
StaticMock: A Mock Object

Framework for Compiled Languages

Dustin Bingham and Kristen R. Walcott

University of Colorado, Colorado Springs
dbingham@uccs.edu, kwalcott@uccs.edu

ABSTRACT

Mock object frameworks are very useful for creating unit tests. However, purely compiled lan-
guages lack robust frameworks for mock objects. The frameworks that do exist rely on inheritance,
compiler directives, or linker manipulation. Such techniques limit the applicability of the existing
frameworks, especially when dealing with legacy code.

We present a tool, StaticMock, for creating mock objects in compiled languages. This tool uses
source-to-source compilation together with Aspect Oriented Programming to deliver a unique solu-
tion that does not rely on the previous, commonly used techniques. We evaluate the compile-time
and run-time overhead incurred by this tool, and we demonstrate the effectiveness of the tool by
showing that it can be applied to new and existing code.

KEYWORDS

Test-Driven Development, Mock Objects,Seams, Stubs, Expectations, AspectC++, Aspect Oriented

Programming

1. Introduction

Unit testing is fundamental to the process of writing quality software. Test Driven Devel-
opment (TDD for short) places such value on the importance of unit testing that we create
unit tests first, before even one line of code is written [8]. In the past, unit tests were
written ad hoc, but a collection of techniques have arisen in the eXtreme Programming
and TDD communities that ease the process of creating worthwhile tests quickly. These
techniques focus on isolating a section of code, such as a class or method, and strictly
controlling the behavior of its surrounding environment. Mock objects - objects that have
the same interface as the original, but provide no behavior [13] - are one such technique,
and are the focus of this paper.

While interpreted languages such as Ruby or Java have a wealth of frameworks avail-
able [7, 3] that provide a toolkit for mock objects, purely compiled languages such as
C++ lag behind. This is due to the dynamic faculties that interpreted languages can
offer. Metaprogramming and reflection allow us to inspect and alter both the state and
the interface of an object at runtime, and are common features of interpreted languages.
In compiled languages, such features are absent or, if they exist at all, highly limited.
This leaves us with a whole class of languages that are deficient in the powerful isolating
features that mock objects offer.

As TDD continues to blossom, the need to bring a robust mock object framework to
compiled languages also grows. Some attempts have been made, following the approaches
laid out in Michael Feathers’ seminal work [13]. Google Mocks [16], for example, applies
the technique of inheritance: mock classes are subclasses of their full featured parents.
The original methods are overriden and provide the appropriate mock behavior instead.

Other less common approaches have also been taken to solve this issue. Mockator [5, 26]
cleverly manipulates the order of the link step in compilation, effectively shadowing the
original code with mocked code. On the other side of the compilation process, a tool such
as fff [21] makes use of conditional compiler directives. These compiler directives replace
original code with the mocked code, depending on the state of some value specified at
compile time. The replacement is done just before the formal compilation process begins.

Unfortunately, the existing solutions introduce challenges that limit their effectiveness. For
example, the inheritance approach requires code modification. Every method that belongs
to the interface of that class now must be changed to allow the methods to be be overridden
in the child mock class. Like most things in engineering, making a method overridable
comes with a trade-off: some overhead must be paid to facilitate this polymorphism [12].
In a performance critical system, that price may not be permissible, especially if it is a
price paid to aid in unit testing, but carries its cost in the production code. Unfortunately,
compiled languages tend be used most frequently in applications where the demands of
performance outweigh other considerations.

We must also consider the impact introducing child classes with overriden, mocked meth-
ods requires in a large, legacy code base. For example, consider an application with more
than 10 million lines of code. Modifying each class in such a large system is a non-trivial
expenditure of time, even if the task is a simple one. An organization may be loathe
to open these classes for modification, even though the only change is simply marking
methods as overridable.

The conditional compiler directive solution has a similar limitation, but worse. Every class
that needs to be mocked will require some sort of change to incorporate the directives.
While no price is seen at runtime because the replacement is done at compile time, careful
application of these directives will require a careful and thorough modification of the code
base. Furthermore, the compiler directive approach can remove type safety as well as
make the code more obfuscated [26].

Finally, the approach that cleverly manipulates the compiler tool itself avoids both the
performance hit as well as the code maintenance problem. However, it is necessarily limited
to the compiler that it is manipulating. If compiler the tool is created for is the one and
only one that is in use in a particular organization for a particular program, then this
approach can be successful. However, in an environment where different compilers may
be used to target different platforms (g++ for the various flavors of Linux and Microsoft
Visual Studio for Windows, for example), then this approach also falls short. The mock
framework will only be available in one of the multiple targeted environments of the
program. Different unit test code must be written for environments that have access to
the tool versus the environments that do not.

In this work, we use source-to-source compilation avoids these pitfalls. We can take existing
code, transform it, and output source that is ready for mocking. The original source code
remains untouched in the baseline, avoiding the risk, time, and tedium of opening them
for modification. Importantly, the performance penalty of inheritance is avoided in the
actual production code as well.

While there are many tools that can perform source-to-source compilation [4, 14], it would
be beneficial to extend from a bare source-to-source compiler and utilize an approach
that closely matches the problem of introducing a mock object framework into compiled
languages.

The Aspect Oriented Programming (AOP) paradigm can help meet this need. AOP gath-

ers together similar logic spread through multiple parts of a codebase into an abstraction
called an aspect [19]. We use an aspect to intercept all method calls and provide the
appropriate mock behavior as necessary. The aspect is then woven through the original
code through source-to-source compilation using an aspect weaver, a feature of AOP
that merges aspect logic with the original source code.

By combining source-to-source compilation with AOP through the aspect weaver, the
capability to create mock objects can then be introduced at compile time. Source code is
modified for the unit test driver and left untouched in the main program. We avoid the
issues surrounding inheritance, compiler directives, and linker manipulation. In our tool,
StaticMock, we instead provide a strategy for transforming code through AOP to provide
a framework for mock objects in compiled languages.

In summary, the main contributions of this paper are:

1. Background discussion on mock objects (Section), source-to-source compilation(Section ,
and Aspect Oriented Programming (Section)

2. Overview of the StaticMock tool (Section)
3. Evaluation of StaticMock (Section)
4. Discussion of future work and ways to improve StaticMock (Section)

2. Mock Objects, Source-to-Source Compilation, and AOP

Before we discuss our tool, we more fully articulate the idea of a mock object. In the TDD
community, there is some disagreement on the definition of the terms that surround this
concept, so we clarify our usage of these terms.

We also give an overview of source-to-source compilation, and AOP. We describe how
these techniques are used with our StaticMock strategy.

2.1. Mock Objects, Stubs, Seams, and Expectations

Providing a way to use mock objects for compiled languages is the heart of the StaticMock
tool. In this section we describe mock objects, as well as the related techniques of stubs,
seams, and expectations.

The term mock object is used to denote an object that is used to ’stand-in’ for a real
object [22, 27]. Mock objects exactly mirror the interface of the real object but provide
no implementation. In a unit test, the surrounding classes interacting with a Class Under
Test (CUT) are typically created as mock objects. This isolates the behavior of the CUT
while still allowing us to provide all the necessary interacting pieces required to test. Since
”no object is an island” [9], the surrounding objects around the CUT form a system that
can greatly influence how it behaves. By making mock objects that stand in for the
surrounding objects, we attain the isolation needed to evaluate only the CUT.

Mock objects usually forbid any of their methods from being called. If the mock object
receives an unexpected method call, then the unit test can be failed. But merely having
a mock object reject all method calls would not allow us to adequately exercise the CUT.
A certain subset of method calls should be stubbed. A stubbed method is a method on a
mock object that allows a call to be made to it without failing the unit test. Furthermore,
a stubbed method can be configured at run time to return a specific value. This is highly
useful: the output of the stubbed method may be the input to a method in the CUT.
Through configuring the return value, we can generate a range of values to that method
to ensure the behavior is correct across them.

Besides allowing calls to proceed through a mock object, we also allow a stub to be in-
troduced to a real object. Instead of performing the logic within the stubbed method,
the method returns instantly with the specified return value. In a unit test, this is useful
to avoid invoking behavior that could be destructive, irreversible, or bothersome. One-
way, permanent changes to a database is one example. Calling an external API owned
by a different organization that charges per invocation is another. In such cases, return-
ing immediately is desirable, and allows us to write unit tests that would otherwise be
impossible.

Stubs fall into two basic categories: Seams and Expectations. While a seam behaves
exactly in the manner described above, an expectation extends the power of the stub. An
expectation causes a unit test to fail if the method was never called by the time the unit
test terminates. In other words, an expectation is a seam that expects to be called.

A mock object should retain any arguments passed to its stubbed methods for later ver-
ification in the unit test. All stubs should count the number of calls as well, and fail the
test if the stub method was called the incorrect number of times.

2.2. Source to Source Compilation

Source to source compilation translates from one type of source to another. For example,
consider a class Foo with method Bar() as it exists before source-to-source compilation.
This class is shown in Figure 1.

1 class Foo{
2 void Bar (int p1 , int p2) {
3 // Bar l o g i c . . .
4 }
5 }

Figure 1: Class Foo Before Source-to-source Compilation

Source-to-source compilation gives us the ability to transform the input source code and
output modified source code as shown in Figure 2. Since we are creating a mock object
framework, the example compilation injects logic to provide for mock object behavior. The
code surrounding the bar() method determines at runtime if a particular object instance
of Foo is a mock object or a full featured object. If the Foo object is a mock object, then
the method performs the null behavior necessary. If the object is a full featured object,
however, it continues on its normal path.

1 class Foo {
2 void Bar (int p1 , int p2) {
3 i f (isMocked) { return ; }
4 else {
5 // Bar l o g i c . . .
6 }
7 }
8 }

Figure 2: Class Foo After Source-to-source Compilation

2.3. Aspect Oriented Programming

StaticMock combines Aspect Oriented Programming with source-to-source compilation to
create mockable objects. The following section describes the key concepts taken from AOP
and used in the StaticMock tool.

Figure 1 introduced a class Foo with a method Bar(). In source-to-source compilation,
logic is injected directly around the implementation of the Bar() method (Figure 2).
However, with AOP, that logic instead becomes an aspect as shown in figure 3. The
aspect is merged with those methods by the aspect weaver. The weaver performs the role
of the source-to-source compiler, introducing behavior for creating a mock object around
the Bar() method. The original code of Foo is preserved and the mocking logic is clearly
separated away into its own abstraction.

1 class Foo {
2 void Bar (int p1 , int p2) {
3 // Bar l o g i c . . .
4 }
5 }
6
7 aspect Mocker {
8 // weave t h i s l o g i c wi th methods o f foo
9 adv ice execut ion (”Foo”) : around () {

10 i f (isMocked ()) {
11 return getMockReturnValue () ;
12 }
13 else {
14 // cont inue to do o r i g i n a l method l o g i c
15 proceed () ;
16 }
17 }
18 }

Figure 3: Class Foo and Aspect Mocker

Specifically, AOP deals with the idea that there are challenges in computer programming
that are best thought of as cross-cutting concerns [19]. A cross cutting concern is one in
which the code to implement the solution is scattered across many sub-systems or classes
in the program. For example, logging the execution of every function called (both entering
and exiting) is a cross cutting concern.

Another example of a cross-cutting concern, as shown in the appendix , is synchronization
for a collection of data structure classes. Two typical data structure classes, Stack and
List are described in the figure in pseudocode. The code is simple and clear, and the
methods deal only with their direct main concern: operations for pushing, popping, and
inserting. However, if these classes are extended such that only one thread at a time can
modify the internal state of the structure, the code becomes obfuscated, as seen in the
appendix . The clean data structure operations are now blended with logic necessary to
provide thread safety. That logic is similar between all three operations: lock a mutex, do
the data structure operation, then unlock that mutex. If that code could be abstracted
away, then the clean data structure operations would reappear.

This abstraction is called an aspect, and gives AOP its name. In the appendix , the low level
synchronization details are bundled together, forming the aspect. Many of the advantages

realized with the inheritance model of class layout also apply to aspects. Aspects coalesce
code into one common place, preserving the DRY principle (Don’t Repeat Yourself) [17].
This greatly aids in reusability. Aspects also further the goals of information hiding: the
lower-level details and data members are hidden away within the aspect and exposed only
via methods.

While an aspect abstracts cross cutting concerns into one place, mechanisms are then
necessary to introduce that code into the necessary classes. Following the synchronized
data structures example in Figure 8, the synchronization logic is abstracted into an aspect.
This aspect then must be applied in some way to each of the data structure classes, Stack
and List. To do so, three concepts are used: point cuts, advice, and class slicing.

Point cuts are the insertion points in the originating code from which the aspect is called.
Point cuts define which classes the aspect are attached to and where. In the example,
Point cuts are defined on the entrance and exit of the public methods in each of the data
structure classes. This is shown with the before and after keywords in the example.

The second concept, advice, is then introduced to the originating class through the point
cut. Advice can be thought of as the methods that perform the work of the aspect. In
Figure 8 one piece of advice locks the synchronizing primitive. This is joined through the
begin point cut. A second advice method, joined through the after point cut, unlocks
the synchronizing primitive. Together, these pieces of advice provide the syncronization
behavior to allow the data structure to be safe in a multi-threaded environment.

The final mechanism, class slicing, introduces new data members and methods directly to
the originating class. Class slices are attached to the originating class similarly to advice:
point cuts define what classes gain the new members and methods, and the slice defines
the members and methods gained. In the synchronization example, the synchronization
mutex is sliced into each of the data structure classes. However, it is encapsulated purely
in the aspect and the logic that operates against it is hidden away in the advice.

3. StaticMock Overview
The StaticMock tool binds the previous discussed ideas together to form a solution to the
problem of creating a mock object framework in compiled languages. It uses source-to-
source compilation through AOP to allow us to create mock objects without introducing
unnecessary inheritance, code modification, or linker manipulation. To accomplish this
task, the tool is broken into two phases as shown in figure 4.

The first step of the tool is source-to-source compilation, using an AOP compiler. The
CUT, any supporting classes, and the AOP portion of StaticMock, the Function Inter-
ceptor Aspect, are input to that compiler. The compiler produces woven code as output.
This woven code, together with the code for the unit test driver and one other piece of our
StaticMock implementation, the Mock Repository, are fed to the actual language compiler
to produce the unit test executable.

Our tool, StaticMock, is comprised of two halves that work together across these com-
pilation steps. In figure 4, the bolded parts show these two halves. The first half, the
Function Interceptor Aspect, is weaved in to all classes at compile time. It provides the
necessary advice to all the methods of a class, and through that advice communicates with
the second half of StaticMock, the Mock Repository.

The Mock Repository is a stand-alone class that maintains a record of all objects mocked,
seams introduced, methods called and arguments seen. Classes woven together with the
Function Interceptor Aspect inform the Mock Repository of these records. The Mock

Figure 4: Steps of Compilation in Static Mock

1. Source-to-Source Compilation 2. Unit Test Compilation

Compiler

Other Interacting Classes
(Mock Object Candidates)

StaticMock:
Function Interceptor Aspect

Aspect Compiler

Woven Class Code
Class Under Test

Unit Test Code

Static Mock:
Mock Repository

Unit Test Executable

Repository is also the part of StaticMock that we use when we write an actual unit
test. When we want to validate arguments, transform objects into mocks, or to stub out
methods in the unit test, the Mock Repository is relied upon to performed these tasks.

These two pieces are now explained in detail.

3.1. The Function Interceptor Aspect

The Function Interceptor Aspect is the part of StaticMock that surrounds all the method
calls for the classes in the unit test. By intercepting these calls, the Function Interceptor
Aspect is able to determine the status of the object, and provide either mock object
behavior, or the behavior that the normal, full featured object behavior. The Function
Interceptor works in tandem with the Mock Repository, which is described in section .

The Function Interceptor Aspect catches all method calls made in the unit test. There
are 3 categories of calls caught: Constructors, Destructors, and Function Calls. The
calls are caught by introducing advice to these function categories. The advice uses an
”around” Point Cut expression to completely replace the function call instructions with
the instructions in the advice description. A special method in the advice, proceed(),
allows the original function to be invoked if necessary: if the current object is not a mock
object and the function is not stubbed, then the original behavior should be allowed to
continue.

Constructors must be intercepted in a mock object, as the constructor may attempt to
initialize or otherwise make use of other objects or resources that should not be touched.
For example, the constructor may try to initialize a connection to a database, or connect
to a live website’s API. It is a little tricky to prevent the constructor from being invoked,
however. By the time an object is brought to life, the constructor has already been
called and its work performed. Because of this, we cannot uniquely identify the object
that should have its constructor disabled. Instead, one must register with the Mock
Repository beforehand the classes that should not have their constructors invoked upon
object instantiation. Unfortunately, such a registration is necessarily at the class level,
not object level, because no object yet exists, and so such registration would impact all
future object instantiations of that class. Therefore, StaticMock provides a way to also
unregister forbidden class constructors. The preferred idiom for creating mock objects
then is to register the classes that should have their constructors intercepted with the
Mock Repository, create the objects one plans to use, then unregister those classes. This
allows one to create a real object of that class, complete with full initialization, later down
the line in the unit test if needed. Pseudo-code for the constructor advice follows:

Listing 1: Constructor Advice

1 className = determineClassName ()
2 i f (MockRepository . canConstruct (className))
3 {
4 MockRepository . s e tCtorCa l l ed (ob j e c t) ;
5 proceed () ;
6 }

Destructors, unfortunately, have a similar concern. Resources normally acquired through
construction or method use could be freed at the end of the object’s lifetime. It would be
disastrous if one were to attempt to free these resources that were never actually acquired
because the object was mocked. Thus, destructors must also be intercepted. There are
several considerations that need to be kept in mind in the implementation of the destructor
advice. It is possible that the normal construction of a mock object was allowed by the
user of the tool. In this case, the destructor must also be permitted to continue and free
any resources acquired during normal initialization. Furthermore, the process of function
interception for a given mock object acquires dynamic memory that must be freed. Finally,
any expectations that were unmet by this object should be reported to the end user. Sadly,
an exception typically should not be thrown from a destructor, and so the best that can
be done is to send the failure out to some error stream. However, a user can ask for the
status of the expectations on a mocked object at any time, and so perform the assertions
necessary for the unit test in that way. The tasks the Destructor must follow are shown
below:

Listing 2: Destructor Advice

1 MockRepository . as ser tExpectat ionsMet (ob j e c t) ;
2
3 MockRepository . unseam (ob j e c t) ;
4 MockRepository . unexpect (ob j e c t) ;
5
6 i f (MockRepository . wasCtorCalled (ob j e c t))
7 {
8 MockRepository . e ra seCtorCa l l ed (ob j e c t) ;
9 proceed () ;

10 }

Finally, all other Function Calls are also intercepted. When a call is intercepted, the
Interceptor must check with the Mock Repository to determine whether the function has
been seamed, if the target object is a mock object or not, and (in the case that the function
is a method of a mock object) whether or not that object is expecting this call. If the
function has been seamed, or if the object is a mock object and it is expecting the call,
the Interceptor informs the Mock Repository of the call. The function call arguments are
cataloged with the Mock Repository for later verification in the unit test. The interceptor
then retrieves the registered return value from the Repository and returns that value to
the caller. If the object is a mock object, however, and a call is not expected, an exception
is thrown so that the unit test can fail. If neither of the above cases are met, then the
function was neither seamed, nor was the object a mock object with an expectation set up,
and so the original function is allowed to be called through the proceed() method. Note
that the more general term /emphfunction is used here, instead of /emphmethod, as the
Function Interceptor Aspect intercepts not just object methods, but also free functions
that do not belong to an object at all. The interaction of this logic is captured below:

Listing 3: Execution Advice

1
2 i f (isSeamed | | hasExpectat ion)
3 {
4 // save the arguments f o r l a t e r
5 // v e r i f i c a t i o n
6 Arguments arguments ;
7 for (int i i =0; i i < FunctionArgs ; ++i i)
8 {
9 Arg arg = getArg (i i) ;

10 arguments . push back (arg) ;
11 }
12
13 MockRepository . markFunctionCalled (object , s i gnature , arguments) ;
14 return MockRepository . getSeamReturnValue (object , s i g n a t u r e) ;
15 }
16 else i f (isMocked)
17 {
18 throw except ion (”Unexpected c a l l to ” + s i g n a t u r e) ;
19 }
20 else
21 {
22 proceed () ;
23 }

3.2. The Mock Repository Class

The Mock Repository is the part of StaticMock that one interacts with when actually
writing the unit test. The Function Interceptor Aspect described above in section feeds
the Mock Repository as methods are called throughout the execution of the program. By
querying this class, the necessary assertions can be performed in the unit test to verify
the behavior of the CUT. We now detail the workings of the Mock Repository.

The Mock Repository is a standalone class, so there is ever only one in existence as the
program executes. This class is responsible for handling the registration of seams, mocks,
and expectations made by the unit test. It also keeps a log of the function calls made at
runtime as the Function Interceptor Aspect encounters them.

Central to most of the Mock Repository methods is the concept of the Function Signature.
It is a string representation of a function’s declaration, and takes the form:

Listing 4: Function Signature

1 ReturnType [Namespace : :] ∗ [ClassName : :] ? FunctionName (ArgumentType1 ,
ArgumentType2 , . . . ArgumentTypeN)

There are a few subtleties to point out in the Function Signature. Namespaces can be
nested, or nonexistent, as is the case for the global namespace. Free functions, global
functions that do not belong to a class, have no class name specified. The argument list
only contains the types of the arguments and the names of the variables are not listed.
This signature uniquely identifies a method.

The Mock Repository also frequently requires the address of an object. It uses this address
to discriminate among the various objects that may exist at run time, allowing us to setup
seams and expectations on a per object basis. Furthermore, when an object is destroyed,

it automatically unregisters itself from the repository by using its address. If the seam or
expectation is a free function, or a class level method, then the value of null is used for
the address to indicate that the seam or expectation is not tied to any object.

3.2.1. Registration

Mock objects are registered through the mock() method. This method turns the object
into a mock object, forbidding all methods on that object from being called. An exception
is thrown if any method is called on the object henceforth. To allow a method on a mock
object to receive a call a seam can be introduced or an expectation set up.

A seam is created through the seam() method. The method is now allowed on the mock
object, but is stubbed out. A return value can be specified, which will be returned to the
caller when the method is invoked in the future. Expectations are similarly registered,
but they use the expect() method. Expectations are used to ensure that the mock object
receives a call to that method some time before the object is destroyed. Expectations
can be checked at any time through the metExpectation() method. All expectations on
an object are checked automatically on object destruction. Any missing expectations are
written out to the error stream.

Seams can also be introduced over methods of normal, full featured, objects. This is
useful for writing unit tests against the CUT, but preventing that class from performing
behavior that is undesirable in a unit test, such as deleting files, making database changes,
or calling external APIs.

3.2.2. Logging Function Calls

The Mock Repository contains a map of all calls made to stubbed functions during the
execution of the test. When the Function Interceptor Aspect catches a method call, it
informs the Mock Repository of that call so that it can be logged. The arguments that were
passed to the method are bound together with the Function Signature and the originating
object address and are stored in the map. These arguments can then be retrieved through
the getArgument() method for appropriate validation within the unit test to ensure that
values received by the method were correct. The map also contains a count of how many
times a method was called so that can also be verified by the test.

4. StaticMock for C++
In this section, we discuss how we implemented the previously described pieces of the
StaticMock tool in the C++ language.

C++ was chosen as the target language for evaluation as it is a language in wide use,
especially when performance is a concern. It is a language that does have mocking frame-
works available [16, 5], but these frameworks rely upon the aforementioned techniques of
inheritance or compiler manipulation.

We chose AspectC++ [1] to perfors the AOP source-to-source compilation described in
figure 4. It weaves in aspect header files and outputs valid C++ code. This code can then
be included and built with unit test code to verify the operation of classes and methods.

The implementation of the Function Interceptor Aspect described in section resides in the
file smock.ah. AspectC++ transforms all classes fed to it to generate mock-ready classes
and functions.

The other part of StaticMock, the Mock Repository class (as detailed in section), lives
in the files MockRepository.h and MockRepository.cpp. Including the header in a unit

test code file and linking MockRepository.cpp is all that is required to gain access to the
all the functionality that the Mock Repository provides.

4.1. Metrics

To evaluate this implementation of StaticMock the following criteria were considered:

1. New capabilities enabled by the tool
2. Compile build time overhead
3. File size overhead
4. Run-time execution overhead

Two experiments were performed to evaluate the new capabilities criteria: a Test Driver
that demonstrates the functionality of StaticMock with new code, and a TinyXml Driver
that uses the tool against an already existing library.

The overhead induced criteria was measured through two separate builds of a small appli-
cation (again using the TinyXml Library) that either has StaticMock framework compiled
in, or it does not. This experiment considers the cost the StaticMock framework charges
by comparing the differences in compile and execution times between these two configu-
rations.

All experiments were performed on a machine with these characteristics:

• AOP Compiler: AspectC++ version 0.9
• C++ Compiler: g++ version 4.8.1, optimization level set to -O2
• Processor: Intel i7@2.4GHz
• Memory: 8GB

4.2. Experimental Evaluation

The two experiments below investigate the ability to use StaticMock as a mock object
framework. A simple test driver experiment was performed first, ensuring that all the
necessary pieces of our mock framework can be utilized. The second of these two experi-
ments use the tool with an already existing library.

In our third and final experiment we investigate the overhead introduced to the executables
that may use this tool.

4.2.1. Test Driver

The Test Driver experiment was an initial proof of the StaticMock concept. A simple
hierarchy of two classes, Base and Derived, was created. Inside these classes, permutations
of virtual and non-virtual functions were added to ensure that both overridden and non-
overriden types of methods were able to stubbed - a key requirement for object oriented
programming.

A class method, gcd(), was also added to the Derived class. It calculates the greatest
common divisor between two integers, using the recursive euclidean algorithm. A separate
method on the Derived class, produce(), makes use of that gcd() function. It loops five
times, on each pass generating two integers randomly and calling gcd() to find the common
divisor between them.

A third class, Consumer, makes use of the Derived class through its consume() method.
This is used (as shown below) to test use between objects. consume() takes a reference to
an object of the Derived class as an argument, and, inside the method implementation,
invokes the produce() method of the Derived class.

A unit test was then written to exercise this simple code. This unit test first creates an
object of Derived, d. Before the demonstration of the mocking capabilities, the produce()
method on d is called. produce(), as explained above, iterates five times, each time
calculating the gcd of two random numbers through the gcd() class method. These are
sent to Standard Out for inspection and validation.

Next, the gcd() function is seamed, such that it always returns -1. produce() is again
invoked, but this time an exception is thrown, as produce() does not expect to receive a
negative value from gcd(). While a contrived example, it does show how StaticMock can
stub over a function and control its return value. Through this feature, a critical error
that exists in Derived’s produce() method is uncovered.

We now turn d into a mock object, forbidding all calls to it (except ones that are explicitly
stubbed through seams or expectations). A Consumer object, c is also constructed. The
consume() method on c is called, passing in d as the argument. c, in turn, calls back to d,
through the produce() method. Since d is now a mock object and no expectation is set
up for the produce() method, an exception is thrown. This demonstrates another use of
the capabilities of mock objects in general and of StaticMock in particular. Interactions
between objects are easily shown. It is clear now that Consumed is tightly coupled to
Derived through the behavior of Derived’s produce() method. While produce() does
nothing of consequence in this little function, in real code it could potentially write changes
to a database or invoke outside APIs. By refusing to invoke this code and instead throwing
an exception, this sort of behavior is avoided. Furthermore, to test consume() fully, one
would want to modulate all the return values of produce() across the entire range of
outputs that could returned. These are all capabilities delivered by using the seam and
expectation features of StaticMock.

Continuing with this experiment, another instance of Derived is created, called e. A seam
is set up on one of the overridable methods in the hierarchy, abstractfn1(). An expecta-
tion is created as well, on the other overridable method, abstractfn2(). abstractfn1()
is invoked, which is allowed through the seam. However, abstractfn2() has an expecta-
tion that it should be called. The state of the expectations of an object can be checked
through the assertExpectationsMet() method on the Mock Repository. Accordingly,
that method is called, and an exception thrown - abstractfn2() never received a call.

4.2.2. TinyXML Driver

While the first experiment was created to evaluate and demonstrate the features of Stat-
icMock, the intention of this second experiment is to apply the StaticMock tool to an
existing code base. To that end, StaticMock was applied to write a small unit test against
the TinyXML library.

The TinyXML [28] program is a fast and small XML parser. It is very mature and stable,
and is used in many real world applications. While small, it has enough complexity to
demonstrate the usefulness of the StaticMock tool’s capabilities. The object model for
Tiny XML is shown in figure 5.

Figure 5: Tiny XML Object Model

TiXmlDocument is the central class in the design of this library, and represents an XML
Document, as one would expect. It was chosen as the class under test for the experiment.
The unit test for the experiment focused on printing functionality surrounding this class.

Two classes interact with TiXmlDocument during printing. TiXmlElement represents an
arbitrary XML element that is attached to the TiXmlDocument. TiXmlPrinter implements
the visitor design pattern [15] and is used to visit each item in the XML document. As it
visits the item, the Print() method of that object is invoked.

Two methods in the unit test driver test the behavior of TiXmlDocument. test print()

evaluates the DOM walking capabilities of TiXmlDocument. That is to say, it ensures
that the children in its document receive a call. To accomplish this task, it attaches
three TiXmlElement mock objects to the TiXmlDocument object being tested through the
linkEndChild() method. An expectation is set up on each of the three mock objects,
hoping to see their own individual Print() methods are called. The test then invokes the
Print() of the document itself. If all expectations are met, then test succeeds.

Similarly, test visitor() ensures that the VisitEnter() and VisitExit() methods are
called on a TiXmlPrinter object from the TiXmlDocument. A mock TiXmlPrinter is
instantiated, and the TiXmlDocument accepts the printer visitor through the accept()

method. If the expectations are met, the test succeeds. Otherwise, it fails.

4.2.3. Overhead Introduced

To evaluate the various overhead costs introduced by the tool, the TinyXML library was
again used. Instead of creating a unit test, however, a small application was created. This
application reads the contents of a local XML file from disk (about 142KB in size), parses
it into an internal DOM representation, then writes that representation back out to disk
in a separate file.

Two different build configurations for this application were tested: one with the aspect
code weaved in, and one without. For each configuration, 10 separate builds were per-
formed and timed. The average time was then recorded for each, and slowdown calculated
by dividing the average time taken with StaticMock code by the average time take without
that code. The file size of both executables were also recorded. The results are shown in
Table 1.

Next, the application was executed 10 times in both configurations, recording how long it
took to perform its task. The results are presented in Table 2.

4.3. Discussion

In both the Test Driver experiment and the TinyXML Driver experiment the mocking
capabilities of StaticMock are shown. Seams and Expectations can be stubbed over any
arbitrary method. Return values can be specified for those methods, allowing us to control
the interactions between mocked objects and the CUT. Any class that is provided to the
aspect compiler can be then be turned into a mock object in the unit test. Argument
data to methods are saved in the MockRepository. That data can then retrieved later
in the unit test, and be evaluated to assert that their values are correct. Taken in toto,
this demonstrates that unit tests can be successfully written take advantage of this new
functionality that the StaticMock tool provides, for both new and existing code.

The Overhead Introduced experiment shows that there is around 6.5 factor increase in
time to compile the executable when StaticMock is added. In the experiment, the output
executable took an additional 14.5 additional seconds to compile. More dramatically, the

Table 1: Compilation Overhead

Trial Compile
Time with
StaticMock
(ms)

Compile
Time
without
StaticMock
(ms)

1 17138 2654

2 17340 2700

3 17263 2733

4 17347 2691

5 17192 2669

6 17209 2686

7 17184 2687

8 17326 2706

9 17196 2688

10 17268 2690

Avg Time 17246 2690

Avgerage 6.457
Slowdown

File Size 1448652 161187
(Bytes)

File Size 8.987
Increase

Table 2: Execution Overhead

heightTrial Execution
Time with
StaticMock
(ms)

Execution
Time
without
StaticMock
(ms)

1 1603 18

2 1603 18

3 1604 19

4 1605 19

5 1604 17

6 1599 18

7 1602 17

8 1606 18

9 1599 19

10 1603 18

Avg. Exec. 1602.8 18.1
Time

Execution 89.1
Slowdown

execution time suffered an 89.1 factor slowdown. While the total compile and run times
with StaticMock still appear to be overall within reasonable parameters (seconds, not
minutes) unit tests should be first of all be fast, both to execute as well as to build. In
an environment where thousands of unit tests must be run, this increase in build and
run time may not be acceptable, which could potentially limit the usefulness of the tool.
However in [20] it was discussed that the runtime overhead introduced by aspect code
may be disproportionately large in small code, making this overhead appear larger in the
experiment than it actually would be in practice.

Furthermore, the point cuts defined for introducing advice in the implementation of Stat-
icMock are very aggressive: they catch all method calls, whether necessary to the unit test
or not. The tool could be optimized to only catch method calls for the objects surrounding
the CUT. This would limit the interference of the mocking framework, reducing overhead.
In a way, the results here provide a ’worst-case’ analysis of the tool’s use, where every
class provided to StaticMock will need to be capable of becoming a mock object in the
unit test.

5. Threats to Validity

While StaticMock was implemented with only one type of compiled language (C++), it
should be generally applicable to other purely compiled languages. Similarly, while only
one type of aspect oriented compiler was chosen for experimentation, the feature set across
aspect oriented languages is similar enough that the core ideas will be transferable.

It may also be noted that the experiments chosen to demonstrate our tool were small;
however each experiment shows the complete spectrum of possibilities that the tool can

achieve. Expectations and seams with return values configured were demonstrated to
be achievable. Mock objects with their attendant expectation validation and method
forbiddence abilities are shown. And finally, argument values can be stored, retrieved,
and validated. With these capabilities, StaticMock is established as a viable toolkit for
creating unit tests.

6. Related Work

There are many mock object frameworks already in existence. For interpreted languages,
there are a wealth of choices available [7, 3, 10, 6, 11]. These frameworks rely on dynamic
features of interpreted languages, which are not available in compiled languages.

For compiled languages, the selection is slimmer [16, 25, 5]. These frameworks either
depend on inheritance or compiler manipulation to achieve their goals. Our solution does
neither: instead it intercepts method calls at runtime through an aspect advice woven in
at compile time through an AOP compiler.

The concrete implementation of the StaticMock tool is closely related to the Virtual Mock
Object technique proposed in [18], which uses a central class to function as repository and
method call logger. It similarly uses AOP to intercept method calls. No concrete mock
objects are created with this tool, however. Instead, individual methods on particular ob-
jects are registered and intercepted in an ad-hoc basis. Our implementation differs in that
an actual mock object can be instantiated, with the entire interface of that object acting
as a mock object. This leads to a natural, intuitive, and readable unit test. A second,
critical, difference is that StaticMock is focused on bringing a mock object framework to
compiled languages, while the Virtual Mock Object technique was implemented for Java
using AspectJ [2].

GenuTest [24] makes use of the Virtual Mock Object technique described above in the
automatic generation of its unit tests.

Discussion of the applicability of mock objects and frameworks can be found in [23]. The
genesis of using mock objects in unit tests was discussed in [22].

Object, link, and and preprocessor seams was explored in [13]. A fourth technique for
introducing seams into an object, compile seams, was introduced in [26].

7. Conclusion and Future Work

StaticMock is a unique approach to the problem of creating a mock object framework for
compiled languages. Other approaches rely on code modification, inheritance, compiler
directives, or linker manipulation to achieve their ends. When dealing with legacy code,
these approaches have significant drawbacks that limit their applicability. StaticMock
instead uses Aspect Oriented Programming and source-to-source compilation to deliver
that framework. Unit tests can now be created with StaticMock without making changes
to legacy code or by introducing unnecessary runtime overhead. Our tool shows slow both
the compilation and runtime of unit tests where it is used. It would be helpful to explore
ways to reduce the time overhead of the tool. StaticMock could be extend toward thread
safety and protecting access to a mock object’s member data.

8. References

[1] Aspect c++. http://www.aspectc.org/. Accessed: 2015-02-08.

[2] The aspectj project. https://eclipse.org/aspectj/. Accessed: 2015-02-08.

http://www.aspectc.org/
https://eclipse.org/aspectj/

[3] jmock: an expressive mock object library for java. http://www.jmock.org/. Ac-
cessed: 2015-02-08.

[4] The llvm compiler infrastructure. http://llvm.org/. Accessed: 2015-02-08.

[5] Mockator. http://www.mockator.com/. Accessed: 2015-02-08.

[6] Mockito. http://mockito.org/. Accessed: 2015-02-08.

[7] Rspec: Behavior driven development for ruby. http://rspec.info/. Accessed:
2015-02-08.

[8] D. Astels. Test driven development: A practical guide. Prentice Hall Professional
Technical Reference, 2003.

[9] K. Beck and W. Cunningham. A laboratory for teaching object oriented thinking.
In ACM Sigplan Notices, volume 24, pages 1–6. ACM, 1989.

[10] I. Clarius, Manas. Moq. https://github.com/Moq/moq4. Accessed: 2015-02-08.

[11] E. contributors. Easymock. http://easymock.org/. Accessed: 2015-02-08.

[12] K. Driesen and U. Hölzle. The direct cost of virtual function calls in c++. In ACM
Sigplan Notices, volume 31, pages 306–323. ACM, 1996.

[13] M. Feathers. Working effectively with legacy code. Prentice Hall Professional, 2004.

[14] F. S. Foundation. Gnu bison. https://www.gnu.org/software/bison/. Accessed:
2015-02-08.

[15] E. Gamma, R. Helm, R. Johnson, and J. Vlissides. Design Patterns: Elements
of Reusable Object-Oriented Software (Adobe Reader). Addison-Wesley Professional
Computing Series. Pearson Education, 1994.

[16] Google. googlemock: Google c++ mocking framework. https://code.google.

com/p/googlemock/. Accessed: 2015-02-08.

[17] A. Hunt and D. Thomas. The pragmatic programmer: from journeyman to master.
Addison-Wesley Professional, 2000.

[18] R. Jeffries. Virtual mock objects using aspectj with junit. http://ronjeffries.

com/xprog/articles/virtualmockobjects/. Accessed: 2015-02-08.

[19] G. Kiczales, J. Lamping, A. Mendhekar, C. Maeda, C. Lopes, J.-M. Loingtier, and
J. Irwin. Aspect-oriented programming. In ECOOP’97Object-oriented programming,
pages 220–242. Springer, 1997.

[20] D. Lohmann, G. Blaschke, and O. Spinczyk. Generic advice: On the combination
of aop with generative programming in aspectc++. In Generative Programming and
Component Engineering, pages 55–74. Springer, 2004.

[21] M. Long. fff: Fake function framework. https://github.com/meekrosoft/fff#

readme. Accessed: 2015-02-08.

[22] T. Mackinnon, S. Freeman, and P. Craig. Endo-testing: unit testing with mock
objects. Extreme programming examined, pages 287–301, 2000.

[23] S. Mostafa and X. Wang. An empirical study on the usage of mocking frameworks
in software testing. In Quality Software (QSIC), 2014 14th International Conference
on, pages 127–132. IEEE, 2014.

[24] B. Pasternak, S. Tyszberowicz, and A. Yehudai. Genutest: a unit test and mock
aspect generation tool. International journal on software tools for technology transfer,

http://www.jmock.org/
http://llvm.org/
http://www.mockator.com/
http://mockito.org/
http://rspec.info/
https://github.com/Moq/moq4
http://easymock.org/
https://www.gnu.org/software/bison/
https://code.google.com/p/googlemock/
https://code.google.com/p/googlemock/
http://ronjeffries.com/xprog/articles/virtualmockobjects/
http://ronjeffries.com/xprog/articles/virtualmockobjects/
https://github.com/meekrosoft/fff#readme
https://github.com/meekrosoft/fff#readme

11(4):273–290, 2009.

[25] Pe’er. Fakeit. https://github.com/eranpeer/FakeIt. Accessed: 2015-02-08.

[26] M. Rüegg and P. Sommerlad. Refactoring towards seams in c++. In Proceedings
of the 7th International Workshop on Automation of Software Test, pages 117–123.
IEEE Press, 2012.

[27] D. Thomas and A. Hunt. Mock objects. Software, IEEE, 19(3):22–24, 2002.

[28] L. Thomason. Tinyxml. http://www.grinninglizard.com/tinyxml/. Accessed:
2015-02-08.

9. Appendix

1 class Stack {
2 public :
3 void push (Object o) {
4 i f (top != max) {
5 i n t e r n a l [top++] = o ;
6 }
7 }
8
9 Object pop () {

10 i f (top > 0)
11 return i n t e r n a l [−−top] ;
12 else
13 return n u l l ;
14 }
15 private :
16 Object i n t e r n a l [max] = Object [] ;
17 top = 0 ;
18 }
19
20 class L i s t {
21 public :
22 void i n s e r t (Object o) {
23 Node next (o) ;
24 head . next = next ;
25 head = next ;
26 }
27
28 private :
29 class Node{
30 Node (Object o) {
31 held = o ;
32 next = n u l l ;
33 }
34 Object he ld ;
35 Node next ;
36 }
37 Node head = n u l l ;
38 }

Figure 6: Typical Data Structure Classes Stack and List

https://github.com/eranpeer/FakeIt
http://www.grinninglizard.com/tinyxml/

1 class Stack
2 {
3 public :
4 void push (Object o) {
5 lock (mutex) ;
6
7 i f (top != max) {
8 i n t e r n a l [top++] = o ;
9 }

10
11 unlock (mutex) ;
12 }
13
14 Object pop () {
15 retVal = n u l l ;
16 l ock (mutex) ;
17 i f (top > 0) {
18 retVal = i n t e r n a l [−−top] ;
19 }
20 unlock (mutex) ;
21 return retVal ;
22 }
23
24 private :
25 Object i n t e r n a l [max] = Object [] ;
26 top = 0 ;
27 Mutex mutex ;
28 }
29
30 class L i s t {
31 public :
32 void i n s e r t (Object o) {
33 lock (mutex) ;
34 Node next (o) ;
35 head . next = next ;
36 head = next ;
37 unlock (mutex) ;
38 }
39
40 private :
41 class Node{
42 Node (Object o) {
43 held = o ;
44 next = n u l l ;
45 }
46 Object he ld ;
47 Node next ;
48 }
49 Node head = n u l l ;
50 Mutex mutex ;
51 }

Figure 7: Stack and List, Synchronized

1 class Stack {
2 public :
3 void push (Object o)
4 {
5 i f (top != max) {
6 i n t e r n a l [top++] = o ;
7 }
8 }
9

10 Object pop ()
11 {
12 i f (top > 0) {
13 return i n t e r n a l [top−−];
14 }
15 else {
16 return n u l l ;
17 }
18 }
19 private :
20 Object i n t e r n a l [max] = Object [] ;
21 top = 0 ;
22 }
23
24 class L i s t {
25 public :
26 void i n s e r t (Object o) {
27 Node next (o) ;
28 head . next = next ;
29 head = next ;
30 }
31
32 private :
33 class Node{
34 Node (Object o) {
35 held = o ;
36 next = n u l l ;
37 }
38 Object he ld ;
39 Node next ;
40 }
41 Node head = n u l l ;
42 }
43
44 aspect Synchronizer {
45 adv ice execut ion : be f o r e {
46 lock (mutex) ;
47 }
48
49 adv ice execut ion : a f t e r {
50 unlock (mutex) ;
51 }
52
53 private :
54 Mutex mutex ;
55 }

Figure 8: Stack and List with Aspect

