Statics

J. W. Eischen

Other Disciplines FE Specifications

Topic: Statics 8-12 FE exam problems	Exam Problem Numbers
A. Resultants of force systems and vector analysis	$45,48,49$
B. Concurrent force systems	51
C. Force couple systems D. Equilibrium of rigid bodies	$46,47,50,52$
E. Frames and trusses	51,64
F. Area properties(e.g. centroids, moments of inertia, radius of gyration)	
G. Static friction	52,

We are grateful to NCEES for granting us permission to copy short sections from the FE Handbook to show students how to use Handbook information in solving problems. This information will normally appear in these videos as white boxes.

1. Which of the following statements is not one of Newton's Laws of Motion?
A) The acceleration of a body is proportional to any unbalanced force acting on the body.
B) The forces between two bodies in contact are equal, opposite, and have the same line of action.
C) The force acting on a rope must always be such that the rope is in tension and cannot vary along the rope.
D) A body remains at rest, or in a straight line at constant velocity, unless acted upon by an unbalanced force.
2. Which of the following statements is not one of Newton's Laws of Motion?
A) The acceleration of a body is proportional to any unbalanced force acting on the body.

Newtons $2^{\text {nd }}$ law ($\mathrm{F}=\mathrm{ma}$)
B) The forces between two bodies in contact are equal, opposite, and have the same line of action.

Newton's 3 rd law
C) The force acting on a rope must always be such that the rope is in tension and cannot vary along the rope.

True, but not one of Newton's laws
D) A body remains at rest, or in a straight line at constant velocity, unless acted upon by an unbalanced force.

Newton's $1^{\text {st }}$ law
2. At what angle (θ) should the 60 N force act for the resultant (R) of the three forces shown to be along the x-axis?

A) 40°
B) 50°
C) 60°
D) 70°

Solution - Pr oblem 2 (Page 72- Ref. Handbook) Since the resultant R is along the x axis it has no vertical component. Hence the sum of the vertical components of the three forces that make up R must be zero, ie.

$$
\begin{align*}
& \sum \mathrm{F}_{\mathrm{v}}=0 \\
& \quad 40 \cos 30^{\circ}+50 \sin 20^{\circ}-60 \sin \theta=0 \\
& \sin \theta=\frac{(40)(.866)+(50)(.342)}{60}=0.862 \\
& \quad \theta=59.8^{\circ} \approx 60^{\circ}
\end{align*}
$$

3. What is the moment of the 300 N force acting at point C of the beam shown about the pin support at point A ?

A) $305 \mathrm{~N} \cdot \mathrm{~m})$
B) $825 \mathrm{~N} \cdot \mathrm{~m}$)
C) $1130 \mathrm{~N} \cdot \mathrm{~m}$)
D) $1950 \mathrm{~N} \cdot \mathrm{~m}$)

Solution - Problem 3 (Page 72- Ref. Handbook)
It is easiest to first resolve 300 N force at C into vertical and horizontal components.

Now calculate moment from both components
about point A. (clockwise +)

$$
\begin{aligned}
M_{A} & =(103 N)(8 m)-(282 N)(4 m) \\
& =824 N m-1128 N m=-304 N m
\end{aligned}
$$

4. Determine the force (F) needed to hold the 500 N cylinder shown in equilibrium on the frictionless inclined surface.

A) 375 N
B) 500 N
C) 625 N
D) 835 N

Solution - Problem 4

(Page 73 - Ref. Handbook)

Start with free body diagram of cylinder and break up surface reaction R into horizontal and vertical components.

Apply equations of equilibrium

$$
\begin{array}{ll}
\sum F_{H}=0 & F=\frac{3}{5} R \\
\sum F_{V}=0 & 500 N=\frac{4}{5} R \Rightarrow R=\frac{2500}{4} N
\end{array}
$$

then $F=\frac{3}{5} R=\frac{1500}{4} N=375 N$
5. Determine the reaction at the roller support at point A for the loading on the beam shown.

A) 120 N
B) 255 N
C) 330 N
D) 445 N

Solution - Problem 5

Apply moment equilibrium about point B to eliminate R_{B} from c consideration.
acting through centroid.
First, determine resultants of distributed loads; area under distribution

$$
\begin{align*}
& \quad \sum M_{B}=0 \\
& R_{A}(20)-150(18)-100(11)+2000-300(2)=0 \\
& R_{A}=\frac{2700+1100-2000+600}{20}=120 \mathrm{~N}
\end{align*}
$$

6. What value of the force (P) in terms of the weight (W) is necessary for the pulley system shown to be in equilibrium?

A) W
B) $W \div 2$
C) $W \div 4$
D) $W \div 8$

Solution - Problem 6

Draw free body daigram with all external forces on each pulley sequentially starting at the right recognizing that tension in cable over pulley is constant since there is no friction.

Check equilibrium of three atachments to fixed surface.

$$
W / 2+W / 4+W / 2=W+P
$$

7. Identify, if any, the zero force members of the truss shown. There are downward loads (P) acting only at joints F and H .

A) CH
B) CH, DG
C) $\mathrm{CH}, \mathrm{DG}, \mathrm{DH}$
D) None

Solution -Problem 7

(Page 73 - Ref. Handbook)

Rule 1 -
If only two members form a truss joint and no external load or support reaction is applied at the joint, the members are zero force members.

Rule 2 -
If three members form a truss joint for which two of the members are collinear the third member is a zero force strut provided no external force or support reaction is applied to the joint.

1. CH is a zero force member by Rule 2
2. DG is a zero force member by Rule 2
3. HD is a zero force member by Rule 2
ç)
4. Determine the force in member EF of the truss shown.

A) 5 kN
B) 10 kN
C) 21 kN
D) 25 kN

Solution - Problem 8

9. Locate the centroid of the composite area shown relative to the given xy coordinate system.

A) $\bar{x}=1.2 \mathrm{~cm}, \bar{y}=4.5 \mathrm{~cm}$
B) $\bar{x}=1.9 \mathrm{~cm}, \bar{y}=5.4 \mathrm{~cm}$
C) $\bar{x}=2.4 \mathrm{~cm}, \bar{y}=5.0 \mathrm{~cm}$
D) $\bar{x}=3.0 \mathrm{~cm}, \bar{y}=4.5 \mathrm{~cm}$

Solution - Pr oblem 9

$$
\begin{aligned}
& \text { Use definition of centroid } \\
& \bar{x}=\frac{\sum A_{i} x_{i}}{\sum A_{i}} \quad \bar{y}=\frac{\sum A_{i} y_{i}}{\sum A_{i}}
\end{aligned}
$$

Section	$A_{i}\left(\mathrm{~cm}^{2}\right)$	$x_{i}(\mathrm{~cm})$	$y_{i}(\mathrm{~cm})$	$A_{i} x_{i}\left(\mathrm{~cm}^{3}\right)$	$A_{i} y_{i}\left(\mathrm{~cm}^{3}\right)$
triangle	36	-2	6	-72	144
rectangle	108	4.5	6	486	648
semi-circle	-25.1	7.3	6	-183.5	-150.8
Summation	118.9			230.5	641.2

$$
\bar{x}=\frac{230.5}{118.9}=1.94 \mathrm{~cm}, \quad \bar{y}=\frac{641.2}{118.9}=5.39 \mathrm{~cm}
$$

10. Determine the moment of inertia of the Tee section shown about its horizontal centroidal axis, which has been located.

$\begin{array}{llll}\text { A) } 173 \mathrm{~cm}^{4} & \text { B) } 343 \mathrm{~cm}^{4} & \text { C) } 533 \mathrm{~cm}^{4} & \text { D) } 753 \mathrm{~cm}^{4}\end{array}$

Solution -Problem 10

Use parallel axis theorem

$$
\begin{gathered}
I_{c}=\left(I_{t}+A_{t} d_{t}^{2}\right)+\left(I_{b}+A_{b} d_{b}^{2}\right) \\
I_{\text {rect }}=\frac{b h^{3}}{12}
\end{gathered}
$$

$$
\begin{align*}
& I_{t}=\frac{(10)\left(2^{3}\right)}{12}=6.67 \mathrm{~cm}^{4}, \quad A_{t}=(10)(2)=20 \mathrm{~cm}^{2}, d_{t}=2+1=3 \mathrm{~cm} \\
& I_{b}=\frac{(2)\left(10^{3}\right)}{12}=166.7 \mathrm{~cm}^{4}, A_{b}=(2)(10)=20 \mathrm{~cm}^{2}, d_{b}=8-5=3 \mathrm{~cm} \\
& I_{c}=\left(6.67+20 \times 3^{2}\right)+\left(166.7+20 \times 3^{2}\right)=533.3 \mathrm{~cm}^{4}
\end{align*}
$$

11. What is relationship between the maximum angle (θ) for impending slipping of the block on the incline and the coefficient of static friction $\left(\mu_{s}\right)$.

A) $\sin \theta_{\text {max }}=\mu_{s}$
B) $\cos \theta_{\text {max }}=\mu_{s}$
C) $\tan \theta_{\text {max }}=\mu_{s}$
D) $\sec \theta_{\text {max }}=\mu_{\mathrm{s}}$

Solution -Problem 11

 (Page 73 - Ref. Handbook)

Slippage will begin to take place when component of W along plane is equal to $\mu_{\mathrm{s}} \mathrm{N}$.
Apply equilibrium to all forces on free body diagram of block.

$$
\begin{align*}
& \sum \mathrm{F}_{\mathrm{y}}=0 \quad \mathrm{~N}-\mathrm{W} \cos \theta=0 \Rightarrow \mathrm{~N}=\mathrm{W} \cos \theta \\
& \sum \mathrm{~F}_{\mathrm{x}}=0 \quad \mu_{\mathrm{s}} \mathrm{~N}-\mathrm{W} \sin \theta=0 \text { or } \\
& \quad \mu_{\mathrm{s}} \mathrm{~W} \cos \theta=\mathrm{W} \sin \theta \Rightarrow \mu_{\mathrm{s}}=\frac{\sin \theta}{\cos \theta}=\tan \theta
\end{align*}
$$

12. Determine an algebraic expression that relates the width (x) of the triangular block to its height (h) and the coefficient of static friction $\left(\mu_{\mathrm{s}}\right)$ for the block to as likely slip as it is to tip.

A) $\mathrm{x}=\mu_{\mathrm{s}} \mathrm{h}$
B) $x=2 \mu_{s} h$
C) $x=3 \mu_{\mathrm{s}} \mathrm{h}$
D) $x=4 \mu_{s} h$

Solution -Problem 12

At instant of tipping forces on block will be as shown on left. Satisfy equations of equilibium for assumed force system.

$$
\sum F_{\text {horizontal }}=0 \quad \mathrm{P}=\mu_{\mathrm{s}} \mathrm{~N}
$$

$$
\sum F_{\text {vertical }}=0 \quad W=N
$$

$$
\sum M_{o}=0 \quad P(h)=W\left(\frac{x}{2}\right) \text { or }
$$

$$
\mu_{\mathrm{s}} \mathrm{~W}(\mathrm{~h})=\mathrm{W}\left(\frac{\mathrm{x}}{2}\right) \quad \Rightarrow \mathrm{x}=2 \mu_{\mathrm{s}} \mathrm{~h}
$$

