DRA method where order of the system is known a priori, and the

exact answer could be calculated analytically.

■ We now demonstrate the DRA with an infinite-order distributed-

parameter system: Specifically the Jacobsen–West transfer function

of lithium diffusion in a single particle, where

H3(s) =
C̃s,e(s)

J (s)
= Rs

Ds

[
1

1− Rs

√
s/Ds coth(Rs

√
s/Ds)

]
,

and where the integrator-removed transfer function is

H∗3 (s) = 1C̃s,e(s)

J (s)
= C̃s,e(s)

J (s)
− C̃s,avg(s)

J (s)

=
s R2

s

Ds
+ 3− 3Rs

√
s

Ds
coth

(
Rs

√
s

Ds

)

s Rs

(
1− Rs

√
s

Ds
coth

(
Rs

√
s

Ds

)) ,

where we have used the relationship

C̃s,avg(s)

J (s)
= res0

s
=
−3/Rs

s
.

■ Parameter values for the transfer functions used in this example are

listed in the table, from which we can compute that res0 = −3× 105.

Parameter name Interpretation Value

Ts Sampling period 1 s

Rs Particle radius 10−5 m

Ds Diffusivity 10−12 m2 s−1

c(r, 0) Initial lithium concentration 10 000 mol m−3

STEP 1. The magnitude responses of H3(s) and H∗3 (s) are shown below:
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■ H∗3 (s) is sampled at 256 Hz for a total of 256 seconds.

■ The frequency vector for H∗3 (s) can be calculated as

beta = Rs*sqrt(s/Ds);

Hd = (Rs/Ds)*(1./(1-beta.*coth(beta))) + (3/Rs)./s;

Hd(1) = -Rs/(5*Ds); % analytic solution

where MATLAB numerically removes the integrator pole, or as

beta = Rs*sqrt(s/Ds);

Hd = (beta.^2+3-3*beta.*coth(beta))./(s.*Rs.*(1-beta.*coth(beta)));

Hd(1) = -Rs/(5*Ds); % analytic solution

■ Note that both computations of Hd initially produce NaN for s = 0 due

to numeric attempts to evaluate zero divided by zero.

■ This entry must be manually replaced by a value computed

analytically

lim
s→0

H∗3 (s) = lim
s→0

s R2
s

Ds
+ 3− 3Rs

√
s

Ds
coth

(
Rs

√
s

Ds

)

s Rs

(
1− Rs

√
s

Ds
coth

(
Rs

√
s

Ds

)) = − Rs

5Ds

.

■ Direct by-hand computation returns 0/0. We must use l’Hôpital’s rule

repeatedly until an answer is reached.

■ When using transcendental transfer functions, we recommend

computer tools such as Mathematica for symbolic manipulation.
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■ The approximate

continuous-time impulse

response is shown.

■ There is no known exact

solution against which to

compare this result. 0 2 4 6 8 10
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Approximate via DRA Step 1

STEP 2. The approximate continuous-time step response is calculated by

performing a cumulative sum of the impulse response of Step 1.

■ The figure shows approximated

continuous-time step response.

■ Again, there is no known exact

solution against which to

compare this result.
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Approximate via DRA Step 2

STEP 3: The approximate

continuous-time step response

is sampled at Ts = 1 second,

and differenced to produce the

discrete-time unit-pulse

response, shown here. 0 5 10 15 20 25
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Approximate via DRA Step 2
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STEP 4. Hankel matrix is formed;

singular values are plotted.

■ H∗3 (s) represents a distributed-

parameter system that actually

has an infinite number of poles.

■ However, only a few of them are

significant to the solution.
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Singular values of Hankel matrix for H
3
*(s)

n

n

■ In particular, we choose to use a reduced-order model dimension

n = 2 in the results we present here, imposing a tradeoff between the

complexity and accuracy of the solution.

■ The Ho–Kalman algorithm generates the Â, B̂, and Ĉ matrices to

approximate H∗3 (s) after truncating all but the first two states.

Â =
[

0.4695 0.3296

0.3296 0.4355

]
, B̂ =

[
919.1

−220

]

Ĉ =
[
−919.1 220

]
.

■ In this example, we also compute D̂ = lim
s→∞

H∗3 (s) = 0, which can also

be quite easily seen in the high-frequency response of H∗3 (s).

■ This state-space realization is augmented with the integrator state to

give the final third-order model of the diffusion equation H3(s).

Âaug =




0.4695 0.3296 0

0.3296 0.4355 0

0 0 1


 , B̂aug =




919.1

−220

1




Ĉaug =
[
−919.1 220 −3× 105

]
, D̂ = [0].
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■ We demonstrate the the DRA-produced model by simulating a 10 s

discharge pulse where the surface lithium flux (leaving the particle)

was j = 1× 10−5 mol m−2 s−1, followed by a 10 s rest.

■ The augmented state-space model was simulated with this input to

produce c̃s,e[k], and cs,e[k] was computed as cs,e[k] = c̃s,e[k] + cs,0.

cs0 = 10000;

uk = 1e-5*[ones(1,10),zeros(1,10)];

[cseTilde,tk] = lsim(sysDRA,uk);

cse = cseTilde + cs0;

■ All discrete-time model states

are initialized to zero.

■ The output of this discrete-time

realization to a 10 second

discharge followed by a 10

second rest is shown. 0 5 10 15 20
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Simulation of Example 3a: Surface Concentration

 

 

Exact PDE solution

DRA model with order=3

■ We compare this result against the “truth” produced by simulating the

PDE using MATLAB’s 1-D parabolic-elliptic PDE solver.

function [cse,t] = simCsePDE

dr = 0.1e-6; % Radial resolution = 0.1 micro-meter

dt = 0.001; % Time step in simulation, s

Tfinal = 20; % Length of simulation, s

Rp = 10e-6; % Radius of particle = 10 micro-meters

Ds = 1e-12; % Solid diffusivity, m^2/s

j = 1e-5; % mol/m^2/s

x = 0:dr:Rp; % locations for solution

t = 0:dt:Tfinal; % time steps for solution

options = odeset('RelTol',1e-8,'AbsTol',1e-10);

sol = pdepe(2,@csefun,@cseic,@csebc,x,t,options);

cse = sol(:,end,1);

function[c,f,s] = csefun(~,~,~,DuDx)
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c = 1/Ds; f = DuDx; s = 0;

end

function u0 = cseic(~,~)

c0 = 10000; u0 = c0;

end

function[pl,ql,pr,qr] = csebc(~,~,~,~,t)

pl = 0; ql = 1; qr = Ds; pr = 0;

if t<Tfinal/2, pr=j; end

end

end

■ The code comprises nested functions, where the main function

initializes variables and calls MATLAB’s solver with pointers (function

handles) to nested helper functions:

• csefun implements the parameter values of the PDE;

• cseic implements the initial conditions; and

• csebc implements the boundary conditions.

■ Note that we achieve good results with the PDE solver only if a fine

time-step is used: here, we have used a 1 ms step size, which makes

the PDE solver execute much more slowly than the DRA-produced

model.

Where from here?

■ We have now seen the form that the final model will take, and

examples of the general methodology to go from the PDE

continuum-scale model to the reduced-order model.

■ We now proceed to develop transfer functions for all cell variables of

interest, and see how well the overall cell model works.
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