
Static and Dynamic Evaluation

of Data Dependence Analysis*

Paul M. Petersen David A. Padua

Center for Supercomputing Research and Development,

University of Illinois at Urbana-Champaign,

465 CSRL, 1308 W, Main Street,

Urbana, IL 61801-2932, USA

{petersen,padua} @csrd. uiuc. edu

Abstract

This paper discusses the effectiveness of several depen-

dence tests in the Perfect Benchmarks. The tests an-

alyzed include the generalized greatest common divisor

test, Banerjee’s test and the Omega test. Two methods

are applied. One uses only compile-time information for

the analysis. The other uses information gathered dur-

ing program execution. It is shown that, for the codes

considered, the Omega test improved the accuracy of

the analysis by only l% when codes are analyzed stat-

ically. Furthermore, the dynamic analysis shows that

the Omega test does not improve the detected inherent

parallelism.

1 Introduction

Data dependence analysis is a central part of today’s

strategies for the automatic detection and exploitation

of implicit parallelism. For this reason, experimen-

tal evaluation to determine the accuracy of dependence

analysis techniques is very important. Such evaluation

is necessary to guide research and to help compiler writ-

ers in the selection of a dependence analysis strategy.

In this paper we present an experimental evaluation

of several dependence analysis techniques, including the

*The research described is supported by Army contract
#DABT63-92-C-O03. This work is not necessarily representative
of the positions or policies of the Army or the Government. This
work was also supported by the NASA Ames Research Center
Grant No. NC(I 2-559 (DARPA), and a donation from MIPS
Computer Systems.

Permission to copy without fee all or part of this material ia
granted provided that the copies are not made or distributed for

diract commercial advantage, the ACM copyright notice and the
title of the publication and its date appear, and notice is given
that copying is by permission of the Association for Computing
Machinary. To copy otherwise, or to republish, requires a fee
and/or spacific permission.
lCS-7/93 Tokyo, Japan
@1993 ACM O-89791 .600-x/93 /0007 /0107 ...$l .50

constant test, the GCD test, three variants of Banerjee’s

inequalities [II, and integer-programming based tests

such as the Omega test [2]. Both static (compile-time)

and dynamic (run-time) experimental studies are pre-

sented.

Our study has two major objectives. The first is to

determine how much the accuracy of the dependence

analysis is affected if the value of the loop limits is not

known. The second objective is to determine whether

the tests basecl on integer programming produce better

results than traditional approximations such as Baner-

jee’s test when. applied to real programs. Even though

there have been other studies of dependence analysis

that have presented and analyzed compile-time informa-

tion [3, 4], to our knowledge this is the first work that

focuses on these two objectives. In addition, there is no

other work using run-time information to evaluate the

accuracy of dependence analysis techniques. Run-time

evaluation is t“he only practical way of determining the

effects of differmt dependence analysis tests on program

speedup.

The balance of this paper is organized as follows. In

Section 2, we discuss briefly the dependence analysis

techniques used in this study (we assume that the reader

is familiar with the notion of dependence and with some

of the techniques mentioned below). In Sections 3 and 4

we discuss the static and dynamic studies respectively.

Finally in Section 5, we present our conclusions.

2 Background

In this study, we will concentrate on the analysis of

data dependence when the interaction involves array ele-

ments. Most of the work published on dependence anal-

ysis (including all the tests considered in this paper)

focus on statements with array references and assume

that the two statements to be analyzed are both inside

the same, possibly multiply-nested, DO loop.

107

Consider the loop in Figure 1.

dimensional array, and .f~ and g~ are

to z.

DO ll=L1,U1

. . .

DO Id = Ld,ud

s. : x(~l(~l,...,~d),~~(~1,(~l,

Here X is an n-

functions from Zd

,.. , Id)) =...

Sw: :..’= x(gl(il, ~d),~,gn(~l, g,~d))..., ~d))
EIiD DO
. . .

EIJD DO

Figure 1: Generic loop nest.

To decide whether there is a flow dependence from Su

to SW that is, to determine whether a value computed

by S. is used by SW it is necessary to determine whether

there are two executions of S. and SW such that

(1)

(2)

The execution of SV takes place in iteration ~’ =

(I{, Ij,.. ., Ij) and the execution of SW takes place

in iteration I“ = (If, I;, I;) with j’ < j“—

.fi(~) = gi(~’) for all (1 < i ~ n) and for some
~1 ~1~, ~,. ... I;, I,I; ,;, ..., Ij’ within the loop limits

specified in the program.

The conditions that determine a dependence if Su is

located lexically after SW are the same except that con-

dition (3) is replaced by (3’): ~’ < ~“.

The problem of determining dependence is sometimes

decomposed into several subproblems, one for each pos-

sible ordering relationship between the components of

the vectors ~’ and ~“. For example, if ~, ~“ E Z2, the

condition ~’ < ~“ can be decomposed into four cases:

I; < I; and I; < I;

I; < I? and I; = I;

I; < 1; and I; > I;

I{ = I; and I.j < I;

In general, these cases are specified using direction vec-

tors which are of the form V! = (t/Jl, @d) where each

~~ is one of <, >, or = and represents the ordering

relation between IL and I;. In the case of the .previ-

ous example, the feasible direction vectors are (<, <),

(<,=), (<,>), and (=,<).

The same discussion presented above applies to anti-

and output dependence. The difference is that for an

anti-dependence to exist, it is necessary that the ele-

ment of array X be on the righthand side in SV and on

the lefthand side of SW. For output dependence, both

occurrences of X should be on the lefthand side.

We say there is a potential dependence for each pair

of references to the same array within the body of the

same, possibly multiply-nested, loop if at least one refer-

ence is on the left hand side of an assignment statement.

The two references could appear on the same statement.

In particular, there is a potential dependence between

the two different instances of an array reference that ap-

pear on the lefthand side of a statement. For each poten-

tial dependence it is necessary to invoke a dependence

test to determine whether an actual dependence exists.

When the test determines that no actual dependence

exists, we say that it breaks the potential dependence.

A potential dependence involves coupled subscripts if

it can only be broken by simultaneously considering the

subscripts in a multidimensional array reference. Of the

tests described in this paper, only the generalized GCD

and the integer programming tests are able to handle

coupled subscripts.

The rest of this section consists of two subsections.

One discusses simple and approximate tests and the

other describes integer-programming based tests.

2.1 Approximate Dependence Tests

Approximate dependence techniques, especially those

developed by Banerjee [5, 6], have been widely adopted

in both experimental and commercial compilers. In the

last few years, a renewed interest in the subject of de-

pendence analysis has arisen, and techniques have been

developed that are in some cases more accurate than

Banerjee’s [7, 8, 9].

In addition to the published variations of Banerjee’s

inequalities, for rectangular and trapezoidal iteration

spaces, we have extended the implementation to han-

dle dependence correctly in loops with unknown upper

and lower limits. This extension was developed after

some preliminary results from the experiments in this

paper. We later found that J. R. Allen [10] describes a

method that works in a similar manner, and we believe

that in practice Banerjee’s inequalities are implemented

in a similar manner. This variation has been analyzed

separately because it has intrinsic interest and also to

determine empirically the necessity of knowing the loops

bounds.

The goal of all the approximate techniques presented

in this section is to break potential dependence with-

out incurring the cost associated with the exact tests

discussed in the next section. Except for the general-

ized GCD test, these techniques analyze one subscript

at a time. A potential dependence is broken only if

the test shows that, for some subscript position i, there

are no index vectors ~) and 111 that satisfy the equation

f’i(~’) = gz (~”), where .f~ and gi are the functions de-

fined in Figure 1. Doing the test independently for each

108

subscript is conservative because the system of equa-

tions may not have a solution even ifall the individual

equations have solutions.

2.1.1 Simple Dependence Tests

The constant test is the only approximate method pre-

sented here that not only can break dependence but can

also conclusively prove dependence. If all the subscripts

in the two array references are loop invariant and have

the same value, then there will be a data dependence

for all potential direction vectors. If any pair of cor-

responding subscripts are constant and different, then

there is no data dependence regardless of the values of

any other subscript. Loop invariant expressions that are

common to both subscripts in the potential dependence

are canceled before the comparison is made.

The greatest common divisor (GCD) test establishes

an existence criterion for the solution to the equation

~i(?) = g;(~”) mentioned above. This test is based on

the fact that when both fi and gi are linear, a solution

to the equation exists if the greatest common divisor

of the coefficients of ~’ and ~“ also divides the constant

term. Conversely, if it does not divide the constant term,

then no solution can exist. In the work reported here

we used the generalized GCD method, described in [1];

it is an extension of the GCD method that considers all

subscripts in a multidimensional array simultaneously.

When the GCD method breaks a potential dependence,

it breaks all the direction vectors simultaneously. The

GCD method cannot prove dependence because it does

not take into account the value of the loop limits.

2.1.2 Banerjee’s Inequalities for Loops with

Known Limits

Traditionally the most widely studied dependence tests

are those based on Banerjee’s inequalities. A formal-

ization of the~e ideas is presented in [1]. If we as-

sume that ft(~) = al~l + azlz + . . + adId + ao and

gi(~) = ~1~1 + bzlz + ~”” + b& + bo, then the equa-
tion fi(~’) = gi(~”) can be written as (all{ – blIf) +
. . . + (a& – b~Ij) = (b. – so). The mathematical ba-

sis for Banerjee’s inequalities [11] is derived from the

Intermediate Value Theorem that states: Let 3 be de-

fined as (all{ – bllf) + . . . + (ad~~ – bdl~) which is

continuous and can be considered as a real valued func-

tion in R2d. Let B~i., BmaX denote any two values of

F on a connected set R c R2d, which is determined

by the loop limits and the direction vectors. Suppose

also that Bmin < b. — a. s BmaX. Then the equation

x(z) = 131)– a. has a solution z ~ ?R. Conversely with

.B~i. and Bm.X the minimum and maximum values re-

spectively of F in 3?, if Bmin s b. — a. s BmaX is not

true, then no solution can exist and independence has

been proven. Data dependence tests based on this for-

mulation of the original test apply in two general cases;

(a) where all the loop bounds are known, and there-

fore the iteriition space is rectangular, and (b) where

the inner loop limits are linear functions of the indices

of the outer 1oops and all the coefficients are constants.

In this latter case the iteration space has the form of a

trapezoid.

Banerjee’s test cannot prove dependence because only

the existence of a real valued solution in the region of

interest has been proven, which does not always imply

the existence of an integer valued solution.

2.1.3 Banerjee’s Inequalities for Loops with

Unknown Limits

This test is similar to Banerjee’s test when it is applied

to rectangular iteration spaces. If the stride of the loop

is a positive constant, then whenever a loop lower limit

is not known we assume —cm as its value, and whenever

the loop upper limit is not known we assume +CO as its

value. The only difference from the traditional Baner-

jee’s test is that the arithmetic is done in the extended

real number system [12] (i.e., R U {–co, +co}) and the

traditional conventions are made on the operations (e.g.,

Z+CO = +cO, z/co = O if x is real).

2.2 Integer Programming Based Tests

As discussed above, data dependence analysis of linear

array references is equivalent to deciding if there is an in-

teger solutiom. to a set of linear equalities and inequalities

[13]. The integer programming problem can_be stated

as follows: Does there exist z such that AZ = b, B5 ~ O,

I > 0, for integer i. In this definition, matrix A contains

the coefficients of the equalities, and matrix B refers

to the coefficients of the inequalities that describe the

bounds of the iteration space.

General integer programming techniques have many

advantages over the approximations mentioned in the

preceding section. The ability to consider simultane-

ously all subscripts of an array reference allows this de-

pendence test to analyze coupled subscripts correctly.

Affine loop bounds are incorporated naturally into the

inequalities. Furthermore, execution constraints such

as covering cmditionals can be introduced into the de-

pendence equations. It has also been reported that the

linear programming approximation to integer program-

ming is sufficient in most cases [4].

2.2.1 Simplex Based Integer Programming Test

Several methods are available to solve the integer pro-

gramming problem. One method of implementation is

the branch-and-bound algorithm. This algorithm works

by first solving the real valued linear programming prob-

lem using the simplex method. The solution is checked

109

to see if all of its components are integers. The first non-

integer component (zi) is selected and used to create two

new problems with new constraints. The first problem

is the same as the original problem with the additional

constraint xi s [value of z;]. The second problem is

the same as the original problem with the additional

constraint Zi ~ [value of Zil. This constraint process

generates a binary tree of problems that repeatedly di-

vide the iteration space.

In effect, the branch-and-bound algorithm does an ex-

haustive search of the iteration space; however, it opti-

mizes the search. Any region of the iteration space that

does not have at least a real valued solution will not be

searched for an integer solution. Once an integer solu-

tion is found, the process stops and reports success. If,

on the other hand, all branches of the exhaustive search

lead to empty sets, then the process reports that no so-

lution exists.

2.2.2 Omega Test

The Omega test [2] is an extension of the Fourier-

Motzkin linear-programming algorithm aHowing integer

constraints on the solution vector. In addition to sup-

porting the full capabilities of integer-programming, the

Omega test also permits the systematic handling of un-

known additive terms. Consider the subscripts X(l+IV)

and X(1’) where 1 < 1, I’ ~ N (N is the loop upper

limit). The Omega test is capable of analyzing such ex-

pressions involving unknown additive constrained vari-

ables. After the addition of the loop limit, we find that

the system of equations is inconsistent since I + N # I’

for alll, Y in [1... N].

3 Static Evaluation of Depen-

dence Analysis Techniques

For the static evaluation of the dependence tests de-

scribed in Sections 2.1 and 2.2, we used a subset of the

Perfect Benchmarks [14], a collection of 13 Fortran pro-

grams that represent some of the applications most fre-

quently executed on parallel and vector computers. All

of the programs were preprocessed by KAP/Concurrent

(optimization level 4 with no loop unrolling) before do-

ing static dependence anal ysis, in order to remove induc-

tion variables and in this way improve the effectiveness

of the static dependence analysis by exposing more in-

formation to the dependence tests. No interprocedural

analysis was performed. Intraprocedural constant prop-

agation was done before the tests were applied.

Two experiments were conducted. In each, a differ-

ent sequences of dependence tests was applied. The re-

sults of these experiments are shown in Tables 1 and 2.

The order of application of the dependence tests is that

shown below the label Proved Independent.

The tables show how many potential dependence are

proven to be dependence by the tests and how many

are broken (i.e., are proven independent). Additionally,

the contribution of each dependence test to each cate-

gory is presented. In the Assumed Dependent row, we

see the number of potential dependence that had to

be assumed dependent because of the lack of compile-

time information or because the subscripts could not be

expressed as linear functions of the loop indices.

For example, if the upper bound, N, of a loop is a

function of a formal parameter to the subroutine con-

taining the loop, we assume that N can have any value.

The test may prove that is is a dependence under this

assumption. However, it is possible that if the value of

N were known (for example via interprocedural constant

propagation) the dependence tests could prove the op-

posite result. Thus, the notion of prove and disprove are

only in the context of the available information.

We used the following mechanism to arrive at these

numbers. Before we applied the sequence of tests in each

of the experiments, the expressions .f~(. . .) = g~ (. ~.) gen-

erated from Figure 1 of each potential dependence, were

simplified and loop invariant expressions on both sides of

the equations were cancelled. The potential dependence

is passed to the sequence of tests only if the equations

are linear and the coefficients of the subscript expression

are known at compile-time. Otherwise, the counter for

the assumed dependence is incremented by the number

of feasible directions of the potential dependence. In this

way we keep a count of the potential dependence that

cannot be analyzed because compile-time information is

lacking.

An accumulator is associated with each dependence

test and it is incremented each time the corresponding

test is the first to detect independence. The accumu-

lators associated with Banerjee’s tests and the integer

programming tests are incremented by one each time

the corresponding test breaks a potential dependence for

a given direction vector. The constant and GCD test

accumulators are incremented by the number of feasi-

ble direction vectors for the potential dependence since

these two tests apply to all direction vectors. Notice

that counting in this way, the weight of each potential

dependence grows with its level of nesting.

In this work, only dependence within the same [oop-

nest are considered. Furthermore, as mentioned above,

only dependence caused by references to array elements

are considered. Each of the two experiments consists of

two parts. For the first part (shown in the Original Loop

Bounds column), the loop limits are those of the original

source program. In this case, the rectangular and trape-

zoidal versions of Banerjee’s test and the Simplex-based

integer programming test cannot be applied to all loops

because they require that the loop limits be known at

compile-time.

110

Original Loop Bounds

LOOP Bounds Assumed Constant

D
Type Count (%) I Count (1!) I Difference [

Proved Dependent

Constant Test

Integer Programming

Omega Test

Total Proved Dependent :: z ::=
Assumed Dependent

n Unanalyzable Subscripts 16049 3.7% ~ 15515 3.6% -0. 1% n
Proved Independent

Constant Test

Greatest Common

Banerjee’s Test

Banerjee’s Test

Banerjee’s Test

Divisor

for Rectangular Loops

for Trapezoidal Loops

for Unbounded Loops

Integer Programming

Omeea Test

uTotal Broken Dependence

Total

150716 34. 5%

34645 7.9%

13320 3.1X

15 0.1%

28567 6.5%

92 0.1%

3982 0.91

231337 53.0%

436325

‘150716 34. 5%

34675 7.9%

42781 9.8%

3418 0.8%

o 0.0%

1491 0.3%

727 0.2%

:233808 53. 6%

:$36320
g

0.0%

0.0%

6.7%

0.7%

-6 .5%

0.2X

-o ,7X

0.6%

Tablel: Dependence results for the Perfect Benchmarks

Original Loop Bounds

Loop Bounds Assumed Constant

II Type c Ount (%) Count (%)] Difference~

Proved Dependent

I

Constant Test 116616 26. 7% 116616 26. 7% 0.0%

Omega Test 72323 16.6% 70381 16.1% -o .5%

1“Integer Programming o 0.0% o 0.0% 0.0%

Total Proved Dependent 188939 43.3% I 186997 42.9% I -0.4%

Assumed Dependent

n Unanalyzable Subscripts 16049 3.7% 15515 3.6% -o .1%

Proved Inde~endent.
Constant Test 150716 34. 5% 150716 34. 5X

Greatest Common Divisor 34645 7.9% 34675 7.9X

Banerjee’s Test for Unbounded Loops 41902 9.6% 44901 10.3%

Banerjee’s Test for Rectangular Loops o 0.0% o 0.0%

Banerjee’s Test for Trapezoidal Loops o 0.0% 1234 0.3X

Omega Test 4074 0.9% 2282 0.5%

0.0%

0.0%

0.7%

0.0%

0.3%

-0.4%

Table2: Switch Banerjee’s Test for Unbounded Loops with Banerjee’s ’Testfor Rectangular Loops, and the Omega

Test with the Integer Programming Test.

111

For the second part of each experiment (shown in

the Loop Bounds Assumed Constant column) we arti-

ficially changed all loop limits so that their values be-

came known at compile-time. This step is intended to

show the maximum effect of unknown loop limits in de-

pendence analysis. Any lower bound of a loop that was

not a linear function of the indices in the enclosing loop

nest was replaced by 1, and any upper limit that was

also not a linear function of the indices in the loop nest

was replaced by the constant 40. The choice of 40 as

the upper bound is arbitrary and was chosen to main-

tain consistency with earlier experiments [15] at Illinois.

The stride or step of the loop was defined to be 1 if it was

not an integer constant. Notice that the total number of

potential dependence decreases when constants replace

loop limits because, in the programs we analyzed, a few

loop limits are expressions involving array elements that

generate potential dependence. These potential depen-

dence disappear when the expression is replaced by a

constant.

The loops in the Perfect Benchmarks vary widely in

the amount of information available at compile time.

Table 3 shows the percentage of lower bound, stride, and

upper bound values that cannot be detected at compile

time after (intraprocedural) constant propagation, in-

duction variable elimination, and dead-code elimination

have been applied. TVhen averaged over the entire col-

lection, it is significant to note that the stride is almost

always known at compile-time, the upper bound is al-

most never known, and the lower bound is known most

of the time.

Benchmark

adm(AP)

arc2d(SR)

bdna(~A)

dyfesm(SD)

flo52q(TF)

mdg (LW)

mg3d(SM)

ocean(OC)

qcd2(LG)

spec77(WS)

track(MT)

Lower Bound

5.0%

77. 6%

4.2%

0.9%

2.2!!

3.8%

14. 2X

3.7X

7.0%

2.6%

7.7%

4.1%

upper Bound

97. 7%

95. 1%

62. 7%

73. 6X

89. 2X

66. 0%

100.0%

93. 4%

66. 9%

22.1%

42. 9X

64. 9Xtrf d(TI)

TOTAL t 11.9% I 71.0%

Stride

----6XZ

0.0%

0.0%

0.0%

1.6%

3.8%

36. 1%

6.6%

0.0%

0.0%

0.0%

0.0%

3.2X

Table 3: Statically unknown loop bounds.

Several important observations can be derived from

Tables 1 and 2. First is the large number of depen-

dence that are proved and broken by the constant de-

pendence test. This result is consistent with the the

results obtained by other studies [3, 4]. Second is the un-

expected effectiveness of Banerjee’s test for unbounded

loops. Consider first the Original Loop Bounds column

of Table 1 where the loop limits are processed as they

appear in the source program. In this column we observe

that, when the test for unbounded loops is applied after

the tests for rectangular and trapezoidal loops, it breaks

potential dependence in more than 6% of the cases,

more than in the two other tests combined. In Table 2,

it is shown that when the unbounded loop test is applied

before the other two tests, it breaks dependence in more

than 9% of the cases, and the application of the rect-

angular and trapezoidal loop tests contribute nothing

extra. This dependence sequence illustrates that Baner-

jee’s test can be performed with total accuracy without

the need for complete information about the loop limits,

and that none of the potential dependence removed by

Banerjee’s inequalities truly require the use of a trape-

zoidal dependence test. A third important conclusion

is that after all the traditional tests have been applied,

less than 1.0% of the analyzable cases are detected as

independent by the integer programming methods.

3.1 Unanalyzable Subscripts

One way to improve dependence information is by ap-

plying the data dependence tests to a larger percentage

of the potential dependence, Classifying the reason a

potential dependence is unanalyzable by the techniques

discussed in this paper is useful in determining where

additional effort may prove useful. As can be seen from

Table 4, the reasons for which a subscript is unanalyz-

able can be divided into three similarly sized categories.

IType of Unknown Subscript Count

Linear 5242

// Nonlinear

Array References 4304

Total 16049

Table 4: CXassiiication of unknown subscripts.

The three categories describe a characteristic of the

subscripts that makes them difficult to analyze. The

reasons include linear subscripts with unknown loop in-

variant information, nonlinear subscripts caused by loop

variant variables or difficult operators contained in the

expressions, and array references cent ained in the sub-

scripts. The subscripts in each category are placed into

the most restrictive set based on the classification order

{Array, Nonlinear, Linear}. If two or more features are

present in the same subscript pair, the more restrictive

(leftmost) classification is chosen.

From Table 4, we see that the most common reason

a potential dependence is unanalyzable is the presence

112

of a nonlinear operator or the use of a loop variant vari-

able. The operators include division and exponentiation

as well as intrinsic function calls. More aggressive sym-

bolic manipulation may be able to reduce the size of this

category by simplifying the expressions in some cases.

The loop variant variables may be reduced by more ag-

gressive algorithms to remove any remaining induction

variables and by performing interprocedural analysis to

make the assumptions at call sites less conservative.

The second most common category includes linear

subscripts with unknown but loop invariant informa-

tion. Assertions about the relations among these vari-

ables may allow more aggressive analysis. Finally, the

last category of unanalyzable subscripts include refer-

ences to array elements in the subscript. The use of

subscripted subscripts is a difficult problem in depen-

dence analysis, as it is comparable to using pointers to

reference an element.

All the categories can be reduced by having more in-

formation about the subscripts. Interprocedural analy-

sis and symbolic value propagation are two methods of

collecting more information about the calculations that

go into the variables involved in a subscript expression.

4 Dynamic Evaluation of Data

Dependence Analysis

The second method of evaluation is based on informa-

tion gathered dynamically. Dynamic data dependence

evaluation uses the difference between the conservative

static data dependence analysis and what happens dur-

ing execution to evaluate the effectiveness of the static

analysis. Our objective here is to relate a dependence

test to the program speedup it makes possible. In other

words, the fact that the Omega test only breaks 0.9% of

the potential dependence seems to indicate that this

test does not have a profound impact on the result-

ing speedup. However, if the few dependence that the

Omega test breaks happen to be the critical ones, then

the conclusion should be the opposite. Using a dynamic

test is the only way by which this effect can be shown.

For the purposes of this evaluation we will be con-

cerned only with jlow dependence. The restriction to

jlow dependence allows us to focus our attention on the

transportation of data rather than the effects of memory

management that can be attenuated by compiler trans-

formations such as renaming or expansion.

4.1 Overview of the Evaluation Method

The results of the dynamic evaluation of dependence

analysis reported in this paper were one of many re-

sults obtained as part of a compiler evaluation project

we have been conducting at Illinois [16] as an exten-

sion of previous work [17]. The purpose of this study

is to evaluate parallelizing compilers and parallelization

techniques in a machine-independent form.

By measuring the performance of a particular pro-

gram on a single machine, it is easy to determine which

of two compilers is more effective. All we have to do is

to create arl executable program with each compiler, run

the programs, and record the execution times. The com-

piler that produces the fastest program is obviously bet-

ter. However, using a real parallel machine introduces

several problems. It is difficult to isolate experimentally

the effects of the architecture from those of the compiler

strategy. Differences in the resources available on real

parallel machines may make it impossible to observe any

potential differences in parallelism.

We have chosen, therefore, to evaluate a compiler or

compilation technique using as the metric the program

speedup made possible by them on an ideal target par-

allel machine. This ideal parallel machine consists of

an unlimited number of processors. Each has unit time

access to a common shared memory. Conflict-free mem-

ory access is assumed. Also, each arithmetic operation

takes one time unit to execute.

The execution time on the ideal machine is computed

by viewing the program as a directed graph, generated

at run-time, where the nodes represent the operations

that the program executes for a particular input data

set, and the arcs represent the jlow and control depen-

dence that have to be obeyed to execute the program

correctly. The critical path computation, detailed in

[18], dynamically determines the length of the longest

path in the directed graph corresponding to an execu-

tion of the program under study. The ratio of the num-

ber of operations executed to the length of the critical

path is the value we use for speedup. This approach was

originally introduced by Kumar [19] and later extended

by Chen and Yew [17] with the purpose of measuring

important characteristics of sequential programs.

,,.
S1 : A=C+I.

DO 1=1,3

S2 : J=J+l

S3 : IF J < 20 THEN

S4 : El(I) = A + B(I)

ENDIF

S5: A=J*C

ENDDO

Figure 2: Code fragment for dataflow graph,

To illusmate this idea, we will use the code fragment

listed in Figure 2 whose execution is graphically repre-

sented by fihe digraph in Figure 3. The solid arcs portray

113

the flow dependence caused by values that flow between

operations. The dashed arcs represent cent rol depen-

dence that are generated by conditional statements.

Figure 3: Execution graph of program flow dependence.

Opt imal KAP-Obtained

PROGRAM Loop-Level Loo~-Level

adm(AP) “ 45.5 “ 3.0

arc2d (SR) 336.0 66.3

bdna(NA) 139.5 1.3

dyfesm(SD) 17.9 3.9

flo52q(TF) 206.9 76.7

mdg(LW) 5.3 1.4

mg3d(SM) 1,3 1.2

ocean(OC) 272.4 1.3

qcd2(LG) 2.4 1.2

spec77(WS) 13.8 1.1

track(MT) 38.7 1.1

trfd(TI) 87.9 10.3

Table5: Inherent parallelism and parallelis reobtained

through automatic”methods. -

PROGRAM

adm (AP)

arc2d(SR)

bdna (NA)

dyfesm(SD)

flo52q(TF)

mdg (LW)

mg3d(SM)

ocean(OC)

qcd2(LG)

spec77(WS)

track(MT)

trfd(TI)

Figure4: Graph offlowdependences with constraining

arcs.

Notice that ifwe assign aweight ofoneto each node,

the critical path through the graph corresponds to the

shortest execution time on the ideal machine. Notice

also that the memory-related dependence (i.e., antz-

and output dependence) do not influence the critical

path of the program. Thus, in the loop above, S5 is

anti-dependent on S4 because Ahasto be fetched before

it is modified to guarantee correct execution. However,

such anti- dependence does not appear in the graph of

Figure3. This omission iseasyto justify because many

memory-related dependence can be removed by paral-

lelizing compilers using expansion or privatization.

To evaluate the effect of a dependence test, we add

arcs to the directed graph discussed above. One col-

lection of arcs is used to guarantee that only loop-level

parallelisms exercised. The arcs of this type (called

constraining arcs) that should be added to the graph in

Figure 3 are shown as grey arcs in Figure 4. The use

of constraining arcs preclude the possibility of statement

Omega Test Baner j ee

CST & GCD CST & GCD CST & GCD

8.38 8.38 2.77

330.81 330.81 3.10

73.36 72.55 2.38

10.51 10.49 3.61

206.36 206.36 2.66

5.22 5.22 5.12

1.25 1.25 1.14

2.40 2.40 2.03

2.27 2.27 2.15

13.52 13.52 13.20

32.90 32.90 1.74

58.02 58.02 2.89

Table 6: Average interprocedural parallelism: con-

strained by static dependence analysis

PROGRAM

adm(AP)

arc2d (SR)

bdna (NA)

dyfesm(SD)

flo52q(TF)
mdg (LW)

mg3d(SM)

ocean(OC)

qcd2(LG)

spec77(WS)

track(MT)

trfd(TI)

Omega Test Banerj ee

CST k GCD CST & G CD CST & GCD

3.00 3.00 1.89

252.52

73.35

5.31

206.16
4.61

1.18

2.40

1.49

2.25

1.73

252.52

72.55

5.30

206.15

4.61

1.18

2.40

1.49

2.25

1.73

2.18

2.38

1.13

2.66

3.50

1.08

2.03

1.42

2.20

1.59
26.60 26.60 1.52

Table 7: Average intraprocedural parallelism: con-

strained by static dependence analysis.

114

reordering. However, other sources ofparallelism will be

exploited including those that can be exposed by loop in-

terchanging, skewing, or transformation into doacross

loops.

The other collection of additional arcs correspond to

the potential flow dependence not broken by a partic-

ular test. These arcs are called static j?ow dependence,

and the objective of our study is to determine by how

much these arcs increase the critical path of the directed

graph. One implementation detail of these arcs is that

they enforce static dependence to be of distance one.

More details on how this is implemented can be found

in [16].

4.2 Effectiveness of Dependence Tests

A number of papers [2, 3, 4] show that each of the many

different dependence tests are capable of solving a num-

ber of data dependence problems. For evaluation pur-

poses we want to use an ideal dependence test. This

ideal test should be able to determine dependence or in-

dependence for all possible subscripts. It must be able

to say on each reference to an array, exactly which set

of definitions could have contributed to the value placed

in this location. To approach the effect of an idea! de-

pendence test, we use dynamic information reflected in

a directed graph without imposing any static flow de-

pendence arcs.

The dynamic experiments were performed on the

same programs used in the static experiments. The

first column of Table 5 lists the optimal inherent par-

allelism obtained through the use of an ideal dynamic

dependence test [18]. This is the speedup for each pro-

gram if no static flow dependence arcs are added to the

directed graph. The second column, shown for infor-

mational purposes, is the measured performance of the

codes transformed by the KAP/Concurrent restructur-

ing compiler on the ideal machine. The performance

of KAP is, as expected, lower than any of the other

comparable measurements because it does both static

intraprocedural dependence analysis and mapping of the

parallelism.

Tables 6 and 7 list the results of our dynamic anal-

ysis study. Normally the results calculated by criti-

cal path analysis assume that all subroutines are ef-

fectively inlined. Table 6 gives the results for this as-

sumption. Interprocedural parallelism allows loops with

CALL statements to execute concurrently subject only to

the restriction of the dynamic flow dependence. This

means that for the parallelism reported in Table 6,

we assume an ideal interprocedural dependence analysis

test.

We define intraprocedural parallelism to be the par-

allelism inherent in a program when loops that contain

subroutine calls are serialized. Instead of effectively in-

lining the subroutine at each call site, artificial depen-

dence arcs connecting all CALL statements are added

forcing only one subroutine call to be active at any time.

Table 7 gives the results for this second assumption.

The last three columns in Table 6 list the inter-

procedural speedup, which is computed the same aa the

ideal speedup except that certain restrictions are ap-

plied. The restrictions are based on the potential flow

dependence that are not proven independent by the

data dependence tests listed in the heading for the col-

umn. The token CST stands for the constant test, and

GCD stands for the generalized gcd test. Table 7 reports

the effects c,f intraprocedural parallelism for each of the

three types of dependence tests.

Several of the programs have a significant drop in par-

allelism when they are constrained by static dependence

analysis. The most notable are ocean(OC) and adm(AP).

The reason for this degradation is that none of the de-

pendence tests can handle the case where the coefficients

of the index variables are loop invariant variables whose

values are unknown at compile-time. Using a simple

pattern matching technique, it is possible to show that

the majority of the loops that were degraded, for these

cases, are parallel. In fact, KAP/Concurrent was able

to determine that most of these loops were parallel. The

source of the problems in these programs are subscript

references that have been linearized, which illustrates

that one must consider not only linear subscripts with

constant coefficients, but also special cases where loop

invariant variables are used as coefficients.

One observation from the dynamic dependence evalu-

ation is une~pected. The measured inherent parallelism,

when constrained by static dependence arcs, does not

change sign ificantly when the more powerful dependence

analysis techniques used in the Omega test are applied.

Thus, for the Perfect Benchmarks, Banerjee’s inequali-

ties seem tc, be sufficient to detect doall and doacross

parallelism.

Sometimes the correlation between the static and dy-

namic evaluations is as expected. The three best pro-

grams for average KAP parallelism are: f lo52q(TF),

arc2d(SR), and trfd(TI). A comparison of Tables 6

and 7 for “Lhe same three programs shows that they

all have a minimal loss of parallelism when serializing

subroutine calls and eliminating interprocedural par-

allelism. The conclusion reached is as one would ex-

pect. Using a parallelizing compiler that does not do

interproced ural analysis works effectively only when the

programs are easy to analyze and do not require inter-

procedural parallelism.

Sometim:s the correlation is not as encouraging, Four

programs, traCk(MT), spec77(WS), clyfesIn(SD), and

adm(AP), show a large loss of average parallelism when

Tables 6 and 7 are compared. These programs also cor-

respond to instances where KAP was unable to exploit

automatically any meaningful parallelism.

115

5 Conclusions

The statistical summary of static dependence informa-

tion may not relate to the speedup that is obtained for

a program. A single dependence may be responsible for

precluding the parallelization of a loop. But we believe

that statistical information is useful as a means to de-

termine areas in which to concentrate further research.

It has also been shown that the infinity test seems

to be a practical implementation that complements

the published implementations of Banerjee’s rectangular

and trapezoidal tests. The main advantage of the infin-

ity test is that it has semi-symbolic properties. These

properties allow it to be applied in cases where a full

symbolic implementation of the standard Banerjee in-

equalities might be too expensive.

Finally, the results from the Omega test indicate that

only a small number of potential dependence require its

power. Most of the applicability of this test is in proving

the dependence of potential arcs that would otherwise

be assumed dependent.

In Section 4 we extended the evaluation of data depen-

dence analysis into the dynamic domain by considering

the effects of the dependence analysis on the parallelism

exploited in a program. This method is similar to per-

forming the actual parallel compilation and execution

on a parallel machine. However, our method attempts

to isolate the important features of a parallel architec-

ture without being constrained by artificial limitations

such as cache/memory bandwidth or a limited number

of processors.

The major result from the dynamic evaluation shows

that the Omega test does not improve the average par-

allelism over the parallelism exposed by Banerjee’s in-

equalities on these codes. Another benefit of this eval-

uation technique is the capability to locate exactly the

places in the source code that are causing difficulty for

the compiler. These locations might be beneficial as

targets for hand transformations by the user or as test

cases to identify further paths for development of the

compiler.

References

[I] U. Banerjee, Dependence Analysis for Supercomputing.

Kluwer Academic Publishers, 1988.

[2] W. Pugh, “The Omega Test: A Fast and PracticaJ Inte-

ger Programming Algorithm for Dependence AnaJysis,”

Supercornputing ’91, 1991.

[3] G. Goff, K. Kennedy, and C.-W. Tseng, “Practical de-

pendence testing,” SIGPLAN Notices, vol. 26, pp. 15-

29, June 1991. Proceedings of the ACM SIGPLAN ’91

Conference on Programming Language Design and Im-

plementation.

[4] D. E. Maydan, J. L.

cient and exact data

Hennessy, and M. S. Lam, “Effi-

dependence analysis,” SIGPLA N

[5]

[6]

[7]

[8]

[9]

[10]

[11]

[12]

[13]

[14]

[15]

[16]

[17]

[18]

[19]

Notices, vol. 26, pp. 1-14, June 1991. Proceedings of

the ACM SIGPLA N ’91 Conference on Programming

Language Design and Implementation.

U. Banerjee, Speedup of Ordinary Programs. PhD the-

sis, University of Illinois at Urbana-Champaign, Octo-

ber 1979.

K. Psarris, D. Klappholz, and X. Kong, “On the ac-

curacy of the Banerjee test,” Journal of Parallel and

Distributed Computing, vol. 12, pp. 152-157, June 1991.

Z. Li, P.-C. Yew, and C.-Q. Zhu, “Data Depen-

dence Analysis on Multi-dimensional Array Refer-

ences,” in Proc. 3rd International Conf. on Supercom-

puting, pp. 215–224, June 1989.

X. Kong, D. Klappholz, and K. Psarris, “The I Test:

A New Test for Subscript Data Dependence,” in Proc.

1990 International Conf. on Parallel Processing, August

1990.

M. Wolfe and C.-W. Tseng, “The Power Test for Data

Dependence,” IEEE Transactions on Parallel and Dis-

tributed Systems, vol. 3, pp. 591-601, September 1992.

J. R. Allen, Dependence Analysis for Subscripted Vari-

ables and Its Application to Program Transformations.

PhD thesis, Rice University, April 1983.

M. Wolfe and U. Banerjee, “Data Dependence and Its

Application to Parallel Processing,” International Jozm-

nai of Parallel Processing, October 1987.

W. Rudin, Principles of Mathematical Analysis. In-

ternational Series in Pure and Applied Mathematics,

McGraw-Hill Book Company, 1964.

H. M. Salkin and K. Mathur, Foundations of Integer

Programming. North-Holland, 1989.

G. Cybenko, L. Kipp, L. Pointer, and D. Kuck, “Su-

percomputer Performance Evaluation and the Perfect

Benchmarks,” Tech. Rep. 965, University of Illinois at

Urbana-Champaign, Center for Supercomp. Res.&Dev.,

March 1990.

Z. Shen, Z. Li, and P.-C. Yew, “An EmpiricaJ Study

of FORTRAN programs for Parallelizing Compilers,”

CSRD Report no. 983, University of Illinois at Urbana-

Champaign, Center for Supercomp. Res.&Dev., April

1990.

P. M. Petersen, Evaluation of Programs and Paral-

lelizing Compilers Using Dynamic Analysis Techniques.

PhD thesis, University of Illinois at Urbana-Champaign,

January 1993.

D.-K. Chen, “MaxPar: An Execution Driven Simulator

for Studying Parallel Systems,” Master’s thesis, Univ.

of Illinois at Urbana-Champaign, Center for Supercom-

puting Res. & Dev., October 1989.

P. Petersen and D. Paduaj “Machine-Independent Eval-

uation of Parallelizing Compilers,” in Advanced Com-

pilation Techniques for Novel Architectures, January

1992.

M. Kurnar, “Measuring Parallelism in Computation-

Intensive Science / Engineering Applications,” IEEE

Transactions on Computers, vol. 37, no. 9, pp. 5-4o,

1988.

116

