

PMFSEL REPORT NO. 03-1 January 2003

Statistical Analysis of Structural Plate Mechanical Properties

by

Somchat Suwan Lance Manuel and Karl H. Frank

Sponsored by American Iron and Steel Institute

PHIL M. FERGUSON STRUCTURAL ENGINEERING LABORATORY Department of Civil Engineering / Bureau of Engineering Research The University of Texas at Austin

American Iron and Steel Institute

STATISTICAL ANALYSIS OF STRUCTURAL PLATE MECHANICAL PROPERTIES

FINAL REPORT

Prepared for American Iron and Steel Institute

Somchat Suwan

Lance Manuel

Karl H. Frank

Department of Civil Engineering The University of Texas at Austin

January 16, 2003

Acknowledgement

This work was sponsored by the American Iron and Steel Institute (AISI) and was performed for the AISI Technical Committee on Plates.

FORWARD

This work was sponsored by the American Iron and Steel Institute (AISI) and was performed for the AISI Technical Committee on Plates. In 1974, AISI published a report dealing with variations found in hot-rolled steel plate. Entitled "The Variation of Product Analysis and Tensile Properties: Carbon Steel Plates and Wide Flange Shapes", that report described the probability that tensile properties may differ among test locations within a plate other than the reported test location. In 1979 and again in 1989, AISI also published informational reports entitled "The Variations in Charpy V-Notch Impact Test Properties in Steel Plates".

In 1998, the AISI Technical Committee on Plates and Shapes included in their Workplans an item to update the aforementioned studies to reflect current mill practice. By the end of 1999, an acceptable proposal and format was developed with the University of Texas at Austin under the direction of Dr. Karl Frank, Department of Civil Engineering. Data was eventually collected from participating members of the AISI Committee and forwarded anonymously for inclusion in this study.

The following report describes the extensive analysis of the current data that includes both tensile and Charpy V-Notch data. Due to constraints, complete chemical data that could compare differences in product analyses within plates and from plate to plate could not be accomplished by the participating mills. An excellent treatment of the results is detailed within this report. The overall values described in these results have changed greatly from the previous studies. This is mainly due to the effects of better quality and the fact that higher strength steels have become the focus of production now compared to thirty years ago when much of the data dealt with lower strength steels. It is important to note that while this is true, the variations encountered in the treatment of the data have remained largely comparable. One interesting observation on tensile properties is that as a function of required minimum strength, yield strength has a smaller standard deviation compared to the earlier data. Another is the nearly three-fold increase in absorbed energy values reflecting the improved quality of the more current steels.

On behalf of the Committee, I would like to thank Dr. Karl Frank and his staff for a thorough and detailed report. I would also like to personally thank those members of the Plate Committee who provided extensive data at great expense of time and money to their companies and for their continued dedication to the completion of this Workplan.

Kenneth E. Orie Chairman, AISI Technical Committee on Plates

TABLE OF CONTENTS

Chapte	r		Page
СНАРТ	TER 1	- INTRODUCTION	
1	1.1	Introduction	1
1	1.2	Scope of Research	1
СНАРТ	TER 2	- DATA DESCRIPTION AND PREPARATION	
2	2.1	Description of Data	3
		2.1.1 The 4-Mill Group	3
		2.1.2 The 2-Mill Group	5
2	2.2	Data Preparation	5
2	2.3	Properties to be Studied	9
		2.3.1 Carbon Equivalent	9
		2.3.2 Yield Strength	9
		2.3.3 Tensile Strength	10
		2.3.4 Yield to Tensile Ratio	10
		2.3.5 Yield Strength to Yield Point Ratio	10
		2.3.6 Charpy V-Notch Toughness	11
САНРТ	TER 3	– ANALYSIS OF DATA	
3	3.1	Carbon Equivalent	12

3.1	Carbo	n Equivalent	12
	3.1.1	Organized Data from 4-Mill Group	13
	3.1.2	Statistical Analysis Results from All Mills	16
	3.1.3	Correlation Studies Involving Carbon	
		Equivalent	18
3.2	Yield	Strength	23
	3.2.1	Organized Data from 4-Mill Group	23
	3.2.2	Statistical Analysis Results from All Mills	25
	3.2.3	Distribution of Sampled Yield Strength	
		Values	27
3.3	Tensil	e Strength	29
	3.3.1	Organized Data from 4-Mill Group	29
	3.3.2	Statistical Analysis Results from All Mills	31
	3.3.3	Distribution of Samples Tensile Strength	
		Values	33

3.4	Yield	to Tensile Ratio	34
	3.4.1	Organized Data from 4-Mill Group	34
	3.4.2	Statistical Analysis Results from all Mills	36
3.5	Viold	Strength to Vield Point Patio	38
5.5	3 5 1	Organized Data for Mill 4	38
	3.5.1	Statistical Analysis Pasult for Mill 4	38
36	Charm	v V-Notch Toughness	30 70
5.0	361	Organized Data from the 4-Mill Group	40
	3.6.2	Statistical Analysis Results from All Mills	40 45
	363	Reference Location Effect in Charny	чJ
	5.0.5	V-Notch Tests	6/
		3631 Reference Location Effect as a	04
		Function of Toughness	77
	3.6.4	Correlation between Absorbed Energy	
	01011	And Lateral Expansion	82
3.7	Comp	arison of the Present Study and the	
	Past S	tudies	85
	3.7.1	Tensile Properties	85
		3.7.1.1 Tensile Strength	85
		3.7.1.2 Yield strength	90
	3.7.2	Charpy V-Notch Toughness	94
		3.7.2.1 Thickness Versus Absorbed Energy Plots	94
		3.7.2.2 Three-test Average of Absorbed Energy	99
		3.7.2.3 Three-Test Average of Lateral Expansion	100
		3.7.2.4 Differences in Three-Test Average of	
		Absorbed Energy from Reference Location	101
		3.7.2.5 Correlation Between Absorbed Energy	
		And Lateral Expansion	106
CHAPTER 4	- CON	NCLUSIONS	
4.1	Summ	ary of Results	110

REFERENCES

113

CHAPTER 1 INTRODUCTION

1.1 INTRODUCTION

The purpose of this research is to survey the mechanical properties of A572 and A588 plates produced in North America. The study focuses on three aspects: chemical properties, tensile properties, and toughness properties. Results from this study can be of benefit to specification-writing bodies and other users interested in the variability of mechanical properties of A572 and A588 plates. The results can also help update present databases on plate properties that do not include modern production techniques and new mills and producers.

1.2 SCOPE OF RESEARCH

The test results were supplied by a total of six mills from five producers in North America. Steel plates of both A572 and A588 grade from a total of 1,326 heats were analyzed. Overall statistical summaries were computed for carbon equivalent (CE), yield strength, tensile strength, yield to tensile ratio, and yield point to yield strength ratio.

The statistical relationship between carbon equivalent and (i) yield strength; (ii) tensile strength; and (iii) yield to tensile ratio was also studied.

A statistical analysis of the Charpy V-Notch toughness test results was conducted based on sixty-nine A588 and A572 steel plates from four of the six mills who participated in the survey. The study was conducted for three test temperatures (0°F, 40°F, and 70°F), four thickness groups (T1 to T4, defined later), and two steel grades (A572 and A588). Additionally, a detailed study was conducted in order to compare the variability within a plate with the variability between plates.

The effect of the selection of a reference location (from among the 7 possible sampled locations) with respect to absorbed energy was studied. This was done separately for low- and high-toughness plates. This effect of reference location was studied by computing the percentage of samples that had absorbed energy values greater than a specified level below the absorbed energy associated with the reference location. Finally, absorbed energy and lateral expansion were studied jointly in order to estimate the statistical correlation between these two parameters as obtained from results of the Charpy V-Notch tests.

CHAPTER 2 DATA DESCRIPTION AND PREPARATION

2.1 DESCRIPTION OF DATA

Five North American steel producers participated in this study and provided data on steel properties from six mills. The test results from these producers were supplied to the University of Texas at Austin in the form of EXCEL spreadsheet files. The duration for collecting the data from all the producers was a six-month period from January to June 2002.

It should be noted that a mill number was assigned for each mill that participated and was used for reference instead of a producer name throughout this study. The number assigned to a mill was done according to the order that the test results were received from the mills.

Mills 1, 3, 4, and 5 submitted data corresponding to the requested standard spreadsheet format. However, Mills 2 and 6 only submitted mill test data for the plates tested.

2.1.1 THE 4-MILL GROUP

The data files from Mills 1, 3, 4, and 5 (we will refer to these mills as the "4-mill group") contained the following information for each plate:

- 1. Name of Producer
- 2. Mill
- 3. ASTM Specification
- 4. Type of Specification
- 5. Heat No.
- 6. Casting Method
- 7. Plate Thickness
- 8. Discrete Length or Coil
- 9. As-Rolled Plate Width
- 10. As-Rolled Plate Length

- 11. Method of Production
- 12. Chemistry (Heat Analysis) including the following elements:

Carbon, Manganese, Phosphorus, Sulfur, Columbium, Vanadium, Nitrogen, Silicon, Copper, Aluminum, Titanium, Boron, Lead, Tin, Nickel, Chromium, and Molybdenum

- 13. Transverse Tensile Test Results from each test, including data on:
 Specimen Type and Size
 Yield Point
 Yield Strength (based on ASTM A370 Section 13.2)
 Tensile Strength
 Elongation
- 14. Longitudinal Charpy V-Notch Impact Test Results of three specimens from each test location and test temperature of 0°F, 40°F, and 70°F, including data on:

Absorbed Energy

Lateral Expansion.

Each as-rolled plate was sampled in the seven locations shown in Figure 2.1. Nine CVN and one tensile test coupon were obtained from each location providing a total of 7 tensile and 63 CVN specimens per plate.

Figure 2.1: Locations of Specimens Studied in Plates.

2.1.2 THE 2-MILL GROUP

Due to the fact that the data from Mills 2 and 6 (we will refer to these mills as the "2-mill group") were in the form of mill test reports that were not compatible with the data from the other mills (i.e., the 4-mill group) and also did not include CVN test results, the statistical analyses of the 4-mill group and the 2-mill group were conducted separately. Most plates from the 2-mill group included only one test location per plate, while all plates from the 4-mill group included seven test locations per plate. In other words, the survey data provided by the 4-mill group could be used in a study of variability within a plate as well as between plates, but the mill test data provided by the 2-mill group could be used only in a study of the variability between plates.

Mills 2 and 6 (the 2-mill group) submitted acceptable data from 1280 heats while the Mills 1, 3, 4, and 5 (the 4-mill group) submitted data from 46 heats only. This large discrepancy in the number of data in the two groups would bias the results towards Mills 2 and 6, further justifying the need for separate statistical analyses of the two groups.

2.2 DATA PREPARATION

Before the statistical analysis process could be conducted, all the data had to be prepared and carefully organized to facilitate the analysis. The data preparation process began with the rearranging and organizing of the data from all the mills into groups. The initial sorting criteria were producer and ASTM specification. The next criterion was plate thickness, t, where the plates were grouped according to the following thickness ranges defined:

Group T1	<i>t</i> 0.75 in.	
Group T2	0.75 in. < <i>t</i>	1.5 in.
Group T3	1.5 in. < <i>t</i>	2.5 in.
Group T4	2.5 in. < <i>t</i>	4.0 in.

The description of the organized data from the 4-mill group (Mills 1, 3, 4, and 5) is summarized in Table 2.1.

Mill		1		3		4			5		
Casting Method		Ingot and	Ingot and Strand Cast		Strand Cast		Strand Cast			Ingot and Strand Case	
Method of Production	n	B	OF	N	N/A		BOF			BOF(5), EAF(13)	
No. of Heats		1	0	1	0		10		1	5	
No. of Plates		2	20	1	.9		16		1	8	
ASTM Specification		A572	A588	A572	A588	A	572	A588	A572	A588	
ASTM Specification		Type 2	Grade B	Type 2	Grade A	Type 2	Type 3	Grade B	Type 2	Grade A/E	
	T1	6(3)	6(3)	2(1)	2(1)	4(2)	0	4(2)	2(2)	3(2)	
No. of Plates(Heats) in	T2	2(1)	2(1)	3(2)	4(2)	0	4(3)	4(3)	2(2)	3(2)	
Each Group	T3	2(1)	2(1)	4(2)	2(1)	0	0	0	2(2)	3(2)	
	T4	0	0	0	2(1)	0	0	0	2(2)	1(1)	
No. of Data for Tensile	No. of Data for Tensile Test		40	1.	33	112			126		
	0F	42	20	3	99	336			378		
No. of Data for CVN Test	40 F	4	20	3	99	336			378		
	70 F	4	20	3	99		336		378		

 Table 2.1: Data Description for the 4-Mill Group (Mills 1, 3, 4, and 5).

The distribution of plates among the four mills is presented graphically in Figure 2.2.

Distribution of Plates

It can be observed from Figure 2.2 that the number of plates decreases with increasing plate thickness. Group T4 had the lowest number of plates – only five out of the total of 73 plates including both A572 and A588 grades; while Group T1 contained the majority of the studied plates with a total of 29 plates.

A few minor inconsistencies were found in the submitted data and are summarized as follows:

- 1. Mills 1, 3, and 5 did not report a Yield Point in the tensile test data. As such, these plants were not included in analyses requiring yield point data.
- In Mill 3, there were four pairs of slabs (or four heats) that had exactly the same CVN test results. These were obviously errors in the data that necessitated their removal.

The description of the organized data from the 2-mill group (Mills 2 and 6) is summarized in Table 2.2.

Mill		2	6		
Casting Method	N	/A	Strand Cast		
Method of Production	1	N	/A	N	/A
No. of Heats		1	05	11	.75
No. of Plates	2.	32	30)63	
ASTM Specification	A572	A588	A572	A588	
AS IN Specification		Type 2	Grade A/B	Type 2	Grade A/B
	T1	207(91)	17(10)	1133(430)	84(50)
No. of Plates(Heat) in	T2	8(4)	0	804(255)	101(58)
Each Group	T3	0	0	402(160)	171(51)
	T4	0	0	327(148)	41(23)
No. of Data for Tensile	No. of Data for Tensile Test			22	.33

 Table 2.2: Data Descriptions for the 2-Mill Group (Mills 2 and 6).

The distribution of plates between the two mills is presented graphically in Figure

2.3.

Figure 2.3: Distribution of Plates for the 2-Mill Group (Mills 2 and 6).

Figure 2.3 reveals that the number of plates from Mill 6 clearly dominates the overall number of plates for the 2-mill group. The group A572-T1 had the largest number of plates, greater than 1300 in number, from a total of 3295 plates in the 2-mill group. The majority of the data from Mill 2 was from the T1-thickness group; only eight plates from Mill 2 were thicker than 0.75 in. (the upper bound for plate thickness in Group T1).

It should be noted that for Mill 2, the number of tensile test data equals 334 due to the fact that out of the total of 232 plates, 151 plates had one test location, 60 plates had two locations, and 21 plates had three locations per plate. Unlike Mill 2, all the plates from Mill 6 had only one test location per plate but tensile test data from 830 plates, of a total of 3063 plates, were missing resulting in a number of tensile test data equal to 2233 for Mill 6.

2.3 PROPERTIES TO BE STUDIED

In the statistical analyses, data on the following six properties were studied:

- 1. Carbon Equivalent
- 2. Yield Strength
- 3. Tensile Strength
- 4. Yield to Tensile Ratio
- 5. Yield Strength to Yield Point Ratio
- 6. Charpy V-Notch toughness

2.3.1 CARBON EQUIVALENT

The carbon equivalent of a steel is a chemical property that indicates its weldability or the ease with which the steel can be welded using a conventional method. The higher the carbon equivalent of a steel, the more difficult it is to weld and the higher the chance of producing microstructures, for instance, martensite which is susceptible to brittle fracture (ASTM A6/A6M).

The carbon equivalent (CE) of a steel (given in percent weight) may be computed with the help of the following equation:

$$CE = C + \frac{Mn}{6} + \frac{(Cr + Mo + V)}{5} + \frac{(Ni + Cu)}{15}$$
(2.1)

where C, Mn, Cr, Mo, V, Ni and Cu are the percent weights of Carbon, Manganese, Chromium, Molybdenum, Vanadium, Nickel, and Copper, respectively, in the steel (ASTM A709/A709M). The carbon equivalent is a property of the heat; hence, all plates in the same heat have the same carbon equivalent. Current ASTM standards for grades A572 and A588 steel do not specify requirements for the carbon equivalent value.

2.3.2 YIELD STRENGTH

The yield strength is defined by ASTM A370 as "the stress at which a material exhibits a specified limiting deviation from the proportionality of stress and strain". The yield strength values used in this study are based on the use of a 0.2% offset. Current ASTM Specifications of A572 and A588 grade 50 steel specify a minimum yield point of

50 ksi. (Note that yield point is not the same as yield strength and is defined later.) The variation in yield strength generally stems from differences in the chemical composition of steel, the material thickness, the rate of straining in the inelastic range, the difference between mills, the differences in the same mill over time (Galambos and Ravindra, 1978).

2.3.3 TENSILE STRENGTH

Based on ASTM A370, the tensile strength is determined by dividing the maximum load the specimen sustains during a tension test by the original cross-sectional area of the specimen.

2.3.4 YIELD TO TENSILE RATIO

The yield to tensile ratio is the ratio of the yield strength to the tensile strength. This ratio indicates the ductility of the steel. It is difficult to achieve ductile behavior if the yield to tensile ratio is high, approaching unity. ASTM standards for grades A572 and A588 steel do not specify requirements for the yield to tensile ratio.

2.3.5 YIELD STRENGTH TO YIELD POINT RATIO

The yield point or upper yield point is defined by ASTM A370 as "the first stress in a material, less than the maximum obtainable stress, at which an increase in strain occurs without an increase in stress." The yield strength to yield point ratio is an indication of the difference between the yield strength and the yield point. The A572 and A588 specifications specify a minimum yield point. Alpsten (1972) suggested that mill testing procedures should be based on the yield strength instead of the yield point value when defining the yield stress level. This recommendation was based on the fact that the yield point is more sensitive than yield strength to the strain rate. This sensitivity causes the lack of correlation with the static yield stress level in structures. To attempt to understand the significance of the difference between yield strength and yield point, we study the yield strength to yield point ratio.

2.3.6 CHARPY V-NOTCH TOUGHNESS

A material's fracture toughness is indicated by its resistance to unstable crack propagation in the presence of notch and can thus be indirectly measured by the Charpy V-Notch Impact test. Two parameters, absorbed energy and lateral expansion, may be measured in a test. The CVN test is one of many tests used to evaluate the toughness of a material and is widely used in the steel industry as well as in many specifications, e.g., in AASHTO specifications.

In order to prevent brittle fracture, it is necessary to specify minimum requirements of notch toughness for a steel plate subjected to welding (Rolfe, 1977). The ASTM standards for A572 and A588 grade steel do not specify requirements for CVN toughness. However, the ASTM A709 specification for steel intended for use in bridges does specify minimum absorbed energy requirements.

CHAPTER 3 ANALYSIS OF DATA

The various analysis steps undertaken with the data obtained from the plates as described in Chapter 2 are described next.

For both the 2- and 4-mill groups, the data on carbon equivalent, yield strength, tensile strength, yield to tensile ratio and yield strength to yield point ratio were analyzed to determine the mean values and coefficient of variation (the coefficient of variation or c.o.v. refers to the ratio of the standard deviation to the mean) for each thickness group and specification (grade of steel). These results are presented. For the 4-mill group because the number of plates is considerably smaller than for the 2-mill group, the raw data in the individual plates are also presented.

For the results from the CVN impact tests obtained from the 4-mill group, the three values of absorbed energy at each test temperature were averaged before a statistical analysis was conducted. This average value is referred to as the three-test average in the following. Numerical statistical summaries and graphical representations were developed for each thickness group, specification and test temperature. The data were analyzed for each mill separately and then combined in order to determine the overall statistics.

Again, the statistical analysis of data from the 2-mill group (Mills 2 and 6) only includes carbon equivalent, yield strength, tensile strength, and yield to tensile ratio because of the incompatibility of the data format with the data from the 4-mill group and because of the lack of CVN impact test data as previously mentioned.

3.1 CARBON EQUIVALENT (CE)

In discussing the data and statistical analysis on carbon equivalent values, it should be noted that in some mills, not all the slabs in the same heat reported the same carbon equivalent value. The raw data for the 4-mill group are for all the slabs are first shown; then, statistical studies for both mill groups are presented based on heats.

3.1.1 ORGANIZED DATA FROM THE 4-MILL GROUP

Tables 3.1 to 3.4 present the organized data on carbon equivalent value for all the slabs from mills 1, 3, 4, and 5, respectively. In each table, the carbon equivalent is presented for each steel grade and each thickness group. The mean, low, and high values observed in each thickness group are also shown in the last three columns of each table.

Crada	Thickness Crown	Carbon Ec	quivalent (%	6) from Mill	1	
Grade	mickness Group	Carbon Equivalent	Mean	Low	High	
		0.365				
		0.365				
	τ1	0.391	0 200	0.265	0 420	
		0.391	0.390	0.365	0.430	
A 570		0.438				
A 572		0.438				
	тэ	0.391	0.201	0.201	0.201	
	12	0.391	0.591	0.391	0.391	
	T2	0.385	0.295	0.295	0.295	
	13	0.385	0.305	0.385	0.000	
		0.435		0.421	0 404	
		0.435				
	Τ1	0.491	0.440			
		0.491	0.449	0.421	0.491	
A 588		0.421				
A 366		0.421				
	ТЭ	0.457	0.457	0.457	0 457	
	12	0.457	0.437	0.457	0.457	
	Tβ	0.499	0 / 00	0 400	0.499	
	13	0.499	0.499	0.499		

 Table 3.1: Raw Data on Carbon Equivalent Values from Mill 1.

Crada	Thickness Crown	Carbon Ed	quivalent (%	6) from Mill	3	
Grade	Thickness Group	Carbon Equivalent	Mean	Low	High	
	Τ1	0.368	0.260	0.269	0.269	
	11	0.368	0.300	0.300	0.300	
		0.393				
	T2	0.389	0.391	0.389	0.393	
A 572		0.389				
		0.396				
	T2	0.396	0.404	0.396	0.412	
	15	0.412	0.404		0.412	
		0.412				
	Т1	0.422	0 422	0 / 22	0 422	
	11	0.422	0.422	0.422	0.422	
		0.416				
	то	0.416	0.415	0.412	0.416	
A 599	12	0.413	0.415	0.413	0.410	
A 366		0.413				
	ТЗ	0.462	0.462	0.462	0.462	
	10	0.462	0.402	0.402	0.402	
	Ти	0.485	0 / 85	0.495	0.485	
	14	0.485	0.405	0.405	0.460	

 Table 3.2: Raw Data on Carbon Equivalent Values from Mill 3.

Table 3.3: Raw Data on Carbon Equivalent Values from Mill 4.

Crodo	Thickness Crown	Carbon Ec	quivalent (%	6) from Mill	4	
Grade	Thickness Group	Carbon Equivalent	Mean	Low	High	
		0.413				
	Τ1	0.419	0.415	0.409	0.421	
	11	0.408	0.415	0.400	0.421	
A 572		0.421				
A 512		0.449		0.433	0.449	
	T2	0.443	0.440			
		0.437	0.440			
		0.433				
		0.428		0.429		
	Τ1	0.440	0.420		0.450	
	11	0.439	0.439	0.420	0.450	
A 599		0.450				
A 300		0.489				
	То	0.478	0.491	0.478	0.480	
	12	0.479	0.401		0.409	
		0.479				

Crodo	Thickness Crown	Carbon Ec	quivalent (%	6) from Mill	5	
Grade	Thickness Group	Carbon Equivalent	Mean	Low	High	
	Τ1	0.414	0 400	0.402	0.414	
	11	0.402	0.400	0.402	0.414	
	τo	0.382	0.405	0.202	0 429	
A 570	12	0.428	0.405	0.362	0.420	
A 572	τo	0.435	0.446	0.425	0.457	
	15	0.457	0.440	0.435	0.407	
	T4	0.446	0.440	0.422	0.446	
		0.433	0.440	0.433	0.440	
		0.437		0.435		
	T1	0.437	0.437		0.437	
		0.435				
		0.480				
A 500	T2	0.480	0.469	0.447	0.480	
A 300		0.447				
		0.440				
	T3	0.457	0.451	0.440	0.457	
		0.457				
	T4	0.510	0.510	0.510	0.510	

 Table 3.4: Raw Data on Carbon Equivalent Values from Mill 5.

3.1.2 STATISTICAL ANALYSIS RESULTS FROM ALL MILLS

Tables 3.5 and 3.6 summarize the statistical analysis results for the 4-mill group (mills 1, 3, 4, and 5) and the 2-mill group (mills 2 and 6), respectively. Each table includes the mean and coefficient of variation values of the carbon equivalent for each thickness group from the individual mills as well as the overall statistics (i.e., including all the mills in the corresponding mill group).

 Table 3.5: Statistical Analysis of Carbon Equivalent for the 4-Mill Group.

r															
	Carbon Equivalent (CE) %														
Group		Mill 1			Mill 3			Mill 4			Mill 5			Overall	
_	No. of Heats	Mean	COV. %	No. of Heats	Mean	COV. %	No. of Heats	Mean	COV. %	No. of Heats	Mean	COV. %	No. of Heats	Mean	COV. %
A572-T1	3	0.40	4.60	1	0.37	-	2	0.42	1.82	2	0.41	2.16	8	0.40	6.29
A572-T2	1	0.39	-	2	0.39	0.72	3	0.44	1.82	2	0.41	7.92	8	0.41	6.67
A572-T3	1	0.38	-	2	0.40	2.67	0	-	-	2	0.45	3.55	5	0.42	7.28
A572-T4	0	-	-	0	-	-	0	-	-	2	0.44	2.17	2	0.44	2.17
A588-T1	3	0.45	8.26	1	0.42	-	2	0.44	1.64	2	0.44	0.27	8	0.44	5.10
A588-T2	1	0.46	-	2	0.42	0.62	3	0.48	1.22	2	0.47	4.13	8	0.46	6.50
A588-T3	1	0.50	-	1	0.46	-	0	-	-	2	0.45	2.10	4	0.46	5.33
A588-T4	0	-	-	1	0.49	-	0	-	-	1	0.51	-	2	0.50	3.54
A572 All Groups	5	0.39	3.60	5	0.39	1.80	5	0.43	1.82	8	0.42	4.48	23	0.41	6.39
A588 All Groups	5	0.46	6.24	5	0.44	0.37	5	0.46	1.39	7	0.46	2.50	22	0.46	5.57
All Data	10	0.43	5.30	10	0.42	1.23	10	0.45	1.60	15	0.44	3.62	45	0.43	5.97

 Table 3.6: Statistical Analysis of Carbon Equivalent for the 2-Mill Group.

		Carbon Equivalent (CE) %									
Group		Mill 2		Mill 6							
	No. of Heats	Mean	COV, %	No. of Heats	Mean	COV, %					
A572-T1	91	0.32	18.3	430	0.35	11.9					
A572-T2	4	0.35	26.4	255	0.34	10.9					
A572-T3	-	_	-	160	0.40	5.07					
A572-T4	-	_	-	148	0.40	4.49					
A588-T1	10	0.42	18.9	50	0.44	2.94					
A588-T2	-	-	-	58	0.44	2.75					
A588-T3	-	_	-	51	0.47	2.62					
A588-T4	-	_	-	23	0.48	2.21					
A572 All Groups	95	0.32	18.8	993	0.36	9.58					
A588 All Groups	10	0.42	18.9	182	0.46	2.70					
All Data	105	0.33	18.9	1175	0.38	8.56					

From Table 3.5, it may be observed that, for any one mill in the 4-mill group, the average carbon equivalent ranged from 0.37% to 0.51%. The overall variability in

carbon equivalent values measured was small; for an individual mill in the 4-mill group, the largest coefficient of variation for any heat and thickness group was 8.26% (for the A588-T1 group). Also, when the mean from all mills was considered for any thickness group, the largest coefficient of variation was 6.67% (for the A572-T2 group).

Similarly, from Table 3.6, it may be observed that Mill 2 had relatively higher variability of the carbon equivalent than Mill 6 with coefficient of variation values ranging from 18.3% to 26.4% for Mill 2. The average carbon equivalent for the 2-mill group ranged from 0.32% to 0.48%.

Tables 3.5 and 3.6 also show that the carbon equivalent generally increases with increasing plate thickness for both steel grades. This trend may be attributed to the mill practice of adjusting the carbon content in thicker plates in order to maintain a desired strength through the entire thickness. The specified alloy content of A588 leads to the higher carbon equivalent values relative to A572 plates of the same thickness as was seen in the data. The similar ranges of carbon equivalent values obtained for both mill groups reveal that the studied plates from all the mills possess about the same degree of weldability.

3.1.3 CORRELATION STUDIES INVOLVING CARBON EQUIVALENT

The statistical correlation between carbon equivalent and average yield strength, between carbon equivalent and average tensile strength, and between carbon equivalent and average yield to tensile ratio was studied and the results from that study are summarized in Figures 3.1 to 3.3 for the 4-mill group (Mills 1, 3, 4, and 5). In each figure, for each steel grade separately, data for the two parameters being studied are shown along with a regression line as well as an estimate of the correlation coefficient. The number of data used corresponds to the number of slabs tested.

CE vs. Yield Strength

Figure 3.1: CE versus Yield Strength for the 4-Mill Group.

Figure 3.2: CE versus Tensile Strength for the 4-Mill Group.

Figure 3.3: CE versus Yield to Tensile Ratio for the 4-Mill Group.

Similarly for the 2-mill group (Mills 2 and 6), the statistical correlation between carbon equivalent and the same strength parameters from tensile test data was studied and similar plots to those presented for the 4-mill group are shown in Figures 3.4 to 3.6 for the 2-mill group.

CE vs. Yield Strength

Figure 3.4: CE versus Yield Strength for the 2-Mill Group.

Figure 3.5: CE versus Tensile Strength for the 2-Mill Group.

Figure 3.6: CE versus Yield to Tensile Ratio for the 2-Mill Group.

It may be observed from Figures 3.2 and 3.5 that the carbon equivalent shows fairly strong positive relation with the tensile strength, with correlation coefficients as high as 0.60 and 0.66 for the A572 and A588 steel grades, respectively, based on results for the 2-mill group, with slightly weaker correlation for the 4-mill group. The tensile strength increases with the increasing carbon equivalent in both grades of steel.

However, no significant statistical correlation was observed between the carbon equivalent and the yield strength as may be confirmed from a study of Figures 3.1 and 3.4.

A mild negative correlation was observed between the carbon equivalent and the yield to tensile ratio with correlation coefficients of -0.35 and -0.46 for the A572 and A588 steel grades, respectively, based on results for the 2-mill group as seen in Figure 3.6. Figure 3.3 shows similar mild negative correlation for the 4-mill group as well. The negative correlation coefficient values suggest an inverse relationship between the carbon equivalent and the yield to tensile ratio.

3.2 YIELD STRENGTH (F_Y) 3.2.1 ORGANIZED DATA FROM THE 4-MILL GROUP

Tables 3.7 to 3.10 present the organized data on yield strength for all the slabs from mills 1, 3, 4, and 5 respectively. In each table, the yield strength at seven locations on each plate sampled is presented for each steel grade and each thickness group. The mean, low, and high values observed for each sampled plate are also shown in the last three columns of each table.

	Thicknoon				Yield S	Strenath	(ksi) fror	n Mill 1			
Grade	Croup			L	OCATIO	N			Moon	Low	High
	Gloup	1	2	3	4	5	6	7	wear	LOW	
		58.3	57.0	60.1	60.0	61.2	58.2	59.9	59.2	57.0	61.2
		62.8	60.5	63.5	61.5	61.5	59.9	60.0	61.4	59.9	63.5
	τ1	54.1	55.3	54.2	54.1	54.0	53.9	54.6	54.3	53.9	55.3
	11	65.4	60.5	62.9	62.8	61.4	57.5	61.4	61.7	57.5	65.4
A 570		61.8	63.0	61.4	61.1	61.6	64.6	63.1	62.4	61.1	64.6
A 572		62.9	67.9	62.6	62.6	63.3	63.6	64.8	64.0	62.6	67.9
	то	57.6	58.4	56.9	57.1	56.1	61.7	57.8	57.9	56.1	61.7
	12	70.4	56.9	60.2	61.5	61.9	60.4	60.7	61.7	56.9	70.4
	Т3	54.4	52.5	55.9	53.0	53.2	56.5	54.8	54.3	52.5	56.5
		58.4	57.6	58.8	56.8	52.5	53.0	54.5	55.9	52.5	58.8
		57.9	58.4	59.6	58.0	57.3	57.5	67.3	59.4	57.3	67.3
		54.9	60.6	56.4	56.8	56.5	57.2	58.5	57.3	54.9	60.6
	Τ1	63.8	65.0	62.7	62.6	63.2	59.7	58.0	62.1	58.0	65.0
		57.5	58.0	57.3	59.2	57.8	58.5	58.8	58.2	57.3	59.2
A 500		53.2	52.6	52.4	52.8	53.2	54.3	52.8	53.0	52.4	54.3
A 200		53.1	52.0	52.6	51.3	53.9	53.3	53.2	52.8	51.3	53.9
	T2	64.2	61.3	59.2	60.0	58.1	59.4	60.2	60.3	58.1	64.2
	12	53.9	54.7	55.2	55.2	55.4	51.0	54.9	54.3	51.0	55.4
	то	66.5	68.6	62.4	65.7	62.2	65.5	68.3	65.6	62.2	68.6
	13	68.0	66.7	66.4	65.2	63.9	73.4	64 9	66.9	63.9	73.4

 Table 3.7: Raw Data on Yield Strength from Mill 1.

	Thicknoon		Yield Strength (ksi) from Mill 3											
Grade	Croup		LOCATION								High			
	Group	1	2	3	4	5	6	7	wean	LOW	High			
	τ.	56.0	55.0	56.0	55.0	56.0	58.0	57.0	56.1	55.0	58.0			
	11	58.0	54.0	55.0	55.0	56.0	55.0	57.0	55.7	54.0	58.0			
		57.0	55.0	56.0	58.0	56.0	57.0	56.0	56.4	55.0	58.0			
	T2	58.0	57.0	56.0	55.0	56.0	58.0	57.0	56.7	55.0	58.0			
A 572		58.0	57.0	56.0	55.0	56.0	58.0	57.0	56.7	55.0	58.0			
		56.0	54.0	54.0	47.0	49.0	51.0	49.0	51.4	47.0	56.0			
	To	58.0	57.0	56.0	55.0	56.0	58.0	57.0	56.7	55.0	58.0			
	15	55.0	54.0	55.0	53.0	54.0	54.0	55.0	54.3	53.0	55.0			
		55.0	54.0	55.0	53.0	54.0	54.0	55.0	54.3	53.0	55.0			
	τ.	58.0	58.0	58.0	58.0	58.0	59.0	59.0	58.3	58.0	59.0			
	11	60.0	60.0	58.0	59.0	59.0	59.0	60.0	59.3	58.0	60.0			
		56.0	56.0	51.0	56.0	56.0	56.0	55.0	55.1	51.0	56.0			
	то	57.0	56.0	55.0	55.0	56.0	57.0	57.0	56.1	55.0	57.0			
A E 00	12	56.0	56.0	55.0	54.0	54.0	55.0	55.0	55.0	54.0	56.0			
A 200		55.0	54.0	55.0	53.0	54.0	54.0	55.0	54.3	53.0	55.0			
	то	54.0	51.0	50.0	52.0	52.0	54.0	55.0	52.6	50.0	55.0			
	13	52.0	50.0	51.0	51.0	51.0	50.0	51.0	50.9	50.0	52.0			
	τı	53.0	54.0	55.0	53.0	55.0	54.0	55.0	54.1	53.0	55.0			
	14	54.0	55.0	54.0	54.0	55.0	54.0	55.0	54.4	54.0	55.0			

 Table 3.8: Raw Data on Yield Strength from Mill 3.

 Table 3.9: Raw Data on Yield Strength from Mill 4.

$ \begin{array}{ c c c c c c c c c c c c c c c c c c c$		Thickness	S Yield Strength (ksi) from Mill 4										
$ \begin{array}{c ccccccccccccccccccccccccccccccccccc$	Grade	Group	1	2	L(N 5	6	7	Mean	Low	High	
$ \begin{array}{ c c c c c c c c c c c c c c c c c c c$			67 1	67.5	58 5	58.4	59.3	67.2	65.8	63.4	58.4	67 5	
$ \begin{array}{ c c c c c c c c c c c c c c c c c c c$			58.6	59.4	57.4	57.2	57.2	61.1	56.8	58.2	56.8	61.1	
$ \begin{array}{c c c c c c c c c c c c c c c c c c c $		T1	67.3	64.9	57.0	56.1	57.2	60.0	62.7	60.7	56.1	67.3	
$ \begin{array}{c ccccccccccccccccccccccccccccccccccc$			57.8	60.6	55.5	54.9	55.3	63.5	62.9	58.6	54.9	63.5	
$ \begin{array}{ c c c c c c c c c c c c c c c c c c c$	A 572		57.2	56.1	55.1	58.3	55.1	57.7	56.9	56.6	55.1	58.3	
$ \begin{array}{ c c c c c c c c c c c c c c c c c c c$		то	57.7	55.8	54.7	55.6	55.9	58.8	57.7	56.6	54.7	58.8	
$ \begin{array}{c c c c c c c c c c c c c c c c c c c $		12	56.3	54.9	53.2	58.2	58.4	58.9	58.4	56.9	53.2	58.9	
$ \begin{array}{c ccccccccccccccccccccccccccccccccccc$			53.9	53.1	51.1	54.3	55.6	55.3	52.8	53.7	51.1	55.6	
$ \begin{array}{ c c c c c c c c c c c c c c c c c c c$			66.5	69.5	58.9	53.2	53.2	59.5	62.2	60.4	53.2	69.5	
$ \begin{array}{ c c c c c c c c c c c c c c c c c c c$		T4	61.9	65.0	58.1	56.4	60.0	63.9	61.4	61.0	56.4	65.0	
$ \begin{array}{c ccccccccccccccccccccccccccccccccccc$		11	57.1	56.0	50.6	54.1	56.4	54.2	59.6	55.4	50.6	59.6	
$ \begin{array}{ c c c c c c c c c c c c c c c c c c c$	A E 00		62.5	60.7	54.4	54.6	59.1	60.5	66.4	59.7	54.4	66.4	
$ \begin{array}{c c c c c c c c c c c c c c c c c c c $	00C A		52.3	50.9	52.4	51.3	52.6	50.4	52.7	51.8	50.4	52.7	
$ \begin{array}{c c c c c c c c c c c c c c c c c c c $		то	54.8	56.1	57.6	57.1	56.3	57.0	55.3	56.3	54.8	57.6	
$ \begin{array}{c c c c c c c c c c c c c c c c c c c $		12	51.8	52.4	57.1	53.3	51.1	53.6	54.8	53.4	51.1	57.1	
$ \begin{array}{c c c c c c c c c c c c c c c c c c c $		0	55.8	54.4	54.8	58.6	53.4	59.3	56.7	56.1	53.4	59.3	r
$ \begin{array}{ c c c c c c c c c c c c c c c c c c c$	1					VICTOR		11.211 6.2.					
$ \begin{array}{c ccccccccccccccccccccccccccccccccccc$	Crada	Thickness					Strength	(kši) fror	n Mill 5				Table
$ \begin{array}{c ccccccccccccccccccccccccccccccccccc$	Grade	Thickness Group	1	2	L		N 5	(KSI) from	n Mili 5	Mean	Low	High	Table
$ \begin{array}{c ccccccccccccccccccccccccccccccccccc$	Grade	Thickness Group	1	2	L 3 65.7		Strength N 5 64.7		n Mili 5 7 66 7	Mean	Low	High	Table 3 10.
$ \begin{array}{c ccccccccccccccccccccccccccccccccccc$	Grade	Thickness Group T1	1 63.9	2 63.7	L 3 65.7	Yield S OCATIC 4 64.9 56 3	57 1	(KŠI) fror 6 65.4	n Mili 5 7 66.7 58 1	Mean 65.0	Low 63.7	High 66.7	Table 3.10:
$ \begin{array}{c ccccccccccccccccccccccccccccccccccc$	Grade	Thickness Group T1	1 63.9 55.6	2 63.7 55.4	3 65.7 55.9	Vield S OCATIC 4 64.9 56.3	50000000000000000000000000000000000000	(KŠI) fror 6 65.4 56.4 56.1	n Mill 5 7 66.7 58.1	Mean 65.0 56.4	Low 63.7 55.4	High 66.7 58.1	Table 3.10: Raw
$ \begin{array}{c ccccccccccccccccccccccccccccccccccc$	Grade	Thickness Group T1 T2	1 63.9 55.6 55.3 58.6	2 63.7 55.4 55.4 58.9	3 65.7 55.9 55.7	Vield S OCATIC 4 64.9 56.3 55.9 59.4	57.1 60.4	(kši) frof 6 65.4 56.4 56.1 57.4	n Mill 5 7 66.7 58.1 55.3 60.4	Mean 65.0 56.4 55.7	Low 63.7 55.4 55.3	High 66.7 58.1 56.1	Table 3.10: Raw
$ \begin{array}{c ccccccccccccccccccccccccccccccccccc$	Grade A 572	Thickness Group T1 T2	1 63.9 55.6 55.3 58.6 59.9	2 63.7 55.4 55.4 58.9	L 3 65.7 55.9 55.7 59.9 60.0	Yield S OCATIC 4 64.9 56.3 55.9 59.4 60.4	50000000000000000000000000000000000000	(KSI) frof 6 65.4 56.4 56.1 57.4 60.1	7 66.7 58.1 55.3 60.4	Mean 65.0 56.4 55.7 59.3 60.1	Low 63.7 55.4 55.3 57.4 59.6	High 66.7 58.1 56.1 60.4	Table 3.10: Raw Data
$ \begin{array}{c c c c c c c c c c c c c c c c c c c $	Grade A 572	Thickness Group T1 T2 T3	1 63.9 55.6 55.3 58.6 59.9 62.3	2 63.7 55.4 55.4 58.9 59.6	L 3 65.7 55.9 55.7 59.9 60.0 61.5	Yield S OCATIC 4 64.9 56.3 55.9 59.4 60.4 63.0	50000000000000000000000000000000000000	6 65.4 56.4 56.1 57.4 60.1 64.0	7 66.7 58.1 55.3 60.4 60.6 61.8	Mean 65.0 56.4 55.7 59.3 60.1 62.1	Low 63.7 55.4 55.3 57.4 59.6 59.9	High 66.7 58.1 56.1 60.4 60.6 64.0	Table 3.10: Raw Data
A 588 T2 56.6 56.4 56.4 56.4 56.4 56.4 56.4 56.4 56.4 56.4 56.4 56.4 56.4 56.4 56.4 56.4 56.4 56.4 56.4 56.9 56.9 56.9 56.4 56.9 56.9 56.9 56.9 56.9 56.9 56.9 56.9 56.1 57.2 56.9 56.4 57.0 57.2 56.4 55.0 58.1 56.4 56.1 57.2 56.9 56.4 56.1 57.2 56.9 56.4 56.1 57.2 56.9 56.4 56.1 57.2 56.9 56.4 56.1 57.2 56.9 56.4 56.1 57.2 56.9 56.4 56.1 57.2 56.9 56.4 56.1 57.2 56.9 56.4 56.1 57.2 56.9 56.1 57.2 56.9 56.9 58.1 7.3 56.3 59.0 57.2 56.9 58.0 57.9 56.9 59.3	Grade	Thickness Group T1 T2 T3	1 63.9 55.6 55.3 58.6 59.9 62.3 64.2	2 63.7 55.4 55.4 58.9 59.6 59.9 63.6	L 3 65.7 55.9 55.7 59.9 60.0 61.5 65.6	Yield S OCATIC 4 64.9 56.3 55.9 59.4 60.4 63.0 65.3	5 64.7 57.1 56.1 60.4 60.2 62.3 64.3	(KSI) frof 6 65.4 56.4 56.1 57.4 60.1 64.0 66.0	n Mill 5 7 66.7 58.1 55.3 60.4 60.6 61.8 62.8	Mean 65.0 56.4 55.7 59.3 60.1 62.1 64.5	Low 63.7 55.4 55.3 57.4 59.6 59.9 62.8	High 66.7 58.1 56.1 60.4 60.6 64.0 66.0	Table 3.10: Raw Data
T1 59.1 60.3 63.6 62.9 62.9 61.3 62.1 61.7 59.1 63.6 61.0 58.8 61.1 62.1 61.6 59.8 58.5 60.4 58.5 62.1 72 56.6 56.8 57.0 57.1 56.5 57.0 57.2 56.9 56.5 57.2 59.0 61.7 63.4 61.4 2 § 1.1 62.4 59.0 61.1 59.0 63.4 57.6 58.3 59.1 56.4 56.9 56.9 56.9 59.1 73 56.3 58.1 56.4 56.1 57.8 56.9 58.1 56.4 55.0 58.1 58.1 59.0 61.7 63.4 61.4 2 § 1.1 62.4 59.0 61.1 59.0 63.4 57.6 58.3 59.1 58.0 57.2 58.9 58.0 57.9 56.9 59.3 73 56.3 58.2 57.	Grade	Thickness Group T1 T2 T3 T4	1 63.9 55.6 55.3 58.6 59.9 62.3 64.2 56.2	2 63.7 55.4 55.4 58.9 59.6 59.9 63.6 56.7	L 3 65.7 55.9 55.7 59.9 60.0 61.5 65.6 57.8	Yield S OCATIC 4 64.9 55.9 59.4 60.4 63.0 65.3 57.0	5 64.7 57.1 56.1 60.4 60.2 62.3 64.3 58.2	(KSI) frof 6 65.4 56.4 56.1 57.4 60.1 64.0 66.0 56.9	n Mill 5 7 66.7 58.1 55.3 60.4 60.6 61.8 62.8 58.1	Mean 65.0 56.4 55.7 59.3 60.1 62.1 64.5 57.3	Low 63.7 55.4 55.3 57.4 59.6 59.9 62.8 56.2	High 66.7 58.1 56.1 60.4 60.6 64.0 66.0 58.2	Table 3.10: Raw Data on
A 588 T2 56.6 56.8 57.0 56.4 56.4 56.4 57.0 57.1 56.5 57.0 57.2 56.5 57.0 57.2 56.4 57.0 57.2 56.9 57.9 56.9 59.0 57.9 56.9 59.3 57.9 56.9 59.3 57.8 56.3 59.3 5	Grade A 572	Thickness Group T1 T2 T3 T4	1 63.9 55.6 55.3 58.6 59.9 62.3 64.2 56.2 61.5	2 63.7 55.4 55.4 59.6 59.9 63.6 56.7 64.9	L 3 65.7 55.9 55.7 59.9 60.0 61.5 65.6 57.8 61.2	Yield 3 OCATIC 4 64.9 56.3 55.9 59.4 60.4 63.0 65.3 57.0 60.9	5 64.7 57.1 56.1 60.4 60.2 62.3 64.3 58.2 62.7	6 65.4 56.4 56.1 57.4 60.1 64.0 66.0 56.9 60.2	n Mill 5 7 66.7 58.1 55.3 60.4 60.6 61.8 62.8 58.1 62.4	Mean 65.0 56.4 55.7 59.3 60.1 62.1 64.5 57.3 62.0	Low 63.7 55.4 55.3 57.4 59.6 59.9 62.8 56.2 60.2	High 66.7 58.1 56.1 60.4 60.6 64.0 66.0 58.2 64.9	Table 3.10: Raw Data on Viold
A 588 T2 56.6 56.8 57.0 57.1 56.5 57.0 57.2 56.9 56.5 57.2 56.4 57.2 56.4 57.2 56.4 57.2 56.4 57.2 56.4 57.2 56.4 57.2 56.4 57.2 56.4 57.2 56.4 57.2 56.4 57.2 56.4 57.2 56.4 57.2 58.1 59.0 61.7 63.4 61.4 2 5 1.1 62.4 59.0 61.1 59.0 63.4 57.2 56.9 56.9 57.2 56.9 57.2 56.9 57.2 56.4 57.2 56.4 57.2 58.1 59.0 63.4 57.2 56.9 57.9 56.9 57.9	Grade	Thickness Group T1 T2 T3 T4 T1	1 63.9 55.6 55.3 58.6 59.9 62.3 64.2 56.2 61.5 59.1	2 63.7 55.4 55.4 59.9 59.6 59.9 63.6 56.7 64.9 60.3	L 3 65.7 55.9 55.7 59.9 60.0 61.5 65.6 57.8 61.2 63.6	YIEIG S OCATIC 4 64.9 56.3 55.9 59.4 60.4 63.0 65.3 57.0 60.9 62.9	Strength N 5 64.7 57.1 56.1 60.4 60.2 62.3 64.3 58.2 62.7 62.9	(kší) frof 6 65.4 56.4 56.1 57.4 60.1 64.0 66.0 56.9 60.2 61.3	n Mill 5 7 66.7 58.1 55.3 60.4 60.6 61.8 62.8 58.1 62.4 62.4 62.1	Mean 65.0 56.4 55.7 59.3 60.1 62.1 64.5 57.3 62.0 61.7	Low 63.7 55.4 55.3 57.4 59.6 59.9 62.8 56.2 60.2 59.1	High 66.7 58.1 56.1 60.4 60.6 64.0 66.0 58.2 64.9 63.6	Table 3.10: Raw Data on Yield
A 588 T2 55.5 58.1 56.4 56.1 57.8 55.0 55.7 56.4 55.0 58.1 59.0 61.7 63.4 61.4 2 5 1.1 62.4 59.0 61.1 59.0 63.4 57.6 58.3 59.1 58.0 57.2 56.9 58.0 57.9 56.9 59.1 T3 56.3 58.2 57.6 57.9 57.2 58.2 59.3 57.8 56.9 59.3	Grade	Thickness Group T1 T2 T3 T4 T1	1 63.9 55.6 55.3 58.6 59.9 62.3 64.2 56.2 61.5 59.1 61.0	2 63.7 55.4 55.4 58.9 59.6 59.9 63.6 56.7 64.9 60.3 58.8	L 3 65.7 55.9 55.7 59.9 60.0 61.5 65.6 57.8 61.5 63.6 61.1	YIEIG 3 OCATIC 4 64.9 56.3 55.9 59.4 60.4 63.0 65.3 57.0 60.5 57.0 62.9 62.9 62.1	Strength N 5 64.7 57.1 56.1 60.4 60.2 62.3 64.3 58.2 62.7 62.9 61.6	(kši) frof 6 65.4 56.1 57.4 60.1 64.0 66.0 56.9 60.3 59.8	n Mill 5 7 66.7 58.1 55.3 60.4 60.6 61.8 62.8 58.1 62.4 62.1 58.5	Mean 65.0 56.4 55.7 59.3 60.1 62.1 64.5 57.3 62.0 61.7 60.4	Low 63.7 55.4 55.3 57.4 59.6 59.9 62.8 56.2 60.2 59.1 58.5	High 66.7 58.1 56.1 60.4 60.6 64.0 66.0 58.2 64.9 63.6 62.1	Table 3.10: Raw Data on Yield
A 588 59.0 61.7 63.4 61.4 2 5 1.1 62.4 59.0 61.1 59.0 63.4 57.6 58.3 59.1 58.0 57.2 56.9 58.0 57.9 56.9 59.1 T3 56.3 58.2 57.6 57.9 57.2 58.2 59.3 57.8 56.3 59.3	Grade	Thickness Group T1 T2 T3 T4 T1	1 63.9 55.6 55.3 58.6 59.9 62.3 64.2 56.2 61.5 59.1 61.0 56.6	2 63.7 55.4 55.4 58.9 59.6 59.9 63.6 56.7 64.9 64.9 64.9 58.8 56.8	L 3 65.7 55.9 55.7 59.9 60.0 61.5 65.6 57.8 61.6 63.6 61.2 63.6 61.1 57.0	YIERD S OCATIC 4 64.9 56.3 55.9 59.4 60.4 63.0 65.3 57.0 60.9 62.9 62.9 62.1 57.1	Strength N 5 64.7 57.1 56.1 60.4 60.2 62.3 64.3 58.2 62.7 62.7 61.6 56.5	6 6 65.4 56.4 56.1 57.4 50.1 60.1 64.0 66.0 56.9 60.2 60.3 59.8 57.0 57.0	n Mill 5 7 66.7 58.1 55.3 60.4 60.6 61.8 62.8 58.1 62.4 62.4 58.5 57.2	Mean 65.0 56.4 55.7 59.3 60.1 62.1 64.5 57.3 62.0 61.7 60.4 56.9	Low 63.7 55.4 55.3 57.4 59.6 59.9 62.8 56.2 60.2 59.1 58.5 56.5	High 66.7 58.1 56.1 60.4 60.6 64.0 66.0 58.2 64.9 63.6 62.1 57.2	Table 3.10: Raw Data on Yield
57.6 58.3 59.1 58.0 57.2 56.9 58.0 57.9 56.9 59.1 T3 56.3 58.2 57.6 57.9 57.2 58.2 59.3 57.8 56.3 59.3	Grade	Thickness Group T1 T2 T3 T4 T1 T2	1 63.9 55.6 55.3 58.6 59.9 62.3 64.2 56.2 61.5 59.1 61.0 56.6 55.5	2 63.7 55.4 55.4 58.9 59.6 59.9 63.6 56.7 64.9 64.9 60.3 58.8 56.8 58.1	L 3 65.7 55.9 55.7 59.9 60.0 61.5 65.6 57.8 61.2 63.6 61.2 63.6 61.1 57.0 56.4	YIERD S OCATIC 4 64.9 55.3 55.9 59.4 60.4 63.0 65.3 57.0 60.9 62.9 62.9 62.9 57.1 57.1 55.1	Strength N 5 64.7 57.1 56.1 60.4 60.2 62.3 64.3 58.2 62.7 62.9 61.6 56.5 57.8	(kši) frof 6 65.4 56.4 56.1 57.4 60.1 64.0 66.0 56.9 60.2 61.3 57.0 55.0	n Mill 5 7 66.7 58.1 55.3 60.4 60.6 61.8 62.8 58.1 62.4 62.4 62.1 58.5 58.5 57.2 55.7	Mean 65.0 56.4 55.7 59.3 60.1 62.1 64.5 57.3 62.0 61.7 61.7 60.4 56.9 56.4	Low 63.7 55.4 55.3 57.4 59.6 59.9 62.8 56.2 60.2 59.1 58.5 56.5 56.5 55.0	High 66.7 58.1 56.1 60.4 60.6 64.0 66.0 58.2 64.9 63.6 62.1 57.2 58.1	Table 3.10: Raw Data on Yield
T3 563 582 576 579 572 582 593 578 563 593	Grade A 572 A 588	Thickness Group T1 T2 T3 T4 T1 T2 T2	1 63.9 55.6 55.3 58.6 59.9 62.3 64.2 56.2 61.5 59.1 61.0 55.5 59.0	2 63.7 55.4 55.4 58.9 59.6 59.9 63.6 56.7 64.9 64.9 58.8 58.8 58.8 58.1 61.7	L 3 65.7 55.9 55.7 59.9 60.0 61.5 65.6 57.8 61.2 63.6 61.1 57.0 56.4 63.4	YIERD S OCATIC 4 64.9 55.3 55.9 59.4 60.4 63.0 65.3 57.0 60.9 62.9 62.1 57.1 57.1 56.1 61.4	Strength N 5 64.7 57.1 56.1 60.4 60.2 62.3 64.3 58.2 62.7 62.6 56.5 57.8 2 €1.1	6 6 65.4 56.4 56.1 57.4 50.1 60.1 64.0 66.0 56.9 60.2 61.3 57.0 55.0 62.4	n Mill 5 7 66.7 58.1 55.3 60.4 60.6 61.8 62.8 58.1 62.4 62.4 62.1 58.5 57.2 55.7 59.0	Mean 65.0 56.4 55.7 59.3 60.1 62.1 64.5 57.3 62.0 61.7 61.7 56.9 56.4 61.1	Low 63.7 55.4 55.3 57.4 59.6 59.9 62.8 56.2 60.2 59.1 58.5 56.5 56.5 55.0 59.0	High 66.7 58.1 56.1 60.4 60.6 64.0 66.0 58.2 64.9 63.6 62.1 57.2 58.1 63.4	Table 3.10: Raw Data on Yield
	Grade A 572	Thickness Group T1 T2 T3 T4 T1 T2 T2	1 63.9 55.6 55.3 58.6 59.9 62.3 64.2 56.2 61.5 59.1 61.0 56.6 55.5 59.0 57.6	2 63.7 55.4 55.4 58.9 59.6 59.9 63.6 56.7 64.9 64.9 58.8 56.8 58.8 58.1 61.7 58.3	L 3 65.7 55.9 55.7 59.9 60.0 61.5 65.6 57.8 61.2 63.6 61.1 57.0 56.4 63.4 59.1	YIERS OCATIC 4 64.9 55.3 55.9 59.4 60.4 63.0 65.3 57.0 60.9 62.9 62.9 62.1 57.1 56.1 61.4 58.0	Strength N 5 64.7 57.1 56.1 60.4 60.2 62.3 64.3 58.2 62.7 62.6 56.5 57.8 2 §1.1 57.2	6 6 65.4 56.4 56.1 57.4 50.1 60.1 64.0 66.0 56.9 60.2 61.3 57.0 55.0 62.4 56.9 57.0	n Mill 5 7 66.7 58.1 55.3 60.4 60.6 61.8 62.8 58.1 62.4 62.4 62.1 58.5 57.2 55.7 59.0 58.0	Mean 65.0 56.4 55.7 59.3 60.1 62.1 64.5 57.3 62.0 61.7 60.4 56.9 56.4 61.1 57.9	Low 63.7 55.4 55.3 57.4 59.6 59.9 62.8 56.2 60.2 59.1 58.5 56.5 56.5 55.0 59.0 59.0 56.9	High 66.7 58.1 56.1 60.4 60.6 64.0 66.0 58.2 64.9 63.6 62.1 57.2 58.1 63.4 59.1	Table 3.10: Raw Data on Yield

Strength from Mill 5.

3.2.2 STATISTICAL ANALYSIS RESULTS FROM ALL MILLS

Tables 3.11 and 3.12 summarize the statistical analysis results for the 4-mill group (mills 1, 3, 4, and 5) and the 2-mill group (mills 2 and 6), respectively. Each table includes the mean and coefficient of variation values of the yield strength for each thickness group from the individual mills as well as overall statistics (i.e., including all the mills in the corresponding mill group).

		Yield Strength, Fy (ksi)														
Group	Mill 1				Mill 3			Mill 4			Mill 5			Overall		
	No. of Tests	Mean	COV, %	No. of Tests	Mean	COV, %	No. of Tests	Mean	COV, %	No. of Tests	Mean	COV, %	No. of Tests	Mean	COV, %	
A572-T1	42	60.5	5.74	14	55.9	2.16	28	60.3	6.72	14	60.7	7.52	98	59.8	6.52	
A572-T2	14	59.8	6.10	21	56.6	1.81	28	56.0	3.64	14	57.5	3.52	77	57.1	4.52	
A572-T3	14	55.1	4.00	28	54.2	4.74	0	-	-	14	61.1	2.24	56	56.2	6.51	
A572-T4	0	-	-	0	-	-	0	-	-	14	60.9	6.38	14	60.9	6.38	
A588-T1	42	57.1	6.76	14	58.8	1.36	28	59.1	7.81	21	61.4	2.61	105	58.7	6.48	
A588-T2	14	57.3	6.20	28	55.1	2.35	28	54.4	4.54	21	58.1	4.23	91	55.9	5.01	
A588-T3	14	66.3	4.28	14	51.7	3.07	0	-	-	21	57.9	1.41	49	58.5	10.0	
A588-T4	0	-	-	14	54.3	1.34	0	_	-	7	57.3	1.32	21	55.3	2.96	
A572 All Groups	70	59.3	5.56	63	55.4	3.43	56	58.1	5.52	56	60.1	5.39	245	58.2	5.98	
A588 All Groups	70	59.0	6.13	70	55.0	2.16	56	56.8	6.53	70	59.0	2.86	266	57.5	6.72	
All Data	140	59.1	5.85	133	55.2	2.84	112	57.4	6.03	126	59.4	4.20	511	57.8	6.37	

 Table 3.11: Statistical Analysis of Yield Strength for the 4-Mill Group.

	Yield Strength, F _v (ksi)										
Group		Mill 2		Mill 6							
	No. of Tests	Mean	COV, %	No. of Tests	Mean	COV, %					
A572-T1	282	58.6	6.08	857	61.0	7.78					
A572-T2	8	60.5	3.78	626	56.5	5.88					
A572-T3	-	-	-	271	54.3	5.37					
A572-T4	-	-	-	260	54.5	5.83					
A588-T1	44	63.6	5.59	59	62.1	6.37					
A588-T2	-	-	-	73	55.0	4.71					
A588-T3	-	-	-	71	54.1	4.41					
A588-T4	-	-	-	16	54.7	3.52					
A572 All Groups	290	58.7	6.03	2014	57.9	6.79					
A588 All Groups	44	63.6	5.59	219	56.6	5.17					
All Data	334	59.3	5.97	2233	57.7	6.66					

 Table 3.12: Statistical Analysis of Yield Strength for the 2-Mill Group.

From Table 3.11, it may be observed that, for the 4-mill group, the average yield strength ranged from 51.7 to 66.3 ksi. With respect to variability in yield strength values, the largest coefficients of variation values obtained for any single mill and for the 4-mill group were 7.81% and 10.0%, respectively. Considering all of the data, the coefficient of variation was 6.37%.

Similarly, from Table 3.12, it may be observed that both mills showed small variability in yield strength recorded with coefficient of variation values ranging from 3.52% to 7.78%. The average yield strength recorded for the two mills ranged from 54.1 to 63.6 ksi. Considering all of the data, the coefficient of variation was 6.66%.

Another important observation that may be made from Tables 3.11 and 3.12 is that the yield strength values obtained from the surveyed tests (with the 4-mill group) and the mill tests (with the 2-mill group) are quite similar. These values generally exceeded the minimum requirement of 50 ksi for both steel grades – only one plate (an A572-T3 plate from Mill 3 that can be examined in Table 3.8) from all of the data gathered showed three locations of the seven where this minimum value was not attained.

3.2.3 DISTRIBUTION OF SAMPLED YIELD STRENGTH VALUES

The percent of sampled test locations on the plates studied that had yield strength values greater than or equal to a specific strength level was studied. The specific yield strength levels considered are 50 and 55 ksi. The 50 ksi level was selected since it is the specification requirement value; the 55 ksi level was selected since it represents a value 10% above the specification requirement. The statistical analysis results are shown in Table 3.13. It should be noted that since most plates from Mills 2 and 6 had only one test location per plate, this analysis included only the data from the 4-mill group (Mills 1, 3, 4, and 5).

It may be observed from Table 3.13 that all groups except A572-T3 had 100% percent of sampled yield strength values greater than or equal to the required yield strength. In other words, in almost every case, all seven locations from each plate had yield strength equal to or greater than 50 ksi. However, it was found that for the A572 and A588 grades, the percentage of the sample (considering all thickness groups) that had yield strength values greater than 55 ksi decreased to 84.0% and 73.3%, respectively.

Percent Greater than or Equal to Specific Yield Strength (%)										
Group	Number of	50	ksi	55 ksi						
Oloup	Locations	Mean	COV, %	Mean	COV, %					
A572-T1	98	100	0	91.8	24.9					
A572-T2	77	100	0	89.6	24.8					
A572-T3	56	94.6	16.0	60.7	57.3					
A572-T4	14	100	0	100	0					
A588-T1	105	100	0	79.0	44.2					
A588-T2	91	100	0	69.2	50.4					
A588-T3	49	100	0	73.5	61.9					
A588-T4	21	100	0	61.9	53.3					
A572 All Groups	245	98.7	7.4	84.0	33.4					
A588 All Groups	266	100	0	73.3	48.8					

Table 3.13: Percent of All Test Locations that had Yield Strength Greater than orEqual to a Specific Strength Level (4-Mill Group).

3.3 TENSILE STRENGTH (Fu)

3.3.1 ORGANIZED DATA FROM THE 4-MILL GROUP

Tables 3.14 to 3.17 present the organized data on tensile strength for all the slabs from mills 1, 3, 4, and 5, respectively. In each table, the tensile strength at seven locations on each plate is presented for each steel grade and each thickness group. The mean, low, and high values observed for each sampled plate are also shown in the last three columns of each table.

	Thicknoor				Tensile	Strength	n (ksi) fro	m Mill 1			Tensile Strength (ksi) from Mill 1										
Grade	Croup			L	OCATIO	N			Moon	Low	High										
	Group	1	2	3	4	5	6	7	wean	LOW											
		82.2	80.3	84.7	83.8	85.9	80.5	82.5	82.8	80.3	85.9										
		86.1	82.9	87.6	85.9	85.9	82.6	83.8	85.0	82.6	87.6										
	τ.	79.9	77.9	79.8	79.2	79.4	79.2	78.8	79.2	77.9	79.9										
	11	90.8	87.1	88.1	87.9	87.2	86.2	87.7	87.9	86.2	90.8										
A 570		89.5	92.4	89.8	92.0	89.2	92.3	88.5	90.5	88.5	92.4										
A 572		89.8	95.7	89.6	90.7	89.1	92.0	89.7	90.9	89.1	95.7										
	то	86.9	90.1	86.6	88.0	87.5	87.5	88.7	87.9	86.6	90.1										
	12	88.4	86.4	84.8	85.7	85.4	86.9	85.6	86.2	84.8	88.4										
	Т3	82.4	82.9	81.9	81.8	82.1	82.3	82.9	82.3	81.8	82.9										
		80.4	81.0	81.3	80.3	80.8	81.8	81.3	81.0	80.3	81.8										
		80.7	80.0	80.4	80.1	77.9	79.7	80.4	79.9	77.9	80.7										
		78.3	80.0	80.0	80.2	80.1	80.0	80.1	79.8	78.3	80.2										
	Τ1	88.4	89.8	88.3	87.7	88.1	87.9	87.2	88.2	87.2	89.8										
		83.8	82.8	82.1	82.5	81.8	82.5	80.8	82.3	80.8	83.8										
A E00		75.7	75.9	75.0	75.7	75.5	76.5	75.3	75.7	75.0	76.5										
A 200		76.1	75.6	76.1	75.7	76.2	76.4	76.2	76.0	75.6	76.4										
	то	81.2	79.8	79.8	80.6	80.8	81.7	83.0	81.0	79.8	83.0										
	12	81.4	82.1	83.1	83.1	83.9	82.4	83.4	82.8	81.4	83.9										
	то	93.6	93.6	89.9	91.2	90.2	92.9	92.7	92.0	89.9	93.6										
	13	94.2	91.8	93.4	92.8	92.9	94.4	93.4	93.3	91.8	94.4										

 Table 3.14: Raw Data on Tensile Strength from Mill 1.
	Thicknoor				Tensile	Strength	n (ksi) fro	m Mill 3			
Grade	Croup			L	OCATIO	N			Maan	Low	Lliab
	Group	1	2	3	4	5	6	7	wean	LOW	High
	Τ1	75.0	76.0	77.0	75.0	74.0	77.0	75.0	75.6	74.0	77.0
	11	80.0	75.0	78.0	79.0	75.0	76.0	74.0	76.7	74.0	80.0
		78.0	76.0	78.0	78.0	79.0	80.0	79.0	78.3	76.0	80.0
	T2	80.0	79.0	79.0	79.0	79.0	81.0	80.0	79.6	79.0	81.0
A 572		80.0	79.0	79.0	79.0	79.0	81.0	80.0	79.6	79.0	81.0
		80.0	80.0	78.0	77.0	78.0	79.0	79.0	78.7	77.0	80.0
	то	80.0	79.0	79.0	79.0	79.0	81.0	80.0	79.6	79.0	81.0
	13	74.0	74.0	74.0	73.0	74.0	73.0	74.0	73.7	73.0	74.0
		74.0	74.0	74.0	73.0	74.0	73.0	74.0	73.7	73.0	74.0
	τ.	77.0	76.0	77.0	77.0	77.0	77.0	81.0	77.4	76.0	81.0
	11	78.0	78.0	78.0	78.0	78.0	79.0	78.0	78.1	78.0	79.0
		75.0	75.0	69.0	75.0	75.0	75.0	74.0	74.0	69.0	75.0
	то	76.0	75.0	75.0	77.0	75.0	77.0	76.0	75.9	75.0	77.0
A E00	12	75.0	76.0	74.0	74.0	74.0	74.0	75.0	74.6	74.0	76.0
A 200		74.0	74.0	74.0	73.0	74.0	73.0	74.0	73.7	73.0	74.0
	T2	84.0	82.0	80.0	82.0	83.0	84.0	85.0	82.9	80.0	85.0
	13	84.0	83.0	83.0	80.0	82.0	82.0	83.0	82.4	80.0	84.0
	Тı	80.0	81.0	81.0	80.0	81.0	81.0	81.0	80.7	80.0	81.0
	14	81.0	80.0	81.0	81.0	82.0	80.0	81.0	80.9	80.0	82.0

 Table 3.15: Raw Data on Tensile Strength from Mill 3.

 Table 3.16: Raw Data on Tensile Strength from Mill 4.

	Thicknoor				Tensile	Strength	n (ksi) fro	m Mill 4			
Grade	Group			L	<u>OCATIO</u>	N			Moon	Low	High
	Gloup	1	2	3	4	5	6	7	IVICALI	LOW	Tilgit
		84.4	85.1	79.0	79.5	79.2	84.4	83.8	82.2	79.0	85.1
	Τ1	71.4	78.4	77.7	78.3	77.6	78.5	78.5	77.2	71.4	78.5
		84.3	83.3	78.1	77.9	78.1	78.7	79.5	80.0	77.9	84.3
A 570		78.4	79.9	78.5	78.4	78.4	81.4	81.4	79.5	78.4	81.4
A 572		82.1	83.2	82.5	83.7	82.2	83.1	83.4	82.9	82.1	83.7
	T2	82.3	83.0	81.8	83.1	82.3	83.7	82.2	82.6	81.8	83.7
		81.0	81.4	81.4	81.4	81.2	82.0	82.6	81.6	81.0	82.6
		80.9	80.9	79.3	79.2	79.6	80.0	80.9	80.1	79.2	80.9
		77.2	81.2	73.5	73.5	73.7	75.7	77.2	76.0	73.5	81.2
		76.9	79.2	75.4	76.5	77.3	78.3	77.6	77.3	75.4	79.2
	11	74.0	73.3	72.9	75.5	75.4	74.4	75.5	74.4	72.9	75.5
A E00		78.7	78.0	75.0	75.3	76.8	77.7	80.3	77.4	75.0	80.3
A 300		78.4	78.0	78.0	77.5	80.4	77.9	78.7	78.4	77.5	80.4
	та	80.1	80.7	79.4	79.7	79.7	80.4	79.4	79.9	79.4	80.7
	12	76.1	76.7	75.4	76.7	75.7	76.7	77.1	76.3	75.4	77.1
		78.8	79.6	79.2	79.4	79.0	79.8	79.6	79.3	78.8	79.8

	Thickness				Tensile	Strength	n (ksi) fro	m Mill 5			
Grade	Crown			L	OCATIO	N			Moon	Low	Lliah
	Gloup	1	2	3	4	5	6	7	wean	LOW	пıgri
	Τ1	86.3	85.9	86.3	87.0	87.1	86.0	87.9	86.6	85.9	87.9
		81.3	82.0	83.1	80.5	81.3	81.8	82.9	81.8	80.5	83.1
	то	77.5	78.6	78.0	77.9	77.8	76.9	76.1	77.5	76.1	78.6
A 570	12	84.1	85.1	87.4	87.2	88.9	85.5	86.7	86.4	84.1	88.9
A 572	T2	89.4	89.4	86.9	87.5	86.9	89.3	89.3	88.4	86.9	89.4
	15	88.6	90.0	91.2	92.6	89.5	88.7	90.3	90.1	88.6	92.6
	τı	89.9	92.5	94.9	92.3	91.1	90.9	91.8	91.9	89.9	94.9
	14	85.0	85.6	86.4	86.2	87.1	86.5	86.3	86.2	85.0	87.1
		89.0	90.9	90.6	90.1	89.7	88.9	87.8	89.6	87.8	90.9
	T1	87.8	86.8	90.2	90.1	90.4	91.1	90.3	89.5	86.8	91.1
		82.8	82.6	84.7	86.3	85.9	83.8	83.7	84.3	82.6	86.3
		81.1	81.7	84.1	84.2	83.8	85.0	84.6	83.5	81.1	85.0
A 500	T2	85.3	84.4	81.9	82.8	82.4	83.1	83.0	83.3	81.9	85.3
A 300		88.4	87.7	89.9	90.0	89.5	90.7	87.6	89.1	87.6	90.7
		81.9	83.0	82.4	82.0	82.1	79.8	80.6	81.7	79.8	83.0
	Т3	80.2	81.0	82.3	80.0	79.9	83.4	81.0	81.1	79.9	83.4
		80.6	79.6	81.2	78.6	79.8	80.8	80.0	80.1	78.6	81.2
	T4	88.7	88.8	89.4	89.4	89.4	88.2	89.3	89.0	88.2	89.4

 Table 3.17: Raw Data on Tensile Strength from Mill 5.

3.3.2 STATISTICAL ANALYSIS RESULTS FROM ALL MILLS

Tables 3.18 and 3.19 summarize the statistical analysis results for the 4-mill group (mills 1, 3, 4, and 5) and the 2-mill group (mills 2 and 6), respectively. Each table includes the mean and coefficient of variation values of the tensile strength for each thickness group from the individual mills as well as overall statistics (i.e., including all the mills in the corresponding mill group).

Table 3.18:	Statistical Ana	lysis of '	Tensile	Strength	for the	4-Mill	Group.
		•					1

							Tensile	Strength	, Fu (ksi)						
Group		Mill 1			Mill 3			Mill 4			Mill 5			Overall	
	No. of Tests	Mean	COV, %	No. of Tests	Mean	COV, %	No. of Tests	Mean	COV, %	No. of Tests	Mean	COV, %	No. of Tests	Mean	COV, %
A572-T1	42	86.1	5.30	14	76.1	2.41	28	79.7	3.67	14	84.2	3.10	98	82.6	6.23
A572-T2	14	87.0	1.67	21	79.1	1.40	28	81.8	1.55	14	82.0	5.81	77	82.1	4.24
A572-T3	14	81.7	1.03	28	76.4	3.76	0	-	-	14	89.3	1.75	56	80.9	7.09
A572-T4	0	-	-	0	-	-	0	-	-	14	89.0	3.60	14	89.0	3.60
A588-T1	42	80.3	5.38	14	77.8	1.53	28	76.3	2.83	21	87.8	3.27	105	80.4	6.44
A588-T2	14	81.9	1.63	28	74.5	1.98	28	78.5	1.93	21	85.3	3.56	91	79.4	5.68
A588-T3	14	92.6	1.49	14	82.6	1.75	0	-	-	21	81.0	1.54	49	84.8	6.18
A588-T4	0	-	-	14	80.8	0.72	0	-	-	7	89.0	0.53	21	83.5	4.81
A572 All Groups	70	85.4	4.23	63	77.3	2.84	56	80.8	2.79	56	86.1	3.77	245	82.4	5.76
A588 All Groups	70	83.1	4.16	70	78.1	1.64	56	77.4	2.41	70	85.1	2.81	266	81.1	6.02
All Data	140	84.2	4.20	133	77.7	2.28	112	79.1	2.61	126	85.6	3.28	511	81.7	5.90

		Т	Censile Stre	ngth, F _u (ks	i)	
Group		Mill 2			Mill 6	
	No. of Tests	Mean	COV, %	No. of Tests	Mean	COV, %
A572-T1	282	72.1	7.07	857	75.8	5.65
A572-T2	8	79.7	8.97	626	75.9	3.94
A572-T3	-	-	-	271	78.7	4.56
A572-T4	-	-	-	260	77.9	3.87
A588-T1	44	83.5	10.2	59	81.2	3.03
A588-T2	-	-	-	73	81.4	2.81
A588-T3	-	-	-	71	83.8	2.89
A588-T4	-	-	-	16	83.8	1.77
A572 All Groups	290	72.3	7.15	2014	76.5	4.80
A588 All Groups	44	83.5	10.2	219	82.3	2.84
All Data	334	73.8	7.77	2233	77.1	4.62

 Table 3.19: Statistical Analysis of Tensile Strength for the 2-Mill Group.

From Table 3.18, it may be observed that, for the 4-mill group, the average tensile strength ranged from 74.5 to 92.6 ksi. With respect to variability in tensile strength values, the largest coefficients of variation values obtained for any single mill and for the 4-mill group were 5.81% and 7.09%, respectively. Considering all of the data, the coefficient of variation was 5.90%.

Similarly, from Table 3.19, it may be observed that both mills showed small variability in tensile strength with coefficient of variation values ranging from 1.77% to 10.2%. The average tensile strength recorded for the two mills ranged from 72.1 to 83.8 ksi.

Another important observation that may be made from Tables 3.17 and 3.18 is that the tensile strength values obtained from the surveyed tests (with the 4-mill group) and the mill tests (with the 2-mill group) are quite similar. These values exceed the minimum requirements of 65 ksi for both steel grades.

3.3.3 DISTRIBUTION OF SAMPLED TENSILE STRENGTH VALUES

The percent of sampled test locations on the plates studied that had tensile strength values greater than or equal to a specific strength level was studied. The specific strength levels considered are 65 and 70 ksi. The 65 ksi level was selected since it is the specification requirement value; the 70 ksi level was selected as it is 5 ksi (approximately 8%) above the specification requirement. The statistical analysis results are shown in Table 3.20. Again, it should be noted that since most plates from Mills 2 and 6 had only one test location per plate, this analysis included only the data from the 4-mill group (Mills 1, 3, 4, and 5).

It may be observed from Table 3.20 that all groups had 100% percent of sampled tensile strength values greater than or equal to the required tensile strength. In other words, in all cases, all seven locations from each plate had tensile strength equal to or greater than 65 ksi. This is also true for the 70 ksi level with only exception: the A588-T2 plates had 98.9% of the samples with tensile strengths greater than 70 ksi. The results suggest that most plates had adequate tensile strength with low variability.

Table 3.20: Percent of All Test Locations that has Tensile Strength Greater than or
Equal to Specific Strength Level (4-Mill Group).

Percent	Greater that	n or Equal t	to Specific '	Tensile Stre	ength (%)
Group	Number of	65	ksi	70	ksi
Oloup	Locations	Mean	COV, %	Mean	COV, %
A572-T1	98	100	0	100	0
A572-T2	77	100	0	100	0
A572-T3	56	100	0	100	0
A572-T4	14	100	0	100	0
A588-T1	105	100	0	100	0
A588-T2	91	100	0	98.9	4.0
A588-T3	49	100	0	100	0
A588-T4	21	100	0	100	0
A572 All Groups	245	100	0	100	0
A588 All Groups	266	100	0	99.6	2.3

3.4 YIELD TO TENSILE RATIO 3.4.1 ORGANIZED DATA FROM THE 4-MILL GROUP

Tables 3.21 to 3.24 present the organized data on yield to tensile ratio for all the slabs from mills 1, 3, 4, and 5 respectively. In each table, the yield to tensile ratio at seven locations on each plate is presented for each steel grade and each thickness group. The mean, low, and high values observed for each sampled plate are also shown in the last three columns of each table.

	Thickness				Yield to	Tensile	Ratio fro	m Mill 1			
Grade	Creves			L	OCATIO	N			Maan	1.000	ال ال مرام
	Group	1	2	3	4	5	6	7	wean	LOW	High
		0.71	0.71	0.71	0.72	0.71	0.72	0.73	0.72	0.71	0.73
		0.73	0.73	0.72	0.72	0.72	0.73	0.72	0.72	0.72	0.73
	τ.	0.68	0.71	0.68	0.68	0.68	0.68	0.69	0.69	0.68	0.71
	11	0.72	0.69	0.71	0.71	0.70	0.67	0.70	0.70	0.67	0.72
A 570	. 572	0.69	0.68	0.68	0.66	0.69	0.70	0.71	0.69	0.66	0.71
A 572		0.70	0.71	0.70	0.69	0.71	0.69	0.72	0.70	0.69	0.72
	то	0.66	0.65	0.66	0.65	0.64	0.71	0.65	0.66	0.64	0.71
-	T2	0.80	0.66	0.71	0.72	0.72	0.70	0.71	0.72	0.66	0.80
	то	0.66	0.63	0.68	0.65	0.65	0.69	0.66	0.66	0.63	0.69
	13	0.73	0.71	0.72	0.71	0.65	0.65	0.67	0.69	0.65	0.73
		0.72	0.73	0.74	0.72	0.74	0.72	0.84	0.74	0.72	0.84
		0.70	0.76	0.71	0.71	0.71	0.72	0.73	0.72	0.70	0.76
	τ.	0.72	0.72	0.71	0.71	0.72	0.68	0.67	0.70	0.67	0.72
	11	0.69	0.70	0.70	0.72	0.71	0.71	0.73	0.71	0.69	0.73
A E 00		0.70	0.69	0.70	0.70	0.70	0.71	0.70	0.70	0.69	0.71
A 200		0.70	0.69	0.69	0.68	0.71	0.70	0.70	0.69	0.68	0.71
	то	0.79	0.77	0.74	0.74	0.72	0.73	0.73	0.75	0.72	0.79
	12	0.66	0.67	0.66	0.66	0.66	0.62	0.66	0.66	0.62	0.67
	то	0.71	0.73	0.69	0.72	0.69	0.71	0.74	0.71	0.69	0.74
	13	0 72	0.73	0 71	0 70	0.69	0 78	0.69	0 72	0.69	0 78

 Table 3.21: Raw Data on Yield to Tensile Ratio from Mill 1.

	Thickness				Yield to	Tensile	Ratio fro	m Mill 3			
Grade	Crown			L	OCATIO	N			Moon	Low	Lliab
	Group	1	2	3	4	5	6	7	wear	LOW	пıgri
	Τ1	0.75	0.72	0.73	0.73	0.76	0.75	0.76	0.74	0.72	0.76
		0.73	0.72	0.71	0.70	0.75	0.72	0.77	0.73	0.70	0.77
		0.73	0.72	0.72	0.74	0.71	0.71	0.71	0.72	0.71	0.74
	T2	0.73	0.72	0.71	0.70	0.71	0.72	0.71	0.71	0.70	0.73
A 572		0.73	0.72	0.71	0.70	0.71	0.72	0.71	0.71	0.70	0.73
		0.70	0.68	0.69	0.61	0.63	0.65	0.62	0.65	0.61	0.70
	ТЗ	0.73	0.72	0.71	0.70	0.71	0.72	0.71	0.71	0.70	0.73
	13	0.74	0.73	0.74	0.73	0.73	0.74	0.74	0.74	0.73	0.74
	13	0.74	0.73	0.74	0.73	0.73	0.74	0.74	0.74	0.73	0.74
	τ1	0.75	0.76	0.75	0.75	0.75	0.77	0.73	0.75	0.73	0.77
	11	0.77	0.77	0.74	0.76	0.76	0.75	0.77	0.76	0.74	0.77
		0.75	0.75	0.74	0.75	0.75	0.75	0.74	0.75	0.74	0.75
	то	0.75	0.75	0.73	0.71	0.75	0.74	0.75	0.74	0.71	0.75
A E00	12	0.75	0.74	0.74	0.73	0.73	0.74	0.73	0.74	0.73	0.75
A 200		0.74	0.73	0.74	0.73	0.73	0.74	0.74	0.74	0.73	0.74
	Тр	0.64	0.62	0.63	0.63	0.63	0.64	0.65	0.63	0.62	0.65
	13	0.62	0.60	0.61	0.64	0.62	0.61	0.61	0.62	0.60	0.64
	τ.	0.66	0.67	0.68	0.66	0.68	0.67	0.68	0.67	0.66	0.68
	14	0.67	0.69	0.67	0.67	0.67	0.68	0.68	0.67	0.67	0.69

 Table 3.22: Raw Data on Yield to Tensile Ratio from Mill 3.

 Table 3.23: Raw Data on Yield to Tensile Ratio from Mill 4.

	Thicknoor				Yield to	Tensile	Ratio fro	m Mill 4			
Grade	Croup			Ŀ	OCATIO	N			Moon	Low	Lliah
	Group	1	2	3	4	5	6	7	Wear	LOW	піgп
		0.80	0.79	0.74	0.73	0.75	0.80	0.79	0.77	0.73	0.80
	Τ1	0.82	0.76	0.74	0.73	0.74	0.78	0.72	0.76	0.72	0.82
		0.80	0.78	0.73	0.72	0.73	0.76	0.79	0.76	0.72	0.80
A 570	72	0.74	0.76	0.71	0.70	0.71	0.78	0.77	0.74	0.70	0.78
A 572		0.70	0.67	0.67	0.70	0.67	0.69	0.68	0.68	0.67	0.70
	T2	0.70	0.67	0.67	0.67	0.68	0.70	0.70	0.68	0.67	0.70
		0.70	0.67	0.65	0.71	0.72	0.72	0.71	0.70	0.65	0.72
		0.67	0.66	0.64	0.69	0.70	0.69	0.65	0.67	0.64	0.70
		0.86	0.86	0.80	0.72	0.72	0.79	0.81	0.79	0.72	0.86
	τ.	0.80	0.82	0.77	0.74	0.78	0.82	0.79	0.79	0.74	0.82
	11	0.77	0.76	0.69	0.72	0.75	0.73	0.79	0.74	0.69	0.79
A 500		0.79	0.78	0.73	0.73	0.77	0.78	0.83	0.77	0.73	0.83
00C A		0.67	0.65	0.67	0.66	0.65	0.65	0.67	0.66	0.65	0.67
	то	0.68	0.70	0.73	0.72	0.71	0.71	0.70	0.70	0.68	0.73
	12	0.68	0.68	0.76	0.69	0.68	0.70	0.71	0.70	0.68	0.76
		0.71	0.68	0.69	0.74	0.68	0.74	0.71	0.71	0.68	0.74

	Thicknoon	Yield to Tensile Ratio from Mill 5									
Grade	Croup			L	OCATIO	N			Moon	Low	Lliab
	Group	1	2	3	4	5	6	7	wean	LOW	пign
	Т1	0.74	0.74	0.76	0.75	0.74	0.76	0.76	0.75	0.74	0.76
		0.68	0.68	0.67	0.70	0.70	0.69	0.70	0.69	0.67	0.70
	то	0.71	0.70	0.71	0.72	0.72	0.73	0.73	0.72	0.70	0.73
A 570	12	0.70	0.69	0.69	0.68	0.68	0.67	0.70	0.69	0.67	0.70
A 572	T2	0.67	0.67	0.69	0.69	0.69	0.67	0.68	0.68	0.67	0.69
	15	0.70	0.67	0.67	0.68	0.70	0.72	0.68	0.69	0.67	0.72
	τı	0.71	0.69	0.69	0.71	0.71	0.73	0.68	0.70	0.68	0.73
	14	0.66	0.66	0.67	0.66	0.67	0.66	0.67	0.66	0.66	0.67
		0.69	0.71	0.68	0.68	0.70	0.68	0.71	0.69	0.68	0.71
	T1	0.67	0.69	0.71	0.70	0.70	0.67	0.69	0.69	0.67	0.71
		0.74	0.71	0.72	0.72	0.72	0.71	0.70	0.72	0.70	0.74
		0.70	0.70	0.68	0.68	0.67	0.67	0.68	0.68	0.67	0.70
A E00	T2	0.65	0.69	0.69	0.68	0.70	0.66	0.67	0.68	0.65	0.70
A 200		0.67	0.70	0.71	0.68	0.68	0.69	0.67	0.69	0.67	0.71
		0.70	0.70	0.72	0.71	0.70	0.71	0.72	0.71	0.70	0.72
	Т3	0.70	0.72	0.70	0.72	0.72	0.70	0.73	0.71	0.70	0.73
		0.72	0.74	0.73	0.73	0.73	0.70	0.72	0.73	0.70	0.74
	T4	0.65	0.64	0.65	0.64	0.65	0.63	0.65	0.64	0.63	0.65

Table 3.24: Raw Data on Yield to Tensile Ratio from Mill 5.

3.4.2 STATISTICAL ANALYSIS RESULTS FROM ALL MILLS

Tables 3.25 and 3.26 summarize the statistical analysis results for the 4-mill group (mills 1, 3, 4, and 5) and the 2-mill group (mills 2 and 6), respectively. Each table includes the mean and coefficient of variation values of the yield to tensile ratio for each thickness group from the individual mills as well as overall statistics (i.e., including all the mills in the corresponding mill group).

 Table 3.25:
 Statistical Analysis of Yield to Tensile Ratio for 4-Mill Group.

						Y	ield to T	ensile Ra	atio (Fy/I	Fu)					
Group		Mill 1			Mill 3			Mill 4			Mill 5			Overall	
	No. of Tests	Mean	COV, %	No. of Tests	Mean	COV, %	No. of Tests	Mean	COV, %	No. of Tests	Mean	COV, %	No. of Tests	Mean	COV, %
A572-T1	42	0.70	2.48	14	0.73	2.92	28	0.76	4.07	14	0.72	4.64	98	0.73	4.89
A572-T2	14	0.69	6.29	21	0.72	1.53	28	0.68	2.04	14	0.70	2.67	77	0.70	3.90
A572-T3	14	0.68	4.59	28	0.71	5.53	0		_	14	0.68	2.28	56	0.69	5.14
A572-T4	0	-	-	0	-	-	0	-	-	14	0.68	3.28	14	0.68	3.28
A588-T1	42	0.71	3.74	14	0.76	1.52	28	0.79	5.44	21	0.70	2.59	105	0.73	5.76
A588-T2	14	0.70	7.23	28	0.74	1.26	28	0.68	3.75	21	0.68	2.07	91	0.71	4.94
A588-T3	14	0.72	3.34	14	0.63	2.16	0	-	-	21	0.70	11.49	49	0.68	9.55
A588-T4	0	-	-	14	0.67	1.15	0	-	-	7	0.64	0.92	21	0.66	2.30
A572 All Groups	70	0.69	3.94	63	0.72	4.01	56	0.72	3.33	56	0.70	3.37	245	0.71	4.59
A588 All Groups	70	0.71	4.57	70	0.71	1.48	56	0.74	4.80	70	0.69	6.65	266	0.71	6.18
All Data	140	0 70	4 27	133	0 71	2.97	112	0.73	4 1 4	126	0.69	5 42	511	0.71	5 48

		Yie	eld to Tensi	le Ratio (F _v	/F _u)	
Group		Mill 2			Mill 6	
	No. of Tests	Mean	COV, %	No. of Tests	Mean	COV, %
A572-T1	282	0.81	4.11	857	0.80	4.47
A572-T2	8	0.76	6.02	626	0.74	4.38
A572-T3	-	-	-	271	0.69	3.39
A572-T4	-	-	-	260	0.70	3.63
A588-T1	44	0.77	6.42	59	0.76	4.78
A588-T2	-	-	-	73	0.68	3.49
A588-T3	-	-	-	71	0.64	2.83
A588-T4	-	-	-	16	0.65	2.51
A572 All Groups	290	0.81	4.17	2014	0.76	4.26
A588 All Groups	44	0.77	6.42	219	0.69	3.77
All Data	334	0.81	4.49	2233	0.75	4.22

 Table 3.26: Statistical Analysis of Yield to Tensile Ratio for Two-Mill Group.

It can be observed from Table 3.25 that, for the 4-mill group, the average yield to tensile ratio ranged from 0.63 to 0.79. With respect to variability in yield to tensile ratios, the largest coefficients of variation values obtained for any single mill and for the 4-mill group were 11.49% and 9.55%, respectively. Considering all of the data, the coefficient of variation was 5.48%.

Similarly, from Table 3.26, it may be observed that both mills showed small variability in yield to tensile ratio with coefficient of variation values ranging from 2.51% to 6.42%. The average yield to tensile ratio for the two mills ranged from 0.64 to 0.81.

An important observation that may be made from Tables 3.25 and 3.26 is that the yield to tensile ratio from all six mills was found to be lower than the maximum permissible ratio of 0.85, which while not necessarily a requirement for plate specifications under study, is a common requirement for other product forms of the same steel covered by A992. In both steel grades, the average yield to tensile ratio for all mills was seen to decrease with an increase in plate thickness, except for a few cases where this trend was not observed.

3.5 YIELD STRENGTH TO YIELD POINT RATIO 3.5.1 ORGANIZED DATA FROM MILL 4

Since mill 4 was the only mill that reported data on yield point, table 3.27 presents the organized data on yield strength to yield point ratio for mill 4. In the table, the yield strength to yield point at seven locations on each plate is presented for each steel grade and each thickness group. The mean, low, and high values observed for each sampled plate is also shown in the last three columns.

Grade Thick Gro	Thicknoon			Yield	Strength	n to Yield	d Point (l	(si) from	Mill 4		
Grade	Croup			L	OCATIO	N		-	Moon	Low	Lliab
	Group	1	2	3	4	5	6	7	wean	LOW	пign
		0.98	0.99	0.98	0.97	1.00	0.96	0.98	0.98	0.96	1.00
	Τ1	1.00	1.00	1.00	1.00	1.00	1.07	0.97	1.01	0.97	1.07
		0.97	1.04	1.00	1.00	1.09	1.01	0.99	1.01	0.97	1.09
A 570		0.98	1.00	0.99	1.00	0.99	1.03	0.98	0.99	0.98	1.03
A 572		1.02	1.00	1.03	1.01	0.99	1.01	1.03	1.01	0.99	1.03
	Т2	1.00	1.01	1.01	1.00	1.01	1.03	1.00	1.01	1.00	1.03
	12	1.07	1.00	1.02	1.22	1.08	1.11	1.16	1.09	1.00	1.22
		0.98	1.00	1.01	0.97	1.02	0.96	1.02	1.00	0.96	1.02
		1.07	1.01	1.07	0.98	0.97	0.99	0.97	1.01	0.97	1.07
	τ1	0.97	0.99	1.03	0.96	1.00	1.01	0.97	0.99	0.96	1.03
	11	0.98	1.00	0.98	1.01	1.04	0.99	0.99	1.00	0.98	1.04
A 500		1.00	0.99	0.98	0.99	0.98	0.97	0.98	0.98	0.97	1.00
A 300		1.02	1.02	1.05	1.00	1.00	1.00	1.04	1.02	1.00	1.05
	то	1.00	1.00	1.02	0.99	1.00	0.99	1.00	1.00	0.99	1.02
	12	0.98	0.97	-	1.03	1.01	0.98	0.99	1.00	0.97	1.03
		1.00	1.00	1.02	1.11	1.02	1.13	1.00	1.04	1.00	1.13

 Table 3.27: Raw Data on Yield Strength to Yield Point Ratio from Mill 4.

3.5.2 STATISTICAL ANALYSIS RESULTS FOR MILL 4

The statistical analysis results for mill 4 are summarized in table 3.28. Since no other mill provided data on yield point, overall statistics for all mills for the yield strength to yield point ratio could not be determined as was done for other parameters discussed. Table 3.28 shows that the average yield strength to yield point ratio of a572-t1, a572-t2, a588-t1 and a588-t2 groups was close to unity; the ratio (averaged for each thickness group) is seen to range from 0.99 to 1.01. In other words, the yield point level is very close to the yield strength with an average discrepancy of only about 1%. Moreover, the variability of this ratio for mill 4 is also relatively small with coefficient of variation values ranging from 1.70% to 3.48%. Considering all of the data, the coefficient of variation was 2.45%.

	Yield Streng	th to Yield Point	Ratio (F_v/Y_p)
Group		Mill 4	
	No. of Tests	Mean	COV, %
A572-T1	28	0.99	2.80
A572-T2	28	1.01	1.20
A572-T3	0	-	-
A572-T4	0	-	-
A588-T1	28	1.00	3.48
A588-T2	28	1.01	1.70
A588-T3	0	-	-
A588-T4	0	-	-
A572 All Groups	56	1.00	2.14
A588 All Groups	56	1.00	2.73
All Data	112	1.00	2.45

 Table 3.28: Statistical Analysis of Yield Strength to Yield Point Ratio for Mill 4.

3.6 CHARPY V-NOTCH TOUGHNESS (CVN)

Charpy V-notch test data were only available for the mills in the 4-mill group. Figure 3.7 shows the distribution of plates among the four mills (Mills 1, 3, 4, and 5) for which CVN test data were available. It should be noted that this distribution is different from the one in Figure 2.2 due to the deletion of erroneous CVN test data as discussed in Section 2.2.

Figure 3.7: Distribution of Plates for CVN Tests (Mills 1, 3, 4, and 5).

3.6.1 ORGANIZED DATA FROM THE 4-MILL GROUP

Tables3.29to3.32present the three-test averages of absorbedenergy from Mills 1, 3,

4, and 5, respectively. In each table, the three-test average of absorbed energy values at seven locations is presented for each steel grade and each thickness group. The mean, low, and high values for each sampled plate are also shown in the last three columns of each table.

Distribution of Plates for CVN Tests

Graup Temperature LCCATION Mean Low High 4 5 3 4 5 6 7 Mean Low High 8 9 49.0 51.2 21.0 17.0 41.7 77.0 21.7 21.0 47.0 47.7 37.3 73.7 22.0 45.2 17.3 93.3		Thickness	Test		Thre	e-Test A	verage	of Absor	bed Ene	rgy (ft-lb	s) from I	Mill 1	
A 572	Grade	Group	Temperature	4	2	L		N	0	7	Mean	Low	High
A 572 0 F 40.7 91.7 17.0 12.7 31.3 37.3 51.2 12.7 49.0 46.7 91.7 17.3 38.7 12.0 17.3 37.3 70.2 28.9 49.1 40.7 93.3 00.5 17.13 38.7 27.0 22.0 48.2 17.3 91.0 40.7 93.7 30.0 5.7 11.3 61.7 10.7 18.3 5.7 40.7 40.7 12.3 14.7 17.3 85.0 39.7 10.0 12.7 13.0 44.7 4.7 36.8 62.3 80.7 12.7 10.0 12.7 13.3 10.0 14.7 37.8 10.0 17.8 38.0 18.0 16.0 10.2 11.5 11.5 15.7 13.2 11.0 13.3 15.0 17.0 11.5 15.7 11.9 12.9 11.6 17.7 11.9 12.9 11.6 15.7 11.3 15.0				48.3	∠ 58.3	3 21 7	4 21.0	5 17.0	0 417	67.0	30.3	17.0	67.0
A 572 0 F 46.7 91.7 32.3 69.3 70.7 93.3 87.3 70.2 32.2 93.3 91.0 40.7 93.3 30.0 5.7 11.3 6.7 10.7 16.3 5.7 40.7 36.7 7.7 38.0 62.0 66.6 3.7 88.0 62.0 60.6 3.7 88.0 62.0 60.6 3.7 88.0 62.0 60.6 3.7 88.0 62.0 60.6 3.7 88.0 10.3 10.3 10.3 10.3 10.3 10.3 10.3 10.3 10.3 10.3 10.5 11.3 10.5 10.3 10.5 11.3 10.5 10.5 11.5				39.7	49.0	31.7	17.0	12.7	31.3	37.3	31.2	12.7	49.0
A 572 01 91.0 41.7 78.7 17.3 38.7 27.0 22.0 45.2 17.3 91.0 18.0 4.7 36.7 7.7 10.0 112.7 13.0 14.7 47.3 85.0 39.7 33.3 88.0 62.0 60.6 33.7 88.0 88.0 62.0 60.6 33.7 88.0 88.0 62.0 60.6 33.7 88.0 88.0 62.0 60.6 33.7 88.0 88.0 62.0 60.6 33.7 88.0 88.0 86.5 60.6 33.7 143.3 102.6 17.7 143.7 163.0 17.7 143.7 13.0 <td< td=""><td></td><td></td><td>0 5</td><td>46.7</td><td>91.7</td><td>32.3</td><td>69.3</td><td>70.7</td><td>93.3</td><td>87.3</td><td>70.2</td><td>32.3</td><td>93.3</td></td<>			0 5	46.7	91.7	32.3	69.3	70.7	93.3	87.3	70.2	32.3	93.3
A 572 40.7 9.3 30.0 5.7 11.3 6.7 10.7 16.3 5.7 40.7 A 50 30.7 33.7 38.3 80.0 62.0 60.6 33.7 88.0 A 50 116.7 108.7 85.3 85.7 100.0 118.3 108.7 103.3 88.0 102.6 70.7 10.0 36.5 113.3 34.7 13.5 11.3 55.0 11.3 51.5 11.3 55.0 11.3 51.5 11.5 51.5 11.3 55.0 11.5 11.5 51.5 11.5 51.5 11.5 11.5 51.5 11.5 11.5 51.5 11.5 11.5 11.5 51.5 11.5 11.5 11.5 51.5 11.5			UF	91.0	41.7	78.7	17.3	38.7	27.0	22.0	45.2	17.3	91.0
A 572 18.0 4.7 36.7 7.7 10.0 12.7 13.0 14.7 4.7 36.7 A 572 10.7 10.7 10.7 10.7 10.7 10.7 10.7 10.7 10.7 10.7 10.3 10.3 10.3 10.3 10.3 10.3 10.3 10.3 10.3 10.3 10.5 10.3 10.5 10.3 10.5 11.3 10.0 10.3 10.0 10.3 10.0 10.				40.7	9.3	30.0	5.7	11.3	6.7	10.7	16.3	5.7	40.7
A 572 11 40 F 62.3 60.7 40.7 31.0 29.7 52.7 57.7 50.7 28.7 80.7 145.7 108.7 85.3 85.7 100.0 118.3 108.7 103.3 85.3 118.1 143.7 79.7 123.7 81.7 103.0 80.0 73.1 30.0 13.1 34.7 13.5 51.0 11.3 55.0 12.7 10.0 36.7 19.7 91.7 31.3 31.7 13.3 30.7 14.5 11.3 55.0 10.7 11.3 30.7 14.5 11.3 55.0 10.7 11.3 50.7 11.7 10.5 11.5 11.3 55.0 10.7 11.3 15.7 11.7 12.5 116.3 15.7 11.7 12.5 116.3 15.7 13.3 35.3 33.5 30.7 14.3 76.7 13.3 35.3 33.5 30.7 14.3 76.7 14.3 16.7 14.7 16.3				18.0	4.7	36.7	7.7	10.0	12.7	13.0	14.7	4.7	36.7
A 572 0.7 40.7 31.0 29.7 91.7 113.3 91.7 113.3 91.7 113.3 110.0 45.0 91.7 110.7 110.7 141.7 150.7 110.7				77.3	85.0	39.7	33.7	38.3	88.0	62.0	60.6	33.7	88.0
A 572 T1 40 F T02,7 79,7 723,7 81,7 103,3 89,0 97,3 102,6 79,7 143,7 A 572 27,3 10,0 38,7 19,7 41,7 30,7 11,3 34,7 31,5 11,3 55,0 P6,3 116,0 38,3 65,0 60,7 96,3 88,0 86,6 60,7 116,0 45,0 51,7 119,7 113,7 100,7 127,7 83,0 103,0 100,7 124,3 115,9 83,0 103,7 114,3 155,3 33,3 30,3 37,7 14,3 70,7 43,7 70,7 42,7 76,3 31,3 55,3 33,3 30,3 37,7 14,3 76,7 14,3 22,0 10,3 80,7 74,2,3 76,7 74,2,7 76,3 31,3 50,3 33,3 30,3 37,7 14,3 76,7 74,2,7 74,2,7 76,3 10,3 14,7 16,6,7 11,3 120,0 <t< td=""><td></td><td></td><td></td><td>116.7</td><td>108.7</td><td>85.3</td><td>85.7</td><td>100.0</td><td>118.3</td><td>108.7</td><td>103.3</td><td>29.7</td><td>118.3</td></t<>				116.7	108.7	85.3	85.7	100.0	118.3	108.7	103.3	29.7	118.3
A 572 55.0 12.7 50.7 17.3 30.0 11.3 34.7 31.6 11.3 56.0 A 572 96.3 110.0 36.7 19.7 41.7 30.7 45.0 30.1 10.0 45.0 96.3 116.0 83.3 65.0 60.7 96.3 88.6 60.7 116.0 113.5 113.5 113.5 116.0 113.5 113.5 115.0 113.5 115.0 113.5 116.0 113.5 116.0 113.5 116.0 113.5 116.0 113.5 116.0 113.5 116.0 113.5 113.7 113.5 113.7		T1	40 F	143.7	79.7	123.7	81.7	103.3	89.0	97.3	102.6	79.7	143.7
A 572 96.3 116.0 33.6 96.0 96.3 96.5 96.7 96.7 96.7 96.7 96.7 96.7 96.7 96.7 96.7 96.3 96.7 <				55.0	12.7	50.7	17.3	39.0	11.3	34.7	31.5	11.3	55.0
A 572 70 F 96.3 116.0 83.3 65.0 60.7 98.3 98.0 98.5 60.7 116.0 76.3 77.7 50.0 45.0 115.7 183.1 105.0 70.6 45.0 105.0 43.3 100.7 127.7 83.0 130.0 107.7 124.3 115.9 83.0 130.0 45.7 100.7 127.7 83.0 130.0 107.7 124.3 125.9 80.7 64.3 185.7 40.7 56.3 38.5 20.7 56.3 38.5 20.7 56.3 38.5 27.4 42.3 70.7 43.3 46.0 65.3 109.7 106.3 30.3 37.7 14.3 100.7 71.3 30.0 37.7 71.4 30.0 68.7 64.7 49.0 45.7 72.4 38.3 108.7 10.3 20.7 11.3 19.0 21.3 11.3 12.0 11.3 90.7 12.1 13.3 30.2 11.3<				27.3	10.0	36.7	19.7	41.7	30.7	45.0	30.1	10.0	45.0
A 572 77.7 50.0 45.0 51.7 48.3 105.0 70.6 45.0 105.1 142.7 120.7 121.3 120.7 121.3 120.7 123.3 110.7 124.3 115.9 83.0 130.7 43.3 23.3 46.7 27.0 52.3 20.7 56.3 33.6 20.7 56.3 33.0 83.7 14.3 70.5 51.0 21.3 50.7 43.7 70.7 38.7 64.3 46.6 21.3 70.7 70.7 38.7 64.3 46.7 42.7 14.3 70.5 33.3 30.3 33.3 30.3				96.3	116.0	83.3	65.0	60.7	96.3	88.0	86.5	60.7	116.0
A 572 70 F 142.7 121.3 128.3 116.3 157.7 119.7 119.3 115.3 115.7 119.7 119.3 115.3 115.7 119.7 119.3 115.3 115.7 119.7 119.3 115.7 119.7 115.3 115.7 119.7 119.3 115.7 119.7 119.3 115.7				76.3	77.7	50.0	45.0	51.7	88.3	105.0	70.6	45.0	105.0
A 18 101.7 101.7 102.7	A 572		70 F	142.7	120.7	121.3	128.3	116.3	157.7	119.7	129.5	116.3	157.7
43.3 21.3 51.0 21.3 20.7 70.7 38.3 20.7 20.3 20.7 20.3 20.7 20.3 20.7 20.3 20.7 20.3 20.3 22.0 10.3 20.7 24.3 48.6 21.3 70.7 40 F 46.7 46.7 33.0 49.0 55.7 40.3 60.7 47.4 33.0 60.7 70 F 65.7 65.7 64.7 49.0 45.7 75.5 43.3 68.7 70 F 71.3 89.3 123.3 129.0 116.0 117.3 96.7 106.1 71.3 129.0 70 F 71.7 13.3 17.0 15.0 15.3 14.7 15.3 18.0 16.2 14.7 18.3 40 F 6.0 5.7 6.7 71.3 11.0 11.7 13.3 12.0 13.3 23.3 66.3 27.0 7.7 7.6 3.7 7.7 7.7 7.7 7.7				137.7	22.2	121.1	83.0 27.0	52.2	20.7	1 <u>2</u> 4.3	29.5	20.7	56.2
A 588 0 F 42.7 5.7 30.3 22.0 10.3 20.7 24.3 22.3 5.7 44.7 14.3 22.7 76.3 31.3 55.3 33.3 30.3 37.7 14.3 76.3 40 F 46.7 46.7 30.3 40.5 55.7 40.3 60.7 71.4 38.3 109.7 70 F 65.7 65.7 43.3 68.7 64.7 49.0 45.7 57.5 43.3 68.7 70 F 65.7 65.7 15.3 14.7 15.3 18.0 16.2 14.7 18.3 40 F 6.0 5.7 6.7 19.3 18.3 22.0 24.7 14.7 18.3 70 F 7.7 13.3 17.0 28.7 28.7 28.7 28.7 28.7 28.7 28.7 28.3 38.0 25.3 29.5 23.3 38.0 70 F 7.7 13.3 17.3 83.0 20.0				43.3 51.0	23.3	50.7	43.7	70.7	38.7	64.3	48.6	21.3	70.7
A 588			0 5	42.7	5.7	30.3	22.0	10.3	20.7	24.3	22.3	5.7	42.7
T2 40 F 46.7 33.0 49.0 55.7 40.3 60.7 47.4 33.0 60.7 70 F 65.7 65.7 43.3 68.7 64.7 49.0 45.7 72.4 38.3 109.7 70 F 65.7 65.7 43.3 68.7 64.7 49.0 45.7 72.4 38.3 109.7 73 0 F 11.3 90.0 11.3 90.1 10.0 17.3 12.0 11.3 90.1 16.2 14.7 18.3 40 F 32.7 27.0 25.7 22.7 19.7 19.0 22.7 24.7 14.7 16.3 32.0 20.0 24.7 14.7 15.3 38.0 20.0 22.7 19.0 22.7 24.7 14.7 16.3 32.0 20.0 15.5 32.3 38.0 20.3 38.0 20.3 38.0 20.3 38.0 20.3 38.0 20.3 38.0 20.0 11.1.0 20.0			0 F	14.3	22.7	76.3	31.3	55.3	33.3	30.3	37.7	14.3	76.3
A 588 A 588 <th< td=""><td></td><td>Т2</td><td>40 F</td><td>46.7</td><td>46.7</td><td>33.0</td><td>49.0</td><td>55.7</td><td>40.3</td><td>60.7</td><td>47.4</td><td>33.0</td><td>60.7</td></th<>		Т2	40 F	46.7	46.7	33.0	49.0	55.7	40.3	60.7	47.4	33.0	60.7
A 568 70 F 70 F 71.3 89.3 123.3 129.0 116.0 117.3 96.7 106.1 71.3 129.0 0 F 3.3 3.0 3.7 12.0 113.0 9.0 21.3 9.1 3.0 21.3 113.0 21.3 9.1 3.0 21.3 22.1 21.3 11.4 7.7 11.3 22.0 22.7 24.2 19.0 32.7 22.8 23.3 38.0 25.3 29.5 23.3 38.0 70 F 70 F 78.3 21.2 65.3 187.3 144.7 207.0 15.6 65.3 212.0 65.3 112.0 113.3 36.5 17.3 83.0 20.0 22.7 40.1 17.7 90.3 212.0 <td< td=""><td></td><td></td><td></td><td>38.3</td><td>46.0</td><td>65.3</td><td>109.7</td><td>106.7</td><td>58.3</td><td>82.7</td><td>72.4</td><td>38.3</td><td>109.7</td></td<>				38.3	46.0	65.3	109.7	106.7	58.3	82.7	72.4	38.3	109.7
$ A 588 \\ A 588 \\ F 0 F \\ T1 \\ A 0 F \\ T2 \\ T2 \\ T3 \\ A 588 \\ F 0 F \\ T2 \\ T3 \\ P 0 F \\ T3 \\ P 0 F \\ T3 \\ P 0 F \\ P 0 F \\ T3 \\ P 0 F 0 F \\ P $			70 F	65.7	65.7	43.3	68.7	64.7	49.0	45.7	57.5	43.3	68.7
A 588 0 F 3.3 3.0 3.7 12.0 11.3 21.3 1.3 1.4 7.1 18.0 16.0 17.3 10 F 6.0 5.7 6.7 19.3 18.3 22.0 24.7 14.7 18.3 70 F 7.7 13.3 17.0 22.7 22.7 19.7 19.0 22.7 24.2 19.0 32.7 70 F 7.7 13.3 17.0 23.7 28.7 31.3 23.3 38.0 25.3 29.5 23.3 38.0 11.0 28.7 28.7 31.3 23.3 38.0 25.3 29.5 23.3 38.0 21.0 17.7 19.3 11.7 19.0 27.7 40.1 17.7 79.0 17.7 39.3 20.0 28.7 19.0 31.3 36.5 17.3 38.0 20.0 29.3 19.0 31.3 36.5 17.3 38.0 10.0 10.7 19.2 11.3 21.0				/1.3	89.3	123.3	129.0	116.0	117.3	96.7	106.1	/1.3	129.0
$ A 588 \\ FT = \left\{ \begin{array}{cccccccccccccccccccccccccccccccccccc$			0 F	18.3	17.0	15.0	15.3	14.7	9.0	18.0	9.1	14.7	18.3
$ A 588 \\ Figure A 588 \\ T1 \\ A 588 \\ T2 \\ T2 \\ T3 \\ T0 \\ F \\ T2 \\ T3 \\ T0 \\ F \\ T2 \\ T3 \\ T0 \\ F \\ T2 \\ T3 \\ T2 \\ T3 \\ T4 \\ T4 \\ T4 \\ T4 \\ T4 \\ T5 \\ T5 \\ T5$				6.0	5.7	6.7	19.3	18.3	22.0	24.7	14.7	5.7	24.7
A 588 T0 F 7.7 13.3 17.0 23.7 28.7 31.3 23.3 36.0 25.3 29.5 23.3 38.0 125.3 57.0 191.0 66.0 186.7 114.0 209.0 135.6 57.0 209.0 197.3 78.3 212.0 65.3 187.3 144.7 207.0 156.0 65.3 212.0 79.0 17.7 39.0 32.0 66.7 19.0 27.7 40.1 17.7 79.0 94.7 68.3 101.0 90.3 104.0 56.0 103.3 88.2 56.0 104.0 79.0 55.3 54.0 95.0 98.0 91.7 102.7 82.2 54.0 102.7 196.0 111.3 214.0 151.3 204.3 140.0 207.7 17.9 99.3 213.3 79.3 40.3 70.0 62.0 70.7 66.3 43.0 94.3 68.1 43.0 95.7		13	40 F	32.7	27.0	25.7	22.7	19.7	19.0	22.7	24.2	19.0	32.7
A 588 T 1 31.0 28.7 31.3 23.3 38.0 25.3 29.5 23.3 38.0 T 1 0 F 125.3 57.0 191.0 66.0 186.7 114.0 209.0 135.6 57.0 209.0 197.3 78.3 212.0 65.3 187.3 142.7 207.0 156.0 65.3 212.0 79.0 17.7 39.0 32.0 66.7 19.0 31.3 36.5 17.3 83.0 94.7 68.3 101.0 90.3 104.0 56.0 103.3 88.2 56.0 104.0 79.0 55.3 54.0 95.0 94.7 102.7 82.2 54.0 102.7 196.0 111.3 214.0 151.3 204.3 140.0 207.0 174.9 111.3 214.0 210.7 99.3 213.3 123.0 188.0 196.0 207.7 176.9 99.3 213.3 70.7 79.3			70 F	7.7	13.3	17.0	23.7	28.7	32.3	66.3	27.0	7.7	66.3
$ A 588 \\ F12 \\ F23 \\ F38 \\ F$			701	31.0	28.7	28.7	31.3	23.3	38.0	25.3	29.5	23.3	38.0
$ A 588 \\ F1 \\ F2 \\ F2 \\ F2 \\ F3 \\ F3 \\ F3 \\ F3 \\ F3$				125.3	57.0	191.0	66.0	186.7	114.0	209.0	135.6	57.0	209.0
$ A 588 \\ F 0 F = \begin{matrix} 19.0 & 17.3 & 33.0 & 32.0 & 02.3 & 19.0 & 31.3 & 36.5 & 17.3 & 83.0 \\ \hline 94.7 & 68.3 & 101.0 & 90.3 & 104.0 & 56.0 & 103.3 & 88.2 & 56.0 & 104.0 \\ \hline 79.0 & 55.3 & 54.0 & 95.0 & 98.0 & 91.7 & 102.7 & 82.2 & 54.0 & 102.7 \\ \hline 196.0 & 111.3 & 214.0 & 151.3 & 204.3 & 140.0 & 207.0 & 174.9 & 111.3 & 214.0 \\ \hline 210.7 & 99.3 & 213.3 & 123.0 & 188.0 & 196.0 & 207.7 & 174.9 & 111.3 & 214.0 \\ \hline 210.7 & 99.3 & 213.3 & 123.0 & 188.0 & 196.0 & 207.7 & 174.9 & 111.3 & 214.0 \\ \hline 210.7 & 99.3 & 213.3 & 123.0 & 188.0 & 196.0 & 207.7 & 174.9 & 191.3 \\ \hline 395.7 & 45.7 & 84.3 & 50.7 & 63.3 & 43.0 & 94.3 & 68.1 & 43.0 & 95.7 \\ \hline 237.7 & 130.0 & 160.7 & 129.7 & 195.3 & 161.0 & 218.3 & 176.1 & 129.7 & 237.7 \\ \hline 212.3 & 68.3 & 129.0 & 71.7 & 194.7 & 89.3 & 164.0 & 132.8 & 68.3 & 212.3 \\ \hline 224.3 & 164.3 & 218.7 & 188.3 & 186.7 & 158.7 & 206.7 & 192.5 & 158.7 & 224.3 \\ \hline 181.0 & 120.3 & 202.0 & 134.0 & 233.3 & 171.3 & 225.0 & 181.0 & 120.3 & 233.3 \\ \hline 70 F & \hline 76.7 & 50.0 & 111.3 & 113.0 & 101.3 & 94.3 & 93.3 & 91.4 & 50.0 & 113.0 \\ \hline 97.7 & 90.0 & 102.3 & 90.7 & 97.3 & 83.7 & 115.7 & 96.8 & 83.7 & 115.7 \\ \hline 255.3 & 217.7 & 257.3 & 176.7 & 261.3 & 163.3 & 269.7 & 228.8 & 163.3 & 269.7 \\ \hline 206.7 & 192.7 & 151.3 & 170.7 & 231.7 & 135.0 & 249.0 & 191.0 & 135.0 & 249.0 \\ \hline 0 F & \hline 42.7 & 75.0 & 56.3 & 78.0 & 21.3 & 77.0 & 49.0 & 57.0 & 21.3 & 78.0 \\ \hline 0 F & \hline 111.3 & 183.3 & 93.0 & 189.3 & 115.3 & 73.0 & 205.0 & 145.8 & 73.0 & 205.0 \\ \hline 113.0 & 188.3 & 115.3 & 64.7 & 97.0 & 104.0 & 104.0 & 112.3 & 64.7 & 188.3 \\ \hline 70 F & \hline 174.7 & 207.7 & 164.3 & 156.0 & 157.7 & 165.0 & 127.3 & 207.7 \\ \hline 70 F & \hline 174.7 & 207.7 & 164.3 & 156.0 & 157.1 & 165.0 & 127.3 & 207.7 \\ \hline 173 & 0 F & \hline 13.7 & 13.3 & 10.7 & 15.3 & 12.3 & 14.3 & 17.3 & 13.9 & 10.7 & 17.3 \\ \hline 70 F & \hline 174.7 & 207.7 & 164.3 & 156.0 & 157.1 & 165.0 & 127.3 & 207.7 \\ \hline 70 F & \hline 174.7 & 207.7 & 164.3 & 156.0 & 157.1 & 165.0 & 127.3 & 207.7 \\ \hline 70 F & \hline 174.7 & 207.7 & 164.3 & 153.0 & 124.3 & 212.3 & 223.3 & 161.7 & 323.3 \\ \hline 70 F & \hline 174.7 & 207.7 & 164.3 & 153.7 & 12.0 & 22$				197.3	17.7	212.0	65.3	187.3	144.7	207.0	156.0	65.3	212.0
$ A 588 \\ T1 \\ A 588 \\ T2 \\ T2 \\ T2 \\ T3 \\ T3 \\ T3 \\ T3 \\ T3$			0 F	55.3	17.7	83.0	20.0	29.3	19.0	21.7	36.5	17.7	83.0
$ A 588 \\ F1 \\ A 588 \\ F2 \\ F2 \\ F3 \\ F3 \\ F3 \\ F4 \\ F4 \\ F5 \\ F3 \\ F4 \\ F5 \\ F3 \\ F3 \\ F4 \\ F5 \\ F5 \\ F3 \\ F3 \\ F3 \\ F3 \\ F3 \\ F3$				94.7	68.3	101.0	90.3	104.0	56.0	103.3	88.2	56.0	104.0
A 588 T1 196.0 111.3 214.0 151.3 204.3 140.0 207.0 174.9 111.3 214.0 A 0 F 79.3 40.3 70.0 62.0 70.7 67.0 103.0 70.3 40.3 103.0 95.7 45.7 84.3 50.7 63.3 43.0 94.3 68.1 43.0 95.7 237.7 130.0 160.7 129.7 195.3 161.0 218.3 176.1 129.7 237.7 212.3 68.3 129.0 71.7 194.7 89.3 164.0 132.8 68.3 212.3 181.0 120.3 202.0 134.0 233.3 171.3 225.0 181.0 120.3 233.3 70 F 76.7 50.0 111.3 113.0 101.3 94.3 93.3 91.4 50.0 113.0 97.7 90.0 102.3 90.7 97.3 83.7 115.7 96.8 83.7 115.7				79.0	55.3	54.0	95.0	98.0	91.7	102.7	82.2	54.0	102.7
$ A 588 \\ T1 \\ A 0 F \\ \begin{array}{c} 210.7 \\ 99.3 \\ 99.3 \\ 79.3 \\ 95.7 \\ 45.7 \\ 84.3 \\ 95.7 \\ 45.7 \\ 84.3 \\ 50.7 \\ 84.3 \\ 50.7 \\ 63.3 \\ 43.0 \\ 94.3 \\ 94.4 \\ 142.8 \\ 142.4 \\ 142.7 \\ 122.4 \\ 144.3 \\ 144.0 \\ 120.3 \\ 224.3 \\ 164.0 \\ 142.8 \\ 142.4 \\ 142.4 \\ 142.3 \\ 144.0 \\ 142.3 \\ 144.0 \\ 142.4 \\ 142.3 \\ 144.0 \\ 142.3 \\ 144.0 \\ 142.3 \\ 144.0 \\ 142.4 \\ 142.7 \\ 144.1 \\ 142.7 \\ 144.1 \\ 142.7 \\ 144.1 \\ $				196.0	111.3	214.0	151.3	204.3	140.0	207.0	174.9	111.3	214.0
$ \begin{array}{c ccccccccccccccccccccccccccccccccccc$				210.7	99.3	213.3	123.0	188.0	196.0	207.7	176.9	99.3	213.3
A 588 T2 A 588 A		T1	40 F	79.3	40.3	70.0	62.0	70.7	67.0	103.0	70.3	40.3	103.0
$ A 588 \\ F 0 F \\ \hline \begin{array}{c} 212.3 \\ 224.3 \\ 164.3 \\ 224.3 \\ 164.3 \\ 224.3 \\ 164.3 \\ 224.3 \\ 164.3 \\ 224.3 \\ 164.3 \\ 224.3 \\ 187.1 \\ 188.3 \\ 186.7 \\ 188.3 \\ 186.7 \\ 158.7 \\ 226.0 \\ 192.5 \\ 188.3 \\ 171.3 \\ 225.0 \\ 181.0 \\ 120.3 \\ 233.3 \\ 171.3 \\ 225.0 \\ 181.0 \\ 120.3 \\ 233.3 \\ 171.3 \\ 225.0 \\ 181.0 \\ 120.3 \\ 233.3 \\ 171.3 \\ 225.0 \\ 181.0 \\ 120.3 \\ 233.3 \\ 171.3 \\ 225.0 \\ 181.0 \\ 120.3 \\ 233.3 \\ 171.3 \\ 255.0 \\ 111.3 \\ 113.0 \\ 101.3 \\ 94.3 \\ 93.3 \\ 91.4 \\ 50.0 \\ 113.0 \\ 183.3 \\ 93.3 \\ 91.4 \\ 50.0 \\ 113.0 \\ 113.0 \\ 97.7 \\ 90.0 \\ 102.3 \\ 90.7 \\ 97.3 \\ 83.7 \\ 115.7 \\ 96.8 \\ 83.7 \\ 115.7 \\ 96.8 \\ 83.7 \\ 115.7 \\ 255.3 \\ 217.7 \\ 255.3 \\ 217.7 \\ 255.3 \\ 217.7 \\ 255.3 \\ 217.7 \\ 255.3 \\ 217.7 \\ 257.3 \\ 176.7 \\ 257.3 \\ 176.7 \\ 261.3 \\ 163.3 \\ 269.7 \\ 228.8 \\ 163.3 \\ 269.7 \\ 228$				95.7	45.7	84.3	50.7	63.3 105.2	43.0	94.3	68.1 176.1	43.0	95.7
$ A 588 \\ F 0 F \\ T 2 \\ T 2 \\ T 3 \\ T 5 \\ T 3 \\ T 3 \\ T 5 \\ T 3 \\ T 5 \\ T 3 \\$				237.7	68.3	129.0	71 7	195.5	89.3	164.0	132.8	68.3	237.7
$ A 588 \\ F 0 F \\ \hline \begin{array}{c} 181.0 \\ 70 F \\ \hline \begin{array}{c} 181.0 \\ 76.7 \\ 50.0 \\ 97.7 \\ 90.0 \\ 97.7 \\ 90.0 \\ 97.7 \\ 90.0 \\ 102.3 \\ 90.7 \\ 97.3 \\ 90.7 \\ 97.3 \\ 97.7 \\ 90.0 \\ 102.3 \\ 90.7 \\ 97.3 \\ 97.3 \\ 83.7 \\ 115.7 \\ 96.8 \\ 83.7 \\ 115.7 \\ 96.8 \\ 83.7 \\ 115.7 \\ 96.8 \\ 83.7 \\ 115.7 \\ 96.8 \\ 83.7 \\ 115.7 \\ 96.8 \\ 83.7 \\ 115.7 \\ 96.8 \\ 83.7 \\ 115.7 \\ 96.8 \\ 83.7 \\ 115.7 \\ 96.8 \\ 83.7 \\ 115.7 \\ 225.3 \\ 206.7 \\ 192.7 \\ 206.7 \\ 192.7 \\ 151.3 \\ 170.7 \\ 231.7 \\ 135.0 \\ 249.0 \\ 21.3 \\ 77.0 \\ 49.0 \\ 97.0 \\ 91.0 \\ 191.0 \\ 135.0 \\ 249.0 \\ 191.0 \\ 135.0 \\ 249.0 \\ 249.0 \\ 191.0 \\ 135.0 \\ 249.0 \\ 249.0 \\ 191.0 \\ 135.0 \\ 249.0 \\ 249.0 \\ 249.0 \\ 191.0 \\ 135.0 \\ 249.0 \\ 249.0 \\ 249.0 \\ 191.0 \\ 135.0 \\ 249.0 \\ 249.0 \\ 21.3 \\ 70.8 \\ 111.3 \\ 183.3 \\ 93.0 \\ 189.3 \\ 115.3 \\ 70.8 \\ 115.3 \\ 70.8 \\ 115.3 \\ 77.0 \\ 113.0 \\ 188.3 \\ 115.3 \\ 64.7 \\ 97.0 \\ 104.0 \\ 104.0 \\ 104.0 \\ 112.3 \\ 64.7 \\ 188.3 \\ 205.0 \\ 145.8 \\ 73.0 \\ 205.0 \\ 145.8 \\ 73.0 \\ 205.0 \\ 113.0 \\ 113.0 \\ 113.0 \\ 113.3 \\ 10.7 \\ 15.3 \\ 138.7 \\ 147.7 \\ 168.3 \\ 165.0 \\ 150.6 \\ 91.0 \\ 175.3 \\ 20.7 \\ 168.0 \\ 91.0 \\ 175.3 \\ 138.7 \\ 147.7 \\ 168.3 \\ 165.0 \\ 150.6 \\ 91.0 \\ 175.3 \\ 20.7 \\ 168.0 \\ 91.0 \\ 175.3 \\ 12.3 \\ 14.3 \\ 17.3 \\ 13.9 \\ 10.7 \\ 17.3 \\ 20.7 \\ 10.7 \\ 22.7 \\ 10.7 \\ 12.0 \\ 22.7 \\ 19.1 \\ 12.0 \\ 27.0 \\ 10.7 \\ 22.7 \\ 10.1 \\ 12.0 \\ 22.7 \\ 19.1 \\ 12.0 \\ 27.0 \\ 10.7 \\ 22.7 \\ 10.1 \\ 12.0 \\ 1$				224.3	164.3	218.7	188.3	186.7	158.7	206.7	192.5	158.7	224.3
A 588 70 F 76.7 50.0 111.3 113.0 101.3 94.3 93.3 91.4 50.0 113.0 97.7 90.0 102.3 90.7 97.3 83.7 115.7 96.8 83.7 115.7 255.3 217.7 257.3 176.7 261.3 163.3 269.7 228.8 163.3 269.7 206.7 192.7 151.3 170.7 231.7 135.0 249.0 191.0 135.0 249.0 72 0.F 42.7 75.0 56.3 78.0 21.3 77.3 59.1 10.3 111.3 40 F 161.3 183.3 93.0 189.3 115.3 73.0 205.0 145.8 73.0 205.0 113.0 188.3 115.3 64.7 97.0 104.0 104.0 112.3 64.7 188.3 70 F 164.0 91.0 175.3 138.7 147.7 168.3 165.0 150.6 91.0				181.0	120.3	202.0	134.0	233.3	171.3	225.0	181.0	120.3	233.3
$ \begin{array}{c ccccccccccccccccccccccccccccccccccc$	Δ 588		70 F	76.7	50.0	111.3	113.0	101.3	94.3	93.3	91.4	50.0	113.0
$ \begin{array}{c ccccccccccccccccccccccccccccccccccc$	// 000		101	97.7	90.0	102.3	90.7	97.3	83.7	115.7	96.8	83.7	115.7
$ \begin{array}{c ccccccccccccccccccccccccccccccccccc$				255.3	217.7	257.3	176.7	261.3	163.3	269.7	228.8	163.3	269.7
$ \begin{array}{c ccccccccccccccccccccccccccccccccccc$				206.7	192.7	151.3	78.0	231.7	77.0	249.0	191.0	135.0	249.0
$ \begin{array}{c ccccccccccccccccccccccccccccccccccc$			0 F	42.1 64 7	111 2	52.3	10.0	26.3	773	49.0 71 3	59.1	10.3	111 3
$ \begin{array}{ c c c c c c c c c c c c c c c c c c c$		TO	40 5	161.3	183.3	93.0	189.3	115.3	73.0	205.0	145.8	73.0	205.0
$ \begin{array}{ c c c c c c c c c c c c c c c c c c c$		12	40 F	113.0	188.3	115.3	64.7	97.0	104.0	104.0	112.3	64.7	188.3
168.0 91.0 175.3 138.7 147.7 168.3 165.0 150.6 91.0 175.3 0 F 13.7 13.3 10.7 15.3 12.3 14.3 17.3 13.9 10.7 17.3 10.3 22.7 11.7 7.0 17.0 12.0 13.7 13.5 7.0 22.7 13.7 40 F 24.7 21.3 16.7 18.3 32.3 22.3 22.3 16.7 32.3 25.7 27.0 18.0 15.3 13.3 12.0 22.7 19.1 12.0 27.0 70.6 33.3 52.7 35.7 45.7 46.7 24.7 30.0 38.4 24.7 52.7			70 F	174.7	207.7	164.3	156.0	158.7	166.0	127.3	165.0	127.3	207.7
0 F 13.7 13.3 10.7 15.3 12.3 14.3 17.3 13.9 10.7 17.3 10.3 22.7 11.7 7.0 17.0 12.0 13.7 13.5 7.0 22.7 40 F 24.7 21.3 16.7 18.3 32.3 22.3 20.3 22.3 16.7 32.3 25.7 27.0 18.0 15.3 13.3 12.0 22.7 19.1 12.0 27.0 70 F 33.3 52.7 35.7 45.7 46.7 24.7 30.0 38.4 24.7 52.7				168.0	91.0	175.3	138.7	147.7	168.3	165.0	150.6	91.0	175.3
T3 H0 F 24.7 21.3 16.7 18.3 32.3 22.3 20.3 22.3 16.7 32.3 40 F 25.7 27.0 18.0 15.3 13.3 12.0 22.7 19.1 12.0 27.0 T0 F 33.3 52.7 35.7 45.7 46.7 24.7 30.0 38.4 24.7 52.7			0 F	13.7	13.3	10.7	15.3	12.3	14.3	17.3	13.9	10.7	17.3
T3 40 F 25.7 27.0 18.0 15.3 13.3 12.0 22.7 19.1 12.0 27.0 T0 F 33.3 52.7 35.7 45.7 46.7 24.7 30.0 38.4 24.7 52.7				10.3 24 7	22.7	16.7	183	323	12.0	13.7	13.5	16.7	22.1
		Т3	40 F	25.7	27.0	18.0	15.3	13.3	12.0	20.3	19.1	12.0	27.0
			70 5	33.3	52.7	35.7	45.7	46.7	24.7	30.0	38.4	24.7	52.7
70 F 22.3 17.7 39.0 54.0 35.3 18.7 34.0 31.6 17.7 54.0			70 F	22.3	17.7	39.0	54.0	35.3	18.7	34.0	31.6	17.7	54.0

 Table 3.29:
 Three-Test Average of Absorbed Energy (ft-lbs) from Mill 1.

	Thislanses	Test		Thre	e-Test A	verage	of Absor	bed Ene	rgy (ft-lb	s) from I	Mill 3	
Grade	Group	Test Temperature	1	2	L 3	OCATIO 4	N 5	6	7	Mean	Low	High
		0 F	58.3	65.0	90.3	80.3	70.7	67.3	65.0	71.0	58.3	90.3
	T1	40 F	86.7	92.7	83.7	98.0	75.7	67.7	96.0	85.8	67.7	98.0
		70 F	109.7	107.3	110.0	114.0	116.7	110.7	109.7	111.1	107.3	116.7
		0 5	76.7	75.0	70.3	51.0	51.3	85.3	89.3	71.3	51.0	89.3
		UF	587	65.0	003	80.3	70.7	673	65.0	71.0	587	90.3

 Table 3.30:
 Three-Test Average of Absorbed Energy (ft-lbs) from Mill 3.

		40 F	00.7	92.1	03.7	90.0	75.7	07.7	90.0	00.0	07.7	90.0
		70 F	109.7	107.3	110.0	114.0	116.7	110.7	109.7	111.1	107.3	116.7
		0 5	76.7	75.0	70.3	51.0	51.3	85.3	89.3	71.3	51.0	89.3
		UP	58.7	65.0	90.3	80.3	70.7	67.3	65.0	71.0	58.7	90.3
	то	40 E	95.0	87.0	92.3	99.7	88.3	129.7	122.0	102.0	87.0	129.7
	12	40 F	86.7	92.7	83.7	98.0	75.7	67.7	96.0	85.8	67.7	98.0
		70 5	106.3	97.0	101.0	101.7	89.0	119.3	104.7	102.7	89.0	119.3
A 570		70 F	109.7	107.3	110.0	114.0	116.7	110.7	109.7	111.1	107.3	116.7
A 572			105.7	64.7	92.3	73.0	91.0	19.7	82.3	75.5	19.7	105.7
		0 F	31.3	33.7	109.0	62.0	118.7	96.0	102.3	79.0	31.3	118.7
			142.0	136.0	160.0	150.0	167.3	154.3	157.3	152.4	136.0	167.3
			109.3	35.3	146.7	87.0	120.0	64.3	132.0	99.2	35.3	146.7
	Т3	40 F	43.7	37.7	140.7	72.7	144.0	99.0	164.7	100.3	37.7	164.7
			152.3	158.7	193.3	194.7	190.7	188.0	179.0	179.5	152.3	194.7
			166.0	123.3	120.3	83.0	160.7	121.3	131.0	129.4	83.0	166.0
		70 F	64.3	54.0	164.3	89.0	173.7	115.3	165.3	118.0	54.0	173.7
			184.0	177.7	180.7	187.3	189.3	178.7	182.7	182.9	177.7	189.3
		0.5	254.3	241.3	150.3	127.7	138.3	217.7	178.0	186.8	127.7	254.3
		0 F	228.7	154.7	146.3	122.0	124.0	156.0	150.7	154.6	122.0	228.7
	T 4	40 F	262.0	249.7	185.3	207.7	223.7	267.0	207.3	229.0	185.3	267.0
	11	40 F	261.7	237.7	211.0	186.3	220.0	145.7	161.3	203.4	145.7	261.7
		70 5	256.0	266.3	240.3	256.3	245.3	232.3	233.7	247.2	232.3	266.3
		70 F	254.0	247.7	201.3	196.7	226.3	219.0	226.0	224.4	196.7	254.0
			158.3	202.3	138.0	173.0	194.7	134.3	141.3	163.1	134.3	202.3
		0.5	135.0	134.7	190.7	216.0	132.3	136.7	127.7	153.3	127.7	216.0
		UF	240.3	230.7	271.0	261.3	266.7	271.7	267.3	258.4	230.7	271.7
			142.0	136.0	160.0	150.0	167.3	154.3	157.3	152.4	136.0	167.3
			214.7	230.3	254.3	246.3	215.0	241.7	201.3	229.1	201.3	254.3
	то	10 F	139.7	137.7	242.0	204.3	231.3	212.3	195.7	194.7	137.7	242.0
	12	40 F	262.0	259.3	272.3	269.3	270.7	268.0	263.7	266.5	259.3	272.3
A 588			152.3	158.7	193.3	194.7	190.7	188.0	179.0	179.5	152.3	194.7
			216.7	233.3	223.0	213.3	212.3	240.7	252.7	227.4	212.3	252.7
		70 E	177.3	155.3	241.0	238.3	227.0	246.0	233.7	217.0	155.3	246.0
		70 F	262.3	252.0	257.3	255.0	253.7	254.7	254.0	255.6	252.0	262.3
			184.0	177.7	180.7	187.3	189.3	178.7	182.7	182.9	177.7	189.3
		0.5	72.3	78.0	102.7	43.0	83.3	10.3	59.3	64.1	10.3	102.7
		UF	89.0	42.3	110.0	24.7	107.7	61.3	88.7	74.8	24.7	110.0
	то	40 E	83.0	67.3	109.0	35.0	103.7	101.7	85.7	83.6	35.0	109.0
	13	40 F	116.7	33.7	122.7	45.3	137.0	100.0	107.3	94.7	33.7	137.0
		70 5	145.0	127.7	129.7	166.0	132.0	108.7	122.0	133.0	108.7	166.0
		70 F	165.0	130.7	140.0	135.3	136.0	61.0	155.3	131.9	61.0	165.0
		0 F	64.7	71.0	98.3	43.0	69.0	23.3	59.3	61.2	23.3	98.3
	Τ4	40 F	130.7	67.3	109.0	35.0	103.7	101.7	85.7	90.4	35.0	130.7
		70 F	145.0	127.7	129.7	166.0	132.0	108.7	122.0	133.0	108.7	166.0

-	Thickness	Test		Thre	e-Test A	verage	of Absor	bed Ene	rgy (ft-lb	s) from I	Mill 4	
Grade	Group	Temperature	4	0	L			<u> </u>	7	Mean	Low	High
			1	2	3	4	5	6	/	100.0	405.0	474.6
			107.3	105.0	147.0	128.0	174.3	125.3	129.3	130.9	105.0	174.3
		0 F	125.3	151.0	120.3	131.7	90.7	136.0	139.3	127.8	90.7	151.0
			126.7	125.7	129.0	135.0	129.3	131.0	137.0	130.5	125.7	137.0
			158.0	154.3	133.3	122.0	175.0	150.0	166.7	151.3	122.0	175.0
			117.0	121.7	152.7	117.3	160.7	119.7	122.7	130.2	117.0	160.
	T1	40 F	140.7	142.0	139.0	130.3	148.7	142.7	126.0	138.5	126.0	148.
			122.3	134.3	158.0	147.3	147.7	134.0	137.3	140.1	122.3	158.
			172.3	148.7	100.0	147.7	183.7	154.0	169.0	101.5	147.7	183.
			107.0	124.0	169.3	144.7	1/7.0	134.3	145.7	143.1	107.0	1//.
		70 F	143.7	121.0	149.7	153.7	140.3	139.0	130.7	140.6	121.0	153.
			119.7	127.3	169.0	156.7	159.7	133.0	133.3	142.7	119.7	169.
A 572			1/5./	153.7	182.3	1/9./	210.0	149.3	166.3	1/3.9	149.3	210.
			60.0	49.0	32.7	29.0	42.0	40.3	46.0	42.7	29.0	60.0
		0 F	78.7	56.3	69.3	49.3	53.7	73.0	80.7	65.9	49.3	80.
			53.0	41.0	50.3	59.0	38.0	11.0	59.7	54.0	38.0	11.
			127.7	123.0	112.7	124.0	123.3	131.7	116.3	122.7	112.7	131.
			92.7	/1.0	67.7	72.0	61.3	67.7	91.0	105.0	61.3	92.
	T2	40 F	00.0	106.0	100.3	87.0	104.0	117.3	109.7	105.0	87.0	117.
			99.0	93.3	96.7	98.3	88.7	105.7	103.7	97.9	88.7	105
			160.0	148.7	147.7	142.3	159.7	159.0	159.7	153.9	142.3	160
			100.0	104.7	80.0	85.7	89.0	93.0	102.3	93.5	80.0	104
		70 F	123.0	106.0	101.7	109.3	104.7	120.3	122.0	110.3	104.7	123
			39.7	172.7	150.0	170.0	164.7	164.7	147.7	165.5	33.1	134
			00.0	00.0	121 7	123.3	120.0	1/2 7	147.7	100.0	00.0	1/9.
			94.7	102.7	152.3	128.3	106.0	132.7	153.7	121.3	99.0	153
		0 F	161.7	102.7	161.0	115.2	155.7	160.0	142.7	1/2 1	104.7	161
			146.0	141.0	195.3	155.7	141 3	144.0	145.0	152.6	141.0	195
			0/ 3	135.7	164.0	162.7	132.3	113.3	163.3	138.0	0/ 3	164
			101.0	115.7	179.0	171 0	120.7	150.7	168.3	1/3.8	101.0	170
	T1	40 F	180.3	129.0	175.0	146.3	172.7	187.7	180.7	167.4	129.0	187
			153.3	147.7	202.0	215.7	208.0	1/1 7	1/3.0	173.0	1/1 7	215
			92.0	122 7	144 7	134.7	159.7	158.3	114.7	132.4	92.0	159
			100.7	136.0	169.0	171.3	124.3	163.7	136.7	143.1	100.7	171
		70 F	159.0	158.3	197.0	166.7	161.0	172 7	171.3	169.4	158.3	197
			153.3	152.7	204.3	216.0	214.0	138.3	150.3	175.6	138.3	216
A 588			187.0	243.0	245.3	303.3	70.0	292.7	243.0	226.3	70.0	303
			172.0	121.0	203.3	192.3	172.3	130.0	186.3	168.2	121.0	203
		0 F	287.3	275.7	273.7	292.3	282.0	298.0	280.7	284.2	273.7	298
			199.0	184.0	100.0	108.3	135.0	198 7	168.3	156.2	100.0	100
			115.7	299.0	294 7	290.0	219.7	285.3	287.7	256.0	115.7	299
	_		247 0	230.7	231.3	255.7	231 7	247 0	236.0	239.9	230.7	255
	T2	40 F	289.7	290.0	286.3	286.3	294 7	297 7	288.7	290.5	286.3	297
			229.0	218.0	200.3	161 7	220.7	232.7	243.7	218.1	161 7	243
			253.7	316.3	318.7	312.0	237.0	313 7	304.0	293.6	237.0	318
			207.7	214.0	206.7	246.3	214 0	215.0	207 0	233.0	206.7	246
		70 F	275.0	280.0	279.7	278.2	279.7	282.7	207.0	279.7	275.0	290
			232.0	233 0	238.2	233 0	226.7	264 7	277.3	236 4	226.7	264
			232.0	233.0	230.3	233.0	220.7	204./	221.3	230.4	220.7	∠04

 Table 3.31: Three-Test Average of Absorbed Energy (ft-lbs) from Mill 4.

	Thickness	Test		Thre	e-Test A	verage	of Absor	bed Ene	rgy (ft-lb	s) from I	Mill 5	
Grade	Group	Temperature			L	OCATIO	N			Mean	Low	High
	Group	remperature	1	2	3	4	5	6	7	wear	LOW	riigii
		0 F	42.3	53.3	42.3	73.3	55.7	87.0	61.3	59.3	42.3	87.0
			27.3	33.0	21.3	19.7	23.3	13.3	15.0	21.9	13.3	33.0
	T1	40 F	69.7	51.3	72.7	90.7	77.0	111.3	76.0	78.4	51.3	111.3
			32.0	31.3	23.7	29.3	34.3	42.0	46.0	34.1	23.7	46.0
		70 F	96.3	91.3	94.7	101.7	100.0	118.7	73.0	96.5	73.0	118.7
			83.7	90.7	83.3	75.0	78.0	84.7	79.7	82.1	75.0	90.7
		0 F	111.0	103.3	108.0	113.3	108.3	148.0	118.3	115.8	103.3	148.0
		-	26.7	30.7	23.0	21.7	31.7	24.3	21.7	25.7	21.7	31.7
	T2	40 F	139.0	141.3	132.7	148.0	138.3	138.7	121.3	137.0	121.3	148.0
			55.0	86.7	59.3	47.0	77.3	74.3	52.0	64.5	47.0	86.7
		70 F	149.7	167.7	170.0	149.3	186.7	210.0	192.7	175.1	149.3	210.0
A 572			118.0	125.7	86.7	107.0	127.7	118.3	98.7	111.7	86.7	127.7
		0 F	66.3	85.3	90.0	68.3	34.3	43.7	84.0	67.4	34.3	90.0
			10.7	6.7	13.3	20.7	20.7	16.0	21.3	15.6	6.7	21.3
	Т3	40 F	67.3	97.3	80.7	78.0	107.3	70.7	64.0	80.8	64.0	107.3
			21.3	19.7	21.7	22.3	18.3	19.7	18.3	20.2	18.3	22.3
		70 F	103.3	102.7	110.3	115.0	144.0	112.7	109.7	114.0	102.7	144.0
			19.0	28.3	24.3	40.7	30.0	12.3	28.3	26.1	12.3	40.7
		0 F	11.0	11.0	8.3	8.3	8.7	8.3	9.7	9.3	8.3	11.0
			18.3	14.3	20.0	11.3	18.3	14.7	29.7	18.1	11.3	29.7
	Τ4	40 F	14.3	10.7	12.3	12.7	12.7	22.0	15.3	14.3	10.7	22.0
			30.0	29.3	40.3	27.0	26.3	42.7	34.0	32.8	26.3	42.7
		70 F	14.3	16.0	16.0	17.3	17.3	21.3	18.3	17.2	14.3	21.3
			55.7	42.3	41.7	37.7	15.1	37.7	56.7	49.6	31.1	/5./
		0.5	69.7	39.3	33.0	20.3	54.7	49.3	82.0	50.6	26.3	82.0
		0 F	33.0	10.7	28.7	26.3	19.7	25.0	23.7	23.9	10.7	33.0
			136.7	109.3	137.7	110.7	84.7	79.0	41.7	100.0	41.7	137.7
	T 4	40 F	84.7	99.7	74.3	39.7	82.7	83.7	129.7	84.9	39.7	129.7
	11		74.7	23.0	90.7	12.3	66.0	36.7	28.7	56.0	23.0	90.7
			259.3	155.7	100.0	107.7	118.7	140.7	162.2	147.6	100.0	259.3
		70 5	120.3	110.0	00.0	109.3	107.7	90.3	102.3	100.0	69.3	102.3
		70 F	120.7	09.3	95.0	123.3	09.7	57.7	02.3	95.1	37.7	120.7
			106.7	60.2	027	72.2	154.7	04.7	75.2	95.9	60.2	229.3
		0 F	100.7	41.7	92.7	12.3	90.3	94.7	75.5	00.0	41.7	100.7
		01	61.0	75.0	72.2	94.0 107.7	70.7	52.2	95.0 50.7	71.2	<u>41.7</u> 50.7	107.7
			152.2	161 7	00.7	116.7	110.0	110.7	112.0	1247	00.7	161.7
	Т2	40 E	111 0	101.7	30.7	126.0	165.0	146.0	147.7	124.7	90.7	165.0
	12	401	07.2	927	100.7	102.2	100.0	140.0	104.0	104.1	927	100.0
A 588			97.5	166.0	122.0	127.0	149.0	1/2 0	104.0	1/2 7	122.0	123.3
		70 F	140.2	142.7	166.7	166.2	197.7	143.0	145.2	140.7	142.7	100.0
		701	149.5	143.7	137.7	145.7	133.3	1/2 7	140.0	131.2	106.7	145.7
			81.7	35.0	22.0	26.3	13.7	21.3	32.7	33.2	13.7	81.7
		0 F	67.7	66.0	102.7	Q1 3	111.0	62.3	84.3	83.6	62.3	111.0
		01	130.7	124.3	116.3	142.7	116.3	105.3	129.7	123.6	105.3	142.7
			55.7	65.7	53.3	50.7	31.3	38.0	62.7	52.3	31.3	65.7
	ТЗ	40 F	123.0	85.7	120.0	110 7	114.3	129.0	103.3	113.6	85.7	129.0
	15	401	1/0 3	145.0	140.0	151.3	155.3	154.3	153.0	1/0.8	140.0	155.3
			109.0	89.0	36.3	31.3	36.0	82.0	76.0	65.7	31.3	109.0
		70 F	112.0	109.7	125.7	124 3	136.0	115 2	113.0	110 /	109.7	136.0
		701	159.0	154.0	135.0	135.0	142.2	162.0	165.0	150.3	135.0	165.0
		0 F	29.7	19.3	21.0	22.3	27.0	28.7	22.7	24.4	19.3	29.7
	Τ4	40 F	51.0	39.0	43.7	47.0	55.7	57.0	56.3	50.0	30.0	57.0
		70 F	86.0	Q1 0	923	105.2	82.3	95.3	75.0	80.6	75.0	105.3
L		10 F	00.0	31.0	JZ.J	100.0	UZ.J	ວປ.ປ	10.0	0.00	13.0	100.0

 Table 3.32:
 Three-Test Average of Absorbed Energy (ft-lbs) from Mill 5.

3.6.2 STATISTICAL ANALYSIS RESULTS FROM All MILLS

Tables 3.33 to 3.36 summarize the statistical analysis results for Mills 1, 3, 4, and 5, respectively. Each table includes the minimum, maximum, mean, and coefficient of variation values of the absorbed energy for each steel grade, each thickness group, and for three test temperatures. In addition, due to the fact that the coefficients of variation on absorbed energy are significantly large (e.g., 72.5% for A572-T1 at 0°F), it is important to determine whether this large variability stems from the variability in the specimens within a plate or from the variability between plates.

A one-way analysis of variance (ANOVA) was performed in order to determine the variability of absorbed energy within a plate and the variability between plates. The formulas used in the analysis are presented as follows:

$$SST = \left(\sum_{j=1}^{k} \sum_{i=1}^{m} E_{i,j}^{2}\right) - \frac{\left(\sum_{j=1}^{k} \sum_{i=1}^{m} E_{i,j}\right)^{2}}{k \cdot m}$$
(3.1)

$$SSA = \frac{\sum_{j=1}^{k} \left(\sum_{i=1}^{m} E_{i,j}\right)^{2}}{k} - \frac{\left(\sum_{j=1}^{k} \sum_{i=1}^{m} E_{i,j}\right)^{2}}{k \cdot m}$$
(3.2)

$$SSW = SST - SSA \tag{3.3}$$

$$F = \frac{MSA}{MSW}; \text{ where } MSA = \frac{SSA}{k-1}, MSW = \frac{SSW}{k(m-1)}$$
(3.4)

where,

 $E_{i,j}$ = Absorbed Energy at location *i* of slab *j*,

m = Number of locations on a single slab (m = 7, here),

i = Index for location on a slab; possible values are 1 to m,

k = Number of slabs (in each thickness group),

SST = Total sum of squares,

SSA = Sum of squares between plates,

SSW = Sum of squares within a plate,

MSA = Variance between plates,

MSW = Variance within a plate,

F = F-ratio.

The *F*-ratio is used to compare the variability between plates to the variability within a plate. If this ratio is greater than one, it indicates that variability between plates is larger than the variability within a plate. However, since the *F*-ratio cannot be used to compare tests with different degrees of freedom (Frank et al., 1992), a p value (determined from the *F*-ratio and the number of degrees of freedom) is used instead in order to compare the variability for the eight groups of steel plates (corresponding to the two grades of steel and four thickness groups). This p value also helps make direct conclusions regarding whether or not the variability within a plate (based on the seven locations there) is significant at a specified level of significance. The level of significance used in this study is 5%. For instance, if the p value is less than 5% or 0.05, it means that the variability among the seven locations within a plate is not significant or that the large variability mainly stems from variability between plates.

	No. of	Ab	sorbed E1	nergy (ft-	lbs)	MSA	MSW		
Group	Test		0	F		MDA		F-Ratio	p-value
	Locations	Min	Max	Mean	COV, %	(ft^2-lbs^2)	(ft ² -lbs ²)		
A572-T1	42	4.7	93.3	36.2	72.5	2980.1	369.3	8.07	0.000
A572-T2	14	5.7	76.3	30.0	61.5	828.0	299.6	2.76	0.123
A572-T3	14	3.0	21.3	12.7	46.7	178.6	23.1	7.74	0.012
A588-T1	42	17.3	212.0	89.8	65.1	16584.9	1582.4	10.5	0.000
A588-T2	14	10.3	111.3	58.1	46.5	14.7	787.2	0.019	0.890
A588-T3	14	7.0	22.7	13.7	27.4	0.5	15.1	0.034	0.887
_	No. of		40) F		MSA	MSW	E D-4-	
Group	Test Locations	Min	Max	Mean	COV, %	(ft ² -lbs ²)	(ft ² -lbs ²)	F-Ratio	p-value
A572-T1	42	10.0	143.7	63.1	55.6	7594.5	349.6	21.7	0.000
A572-T2	14	33.0	109.7	59.9	40.0	2187.5	439.9	4.97	0.045
A572-T3	14	5.7	32.7	19.4	41.9	317.5	45.3	7.01	0.021
A588-T1	42	40.3	237.7	133.2	46.2	19132.5	1650.7	11.6	0.000
A588-T2	14	64.7	205.0	129.0	36.2	3911.1	2041.4	1.92	0.191
A588-T3	14	12.0	32.3	20.7	27.1	34.6	31.3	1.10	0.315
	No. of		70) F		MSA	MSW	E Datia	a volvo
Group	Locations	Min	Max	Mean	COV, %	(ft ² -lbs ²)	(ft^2-lbs^2)	F-Kauo	p-value
A572-T1	42	20.7	157.7	81.6	46.0	9183.2	326.7	28.1	0.000
A572-T2	14	43.3	129.0	81.8	36.5	8273.3	278.9	29.7	0.000
A572-T3	14	7.7	66.3	28.2	48.2	21.5	198.7	0.11	0.746
A588-T1	42	50.0	269.7	163.6	37.1	22137.1	1119.4	19.8	0.000
A588-T2	14	91.0	207.7	157.8	17.0	723.8	716.2	1.01	0.335
A588-T3	14	17.7	54.0	35.0	33.7	162.3	136.7	1.19	0.297

 Table 3.33: Statistical Analysis of Absorbed Energy for Mill 1.

	No. of	Ab	sorbed Ei	nergy (ft-	lbs)	MSA	MSW		
Group	Test		0	F		MDA		F-Ratio	p-value
	Locations	Min	Max	Mean	COV, %	(ft^2-lbs^2)	(ft ² -lbs ²)		
A572-T1	7	58.3	90.3	71.0	15.3	-	117.8	-	-
A572-T2	14	51.0	90.3	71.2	17.8	0.2	172.9	0.001	0.970
A572-T3	21	19.7	167.3	102.3	43.6	13204.5	740.9	17.8	0.000
A588-T1	14	122.0	254.3	170.7	26.7	3626.8	1942.6	1.87	0.197
A588-T2	28	127.7	271.7	181.8	27.9	18423.5	593.7	31.0	0.000
A588-T3	14	10.3	110.0	69.5	44.3	398.2	994.9	0.40	0.539
A588-T4	7	23.3	98.3	61.2	38.4	-	552.7	-	-
~	No. of		4() F		MSA	MSW	E Datia	a volue
Group	Locations	Min	Max	Mean	COV, %	(ft^2-lbs^2)	(ft ² -lbs ²)	r-kauo	p-value
A572-T1	7	67.7	98.0	85.8	12.9	-	122.8	-	-
A572-T2	14	67.7	129.7	93.9	17.2	922.9	205.2	4.50	0.055
A572-T3	21	35.3	194.7	126.4	42.0	14837.8	1482.0	10.0	0.001
A588-T1	14	145.7	267.0	216.2	17.4	2288.6	1343.0	1.70	0.217
A588-T2	28	137.7	272.3	217.5	19.0	10487.1	602.9	17.4	0.000
A588-T3	14	33.7	137.0	89.1	36.6	427.2	1117.4	0.38	0.549
A588-T4	7	35.0	130.7	90.4	34.7	-	982.3	-	-
0	No. of		7() F		MSA	MSW	E Dotio	n voluo
Group	Locations	Min	Max	Mean	COV, %	(ft^2-lbs^2)	(ft^2-lbs^2)	r-Kauo	p-value
A572-T1	7	107.3	116.7	111.1	2.8	-	9.8	-	-
A572-T2	14	89.0	119.3	106.9	7.5	248.6	48.1	5.17	0.042
A572-T3	21	54.0	189.3	143.4	29.9	8408.1	1115.5	7.54	0.004
A588-T1	14	196.7	266.3	235.8	8.8	1813.4	311.3	5.82	0.033
A588-T2	28	155.3	262.3	220.7	14.6	6308.9	384.0	16.4	0.000
A588-T3	14	61.0	166.0	132.5	19.6	4.2	729.5	0.01	0.922
A588-T4	7	108.7	166.0	133.0	13.7	-	331.1	-	-

 Table 3.34:
 Statistical Analysis of Absorbed Energy for Mill 3.

	No. of	Ab	sorbed Ei	nergy (ft-	lbs)	MSA	MSW		
Group	Test		0	F		MSA		F-Ratio	p-value
	Locations	Min	Max	Mean	COV, %	(ft^2-lbs^2)	(ft ² -lbs ²)		_
A572-T1	28	90.7	175.0	135.1	14.4	830.4	322.8	2.57	0.077
A572-T2	28	29.0	131.7	71.3	46.3	8830.7	119.9	73.7	0.000
A588-T1	28	94.7	195.3	135.4	17.8	1569.8	460.3	3.41	0.033
A588-T2	28	70.0	303.3	208.7	32.8	24302.1	2250.8	10.8	0.000
_	No. of		4() F		MSA	MSW	E D-4-	
Group	Locations	Min	Max	Mean	COV, %	(ft^2-lbs^2)	(ft ² -lbs ²)	F-Katio	p-value
A572-T1	28	117.0	183.7	142.6	12.1	1245.9	179.7	6.93	0.001
A572-T2	28	61.3	160.0	107.9	28.3	7742.5	82.4	94.0	0.000
A588-T1	28	94.3	215.7	155.5	20.0	2087.8	825.8	2.53	0.081
A588-T2	28	115.7	299.0	251.1	17.4	6508.0	1344.2	4.84	0.009
	No. of		70) F		MSA	MSW	E D-4-	
Group	Locations	Min	Max	Mean	COV, %	(ft^2-lbs^2)	(ft ² -lbs ²)	F-Ratio	p-value
A572-T1	28	107.0	210.0	150.1	15.3	6729.6	369.2	18.2	0.000
A572-T2	28	80.0	179.0	121.2	24.0	1770.6	107.6	16.5	0.000
A588-T1	28	92.0	216.0	155.1	19.5	2997.5	658.9	4.55	0.011
A588-T2	28	206.7	318.7	256.1	14.4	9163.5	375.6	24.4	0.000

 Table 3.35: Statistical Analysis of Absorbed Energy for Mill 4.

	No. of	Ab	sorbed E1	nergy (ft-	lbs)	MSA	MSW		
Group	Test		0	F		NISA		F-Ratio	p-value
	Locations	Min	Max	Mean	COV, %	(ft^2-lbs^2)	(ft ² -lbs ²)		
A572-T1	14	13.3	87.0	40.6	56.3	4915.6	156.2	31.48	0.000
A572-T2	14	21.7	148.0	70.7	67.8	28410.0	120.6	235.56	0.000
A572-T3	14	6.7	90.0	41.5	74.2	9394.8	246.7	38.08	0.000
A572-T4	14	8.3	29.7	13.7	44.6	268.7	18.2	14.76	0.002
A588-T1	21	10.7	137.7	58.1	67.3	10430.5	541.2	19.27	0.000
A588-T2	21	41.7	126.3	83.4	27.4	866.2	483.9	1.79	0.195
A588-T3	21	13.7	142.7	80.2	52.1	14358.1	340.5	42.17	0.000
A588-T4	7	19.3	29.7	24.4	16.5	-	16.2	-	-
-	No. of		40) F		MSA	MSW		1
Group	Locations	Min	Max	Mean	COV, %	(ft^2-lbs^2)	(ft ² -lbs ²)	F-Ratio	p-value
A572-T1	14	23.7	111.3	56.2	47.6	6864.3	202.7	33.9	0.000
A572-T2	14	47.0	148.0	100.8	39.1	18409.0	145.4	127	0.000
A572-T3	14	18.3	107.3	50.5	66.0	12841.1	130.6	98.3	0.000
A572-T4	14	10.7	42.7	23.5	46.1	1201.0	27.8	43.2	0.000
A588-T1	21	23.0	259.3	96.2	55.3	15356.4	1434.6	10.7	0.001
A588-T2	21	82.7	165.0	122.3	18.8	2058.0	361.6	5.69	0.012
A588-T3	21	31.3	155.3	105.2	40.6	16977.5	137.2	124	0.000
A588-T4	7	39.0	57.0	50.0	14.0	-	48.7	-	-
-	No. of		70) F		MSA	MSW	E D . C.	
Group	Locations	Min	Max	Mean	COV, %	(ft^2-lbs^2)	(ft ² -lbs ²)	r-kauo	p-value
A572-T1	14	73.0	118.7	89.3	13.9	723.8	105.8	6.84	0.023
A572-T2	14	86.7	210.0	143.4	26.3	14081.1	367.1	38.4	0.000
A572-T3	14	12.3	144.0	70.0	67.0	26986.8	138.1	195	0.000
A572-T4	14	14.3	75.7	33.4	57.9	3669.8	99.7	36.8	0.000
A588-T1	21	57.7	229.3	127.8	36.9	15465.7	751.5	20.6	0.000
A588-T2	21	106.7	187.7	144.9	13.3	1436.6	253.5	5.67	0.012
A588-T3	21	31.3	165.0	111.8	36.3	12849.5	402.0	32.0	0.000
A588-T4	7	75.0	105.3	89.6	10.9	-	94.8	-	-

 Table 3.36:
 Statistical Analysis of Absorbed Energy for ill 5.

Table 3.33 shows that, for Mill 1, there were three groups (A572-T2, A588-T2, and A588-T3) at 0°F and 70°F where the p value was greater than 0.05. Test locations impact the variability in absorbed energy in these three groups. In other words, the large variability mainly stems from the variability within a plate. In contrast, there were only two thickness groups at 40°F (A588-T2 and A588-T3) that suggest larger within-plate variability arising from test location differences.

By interpreting results for other mills in a manner similar to that discussed for Mill 1, it is found, as seen from Table 3.34, that Mill 3 had three thickness groups (A572-T2, A588-T1, and A588-T3) that showed significant within-plate variability for 0°F and 40°F. At 70 °F, there was only one thickness group (A588-T3) that suggests significant within-plate variability.

It can be observed from Table 3.35 that Mill 4 had relatively low p values with only one thickness group displaying the significance of within-plate variability at 0°F and 40°F. The between-plate variability dominated the overall variability for every thickness group at 70°F.

Finally, for Mill 5, Table 3.36 shows that the between-plate variability dominated the overall variability in almost every group studied at all test temperatures. With only one exception (A588-T2, 0° F), no *p* value exceeded 0.05, which indicates that within-plate variability was not significant for Mill 5.

Although the four mills studied do not show similar variability trends, an overall analysis summarized in Table 3.37 that combines the data from all the mills (in the 4-mill group) clearly shows that the variability between plates dominates the overall variability for both grades of steel and for all thickness groups at the three test temperatures. In summary, it is seen that for every thickness group, within-plate variability arising from samples at different test locations was not significant with respect to the overall variability. The variability in absorbed energy mainly stems from the variability between plates.

		Ab	sorbed E	nergy (ft-	lbs)	МСА	MCW		
Group	No. of Test Locations		0	F		MSA	1015 00	F-Ratio	p-value
		Min	Max	Mean	COV, %	$(ft^2-lbs^2)(ft^2-lbs^2)$			-
A572-T1	91	4.7	175.0	70.0	71.4	16776.6	302.8	55.4	0.000
A572-T2	70	5.7	148.0	62.9	55.7	8299.8	166.6	49.8	0.000
A572-T3	49	3.0	167.3	59.3	86.4	18285.4	394.6	46.3	0.000
A572-T4	14	8.3	29.7	13.7	44.6	268.7	18.2	14.8	0.002
A588-T1	105	10.7	254.3	106.4	54.9	18148.2	1123.0	16.2	0.000
A588-T2	91	10.3	303.3	148.3	52.8	38849.0	1108.0	35.1	0.000
A588-T3	49	7.0	142.7	58.1	73.3	11464.3	434.5	26.4	0.000
A588-T4	14	19.3	98.3	42.8	58.6	4754.6	284.5	16.7	0.002
A572 All Groups	224	3.0	175.0	61.9	74.6	13704.0	262.5	52.2	0.000
A588 All Groups	259	7.0	303.3	108.6	66.2	31210.3	942.1	33.1	0.000
Group	No. of	40 F			MSA	MSW	E D-dia		
	Locations	Min	Max	Mean	COV, %	(ft^2-lbs^2)	(ft^2-lbs^2) (ft^2-lbs^2)		p-value
A572-T1	91	10.0	183.7	88.3	52.4	14344.6	257.3	55.8	0.000
A572-T2	70	33.0	160.0	94.1	35.9	7449.8	191.0	39.0	0.000
A572-T3	49	5.7	194.7	74.1	82.3	24976.2	685.4	36.4	0.000
A572-T4	14	10.7	42.7	23.5	46.1	1201.0	27.8	43.2	0.000
A588-T1	105	23.0	267.0	142.8	42.6	18883.6	1346.5	14.0	0.000
A588-T2	91	64.7	299.0	192.3	35.1	27697.1	996.6	27.8	0.000
A588-T3	49	12.0	155.3	76.5	63.7	16257.9	387.0	42.0	0.000
A588-T4	14	35.0	130.7	70.2	43.1	5734.1	515.5	11.1	0.005
A572 All Groups	224	5.7	194.7	82.9	58.0	14667.5	315.9	46.4	0.000
A588 All Groups	259	12.0	299.0	143.7	51.9	33660.0	997.1	33.8	0.000
Group	No. of	70 F				MSA MSW		E Dotio	n volue
	Locations	Min	Max	Mean	COV, %	(ft^2-lbs^2)	(ft ² -lbs ²)	F-Kauo	p-value
A572-T1	91	20.7	210.0	106.1	39.4	11281.5	281.4	40.1	0.000
A572-T2	70	43.3	210.0	114.9	30.1	7942.6	181.8	43.7	0.000
A572-T3	49	7.7	189.3	89.6	69.7	27123.0	574.3	47.2	0.000
A572-T4	14	14.3	75.7	33.4	57.9	3669.8	99.7	36.8	0.000
A588-T1	98	50.0	269.7	162.5	35.4	18168.3	815.3	22.3	0.000
A588-T2	91	91.0	318.7	204.4	26.7	19765.2	402.4	49.1	0.000
A588-T3	49	17.7	166.0	95.8	52.1	16974.8	419.8	40.4	0.000
A588-T4	14	75.0	166.0	111.3	23.8	6586.7	213.0	30.9	0.000
A572 All Groups	224	7.7	210.0	100.7	47.8	14823.3	303.0	48.9	0.000
A588 All Groups	259	17.7	318.7	162.4	40.9	28198.0	562.8	50.1	0.000

 Table 3.37:
 Statistical Analysis of absorbed Energy for the 4-Mill Group.

It can also be observed from Table 3.37 that most plates had relatively high absorbed energy values with average values (considering all thickness groups) of 61.9, 82.9, and 100.7 ft-lbs, respectively at 0, 40 and 70°F for the A572 steel; and 108.6, 143.7 and 162.4 ft-lbs, respectively, at 0, 40 and 70°F for the A588 steel. Clearly, the A588 steel plates showed higher absorbed energy values than the A572 steel plates did. The trend of a decrease in absorbed energy being accompanied by a decrease in test temperature is what one might expect because the material has lower resistance to brittle fracture at lower temperatures. Another observation from the test results is that, in most of the cases studied, the absorbed energy tends to decrease with an increase in plate thickness. In other words, the thicker the steel plate, the lower the fracture toughness measured (through the absorbed energy value).

Frequency distributions of the absorbed energy for each steel grade and thickness group are presented in Figures 3.8 to 3.15. Both histograms and cumulative distributions are shown for the three test temperatures. Finally, frequency distributions of the absorbed energy for the A572 and A588 steel grades are presented in Figures 3.16 and 3.17, respectively, where plates of all thickness groups are included.

Figure 3.8: Absorbed Energy Frequency Distribution for the A572-T1 Group.

Figure 3.9: Absorbed Energy Frequency Distribution for the A572-T2 Group.

Figure 3.10: Absorbed Energy Frequency Distribution for the A572-T3 Group.

Figure 3.11: Absorbed Energy Frequency Distribution for the A572-T4 Group.

Figure 3.12: Absorbed Energy Frequency Distribution for the A588-T1 Group.

Figure 3.13: Absorbed Energy Frequency Distribution for the A588-T2 Group.

Figure 3.14: Absorbed Energy Frequency Distribution for the A588-T3 Group.

Figure 3.15: Absorbed Energy Frequency Distribution for the A588-T4 Group.

Figure 3.16: Absorbed Energy Frequency Distribution for all A572 Steel Plates.

Figure 3.17: Absorbed Energy Frequency Distribution for all A588 Steel Plates.

3.6.3 REFERENCE LOCATION EFFECT IN CHARPY V-NOTCH TESTS

With Charpy V-notch test results, it is customary to calculate the probability that a three-test average absorbed energy value for any location tested will exceed the absorbed energy associated with a reference location less some specified value, α (AISI, 1979). In this study, the seven locations in a plate are each considered as the reference location and for different values of α equal to 5, 10, and 15 ft-lbs, results are presented for the percentage of samples that had absorbed energy greater than that the absorbed energy at the reference location, E_{ref} , reduced by α .

Results of the analyses are summarized in Tables 3.38 to 3.49. Tables 3.38 to 3.40 are for Mill 1 with $\alpha = 5$, 10, and 15 ft-lbs, respectively. Tables 3.41 to 3.43 are for Mill 3 with $\alpha = 5$, 10, and 15 ft-lbs, respectively. Tables 3.44 to 3.46 are for Mill 4 with $\alpha = 5$, 10, and 15 ft-lbs, respectively. Tables 3.47 to 3.49 are for Mill 5 with $\alpha = 5$, 10, and 15 ft-lbs, respectively. Tables 3.47 to 3.49 are for Mill 5 with $\alpha = 5$, 10, and 15 ft-lbs, respectively.

In each table, for a given plate, the percent of locations with three-test average absorbed energy greater than E_{ref} - α is presented for each of seven possible choices of reference location. For each mill in the 4-mill group, results are presented for each grade of steel, for each thickness group, and for each test temperature. Average percentages for each plate are also presented, as are the minimum mean and maximum mean values for each thickness group and test temperature.

By way of illustration, the first six rows of Table 3.38 present Mill 1 results for group A572-T1 at a test temperature of 0°F. On average, the percentage of plates in this group that had absorbed energy greater than E_{ref} -5 ranged from 61.2 % to 73.5%. This means that if an A572-T1 steel plate were to be ordered from Mill 1 and a location, x, was selected at random to conduct CVN impact tests at 0°F and yielded an absorbed energy average value, $E_{ref,x}$, from three tests, the probability that any other location on the plate might have yield an averaged absorbed energy (from three tests) greater than $E_{ref,x}$ -5 (ft-lbs) would vary between 61.2% and 73.5%. For higher values of α , these probabilities would increase.

. .	Thickness Group	Test Temperature	Percent Greater Than Eref - 5 For Mill 1							lill 1		
Grade									7	Mean	Min Mean	Max Mea
A 572			42.9	28.6	100.0	100.0	100.0	57.1	14.3	63.3	<u> </u>	+
	T1		42.9	14.3	71.4	100.0	100.0	71.4	42.9	63.3	61.2	73.5
		0 5	85.7	42.9	100.0	71.4	71.4	28.6	42.9	63.3		
		0 F	14.3	57.1	28.6	100.0	57.1	71.4	100.0	61.2		
			14.3	100.0	28.6	100.0	85.7	100.0	85.7	73.5		
			28.6	100.0	14.3	100.0	85.7	71.4	71.4	67.3		
		40 F	42.9	28.6	85.7	100.0	100.0	28.6	57.1	63.3	59.2	65.3
			42.9	14.3	71.4	100.0	100.0	57.1	42.9	61.2		
			28.6	57.1	100.0	100.0	71.4	28.6	57.1	63.3		
			14.3	100.0	28.6	100.0	42.9	71.4	57.1	59.2		
			28.6	100.0	28.6	85.7	57.1	100.0	57.1	65.3		
			71.4	100.0	42.9	85.7	28.6	71.4	28.6	61.2		
		70 F	42.9	14.3	71.4	100.0	100.0	42.9	71.4	63.3	59.2	67.3
			57.1	57.1	85.7	100.0	85.7	28.6	14.3	61.2		
			28.6	100.0	85.7	42.9	100.0	14.3	100.0	67.3		
			14.3	85.7	57.1	100.0	42.9	71.4	57.1	61.2		
			57.1	100.0	57.1	85.7	28.6	100.0	28.6	65.3		
			57.1	100.0	57.1	/1.4	14.3	85.7	28.6	59.2		
	T2	0 F	14.3	100.0	28.6	71.4	100.0	71.4	71.4	65.3	63.3	65.3
			100.0	85.7	14.3	71.4	28.6	/1.4	/1.4	63.3		
		40 F	71.4	71.4	100.0	71.4	28.6	85.7	14.3	63.3	59.2	63.3
			100.0	85.7	57.1	28.6	28.6	71.4	42.9	59.2		
		70 F	57.1	57.1	100.0	57.1	57.1	85.7	100.0	73.5	59.2	73.
			100.0	85.7	28.6	14.3	57.1	57.1	71.4	59.2	00.2	
	Т3	0 F	100.0	100.0	100.0	57.1	57.1	57.1	14.3	69.4	69.4	100.0
			100.0	100.0	100.0	100.0	100.0	100.0	100.0	100.0		
		40 F 70 F	100.0	100.0	100.0	57.1	57.1	57.1	28.6	71.4	71.4	79.6
			14.3	71.4	71.4	100.0	100.0	100.0	100.0	79.6	61.2	75.5
			100.0	85.7	85.7	57.1	42.9	42.9	14.3	61.2		
			/1.4	85.7	85.7	/1.4	100.0	14.3	100.0	75.5		
			57.1	100.0	42.9	85.7	42.9	71.4	14.3	59.2	57.1	65.3 63.3
			42.9	85.7	14.3	100.0	57.1	71.4	28.6	57.1		
A 588		0 F	14.3	100.0	42.9	/1.4	28.6	100.0	/1.4	61.2		
			28.6	100.0	14.3	100.0	57.1	100.0	57.1	65.3		
			/1.4	85.7	42.9	/1.4	42.9	100.0	42.9	65.3		
			71.4	100.0	100.0	57.1	42.9	57.1	28.6	65.3		
	T1	40 F	57.1	100.0	14.3	71.4	42.9	85.7	42.9	59.2	59.2	
			42.9	100.0	28.6	85.7	71.4	57.1	42.9	61.2		
			28.6	100.0	71.4	85.7	71.4	71.4	14.3	63.3		
			28.6	100.0	42.9	/1.4	57.1	100.0	28.6	61.2		
			14.3	100.0	/1.4	100.0	42.9	/1.4	28.6	61.2		
			14.3	100.0	57.1	100.0	28.6	71.4	42.9	59.2		
			14.3	85.7	28.6	/1.4	/1.4	100.0	42.9	59.2	ł	
			57.1	100.0	42.9	85.7	14.3	71.4	28.6	57.1	ł	
		70 F	85.7	100.0	28.6	28.6	42.9	71.4	71.4	61.2	57.1	63.3
			57.1	85.7	42.9	85.7	57.1	100.0	14.3	63.3		
			57.1	/1.4	57.1	85.7	42.9	100.0	14.3	61.2	ł	
			42.9	57.1	85.7	/1.4	28.0	100.0	14.3	57.1	<u> </u>	<u> </u>
	T2	0 F 40 F	85.7	42.9	57.1	42.9	100.0	42.9	/1.4	63.3	57.1 57.1	63.3 61.2
			57.1	14.3	71.4	100.0	85.7	28.6	42.9	57.1		
			57.1	42.9	85.7	28.0	71.4	74.4	14.3	57.1		
		70 F	42.9	14.3	42.9	05.7	85.7	<u> </u>	100.0	61.2	61.2	63.3
			20.0	14.3	37.1	00.1	00.1	57.1	F7.4	01.2		
			5/.1	100.0	14.3	85.7	/1.4	5/.1	57.1	63.3		
	Т3	0 F 40 F	100.0	100.0	100.0	100.0	100.0	100.0	/1.4	95.9	75.5 75.5	95.9 81.6
			100.0	14.3	100.0	100.0	42.9	85.7	85.7	/5.5		
			/1.4	100.0	100.0	100.0	14.3	85.7	100.0	81.6		
			42.9	42.9	85.7	100.0	100.0	100.0	57.1	/5.5		<u> </u>
		70 F	85.7	14.3	/1.4	42.9	42.9	100.0	85.7	63.3	63.3	67.3
			100.0	100.0	42.9	14.3	57.1	100.0	57.1	67.3		

Table 3.38: Effect of Reference Location for Mill 1, $\alpha = 5$.
	Thickness	Test			Per	cent Gre	ater Tha	in Eref -	10 For N	1ill 1		1	
Grade	Group	Temperature	1	2	2		N 5	6	7	Mean	Min Mean	Max Me	
			57.1	296	100.0	4	100.0	57.1	29.6	67.2			
			71.1	20.0	71 4	100.0	100.0	71.4	71 4	72 5	1		
			95.7	42.0	100.0	71.4	71 /	12.0	12.0	65.2	ł		
		0 F	14.2	42.9	20.6	100.0	F7 1	42.9	42.9	65.3	65.3	83.	
			14.3	100.0	20.0	100.0	100.0	100.0	100.0	77.6	ł		
			71 /	100.0	20.0	100.0	100.0	100.0	100.0	027	ł		
			12.0	100.0	100.0	100.0	100.0	20.6	F7 1	67.2			
			4 <u>2.9</u> 57.1	42.9	95.7	100.0	100.0	<u>20.0</u> 57.1	57.1	67.3	ł		
			57.1	71.4	100.0	100.0	71.4	57.1	71.1	75.5	ł		
	T1	40 F	1/2	100.0	28.6	100.0	57.1	100.0	71.4	67.2	67.3	75.	
			14.3	100.0	20.0	100.0	57.1	100.0	/1.4 57.4	07.3	1		
			28.0	100.0	28.0	100.0	57.1	74.4	57.1	07.3	ł		
			85.7	100.0	71.4	100.0	42.9	/1.4	42.9	73.5			
			57.1	14.3	/1.4	100.0	100.0	57.1	/1.4	67.3	ł		
			57.1	57.1	100.0	100.0	100.0	28.6	14.3	65.3	4		
A 572		70 F	28.6	100.0	100.0	85.7	100.0	14.3	100.0	75.5	65.3	75.	
-		-	28.6	85.7	57.1	100.0	57.1	85.7	57.1	67.3			
			57.1	100.0	57.1	100.0	57.1	100.0	42.9	73.5	4		
			71.4	100.0	71.4	85.7	28.6	85.7	28.6	67.3			
		0 F	14.3	100.0	71.4	71.4	100.0	71.4	71.4	71.4	69.4	71	
		0.	100.0	100.0	14.3	85.7	28.6	71.4	85.7	69.4	0011		
	Т2	40 F	85.7	85.7	100.0	85.7	71.4	100.0	28.6	79.6	63.3	79	
	12	401	100.0	100.0	71.4	28.6	28.6	71.4	42.9	63.3	00.0	75.	
		70 E	57.1	57.1	100.0	57.1	57.1	100.0	100.0	75.5	67.2	75	
		70 F	100.0	85.7	57.1	28.6	57.1	57.1	85.7	67.3	07.3	75.	
		0 5	100.0	100.0	100.0	100.0	100.0	100.0	28.6	89.8	00.0	100	
		UF	100.0	100.0	100.0	100.0	100.0	100.0	100.0	100.0	89.8	100	
	To	10 F	100.0	100.0	100.0	57.1	57.1	57.1	57.1	75.5	75.5		
	13	40 F	42.9	100.0	100.0	100.0	100.0	100.0	100.0	91.8	75.5	91.	
		70 5	100.0	100.0	100.0	71.4	57.1	57.1	14.3	71.4	74.4	0.5	
		70 F	100.0	100.0	100.0	100.0	100.0	71.4	100.0	95.9	71.4	95.	
			57.1	100.0	42.9	100.0	42.9	71.4	14.3	61.2			
			42.9	85.7	28.6	100.0	57 1	714	42.9	61.2	1		
			14.3	100.0	57.1	71.4	28.6	100.0	85.7	65.3	1		
		0 F	28.6	100.0	14.3	100.0	714	100.0	57 1	67.3	61.2	71.	
			71.4	85.7	57.1	71.4	57.1	100.0	57.1	71.4	1		
			71.4	100.0	100.0	57.1	57.1	57.1	42.9	69.4	1		
			57 1	100.0	42.9	71.4	57.1	85.7	42.9	65.3			
			42.9	100.0	42.9	85.7	71.4	71.4	42.9	65.3	1		
			57.1	100.0	85.7	85.7	85.7	85.7	1/1 3	73.5	1		
	T1	40 F	28.6	100.0	42 9	100.0	57.1	100.0	28.6	65.3	59.2	73.	
			14 3	100.0	71.4	100.0	42.9	71 4	28.6	61.2	1	1	
			1/ 2	100.0	57.1	100.0	72.3	71.4	42.0	50.2	1	1	
			28.6	100.0	28.6	71 /	71 /	100.0	42.3	63.2	1		
			20.0	100.0	42.0	11.4 0F 7	28.6	71 4	42.9	61.0	ł	1	
			71.4	100.0	42.9	85.7	28.0	71.4	28.0	01.2	ł		
A 588		70 F	05.7	100.0	20.0	20.0	71.4	11.4	11.4	05.3	57.1	77.	
			00.1	74.4	57.1	05.7	00.7	100.0	14.3	11.0	ł	1	
			37.1	/1.4 57.4	5/.1 05 7	00./	20.0	100.0	20.0	60.3	ł	1	
			42.9	57.1	00.1	11.4	20.0	100.0	14.3	07.1			
		0 F	85.7	42.9	71.4	42.9	100.0	42.9	85.7	67.3	61.2	67.	
			5/.1	14.3	/1.4	100.0	85.7	42.9	5/.1	61.2			
	T2	40 F	5/.1	42.9	85.7	42.9	/1.4	100.0	14.3	59.2	59.2	69.	
			71.4	14.3	42.9	100.0	85.7	85.7	85.7	69.4	 		
		70 F	42.9	14.3	85.7	85.7	85.7	71.4	100.0	69.4	69.4	69	
			57.1	100.0	42.9	85.7	85.7	57.1	57.1	69.4			
		0 F	100.0	100.0	100.0	100.0	100.0	100.0	100.0	100.0	89.8	100	
		~ '	100.0	42.9	100.0	100.0	85.7	100.0	100.0	89.8	00.0	.00	
	Т?	40 F	100.0	100.0	100.0	100.0	28.6	100.0	100.0	89.8	85.7	80	
	10	40 F	57.1	57.1	100.0	100.0	100.0	100.0	85.7	85.7	03.7	09.	
	Т3	13		100.0	42.0	95 7	12.0	12.0	100.0	100.0	735		
		70 E	100.0	42.9	00.7	42.3	42.3	100.0	100.0	10.0	60 /	72	

Table 3.39: Effect of Reference Location for Mill 1, $\alpha = 10$.

. .	Thickness	Test			Per	cent Gre	ater Tha	n Eref -	15 For M	1ill 1		1
Grade	Group	Temperature	1	2	3		N 5	6	7	Mean	Min Mean	MaxMe
			57.1	42.0	100.0	100.0	100.0	57.1	28.6	69.4		
			71 /	42.9	85.7	100.0	100.0	85.7	71 /	79.6	1	
			100.0	42.9	100.0	71.4	71.4	42.9	42.9	67.3	1	
		0 F	28.6	71.4	28.6	100.0	71.4	100.0	100.0	71.4	67.3	87.
			28.6	100.0	28.6	100.0	100.0	100.0	100.0	79.6	1	
			100.0	100.0	14.3	100.0	100.0	100.0	100.0	87.8	1	
			42.9	42.9	100.0	100.0	100.0	42.9	57.1	69.4		
			57.1	14.3	100.0	100.0	100.0	71.4	57.1	71.4	1	
			57.1	71.4	100.0	100.0	100.0	57.1	71.4	79.6	1	
	T1	40 F	14.3	100.0	28.6	100.0	71.4	100.0	71.4	69.4	69.4	81.
			28.6	100.0	42.9	100.0	57.1	100.0	57.1	69.4	1	
			85.7	100.0	71.4	100.0	71.4	85.7	57.1	81.6	1	
			71.4	14.3	71.4	100.0	100.0	71.4	71.4	71.4		
			57.1	57.1	100.0	100.0	100.0	57.1	14.3	69.4	1	
			42.9	100.0	100.0	100.0	100.0	14.3	100.0	79.6	1	
A 572		70 F	57.1	85.7	57.1	100.0	57.1	85.7	57.1	71.4	69.4	79.
			57.1	100.0	57.1	100.0	57.1	100.0	57.1	75.5	1	
			85.7	100.0	85.7	85.7	28.6	85.7	57.1	75.5	1	
		o F	28.6	100.0	71.4	85.7	100.0	85.7	85.7	79.6	74.4	70
		0 F	100.0	100.0	14.3	85.7	28.6	85.7	85.7	71.4	/1.4	79.
	то	10 F	100.0	100.0	100.0	85.7	71.4	100.0	71.4	89.8	05.0	
	12	40 F	100.0	100.0	71.4	28.6	28.6	85.7	42.9	65.3	65.3	89.
		70 5	57.1	57.1	100.0	57.1	57.1	100.0	100.0	75.5	74.4	75
		70 F	100.0	85.7	57.1	57.1	57.1	57.1	85.7	71.4	/1.4	75.
		0 F	100.0	100.0	100.0	100.0	100.0	100.0	57.1	93.9		400
		0 F	100.0	100.0	100.0	100.0	100.0	100.0	100.0	100.0	93.9	100.
	то	10 F	100.0	100.0	100.0	100.0	100.0	57.1	57.1	87.8	07.0	400
	13	40 F	100.0	100.0	100.0	100.0	100.0	100.0	100.0	100.0	87.8	100.
		70 F	100.0	100.0	100.0	85.7	71.4	57.1	14.3	75.5	75.5	100
		70 F	100.0	100.0	100.0	100.0	100.0	100.0	100.0	100.0	/5.5	100.
			71.4	100.0	42.9	100.0	42.9	71.4	14.3	63.3		
			57.1	100.0	42.9	100.0	57.1	71.4	42.9	67.3	Ι	
		0 F	28.6	100.0	71.4	100.0	28.6	100.0	100.0	75.5		70
		UF	28.6	100.0	14.3	100.0	100.0	100.0	100.0	77.6	63.3	79.
			71.4	100.0	71.4	71.4	71.4	100.0	71.4	79.6]	
			71.4	100.0	100.0	57.1	57.1	71.4	57.1	73.5		
			57.1	100.0	42.9	85.7	57.1	85.7	57.1	69.4		
			57.1	100.0	42.9	85.7	71.4	71.4	57.1	69.4]	
	τ1	40 E	71.4	100.0	85.7	85.7	85.7	85.7	14.3	75.5	50.2	75
		40 F	42.9	100.0	42.9	100.0	71.4	100.0	42.9	71.4	59.2	75.
			14.3	100.0	71.4	100.0	42.9	71.4	28.6	61.2]	
			14.3	100.0	57.1	100.0	28.6	71.4	42.9	59.2		
			28.6	100.0	42.9	71.4	71.4	100.0	42.9	65.3		
			71.4	100.0	42.9	100.0	28.6	71.4	28.6	63.3]	
A E00		70 E	85.7	100.0	42.9	42.9	71.4	71.4	71.4	69.4	50.2	07
A 300		70 P	100.0	100.0	85.7	100.0	100.0	100.0	28.6	87.8	59.2	07.
			57.1	71.4	57.1	100.0	57.1	100.0	57.1	71.4	1	
			57.1	57.1	85.7	71.4	28.6	100.0	14.3	59.2		
		0 F	85.7	42.9	85.7	42.9	100.0	42.9	85.7	69.4	65.3	60
		01	71.4	14.3	71.4	100.0	85.7	57.1	57.1	65.3	05.5	03.
	Т2	40 F	57.1	42.9	85.7	42.9	71.4	100.0	14.3	59.2	50.2	73
	14	-+0 F	71.4	14.3	71.4	100.0	85.7	85.7	85.7	73.5	J3.2	13.
		70 F	57.1	14.3	85.7	85.7	85.7	85.7	100.0	73.5	71 /	72
		70 F	57.1	100.0	57.1	85.7	85.7	57.1	57.1	71.4	/1.4	13.
		0.5	100.0	100.0	100.0	100.0	100.0	100.0	100.0	100.0	00.0	100
		UF	100.0	85.7	100.0	100.0	100.0	100.0	100.0	98.0	98.0	100.
	T 2	40 5	100.0	100.0	100.0	100.0	85.7	100.0	100.0	98.0	00.0	0.0
	13	40 F	100.0	85.7	100.0	100.0	100.0	100.0	100.0	98.0	98.0	98.
		70 F	100.0	42.9	100.0	71.4	71.4	100.0	100.0	83.7	70 5	60.
		/UF									13.3	03.

Table 3.40: Effect of Reference Location for Mill 1, $\alpha = 15$.

	Thickness	Test			Pe	rcent Gr	eater Th	an Eref ·	- 5 For N	lill 3		
Grade	Group	Temperature			L	OCATIO	N			Mean	Min Mean	Max Mean
	Oroup	remperature	1	2	3	4	5	6	7	wear		
		0 F	100.0	85.7	14.3	28.6	57.1	85.7	85.7	65.3	65.3	65.3
	T1	40 F	71.4	42.9	71.4	28.6	85.7	100.0	42.9	63.3	63.3	63.3
		70 F	100.0	100.0	100.0	85.7	28.6	100.0	100.0	87.8	87.8	87.8
		0 F	57.1	71.4	71.4	100.0	100.0	28.6	28.6	65.3	65.3	65.3
		01	100.0	85.7	14.3	28.6	57.1	85.7	85.7	65.3	00.0	00.0
	Т2	40 F	71.4	100.0	85.7	57.1	100.0	14.3	28.6	65.3	63.3	65.3
			71.4	42.9	71.4	28.6	85.7	100.0	42.9	63.3	00.0	00.0
		70 F	57.1	85.7	85.7	85.7	100.0	14.3	71.4	71.4	714	87.8
A 572		701	100.0	100.0	100.0	85.7	28.6	100.0	100.0	87.8	71.4	07.0
11 012			14.3	85.7	42.9	71.4	42.9	100.0	57.1	59.2	ļ	
		0 F	100.0	100.0	28.6	71.4	14.3	57.1	42.9	59.2	59.2	63.3
			85.7	100.0	42.9	71.4	14.3	71.4	57.1	63.3		
			57.1	100.0	14.3	71.4	42.9	85.7	28.6	57.1		
	Т3	40 F	85.7	100.0	42.9	71.4	42.9	57.1	14.3	59.2	57.1	65.3
			100.0	85.7	42.9	42.9	57.1	57.1	71.4	65.3		
			14.3	85.7	85.7	100.0	28.6	85.7	42.9	63.3		
		70 F	85.7	100.0	42.9	71.4	14.3	57.1	42.9	59.2	59.2	77.6
			71.4	100.0	100.0	57.1	28.6	100.0	85.7	77.6		
		0 F	14.3	28.6	71.4	100.0	85.7	42.9	57.1	57.1	57 1	65.3
		UF	14.3	57.1	71.4	100.0	100.0	42.9	71.4	65.3	57.1	05.5
	т1	40 E	28.6	42.9	100.0	85.7	57.1	14.3	85.7	59.2	57 1	50.2
		1 40 F	14.3	28.6	57.1	71.4	42.9	100.0	85.7	57.1	57.1	59.2
		70 E	42.9	14.3	71.4	42.9	57.1	100.0	100.0	61.2	61.2	61.0
		70 F	14.3	28.6	100.0	100.0	57.1	71.4	57.1	61.2	01.2	01.2
			57.1	14.3	100.0	42.9	28.6	100.0	85.7	61.2		
		0 F	85.7	85.7	28.6	14.3	100.0	85.7	100.0	71.4	61.2	71 /
		01	85.7	100.0	57.1	71.4	57.1	42.9	57.1	67.3	01.2	71.4
			85.7	100.0	42.9	71.4	14.3	71.4	57.1	63.3		
			85.7	57.1	14.3	42.9	85.7	42.9	100.0	61.2		
	то	40 E	100.0	100.0	14.3	57.1	28.6	42.9	71.4	59.2	50.2	77.6
	12	40 F	100.0	100.0	57.1	57.1	57.1	71.4	100.0	77.6	59.2	11.0
A 588			100.0	85.7	42.9	42.9	57.1	57.1	71.4	65.3		
			100.0	42.9	57.1	100.0	100.0	28.6	14.3	63.3		
		70 E	85.7	100.0	42.9	57.1	71.4	14.3	57.1	61.2	61.2	95 7
		70 P	14.3	100.0	85.7	100.0	100.0	100.0	100.0	85.7	01.2	00.7
			71.4	100.0	100.0	57.1	28.6	100.0	85.7	77.6		
		0.5	57.1	42.9	14.3	85.7	28.6	100.0	71.4	57.1	57.4	61.0
		UF	57.1	85.7	28.6	100.0	28.6	71.4	57.1	61.2	57.1	01.2
	та	40 E	71.4	85.7	14.3	100.0	42.9	42.9	71.4	61.2	57.4	61.0
	15	40 F	42.9	100.0	28.6	85.7	14.3	71.4	57.1	57.1	57.1	01.2
		70 5	28.6	71.4	71.4	14.3	71.4	100.0	85.7	63.3	00.0	05.0
		70 F	14.3	85.7	71.4	85.7	71.4	100.0	28.6	65.3	63.3	65.3
1		0 F	57.1	42.9	14.3	85.7	57.1	100.0	71.4	61.2	61.2	61.2
1	T4	40 F	14.3	85.7	28.6	100.0	57.1	57.1	71.4	59.2	59.2	59.2
		70 F	28.6	71.4	71.4	14.3	71.4	100.0	85.7	63.3	63.3	63.3

Table 3.41: Effect of Reference Location for Mill 3, $\alpha = 5$.

	Thickness	Test			Per	cent Gre	ater Tha	n Eref -	10 For M	1ill 3		
Grade	Group	Temperature			L	OCATIO	N		.	Mean	Min Mean	Max Mean
	Group	remperature	1	2	3	4	5	6	7	moun		
		0 F	100.0	100.0	14.3	42.9	85.7	100.0	100.0	77.6	77.6	77.6
	11	40 F	71.4	71.4	85.7	42.9	100.0	100.0	57.1	75.5	75.5	75.5
		70 F	100.0	100.0	100.0	100.0	100.0	100.0	100.0	100.0	100.0	100.0
		0 F	71.4	71.4	71.4	100.0	100.0	42.9	28.6	69.4	69.4	77.6
			100.0	100.0	14.3	42.9	85.7	100.0	100.0	77.6		
	T2	40 F	74.4	74.4	100.0	/1.4	100.0	28.6	28.6	75.5	75.5	75.5
			71.4 95.7	100.0	85.7	42.9	100.0	100.0	57.1 95.7	70.6		
		70 F	00.7	100.0	100.0	00.7	100.0	14.3	100.0	100.0	79.6	100.0
A 572			1/1 3	85.7	12 0	85.7	57.1	100.0	71 /	65.3		
		0 F	100.0	100.0	42.5	71 /	28.6	57.1	57.1	65.3	65.3	73 5
		01	100.0	100.0	57.1	85.7	28.6	71 /	71 /	73.5	05.5	75.5
			57.1	100.0	14.3	71.4	<u>42 9</u>	85.7	28.6	57.1		
	Т3	40 F	100.0	100.0	12.0	71.4	42.0	57.1	1/1 3	61.2	57 1	73 5
	10	101	100.0	100.0	57.1	57.1	57.1	71.4	71.4	73.5	07.1	10.0
			28.6	85.7	85.7	100.0	28.6	85.7	71.4	69.4		
		70 F	85.7	100.0	12.0	71 /	12.0	57.1	12.0	63.3	63.3	95.9
			100.0	100.0	100.0	100.0	71.4	100.0	100.0	95.9	00.0	00.0
			14.3	28.6	71 4	100.0	85.7	42.9	57.1	57.1		
		0 F	14.3	71.4	71.4	100.0	100.0	71.4	71.4	71.4	57.1	71.4
			28.6	42.9	100.0	85.7	57.1	28.6	85.7	61.2		
	T1	40 F	14.3	28.6	57 1	71.4	57.1	100.0	85.7	59.2	59.2	61.2
			42.9	14.3	100.0	42.9	71.4	100.0	100.0	67.3		
		70 F	28.6	28.6	100.0	100.0	71.4	71.4	71.4	67.3	67.3	67.3
			57.1	28.6	100.0	42.9	28.6	100.0	100.0	65.3		
		0.5	100.0	100.0	28.6	14.3	100.0	100.0	100.0	77.6	05.0	77.0
		UF	100.0	100.0	71.4	71.4	71.4	57.1	71.4	77.6	05.3	11.0
			100.0	100.0	57.1	85.7	28.6	71.4	71.4	73.5		
			85.7	57.1	28.6	42.9	85.7	42.9	100.0	63.3		
	то	40 E	100.0	100.0	14.3	71.4	28.6	57.1	71.4	63.3	62.2	01.0
	T2	40 F	100.0	100.0	71.4	85.7	85.7	100.0	100.0	91.8	03.3	91.0
A 588			100.0	100.0	57.1	57.1	57.1	71.4	71.4	73.5		
			100.0	42.9	85.7	100.0	100.0	42.9	14.3	69.4		
		70 F	85.7	100.0	57.1	57.1	71.4	42.9	71.4	69.4	60 /	08.0
		701	85.7	100.0	100.0	100.0	100.0	100.0	100.0	98.0	03.4	30.0
			100.0	100.0	100.0	100.0	71.4	100.0	100.0	95.9		
		0 F	57.1	57.1	14.3	85.7	42.9	100.0	71.4	61.2	61 2	61.2
		01	57.1	85.7	28.6	100.0	28.6	71.4	57.1	61.2	01.2	01.2
	Т3	40 F	71.4	85.7	42.9	100.0	42.9	42.9	71.4	65.3	63.3	65.3
	10	101	57.1	100.0	42.9	85.7	14.3	71.4	71.4	63.3	00.0	00.0
		70 F	28.6	85.7	85.7	14.3	71.4	100.0	85.7	67.3	67.3	71 4
		701	28.6	85.7	85.7	85.7	85.7	100.0	28.6	71.4	07.5	/ 1.4
		0 F	71.4	57.1	14.3	85.7	71.4	100.0	71.4	67.3	67.3	67.3
	T4	40 F	14.3	85.7	57.1	100.0	57.1	57.1	71.4	63.3	63.3	63.3
		70 F	28.6	85.7	85.7	14.3	71.4	100.0	85.7	67.3	67.3	67.3

Table 3.42: Effect of Reference Location for Mill 3, $\alpha = 10$.

$ \begin{array}{c c c c c c c c c c c c c c c c c c c $	Max Mea <u>83.7</u> <u>83.7</u> 100.0
Of our 1 2 3 4 5 6 7 International matrix T1 0 F 100.0 100.0 28.6 57.1 100.0 100.0 83.7 83.7 40 F 85.7 71.4 85.7 71.4 100.0 100.0 71.4 83.7 83.7 70 F 100.0	83.7 83.7 100.0
0 F 100.0 100.0 28.6 57.1 100.0 100.0 83.7 83.7 40 F 85.7 71.4 85.7 71.4 100.0 100.0 71.4 83.7 83.7 70 F 100.0 <td< td=""><td>83.7 83.7 100.0</td></td<>	83.7 83.7 100.0
T1 40 F 85.7 71.4 85.7 71.4 100.0 100.0 71.4 83.7 83.7 70 F 100.0 83.7 75.5 T2 40 F 100.0 100.0 100.0 100.0 100.0 100.0 100.0 71.4 83.7 79.6	<u>83.7</u> 100.0
T0 F 100.0 83.7 75.5 T2 40 F 100.0 100.0 100.0 100.0 100.0 100.0 100.0 71.4 83.7 79.6	100.0
0 F 71.4 71.4 71.4 100.0 100.0 57.1 57.1 75.5 100.0 100.0 28.6 57.1 100.0 100.0 83.7 75.5 T2 40 F 100.0 100.0 100.0 100.0 100.0 28.6 28.6 79.6	
T2 100.0 100.0 100.0 28.6 57.1 100.0 100.0 83.7 100.0 T2 40 F 100.0 100.0 100.0 100.0 100.0 28.6 28.6 79.6	83.7
T2 40 F 100.0 100.0 100.0 100.0 100.0 28.6 28.6 79.6 79.6 85.7 71.4 85.7 71.4 100.0 100.0 71.4 83.7 79.6	00.7
	83.7
	00.7
70 E 85.7 100.0 100.0 100.0 42.9 85.7 87.8 97.8	100.0
A 572 100.0 100.0 100.0 100.0 100.0 100.0 100.0 100.0 100.0 100.0	100.0
42.9 85.7 57.1 85.7 57.1 100.0 71.4 71.4	
0 F 100.0 100.0 57.1 71.4 28.6 57.1 57.1 67.3 67.3	83.7
100.0 100.0 71.4 100.0 57.1 85.7 71.4 83.7	
57.1 100.0 28.6 71.4 57.1 85.7 42.9 63.3	
T3 40 F 100.0 100.0 42.9 71.4 42.9 57.1 14.3 61.2 61.2	77.6
100.0 100.0 71.4 57.1 71.4 71.4 71.4 77.6	
28.6 85.7 85.7 100.0 28.6 85.7 85.7 71.4	
70 F 100.0 100.0 42.9 71.4 42.9 57.1 42.9 65.3 65.3	100.0
100.0 100.0 100.0 100.0 100.0 100.0 100.0 100.0 100.0	
	74.4
0 F 14.3 71.4 71.4 100.0 100.0 71.4 71.4 71.4 ^{63.3}	71.4
T4 40.5 42.9 42.9 100.0 85.7 57.1 28.6 85.7 63.3 50.0	<u></u>
11 40 F 14.3 28.6 57.1 71.4 57.1 100.0 85.7 59.2 59.2	63.3
70.5 57.1 42.9 100.0 57.1 100.0 100.0 100.0 79.6 77.0	70.0
70 F 28.6 28.6 100.0 100.0 71.4 71.4 71.4 67.3 67.3	79.6
57.1 28.6 100.0 57.1 28.6 100.0 100.0 67.3	
	027
100.0 100.0 71.4 71.4 71.4 71.4 71.4 79.6	03.7
100.0 100.0 71.4 100.0 57.1 85.7 71.4 83.7	
100.0 57.1 42.9 42.9 100.0 57.1 100.0 71.4	
	400.0
12 40 F 100.0 100.0 100.0 100.0 100.0 100.0 100.0 100.0 100.0 ^{65.3}	100.0
A 588 100.0 100.0 71.4 57.1 71.4 71.4 71.4 77.6	
100.0 57.1 100.0 100.0 100.0 42.9 28.6 75.5	
70 5 85.7 100.0 71.4 71.4 71.4 57.1 71.4 75.5 75.5	400.0
	100.0
100.0 100.0 100.0 100.0 100.0 100.0 100.0 100.0 100.0	
	05.0
0 F 57.1 85.7 28.6 100.0 28.6 71.4 57.1 61.2 61.2	65.3
	07.0
13 40 F 57.1 100.0 42.9 100.0 28.6 71.4 71.4 67.3 65.3	67.3
42.9 85.7 85.7 14.3 85.7 100.0 100.0 73.5	
70 F 28.6 85.7 85.7 85.7 100.0 28.6 71.4 71.4	73.5
0 F 71.4 71.4 14.3 85.7 71.4 100.0 71.4 69.4 69.4	69.4
T4 40 F 14.3 85.7 57.1 100.0 57.1 57.1 71.4 63.3 63.3	63.3
70 F 42.9 85.7 85.7 14.3 85.7 100.0 100 73.5 73.5	73.5

Table 3.43: Effect of Reference Location for Mill 3, $\alpha = 15$.

	Thickness	Test			Pe	rcent Gr	eater Th	an Eref ·	5 For N	lill 4		
Grade	Group	Temperature			L	OCATIO	N	1		Mean	Min Mean	Max Mean
	Cloup	remperature	1	2	3	4	5	6	7	moun		
			100.0	100.0	28.6	71.4	14.3	71.4	71.4	65.3	ļ	
		0 F	71.4	14.3	85.7	57.1	100.0	57.1	42.9	61.2	61.2	79.6
		01	100.0	100.0	100.0	42.9	100.0	85.7	28.6	79.6	01.2	10.0
			57.1	71.4	85.7	100.0	14.3	71.4	28.6	61.2		
			100.0	100.0	28.6	100.0	14.3	100.0	71.4	73.5		
	Т1	40 F	71.4	71.4	71.4	100.0	14.3	71.4	100.0	71.4	633	73 5
		401	100.0	85.7	14.3	42.9	42.9	85.7	85.7	65.3	00.0	10.0
			42.9	100.0	71.4	100.0	14.3	71.4	42.9	63.3		
			100.0	85.7	28.6	57.1	14.3	71.4	57.1	59.2	ļ	
		70 F	71.4	100.0	28.6	28.6	85.7	85.7	85.7	69.4	50.2	69.4
		701	100.0	85.7	14.3	42.9	42.9	71.4	71.4	61.2	55.2	03.4
Δ 572			57.1	100.0	42.9	57.1	14.3	100.0	71.4	63.3		
11 012			14.3	42.9	100.0	100.0	71.4	71.4	57.1	65.3		
		0 F	28.6	85.7	57.1	100.0	100.0	57.1	28.6	65.3	633	73 5
		01	71.4	100.0	71.4	42.9	100.0	14.3	42.9	63.3	00.0	10.0
			71.4	71.4	100.0	71.4	71.4	28.6	100.0	73.5		
			28.6	85.7	85.7	85.7	100.0	85.7	28.6	71.4		
	Т2	40 F	42.9	71.4	85.7	100.0	85.7	14.3	57.1	65.3	65 3	714
	12	40 F	71.4	100.0	85.7	71.4	100.0	28.6	42.9	71.4	00.0	7 1.4
			57.1	85.7	85.7	100.0	57.1	57.1	57.1	71.4		
		70 F	42.9	42.9	100.0	85.7	85.7	71.4	42.9	67.3		
			42.9	85.7	71.4	100.0	100.0	42.9	42.9	69.4	65 3	73.5
			100.0	85.7	100.0	85.7	100.0	14.3	28.6	73.5	00.0	10.0
			42.9	42.9	85.7	28.6	71.4	85.7	100.0	65.3		
		0.5	100.0	100.0	71.4	71.4	71.4	28.6	28.6	67.3		
			100.0	85.7	28.6	57.1	85.7	57.1	28.6	63.3	63.3	75 5
		01	42.9	100.0	42.9	85.7	57.1	57.1	71.4	65.3		10.0
			85.7	100.0	14.3	28.6	100.0	100.0	100.0	75.5		
			100.0	71.4	42.9	42.9	71.4	85.7	42.9	65.3	ļ	
	Т1	40 F	100.0	85.7	14.3	42.9	71.4	57.1	42.9	59.2	59.2	65.3
		101	42.9	100.0	71.4	85.7	71.4	14.3	42.9	61.2	00.2	00.0
			57.1	85.7	42.9	14.3	28.6	100.0	100.0	61.2		
			100.0	71.4	42.9	57.1	28.6	28.6	85.7	59.2		
		70 F	100.0	71.4	28.6	28.6	85.7	42.9	71.4	61.2	59.2	67.3
			100.0	100.0	14.3	57.1	100.0	42.9	57.1	67.3	00.2	01.0
A 588			85.7	85.7	42.9	28.6	28.6	100.0	85.7	65.3		
1,000			85.7	71.4	71.4	14.3	100.0	28.6	71.4	63.3	ł	
		0 F	71.4	100.0	14.3	28.6	71.4	85.7	42.9	59.2	59.2	63.3
		01	42.9	100.0	100.0	28.6	71.4	14.3	71.4	61.2	00.2	00.0
			28.6	42.9	100.0	85.7	71.4	28.6	57.1	59.2		
			100.0	28.6	42.9	71.4	85.7	71.4	71.4	67.3	ļ	
	T2	40 F	42.9	100.0	100.0	14.3	100.0	42.9	85.7	69.4	65.3	81.6
1			100.0	100.0	100.0	100.0	42.9	28.6	100.0	81.6	00.0	
			42.9	85.7	85.7	100.0	85.7	42.9	14.3	65.3		l
			85.7	57.1	28.6	57.1	100.0	57.1	71.4	65.3	ļ	
		70 F	100.0	57.1	100.0	14.3	57.1	57.1	100.0	69.4	.3 .4 65 2	93.9
1			100.0	85.7	100.0	100.0	100.0	71.4	100.0	93.9	00.0	00.0
			85.7	71.4	28.6	71.4	100.0	14.3	100.0	67.3		

Table 3.44: Effect of Reference Location for Mill 4, $\alpha = 5$.

	Thicknoss	Tost			Per	cent Gre	ater Tha	n Eref -	10 For M	1ill 4				
Grade	Croup	Tomporatura			Ŀ	OCATIO	N			Maan	Min Mean	Max Mean		
	Group	remperature	1	2	3	4	5	6	7	wean	Will Wear	wax wear		
			100.0	100.0	28.6	71.4	14.3	71.4	71.4	65.3				
		0 5	85.7	14.3	85.7	71.4	100.0	57.1	57.1	67.3	05.0	05.0		
		UF	100.0	100.0	100.0	100.0	100.0	100.0	71.4	95.9	05.3	95.9		
			71.4	71.4	85.7	100.0	28.6	71.4	42.9	67.3				
			100.0	100.0	28.6	100.0	28.6	100.0	100.0	79.6				
	Τ1	40 E	71.4	71.4	85.7	100.0	71.4	71.4	100.0	81.6	65.2	916		
		40 F	100.0	85.7	14.3	42.9	42.9	85.7	85.7	65.3	05.5	01.0		
			42.9	100.0	100.0	100.0	14.3	100.0	42.9	71.4				
			100.0	85.7	28.6	57.1	28.6	71.4	57.1	61.2				
		70 E	85.7	100.0	57.1	28.6	85.7	85.7	85.7	75.5	61.2	75 5		
		70 P	100.0	100.0	28.6	42.9	42.9	85.7	85.7	69.4	01.2	75.5		
A 572			71.4	100.0	57.1	57.1	14.3	100.0	71.4	67.3				
A 372			14.3	71.4	100.0	100.0	85.7	85.7	71.4	75.5				
		0 F	57.1	100.0	57.1	100.0	100.0	57.1	42.9	73.5	73 5	85.7		
		01	71.4	100.0	85.7	71.4	100.0	14.3	71.4	73.5	75.5	05.7		
			71.4	85.7	100.0	85.7	85.7	71.4	100.0	85.7				
			28.6	100.0	100.0	85.7	100.0	100.0	28.6	77.6				
	то	72 40 F	71.4 85.7 85.7	100.0	85.7	42.9	85.7	79.6	75 5	00.0				
	12		85.7	100.0	100.0	100.0	100.0	71.4	71.4	89.8	- 10.5	09.8		
			57.1	100.0	100.0	100.0	57.1	57.1	57.1	75.5				
			57.1	42.9	100.0	100.0	100.0	85.7	57.1	77.6	73.5			
		70 F	57.1	100.0	100.0	100.0	100.0	71.4	42.9	81.6		81.6		
			100.0	100.0	100.0	100.0	100.0	14.3	28.6	77.6	73.5			
			57.1	57.1	85.7	42.9	85.7	85.7	100.0	73.5				
			100.0	100.0	71.4	71.4	71.4	28.6	28.6	67.3				
		0 F	0 F	0 F	100.0	100.0	28.6	57.1	85.7	57.1	28.6	65.3	65.2	70.6
		UF	57.1	100.0	57.1	85.7	57.1	57.1	71.4	69.4	05.5	79.6		
			100.0	100.0	14.3	42.9	100.0	100.0	100.0	79.6				
			100.0	71.4	42.9	42.9	71.4	85.7	42.9	65.3				
	Т1	40 F	100.0	85.7	28.6	42.9	85.7	57.1	42.9	63.3	63.3	73 5		
		401	71.4	100.0	71.4	85.7	71.4	42.9	71.4	73.5	00.0	75.5		
			71.4	100.0	42.9	28.6	42.9	100.0	100.0	69.4				
			100.0	85.7	42.9	57.1	28.6	28.6	85.7	61.2				
		70 F	100.0	71.4	42.9	42.9	85.7	42.9	71.4	65.3	61 2	75 5		
		701	100.0	100.0	14.3	100.0	100.0	57.1	57.1	75.5	01.2	75.5		
A 599			85.7	85.7	42.9	28.6	42.9	100.0	85.7	67.3				
A 300			85.7	71.4	71.4	14.3	100.0	28.6	71.4	63.3				
		0 F	71.4	100.0	14.3	42.9	71.4	100.0	42.9	63.3	61.2	77.6		
	0 F T2 40 F	UF	71.4	100.0	100.0	42.9	100.0	28.6	100.0	77.6	01.2	11.0		
			28.6	42.9	100.0	100.0	71.4	28.6	57.1	61.2				
			100.0	42.9	71.4	71.4	85.7	71.4	71.4	73.5				
		40 F	42.9	100.0	100.0	42.9	100.0	42.9	100.0	75.5	69 4	95.9		
		-+0 F	100.0	100.0	100.0	100.0	100.0	71.4	100.0	95.9	03.4	33.3		
			71.4	85.7	85.7	100.0	85.7	42.9	14.3	69.4				
			85.7	57.1	57.1	71.4	100.0	71.4	71.4	73.5				
		70 E	100.0	100.0	100.0	14.3	100.0	100.0	100.0	87.8	72 F	100.0		
		10 F	100.0	100.0	100.0	100.0	100.0	100.0	100.0	100.0	13.5	100.0		
			100.0	100.0	71.4	100.0	100.0	14.3	100.0	83.7				

Table 3.45: Effect of Reference Location for Mill 4, $\alpha = 10$.

	Thickness	Test			Per	cent Gre	ater Tha	in Eref -	15 For M	1ill 4		
Grade	Group	Temperature			L	OCATIO	N			Mean	Min Mean	Max Mean
	0.0up	remperature	1	2	3	4	5	6	7	moun		
			100.0	100.0	28.6	71.4	14.3	71.4	71.4	65.3		
		0 F	85.7	28.6	85.7	85.7	100.0	71.4	71.4	75.5	65.3	100.0
		01	100.0	100.0	100.0	100.0	100.0	100.0	100.0	100.0		100.0
			71.4	71.4	100.0	100.0	28.6	71.4	57.1	71.4		
			100.0	100.0	28.6	100.0	28.6	100.0	100.0	79.6		
	T1	40 F	100.0	85.7	100.0	100.0	71.4	85.7	100.0	91.8	77 6	91.8
			100.0	100.0	42.9	85.7	85.7	100.0	85.7	85.7		0.10
			42.9	100.0	100.0	100.0	42.9	100.0	57.1	77.6		
			100.0	85.7	28.6	71.4	28.6	85.7	71.4	67.3		
		70 F	85.7	100.0	85.7	71.4	85.7	85.7	85.7	85.7	67.3	85.7
			100.0	100.0	42.9	42.9	42.9	100.0	100.0	75.5		00
A 572			71.4	100.0	57.1	71.4	14.3	100.0	85.7	71.4		
			42.9	71.4	100.0	100.0	100.0	100.0	85.7	85.7		
		0 F	57.1	100.0	71.4	100.0	100.0	57.1	57.1	77.6	77.6	93.9
		-	85.7	100.0	100.0	71.4	100.0	14.3	71.4	77.6		
			85.7	100.0	100.0	100.0	100.0	71.4	100.0	93.9		
			28.6	100.0	100.0	100.0	100.0	100.0	28.6	79.6		
	T2	40 F	85.7	85.7	100.0	100.0	85.7	71.4	85.7	87.8	79.6	95.9
	12	40 F	100.0	100.0	100.0	100.0	100.0	85.7	85.7	95.9		
			85.7	100.0	100.0	100.0	85.7	85.7	85.7	91.8		
			85.7	57.1	100.0	100.0	100.0	100.0	71.4	87.8	ł	91.8
		70 F	85.7	100.0	100.0	100.0	100.0	85.7	71.4	91.8	79.6	
			100.0	100.0	100.0	100.0	100.0	28.6	28.6	79.6		
			71.4	85.7	100.0	57.1	85.7	100.0	100.0	85.7		
			100.0	100.0	71.4	71.4	71.4	28.6	28.6	67.3		
		0 F	100.0	100.0	28.6	57.1	100.0	57.1	28.6	67.3	67.3	87.8
			57.1	100.0	57.1	100.0	/1.4	57.1	/1.4	73.5		
			100.0	74.4	14.3	100.0	700.0	100.0	100.0	87.8		
			100.0	71.4	42.9	42.9	71.4	85.7	42.9	65.3		
	T1	40 F	74.4	100.0	42.9	42.9	85.7	57.1	42.9	67.3	65.3	75.5
			/1.4	100.0	/1.4	85.7	/1.4	57.1	71.4	75.5		
			100.0	95.7	42.9	42.9	42.9	42.0	95.7	75.5		
			100.0	05.7	37.1	12.0	20.0	42.9	05.7	60.4		
		70 F	100.0	00.7	42.9	42.9	00.7	42.9	00.7	09.4	67.3	87.8
			95.7	100.0	14.3	100.0	100.0	100.0	100.0	87.8		
A 588			05.7	71.4	42.9	42.9	42.9	20.0	71.4	73.5		
			74.4	100.0	20.0	20.0	74.4	20.0	71.4	05.3		
		0 F	100.0	100.0	28.0	42.9	100.0	42.0	100.0	09.4	63.3	87.8
			20.6	100.0	100.0	100.0	71.4	42.9	F7 1	62.2		
			20.0	4 <u>2.9</u> 71 /	71 /	71 4	85.7	4 <u>2.9</u> 71 /	71 /	77.6		
1			57.1	100.0	100.0	12.4	100.0	57.1	100.0	79.6		
1	T2	40 F	100.0	100.0	100.0	100 0	100.0	100.0	100.0	100.0	77.6	100.0
			85.7	85.7	85.7	100.0	85.7	85.7	42 0	81.6		100.0
1			85.7	71 4	71 4	71 4	100.0	71 4	71 4	77.6		
			100.0	100.0	100.0	14.3	100.0	100.0	100.0	87.8		
1		70 F	100.0	100.0	100.0	100.0	100.0	100.0	100.0	100.0	77.6	100.0
			100.0	100.0	100.0	100.0	100.0	14 3	100.0	87.8		
L			100.0	100.0	100.0	100.0	100.0	14.0	100.0	01.0		

Table 3.46: Effect of Reference Location for Mill 4, $\alpha = 15$.

	Thickness	Toot			Pe	rcent Gr	eater Th	an Eref ·	- 5 For N	lill 5		
Grade	Croup	Temperature			L	OCATIO	N			Maan	Min Mean	Max Mean
	Group	remperature	1	2	3	4	5	6	7	wear	with weath	wax wear
		0 5	100.0	71.4	100.0	28.6	71.4	14.3	42.9	61.2	61.2	60.4
		0 F	42.9	14.3	71.4	85.7	71.4	100.0	100.0	69.4	01.2	09.4
	Τ1	40 E	85.7	100.0	85.7	28.6	71.4	14.3	71.4	65.3	65.2	60.4
	11	40 F	85.7	85.7	100.0	85.7	71.4	28.6	28.6	69.4	05.5	09.4
		70 F	71.4	85.7	85.7	42.9	57.1	14.3	100.0	65.3	65.3	73 5
		70 F	71.4	14.3	71.4	100.0	100.0	57.1	100.0	73.5	05.5	73.5
		0 F	85.7	100.0	100.0	57.1	85.7	14.3	28.6	67.3	673	77.6
		01	71.4	42.9	100.0	100.0	28.6	100.0	100.0	77.6	07.5	77.0
	Т2	40 F	71.4	71.4	85.7	14.3	71.4	71.4	100.0	69.4	633	69.4
	12	401	85.7	14.3	71.4	100.0	42.9	42.9	85.7	63.3	00.0	00.4
		70 F	100.0	71.4	71.4	100.0	42.9	14.3	28.6	61.2	61.2	61.2
A 572		701	57.1	28.6	100.0	71.4	28.6	57.1	85.7	61.2	01.2	01.2
A 312		0 F	71.4	42.9	28.6	71.4	100.0	85.7	42.9	63.3	63.3	73 5
		UF	100.0	100.0	85.7	57.1	57.1	71.4	42.9	73.5	03.3	73.5
	То	40 E	100.0	28.6	57.1	57.1	14.3	85.7	100.0	63.3	62.2	100.0
	15	40 F	100.0	100.0	100.0	100.0	100.0	100.0	100.0	100.0	03.3	100.0
		70 E	100.0	100.0	71.4	57.1	14.3	71.4	71.4	69.4	67.2	60.4
		70 P	85.7	71.4	71.4	14.3	57.1	100.0	71.4	67.3	07.5	09.4
		0.5	100.0	100.0	100.0	100.0	100.0	100.0	100.0	100.0	77.6	100.0
		UF	85.7	100.0	57.1	100.0	85.7	100.0	14.3	77.6	//.0	100.0
		10 5	100.0	100.0	100.0	100.0	100.0	14.3	100.0	87.8	75.5	07.0
	14	40 F	100.0	100.0	28.6	100.0	100.0	28.6	71.4	75.5	75.5	87.8
			100.0	100.0	100.0	100.0	100.0	57.1	100.0	93.9		
		70 F	42.9	100.0	100.0	100.0	14.3	100.0	42.9	71.4	71.4	93.9
			28.6	71.4	85.7	100.0	42.9	57.1	14.3	57.1		
		0 F	28.6	100.0	57.1	71.4	85.7	71.4	85.7	71.4	57 1	714
			28.6	57.1	28.6	57.1	71.4	85.7	100.0	61.2		
		T1 40 F	71 /	28.6	85.7	100.0	71.1	71 /	1/1 3	63.3		
	Т1		42.9	100.0	14.3	42.9	57.1	71.4	85.7	59.2	59.2	63 3
			1/ 3	12.0	100.0	85.7	71 /	57.1	12.0	50.2	00.2	00.0
			28.6	57.1	85.7	100.0	57.1	85.7	14.3	61.2		
		70 F	1/ 3	71 /	12.0	28.6	71 /	100.0	85.7	50.2	50.2	61.2
		70 P	14.3	F7 1	42.9	20.0	100.0	42.0	42.0	61.2	59.2	01.2
			14.3	100.0	57.1	95.7	42.0	4 <u>2.9</u> 57.1	4 <u>2.9</u> 95.7	62.2		
		0 F	14.5	100.0	057.1	57.1	42.9	95.1	57.1	62.2	63.3	63.3
		01	20.0	57.1	60.7 57.1	1/2	42.0	100.0	100.0	62.2	05.5	05.5
			20.6	14.2	100.0	05.7	42.9	71.4	05.7	65.3		
	то	40 E	20.0	14.3	74.4	00.7	11.4	11.4	00.7	05.3	61.2	65.2
	12	40 F	95.7	85.7	05.7	71.4	14.3	42.9	42.9	65.2	01.2	05.5
A 588			00.7	100.0	400.0	71.4	14.3	20.0	100.0	05.3		
		70 5	28.6	28.6	100.0	/1.4	42.9	57.1	100.0	61.2	64.0	CO 4
		70 F	85.7	100.0	42.9	42.9	14.3	57.1	100.0	63.3	01.2	69.4
			100.0	100.0	71.4	42.9	71.4	42.9	57.1	69.4		
		o =	14.3	42.9	85.7	/1.4	100.0	85.7	42.9	63.3		
		0 F	85.7	100.0	28.6	42.9	14.3	100.0	57.1	61.2	61.2	63.3
			42.9	57.1	85.7	14.3	85.7	100.0	42.9	61.2		
			71.4	28.6	71.4	57.1	100.0	85.7	42.9	65.3		
	13	40 F	57.1	100.0	57.1	57.1	71.4	14.3	85.7	63.3	63.3	75.5
			85.7	85.7	100.0	71.4	57.1	57.1	71.4	75.5		
			14.3	28.6	85.7	100.0	100.0	42.9	57.1	61.2	ł	
		70 F	100.0	100.0	42.9	42.9	14.3	85.7	100.0	69.4	61.2	69.4
			42.9	57.1	100.0	100.0	71.4	42.9	28.6	63.3		ļ
	_	0 F	57.1	85.7	85.7	85.7	57.1	57.1	85.7	73.5	73.5	73.5
1	Τ4	40 F	71.4	85.7	71.4	71.4	71.4	71.4	71.4	73.5	73.5	73.5
		70 F	42.9	28.6	28.6	14.3	42.9	14.3	57.1	32.7	32.7	32.7

Table 3.47: Effect of Reference Location for Mill 5, $\alpha = 5$.

	Thickness	Test			Per	cent Gre	ater Tha	n Eref -	10 For M	1ill 5		
Grade	Group	Tomporatura			L	OCATIO	N			Moon	Min Mean	Max Mean
	Gloup	remperature	1	2	3	4	5	6	7	wear	inin moun	maximoan
		0 F	100.0	71.4	100.0	28.6	71.4	14.3	71.4	65.3	65.3	85.7
		01	71.4	42.9	100.0	100.0	85.7	100.0	100.0	85.7	00.0	00.7
	Τ1	40 E	85.7	100.0	85.7	28.6	85.7	14.3	85.7	69.4	69.4	79.6
		401	100.0	100.0	100.0	100.0	85.7	42.9	28.6	79.6	03.4	73.0
		70 F	85.7	85.7	85.7	71.4	85.7	14.3	100.0	75.5	75 5	93.9
		701	100.0	57.1	100.0	100.0	100.0	100.0	100.0	93.9	10.0	55.5
		0 F	100.0	100.0	100.0	85.7	100.0	14.3	57.1	79.6	79.6	95.9
		÷.	100.0	100.0	100.0	100.0	71.4	100.0	100.0	95.9	10.0	00.0
	Т2	40 F	85.7	85.7	85.7	71.4	85.7	85.7	100.0	85.7	714	85.7
	12	101	100.0	28.6	85.7	100.0	42.9	42.9	100.0	71.4	,	00.1
		70 F	100.0	71.4	71.4	100.0	42.9	14.3	42.9	63.3	63.3	714
A 572			57.1	57.1	100.0	85.7	57.1	57.1	85.7	71.4	00.0	
11 012		0 F	71.4	42.9	42.9	71.4	100.0	100.0	42.9	67.3	673	87.8
		01	100.0	100.0	100.0	71.4	71.4	100.0	71.4	87.8	07.0	07.0
	Т3	40 F	100.0	28.6	57.1	71.4	14.3	100.0	100.0	67.3	67.3	100.0
	10	101	100.0	100.0	100.0	100.0	100.0	100.0	100.0	100.0	07.0	100.0
		70 F	100.0	100.0	100.0	71.4	14.3	85.7	100.0	81.6	77.6	81.6
		101	100.0	85.7	85.7	14.3	71.4	100.0	85.7	77.6	11.0	01.0
		0 F	100.0	100.0	100.0	100.0	100.0	100.0	100.0	100.0	89.8	100.0
		÷.	100.0	100.0	100.0	100.0	100.0	100.0	28.6	89.8	00.0	100.0
	τı	40 E	100.0	100.0	100.0	100.0	100.0	85.7	100.0	98.0	837	08.0
	14	40 F	100.0	100.0	42.9	100.0	100.0	42.9	100.0	83.7	03.7	90.0
		70 E	100.0	100.0	100.0	100.0	100.0	100.0	100.0	100.0	71 /	100.0
		70 F	42.9	100.0	100.0	100.0	14.3	100.0	42.9	71.4	71.4	100.0
			28.6	85.7	100.0	100.0	57.1	57.1	14.3	63.3		
		0 F	71.4	100.0	85.7	85.7	100.0	85.7	85.7	87.8	63.3	87.8
			28.6	57.1	28.6	57.1	85.7	85.7	100.0	63.3		
		T1 40 F	71.4	28.6	85.7	100.0	85.7	85.7	14.3	67.3		
	T1		57.1	100.0	14.3	57.1	57.1	85.7	100.0	67.3	61.2	67.3
			14.3	42.9	100.0	100.0	71.4	57.1	42.9	61.2		
			28.6	57.1	85.7	100.0	57.1	85.7	14.3	61.2		
		70 F	28.6	85.7	71.4	28.6	85.7	100.0	85.7	69.4	61.2	69.4
			14.3	57.1	100.0	100.0	100.0	57.1	42.9	67.3		
			28.6	100.0	57.1	85.7	57.1	57.1	85.7	67.3		
		0 F	28.6	100.0	85.7	85.7	28.6	85.7	85.7	71.4	67.3	71.4
			85.7	57.1	57.1	14.3	57.1	100.0	100.0	67.3		
			28.6	28.6	100.0	85.7	85.7	85.7	85.7	71.4		
	T2	40 F	100.0	85.7	71.4	71.4	14.3	57.1	57.1	65.3	65.3	71.4
		-	85.7	100.0	85.7	85.7	28.6	28.6	85.7	71.4		
A 588			28.6	28.6	100.0	85.7	57.1	71.4	100.0	67.3		
		70 F	100.0	100.0	57.1	57.1	14.3	57.1	100.0	69.4	67.3	77.6
			100.0	100.0	71.4	57.1	71.4	71.4	71.4	77.6		
			14.3	57.1	100.0	85.7	100.0	100.0	57.1	73.5		
		0 F	100.0	100.0	28.6	57.1	28.6	100.0	57.1	67.3	67.3	73 5
		• •	57.1	85.7	85.7	14.3	85.7	100.0	57.1	69.4	00	
			71 /	12.0	71 /	71 /	100.0	100.0	71 /	75.5		
	тз	40 F	71.4	100.0	71.4	71.4	71 4	57.1	85.7	75.5	75 5	80.8
	10	101	100.0	100.0	100.0	85.7	71.1	85.7	85.7	80.8	10.0	00.0
			1/1 3	12 0	100.0	100.0	100.0	57.1	57.1	67.3		
		70 F	100.0	100.0	42 0	57 1	14 3	100.0	100.0	73.5	67.3	73 5
1		10 F	57.1	57.1	42.3 100 0	100.0	100.0	57.1	42.0	72 F	07.5	13.5
		0.5	85.7	100.0	100.0	100.0	85.7	85.7	42.9 100.0	03.0	03.0	03.0
1	Τ4	40 F	71 /	100.0	85.7	85.7	71 /	71 /	71 /	70.6	70.6	70.6
1	.4	40 F	12.0	42.0	200.7	14.2	57.4	20.6	F7 4	200	200	13.0
L		70 F	42.9	42.9	28.6	14.3	57.1	28.6	57.1	38.8	38.8	38.8

Table 3.48: Effect of Reference Location for Mill 5, $\alpha = 10$.

	Thicknoss	Test			Per	cent Gre	ater Tha	ın Eref -	15 For N	1ill 5		
Grade	Croup	Tomporatura			Ŀ	OCATIO	N			Maan	Min Mean	Max Mean
	Group	Temperature	1	2	3	4	5	6	7	wean	WIIII Wearr	wax wear
		0.5	100.0	100.0	100.0	42.9	100.0	28.6	71.4	77.6	77.6	05.0
		UF	100.0	71.4	100.0	100.0	100.0	100.0	100.0	95.9	11.0	95.9
	T 4	40 F	85.7	100.0	85.7	57.1	85.7	14.3	85.7	73.5	70 5	02.0
	11	40 F	100.0	100.0	100.0	100.0	100.0	85.7	71.4	93.9	73.5	93.9
		70 E	85.7	85.7	85.7	85.7	85.7	14.3	100.0	77.6	77.6	08.0
		70 F	100.0	85.7	100.0	100.0	100.0	100.0	100.0	98.0	//.0	90.0
		0 5	100.0	100.0	100.0	100.0	100.0	14.3	85.7	85.7	95 7	100.0
		UF	100.0	100.0	100.0	100.0	100.0	100.0	100.0	100.0	00.7	100.0
	то	40 E	85.7	85.7	100.0	71.4	85.7	85.7	100.0	87.8	75 5	07 0
	12	40 F	100.0	42.9	100.0	100.0	42.9	42.9	100.0	75.5	75.5	07.0
		70 E	100.0	71.4	71.4	100.0	42.9	14.3	42.9	63.3	62.2	77.6
A 570		70 F	71.4	57.1	100.0	85.7	57.1	71.4	100.0	77.6	03.3	11.0
A 572		0.5	71.4	42.9	42.9	71.4	100.0	100.0	42.9	67.3	07.0	100.0
		0 F	100.0	100.0	100.0	100.0	100.0	100.0	100.0	100.0	67.3	100.0
	To	10 F	100.0	28.6	85.7	100.0	28.6	100.0	100.0	77.6	77.0	100.0
	13	40 F	100.0	100.0	100.0	100.0	100.0	100.0	100.0	100.0	//.6	100.0
			100.0	100.0	100.0	100.0	14.3	100.0	100.0	87.8		
		70 F	100.0	85.7	100.0	57.1	85.7	100.0	85.7	87.8	87.8	87.8
			100.0	100.0	100.0	100.0	100.0	100.0	100.0	100.0		
		0 F	100.0	100.0	100.0	100.0	100.0	100.0	57.1	93.9	93.9	100.0
			100.0	100.0	100.0	100.0	100.0	100.0	100.0	100.0		
	Τ4	40 F	100.0	100.0	100.0	100.0	100.0	71 /	100.0	95.9	95.9	100.0
			100.0	100.0	100.0	100.0	100.0	100.0	100.0	100.0		
		70 F	71 /	100.0	100.0	100.0	1/1 2	100.0	57.1	77.6	77.6	100.0
			20.6	100.0	100.0	100.0	F7 1	71.4	20.6	60.4		
		0 5	20.0	100.0	05.7	95.7	100.0	100.0	20.0	09.4	62.2	02.0
			00.7	F7.4	00.7	60.7	100.0	100.0	100.0	93.9	03.3	93.9
			28.0	57.1	28.0	57.1	85.7	85.7	100.0	63.3		
	T 4	10 F	85.7	28.6	85.7	100.0	85.7	85.7	14.3	69.4	65.3	00.4
	11	40 F	57.1	100.0	14.3	57.1	57.1	100.0	100.0	69.4	65.3	69.4
			14.3	42.9	100.0	100.0	85.7	57.1	57.1	65.3		
			57.1	57.1	85.7	100.0	57.1	85.7	14.3	65.3		
		70 F	28.6	85.7	85.7	28.6	85.7	100.0	85.7	/1.4	65.3	/1.4
			14.3	57.1	100.0	100.0	100.0	57.1	57.1	69.4		
			57.1	100.0	57.1	100.0	57.1	57.1	85.7	73.5		70 5
		0 F	28.6	100.0	85.7	85.7	28.6	85.7	85.7	71.4	/1.4	73.5
			100.0	71.4	71.4	14.3	57.1	100.0	100.0	73.5		
			28.6	28.6	100.0	85.7	85.7	85.7	85.7	71.4		
	T2	40 F	100.0	100.0	71.4	85.7	14.3	71.4	71.4	73.5	71.4	77.6
A 588			100.0	100.0	85.7	85.7	28.6	57.1	85.7	77.6		
/1 000			42.9	28.6	100.0	100.0	71.4	71.4	100.0	73.5	ļ	
		70 F	100.0	100.0	57.1	57.1	14.3	85.7	100.0	73.5	73.5	79.6
			100.0	100.0	71.4	71.4	71.4	71.4	71.4	79.6		
			14.3	85.7	100.0	100.0	100.0	100.0	85.7	83.7	ļ	
		0 F	100.0	100.0	42.9	57.1	28.6	100.0	57.1	69.4	69.4	85.7
			85.7	85.7	100.0	42.9	100.0	100.0	85.7	85.7		
			71.4	71.4	71.4	71.4	100.0	100.0	71.4	79.6		
	Т3	40 F	71.4	100.0	71.4	71.4	85.7	71.4	85.7	79.6	79.6	98.0
			100.0	100.0	100.0	100.0	85.7	100.0	100.0	98.0		
			14.3	57.1	100.0	100.0	100.0	57.1	57.1	69.4		
1		70 F	100.0	100.0	85.7	100.0	42.9	100.0	100.0	89.8	69.4	89.8
			57.1	71.4	100.0	100.0	100.0	57.1	57.1	77.6		
		0 F	85.7	100.0	100.0	100.0	100.0	85.7	100.0	95.9	95.9	95.9
	Τ4	40 F	85.7	1 <u>0</u> 0.0	1 <u>0</u> 0.0	85.7	71.4	71.4	71.4	83.7	83.7	83.7
		70 F	57.1	42.9	42.9	14.3	57.1	42.9	57.1	44.9	44.9	44.9

Table 3.49: Effect of Reference Location for Mill 5, $\alpha = 15$.

3.6.3.1 REFERENCE LOCATION EFFECT AS A FUNCTION OF TOUGHNESS

Results from the study of the effect of selecting a reference location in the use of Charpy V-notch test results for individual mills in the 4-mill group were presented in Tables 3.38 to 3.49.

The results from the four mills were combined and then grouped by (i) steel grade; (ii) thickness range; and (iii) toughness in order to determine overall statistical summaries based on the CVN test data and to examine the role of reference location selection. For each steel grade and thickness group, plates were divided into "Lower Toughness" and "Higher Toughness" groups depending on whether or not the absorbed energy value was below 50 ft-lbs. The lower toughness plates, thus, had absorbed energy below 50 ft-lbs in at least one location while the higher toughness plates had absorbed energy equal to or greater than 50 ft-lbs in all seven locations. The purpose of this separate analysis was to concentrate on the results from the group of plates that might be critical in actual use, namely, the lower toughness plates. The higher toughness plates were considered to be non-critical since their very high toughness (or absorbed energy) values greatly exceeded any requirements that might be made of them. It was thought to be interesting to see if similar conclusions related to reference location may be made for lower toughness plates as for the higher toughness plates.

Figure 3.18 presents the distribution of plates by toughness. It should be noted that the number of plates shown corresponds to plates at three test temperatures; hence, the number of plates is three times the actual number of plates presented in Figure 3.7. It may be observed from Figure 3.18 that a larger fraction of the plates were in the higher toughness category, especially for the A588 steel where, for example, the group A588-T2 had only two plates of "lower toughness." Our study, again, is focused on the determining if different conclusions about the CVN test results are reached for the lower toughness plates than for the higher toughness plates.

Figure 3.18: Distribution of Plates by Toughness.

The range of mean values for the percentage of plates that had absorbed energy greater than E_{ref} - α is presented in Figures 3.19 and 3.20 for A572 and A588 steels, respectively. The figures show the range of mean values for two cases: lower toughness plates and higher toughness plates, for three values of α (5, 10, and 15 ft-lbs), and for three test temperatures: 0°F, 40°F and 70°F. Also, indicated on the figures is the number of mean values in the two toughness groups.

By way of illustration, Figure 3.19 for the 0°F test temperature suggests that from the 22 lower toughness plates gathered from all four mills, it was found that the probability that the three-test-averaged absorbed energy might exceed E_{ref} -5 (ft-lbs) varies from 59.2% to 100%. For E_{ref} -10 (ft-lbs), this probability range varies from 65.3% to 100%, and for E_{ref} -15 (ft-lbs), this probability range varies from 67.3% to 100%. In contrast, for the higher toughness plates, the probability range for E_{ref} -5 (ft-lbs) varies from 61.2% to 79.6%; for E_{ref} -10 (ft-lbs), it varies from 65.3% to 95.9%; and for E_{ref} -15 (ft-lbs), it varies from 65.3% to 100%.

Studying all the results, it is seen that the range of probabilities that a three-testaveraged absorbed energy might exceed $E_{ref} \alpha$ (for α equal to 5, 10, or 15 ft-lbs) seems to vary from 55% to 100% for higher toughness plates and 57% to 100% for lower toughness plates. Hence, in general, no significant difference was noted in the results from lower toughness plates and higher toughness plates.

With reference to Figures 3.19 and 3.20, in the vertical lines displaying the data, only when the bottom (or top) circles for the lower toughness plates are significantly lower than the corresponding bottom (or top) horizontal dashes for the higher toughness plates, might there be any concern related to the lower toughness plates. Studying Figures 3.19 and 3.20, again, it might be concluded that, for the cases studied, there are no major differences between the lower and higher toughness plates based on the CVN test data, except perhaps for A588 steel at 70°F but this might be due to insufficient data for the lower toughness plates (only four mean values were available there).

Figure 3.19: Reference Location Effect for A572 Steel as a Function of Toughness (Data from the 4-Mill Group).

Figure 3.20: Reference Location Effect for A588 Steel as a Function of Toughness (Data from the 4-Mill Group).

3.6.4 CORRELATION BETWEEN ABSORBED ENERGY AND LATERAL EXPANSION

Statistical correlation between absorbed energy and lateral expansion obtained from CVN tests was studied and is described graphically in Figures 3.21, 3.22, and 3.23 for the test temperatures of 0°F, 40°F, and 70°F, respectively. In each figure, the data from all mills in the 4-mill group are shown along with two least-squares regression lines, one using the data where absorbed energy was below 100 ft-lbs, and the other where the absorbed energy was above 150 ft-lbs. The correlation coefficient between absorbed energy and lateral expansion is also indicated for the two portions separately. It should be noted that the number of data in each plot is not the same due to the missing lateral expansion data from some tests.

From Figures 3.21 to 3.23, it may be observed that absorbed energy shows strong positive correlation with lateral expansion for absorbed energy levels below 100 ft-lbs, with correlation coefficients varying from 0.935 at 70°F to 0.959 at 0°F. The regression lines are, expectedly, good fits to the data in this range.

In contrast, no significant correlation was found between absorbed energy and lateral expansion for absorbed energy levels greater than 150 ft-lbs at all test temperatures. The lateral expansion appears to stop increasing when it reaches approximately 100 mils in the CVN tests even as absorbed energy levels increase.

Figure 3.21: Absorbed Energy versus Lateral Expansion Plot at 0° F based on Test Data from the 4-Mill Group.

Figure 3.22: Absorbed Energy versus Lateral Expansion Plot at 40° F based on Test Data from the 4-Mill Group.

Figure 3.23: Absorbed Energy versus Lateral Expansion Plot at 70°F based on Test Data from the 4-Mill Group.