
Statistical Machine Translation: A Guide for Linguists and
Translators

Mary Hearne and Andy Way*
School of Computing, Dublin City University

Abstract

This paper presents an overview of Statistical Machine Translation (SMT), which is currently the
dominant approach in Machine Translation (MT) research. In Way and Hearne (2010), we
describe how central linguists and translators are to the MT process, so that SMT developers and
researchers may better understand how to include these groups in continuing to advance the state-
of-the-art. If these constituencies are to make an impact in the field of MT, they need to know
how their input is used by SMT systems. Accordingly, our objective in this paper is to present
the basic principles underpinning SMT in a way that linguists and translators will find accessible
and useful.

1. Introduction

Corpus-based approaches to Machine Translation (MT) are founded on the use of parallel
corpora. That is, previously unseen texts are automatically translated using information
gleaned from examples of past translations produced by humans. The two primary MT
strategies that belong to this paradigm are Example-Based MT (EBMT) and Statistical
MT (SMT). While EBMT systems translate using the notion of ‘similarity’ to previously
seen sentences, SMT systems do not. In this paper, we focus exclusively on a presentation
of the basic principles underpinning the SMT approach. For a description of how the
ideas behind SMT developed and how they relate to other MT approaches, and for a
discussion of the central role played by translators and translations in SMT, see Way and
Hearne (2010).
Statistical MT employs two distinct and separate processes: training and decoding. The

training phase involves extracting a statistical model of translation from a parallel corpus,
and a statistical model of the target language from a (typically much larger) monolingual
corpus (Brown et al. 1990, 1993). The translation model effectively comprises a bilingual
dictionary where each possible translation for a given source word or phrase has a proba-
bility associated with it. However, the model does not resemble a conventional dictionary
where plausible entries only are permitted; many of the entries represent translations that
are unlikely but not impossible, and the associated probabilities reflect this. The language
model comprises a database of target-language word sequences (usually ranging between
1 and 7 words in length), each of which is also associated with a probability. Additional
information beyond the language and translation models can be extracted during training,
such as models of relative sentence length, word reordering, relative importance of trans-
lation vs. language model, etc. These induced models are then used during decoding, the
process which actually yields a translation. The decoding process essentially treats transla-
tion as a search problem: given the sentence to be translated, search over all possible
translations permitted by the translation model, and all possible reorderings thereof, for

L
N

C
3

2
7

4
B

D
is
pa

tc
h:

28
.2
.1
1

N
o.

of
pa

ge
s:

21
C
E
:G

ay
at
hr

i

Jo
u
r
n
a
l
N
a
m
e

M
a
n
u
s
c
r
ip
t
N
o
.

To
c
he

ad
:[

C
M

]
PE

:S
ha

ra
ny

a

Language and Linguistics Compass (2011): 1–21, 10.1111/j.1749-818x.2011.00274.x

ª 2011 The Authors
Language and Linguistics Compass ª 2011 Blackwell Publishing Ltd

1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49

the one which is assigned the highest overall probability according to the translation and
language models.
The idea of generating target sentences by translating words and phrases from the

source sentence in a random order using a model containing many non-sensical transla-
tions may not seem plausible. In fact, the methods used are not intended (in our opinion,
at least) to be either linguistically or cognitively plausible: see Way and Hearne (2010,
section 2.4) for further discussion of this topic. SMT is, however, probabilistically plausible;
rather than focusing on the best process to use to generate a single optimal translation for
a source sentence, SMT focuses on generating many thousands of hypothetical transla-
tions for the input string, and then working out which one of those is most likely.
While there are many variations of SMT systems, they all rely on these core principles

and techniques. Thus, SMT is not a generic term – the generic terms are corpus-based,
data-driven or perhaps probabilistic MT – but rather denotes a specific approach and
architecture. In this paper, we detail the main components that make up an SMT system,
covering the core training, parameter optimisation and decoding strategies. In Section 2,
we focus on the big picture, while in subsequent sections we zoom in on the finer
details: training in Section 3, including tuning in Section 3.3, and decoding in Section 4.
Section 5 provides a brief conclusion, together with some pointers to other accounts of
SMT for the interested reader.

2. Overview

At a high level, SMT gives us a view of MT expressed in a single formula. From this
vantage point, how translations are generated is irrelevant. The only salient issue is that
we can determine how likely any proposed translation is given the input string, and that
we can consequently determine the most probable (i.e. ‘best’, according to the system)
translation from a set of proposed candidates.
That is, SMT is founded on a well-defined decision problem: which translation is the

most likely? There are two formulae available to us to compute that score: the noisy-
channel model in (1), and the log-linear model in (2). The noisy-channel model is the
one traditionally used in the literature (Brown et al. 1990, 1993). While the log-linear
model can be instantiated to express precisely the same computation as the noisy-channel
one (as we explain later in this section), it is more flexible and has come into widespread
use in recent years (Och and Ney 2002).

Noisy-channel model: Translation ¼ argmaxT PðSjTÞ � PðTÞ ð1Þ

Log-linear model: Translation ¼ argmaxT

X

M

m¼1

km � hmðT ; SÞ ð2Þ

Firstly, we note that the leftmost parts of these equations (Translation ¼ argmaxT…) are
exactly the same and are to be interpreted as follows: assuming that we have T candidate
translations, we will let the output Translation be the T with the maximum (argmax) score.
Secondly, we note that the rightmost part of the equations then differ in expressing how
each candidate translation should be scored.
The noisy-channel model comprises two component (or ‘feature’) scores P(SjT) and

P(T) which are to be multiplied together (as shown in (1)). The first of these, P(SjT),
gives the likelihood that the source sentence S and the candidate translation T are transla-
tionally equivalent, i.e. that the meaning expressed in S is also captured in T. This feature

2 Mary Hearne and Andy Way

ª 2011 The Authors Language and Linguistics Compass (2011): 1–21, 10.1111/j.1749-818x.2011.00274.x
Language and Linguistics Compass ª 2011 Blackwell Publishing Ltd

1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49

is generally referred to as the translation model. The second feature, P(T), gives the likeli-
hood that the candidate translation T is actually a valid sentence in the target language
and is generally referred to as the language model.

Source Sentence: Le chat entre dans la chambre.

Adequate Fluent translation: The cat enters the room.

Adequate Disfluent translation: The cat enters in the bedroom.

Fluent Inadequate translation: My Granny plays the piano.

Disfluent Inadequate translation: piano Granny the plays My

ð3Þ

Thus, the traditional notions of adequacy and fluency used in human evaluations are
modelled completely separately. As an example of how these might be used in practice,
see the French-to-English examples in (3). Note that a translation would need to receive
high adequacy and fluency scores in order to be deemed a good translation overall.
The translation model score is based on the extent to which the source sentence mean-

ing is also expressed in the candidate translation; the details of how this score is computed
are given in Section 3.2, but it is generally based on lexical correspondences only. Mean-
while, the language model score is based on the extent to which the candidate translation
is likely to be a valid sentence in the target language regardless of whether or not its
meaning bears any relationship to the source sentence. Details of how this score is com-
puted are given in Section 3.1, but it is generally based on the occurrence frequencies of
substrings of the sentence in target-language corpora. However, the final score depends
on both of these features and the objective is to find the translation with the best balance,
i.e. the best combined score.
The log-linear model is more general than the noisy-channel model in that it expresses

scoring in terms of aggregation of an unlimited number of feature scores. First a technical
note: the log-linear model uses log probabilities rather than regular ones – they are
converted to log probabilities simply by applying the log function – and log probabilities
are added rather than multiplied.1 Thus, generally log(XÆY) ¼ log(X) + log(Y) and, more
specifically with respect to the noisy-channel model, log(P(SjT)ÆP(T)) ¼ log(P(SjT)) +
log(P(T)).
We focus now on the right-hand-side of the log-linear model equation

PM
m¼1 km � hmðT ; SÞ, where we see that this model comprises a set of log feature scores to

be added together. That is, the
PM

m¼1 notation indicates that there are a total of M fea-
tures to be scored and that their individual scores are to be added up (the sigma,

P

).
These individual scores are to be computed by multiplying together two feature-specific
values, km and hm(T, S), where km is simply a weight indicating the importance of that
feature relative to the other features, and hm(T, S) is the log probability assigned to the
source–candidate pair by that feature. A minimum of two features are usually used: the
translation model and language model features exactly as described in (1) for the noisy-
channel model. In other words, we can express the noisy-channel model as a log-linear
model without changing anything. This is achieved by specifying the set of features to be
used as in (4):

m km hmðT ; SÞ

1 0:5 logðPðSjTÞÞ
2 0:5 logðPðTÞÞ

ð4Þ

Here we have designated feature 1 as the translation model and feature 2 as the lan-
guage model; the order is not important. The assigned k values are relative to each other,
i.e. the fact that we’ve given the same values to each of the features indicates that they

Statistical Machine Translation 13

ª 2011 The Authors Language and Linguistics Compass (2011): 1–21, 10.1111/j.1749-818x.2011.00274.x
Language and Linguistics Compass ª 2011 Blackwell Publishing Ltd

1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49

are of equal importance2 in (4). We then use this feature set to expand the log-linear
model formula: as we have two features, there will be a total of two scores to add
together and these scores are specified according to the values given in the feature set.
Thus, the expansion is as in (5):

Translation ¼ argmaxT k1�h1ðT ; SÞ þ k2�h2ðT ; SÞ

¼ argmaxT 0:5logðPðSjTÞÞ þ 0:5logðPðTÞÞ ð5Þ

A significant advantage of this alternative, log-linear formulation is that we can adjust
(or ‘tune’) the relative importance of the features (or ‘parameters’) being used. For exam-
ple, we could decide that the translation model is twice as important as the language
model and should therefore have twice the influence. This change can be made straight-
forwardly by making the translation model’s k value double that of the language model:
given that the weights must sum to 1, we would give the translation model a weight of
0.67 and the language model a weight of 0.33 (cf. footnote 2). In practice, however,
these weights are set empirically relative to the translation task at hand; this is discussed in
more detail in Section 3.3.
Another important advantage of the log-linear model is that more features than just these

two can be easily incorporated by defining their k and h values and adding them to the fea-
ture set. For example, we could define a translation model which operates at the level of
stems rather than full form tokens, or a language model across part-of-speech sequences
rather than token sequences. We will not address definitions of additional features any
further in this paper, but we provide a list of the typically used features in Section 3.3.
Up to this point, we have been looking at the bigger picture. Now, however, we

move to more detailed issues, specifically what the translation and language models actu-
ally look like, how they are generated and how they are used during translation. In SMT
the resource-induction phase is referred to as training while the translation process is
referred to as decoding (or testing). In between, we look at the tuning phase where the opti-
mal k values are learned for the range of features used in an SMT system.

3. Training

The key resources underpinning SMT are corpora: monolingual target-language data for
inducing the language model, and sentence-aligned source–target data for inducing the
translation model. In SMT, the training data is used to derive the language and translation
models, and once these models are generated the parallel data used to induce them are
thereafter ignored. When translating new input, the system will access the models but not
the original training data. In the next sections, we describe how these models are
induced.

3.1. LANGUAGE MODEL

As mentioned above, the language model P(T) gives the likelihood that a target string T
is actually a valid sentence in the target language. Thus, the language model provides us
with two things: (i) a model of the monolingual training corpus and (ii) a method for
computing the probability of a (possibly) previously unseen string T using that model.
The model extracted from the training corpus comprises relative frequencies for (a subset
of) the substrings occurring in that corpus, and the probability assigned to a new sentence
is based on the substrings occurring in that sentence which are also part of the model.

4 Mary Hearne and Andy Way

ª 2011 The Authors Language and Linguistics Compass (2011): 1–21, 10.1111/j.1749-818x.2011.00274.x
Language and Linguistics Compass ª 2011 Blackwell Publishing Ltd

1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49

One very simple language model comprises just those substrings corresponding to the
word tokens in the corpus, where each word type is assigned a probability computed by
dividing the number of occurrences of that word in the corpus by the total number of
word tokens in the corpus. This model is called a unigram model because the substrings
extracted comprise single words. An example of a unigram model is given in (6).

Corpus: I need to fly to London tomorrow

Unigram Model: P(I)¼1=7 P(need)¼1=7 P(to)¼2=7 P(fly)¼1=7
P(London)¼1=7 P(tomorrow)¼1=7

ð6Þ

We can use this model to assign a probability to any sentence by simply multiplying
together the model’s probability for each word in that sentence. We give an example in
(7):

PðI need to fly tomorrowÞ ¼ P(I) � P(need) � P(to) � P(fly) � P(tomorrow)

¼ 1=7 � 1=7 � 2=7 � 1=7 � 1=7 ð7Þ

¼ 2=16; 807

However, this model has some very significant weaknesses. As the model knows only
about single word types, it cannot discriminate between well-formed sentences and those
with incorrect word order. For example, the string in (8) is assigned exactly the same
probability as the sentence in (7) purely because they contain the same set of lexical
items, albeit in a crucially different order.

Pðfly need I to tomorrowÞ ¼ P(fly) � P(need) � P(I) � P(to) � P(tomorrow)

¼ 1=7 � 1=7 � 1=7 � 2=7 � 1=7 ð8Þ

¼ 2=16; 807

For that matter, the model will assign an even higher probability to sentences with
greater numbers of frequently occurring words, such as in (9):

Pðto to to to toÞ ¼ P(to) � P(to) � P(to) � P(to) � P(to)
¼ 2=7 � 2=7 � 2=7 � 2=7 � 2=7
¼ 32=16; 807

ð9Þ

The model also tends to assign higher scores to shorter sentences, simply because the
fewer words there are, the fewer probabilities need to be multiplied together. Thus, asked
to choose between the proper sentence P(I need to fly tomorrow), which was assigned prob-
ability 2/16,807 in (7), and the subject-less string P(need to fly tomorrow) as given in (10),
the model will prefer the latter.

Pðneed to fly tomorrowÞ ¼ P(need) � P(to) � P(fly) � P(tomorrow)

¼ 1=7 � 2=7 � 1=7 � 1=7
¼ 2=2401

ð10Þ

Of course, if the sentence to be scored contains a word which does not exist in the
model then that sentence is assigned probability zero, as in the sentence in (11) which
contains the word return.

PðI need to return tomorrowÞ¼ P(I) � P(need) � P(to) � P(return) � P(tomorrow)

¼ 1=7 � 1=7 � 2=7 � 0 � 1=7
¼ 0

ð11Þ

Statistical Machine Translation 15

ª 2011 The Authors Language and Linguistics Compass (2011): 1–21, 10.1111/j.1749-818x.2011.00274.x
Language and Linguistics Compass ª 2011 Blackwell Publishing Ltd

1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49

However, the model will assign exactly the same score to a sentence containing a sin-
gle word which is valid but unseen as it does to all other sentences which contain at least
one unseen word. For example, the (French) sentence in (12) is also assigned a zero
probability.

Pð Je dois retourner demainÞ ¼ P(Je) � P(dois) � P(retourner) � P(demain)

¼ 0 � 0 � 0 � 0
¼ 0

ð12Þ

All of these weaknesses can be addressed, at least to a certain extent. The issue of pre-
ferring shorter sentences is handled in a straightforward way using normalisation (see (13)
and (15) for how bigram and longer n-gram probabilities are normalised by dividing their
counts by the counts of lower order n-grams). The first and most obvious strategy for
dealing with unknown words is to increase the size of the training corpus. However,
despite the fact that language models are commonly induced from corpora comprising
upwards of 1 billion words, of course this strategy alone is not sufficient, as no automati-
cally derived corpus can ever be guaranteed to contain all the words in a particular lan-
guage. Techniques referred to as smoothing (Jelinek 1977) are therefore also applied in
order to reserve some small amount of probability for unseen words.3 The amount
reserved is likely to be much less than the amount of probability assigned to a word
occurring just once. This means that while no sentence will receive a zero score, the
model can differentiate between sentences containing few (e.g. (11)) and many (e.g. (12))
unseen words.
The issue of differentiating between well-formed and ill-formed sentences still remains,

and is addressed by building language models which remember longer substrings from the
training corpus. The bigram language model is more complex than the unigram one as it
comprises all two-word substrings (bigrams) occurring in the corpus. Bigram language
models model word sequences, meaning that the assigned probabilities reflect the like-
lihood that the second word in the bigram should follow the first word. For instance, the
bigram probability for the word sequence to fly will reflect the likelihood that the word
to should be followed by the word fly, as opposed to being followed by any other word
(run, say). Thus, each bigram type is assigned a probability computed by dividing the
number of occurrences of that bigram in the corpus by the total number of occurrences
of the first word of the bigram in the corpus. That is, the bigram probability for to fly is
calculated as in (13):

countð‘‘to fly’’Þ

countð‘‘to’’Þ
ð13Þ

The bigram model for the same sentence shown in (6) is given in (14). We can use
this model to assign a probability to any sentence by simply multiplying together the
model’s probability for each bigram in that sentence.

Corpus: I need to fly to London tomorrow

Bigram Model: PðneedjIÞ¼1=1 Pðto jneedÞ¼1=1 PðflyjtoÞ¼1=2 PðtojflyÞ¼1=1
PðLondonjtoÞ¼1=2 PðtomorrowjLondonÞ¼1=1

ð14Þ

This type of model can be extended to arbitrarily long substrings, or n-grams (of length n).
For example, the trigram language model remembers all three-word substrings in the cor-
pus; the trigram probability for the word sequence need to fly will reflect the likelihood

6 Mary Hearne and Andy Way

ª 2011 The Authors Language and Linguistics Compass (2011): 1–21, 10.1111/j.1749-818x.2011.00274.x
Language and Linguistics Compass ª 2011 Blackwell Publishing Ltd

1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49

that the substring need to should be followed by the word fly, as opposed to being fol-
lowed by any other word. The trigram probability for need to fly is calculated in a similar
manner to (13), as shown in (15):

countð‘‘need to fly’’Þ

countð‘‘need to’’Þ
ð15Þ

However, we again face the problem of unknowns, this time of unknown n-grams
rather than single words. Of course, unknown n-grams where n > 1 are more likely than
unknown words (cf. to fly vs. to above), so the larger the n-gram language model used,
the worse this problem becomes. For example, the sentence in (16) is assigned zero prob-
ability because the bigram P(tomorrowjfly) does not exist in the bigram model given in
(14). We saw in (7) that this sentence was assigned a non-zero probability by the unigram
model.

PðI need to fly tomorrowÞ ¼ PðneedjIÞ �PðtojneedÞ �PðflyjtoÞ �PðtomorrowjflyÞ
¼ 1=1 � 1=1 � 1=2 � 0
¼ 0

ð16Þ

Increasing the size of the training corpus, while still helpful, yields limited returns as
longer n-grams are used, as these are seen less and less often. As before, smoothing tech-
niques are used to assign some very small probability to unseen n-grams, thereby ensuring
that all sentences will obtain non-zero scores. However, this measure does not allow us
to differentiate between unseen n-grams whose individual words occurred in the training
corpus and those containing words never seen before. For example, (16) which contains
the unseen bigram P(tomorrowjfly) receives exactly the same score as the sentence I need
to fly demain according to the bigram model in (14), although not according to the uni-
gram model given in (6). Thus, while more context-sensitive models can better reward
correct word order, the less sensitive ones give greater flexibility. In recognition of this,
several models are usually used in combination; that is, for a given sentence, the unigram,
bigram and trigram models might all be used, each with a different weight (typically
preferring larger matches), and their scores combined to give a final probability for that
sentence.

3.2. TRANSLATION MODEL

The translation model P(SjT) gives the likelihood that the source sentence S and the can-
didate translation T are translationally equivalent, i.e. that the meaning expressed in S is
also captured in T. Thus, the translation model provides us with two things: (i) a model
of the sentence-aligned source–target training corpus, and (ii) a method for computing
the probability that S and T are equivalent using that model. The model extracted from
the parallel training corpus comprises relative frequencies for (a subset of) the source–
target substring pairs occurring in that corpus. The probability assigned to a new source–
translation pair is then based on the substring pairs occurring in that source–translation
pair which are also part of the model.
In fact, the translation model is always directional, meaning that P(SjT) actually expresses

the probability that, given target candidate T, source sentence S is likely to have given
rise to T. P(SjT) is, then, a target-to-source (or ‘reverse’) model of translation. This is
somewhat counter-intuitive: one would expect to want to compute the probability of the
hypothesised target string given the source sentence, i.e. P(TjS). However, the equation
in (1) 2came about via Bayes theorem to manipulate another equation P(S, T) ¼ P(T, S),

Statistical Machine Translation 17

ª 2011 The Authors Language and Linguistics Compass (2011): 1–21, 10.1111/j.1749-818x.2011.00274.x
Language and Linguistics Compass ª 2011 Blackwell Publishing Ltd

1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49

a joint probability, which says that the sentences in the bitext are translations of each
other.4

The translation model itself comprises a set of target-language phrases, each of which is
associated with a list of source-language translations for those phrases and corresponding
probabilities. An (invented) example is given in Figure 1. In the first column, we see
source-language phrases ~s,5 with alternative translations ~t given in the second column. The
third and fourth columns give the respective target-to-source and source-to-target proba-
bilities of those phrase pairs. The probabilities are assigned based on relative frequency,
i.e. the probability of a source phrase given the target phrase is computed by dividing the
number of occurrences of that target phrase in the dataset by the number of occurrences
of the aligned source–target phrase pair. Note that with respect to Figure 1, the probabil-
ities in the column headed Pð~tj~sÞ sum to 1, as we assume here that the only translations
of ‘the big cat’ are the two French strings under ~t. By contrast, the probabilities in the
column headed Pð~sj~tÞ do not sum to 1, as there will be other English translations of ‘le
grand chat’ (‘the large cat’, say) and ‘le gros cat’ (e.g. ‘the fat cat’). Note also in regard to
this latter that P(the fat catjle gros chat) is likely to have a much higher probability than
P(the big catjle gros chat), in any representative corpus (‘fat’ being the default dictionary
translation of ‘gros’, as opposed to ‘big’).
Before going into detail on how translation models are induced, we first illustrate how

they are used to assign probabilities to hypothesised translations. A small snippet of a
translation model is given in (17) where we see that each English phrase is associated with
a list of French phrases, all of which are associated with probabilities.

I need �! ::: je doisð0:1Þ:::
I �! ::: jeð0:7Þ:::
need �! ::: doisð0:05Þ:::
to return �! ::: retournerð0:3Þ:::
tomorrow �! ::: demainð0:4Þ:::
return tomorrow by �! ::: retourner demainð0:0001Þ:::

ð17Þ

A translation model probability is then assigned to any source–hypothesis pair by multi-
plying together the probabilities of the phrase pairs occurring in that pair according to
the model. For instance, in (18) three phrase pair probabilities are multiplied together to
arrive at a score for the source–hypothesis pair, while in (19) two such probabilities are
multiplied together.

| retourner | demainSource: je dois

Hypothesis: i need | to return | tomorrow

P(Source|Hypothesis) = P(je dois|I need). P(retourner|to return).

 P(demain|tomorrow) = 0.012

(18)

s̃ t̃ ˜˜P (s|t) ˜˜P (t|s)

the big cat le grand chat 0.9 0.8

the big cat le gros chat 0.3 0.2

Fig 1. An example (partial) t-table for English-to-French.

8 Mary Hearne and Andy Way

ª 2011 The Authors Language and Linguistics Compass (2011): 1–21, 10.1111/j.1749-818x.2011.00274.x
Language and Linguistics Compass ª 2011 Blackwell Publishing Ltd

1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49

Source: je dois | retourner demain

Hypothesis: i need | return tomorrow by

P(Source|Hypothesis) = P(jedois|i need)

P(retourner demain|return tomorrow by) = 0.00001

(19)

It is possible to score the same source–hypothesis pair in different ways as different seg-
mentations may be possible. This is illustrated by comparing (18) and (20), where the
same sentence pair is segmented differently in (20) such that four phrase pair probabilities
are multiplied together to arrive at a different score for the source–hypothesis pair.

Source: je | dois | retourner | demain

Hypothesis: i | need | to return | tomorrow

P(Source|Hypothesis) = P(je|i). P(dois|need). P(retourner|to return).

P(demain|tomorrow) = 0.0042 (20)

The process of inducing a translation model from a sentence-aligned parallel text
involves first word-aligning the data (usually via Giza++6 (Och and Ney 2003), the most
often used implementation of the IBM models of word alignment (Brown et al. 1993)),
and then extending those word alignments to alignments between phrases. All possible
phrase pairs are then extracted such that both sides of the phrase pairs are between 1 and
some arbitrary maximum (usually set to 7) words in length, in order to ensure that
the calculations are computationally feasible; of course, within individual phrase pairs the
source and target phrases will frequently differ in length, given that languages do not gen-
erally map meanings on a word-by-word basis.
We will first describe the word alignment process, and then present the extension to

phrase alignments.

3.2.1. Word Alignment
The word alignment task involves identifying translational equivalences between individ-
ual words in the aligned sentence pairs in a parallel text. A very simple example of such
an alignment is given in (21):

the boy sees the green house

le garçon voit la maison verte
(21)

Automatically inducing word alignments is a non-trivial task. Even this relatively
straightforward example hints at the difficulty with simply using a dictionary-based
approach: how do we determine which instance of the aligns with le and which with la?
The SMT approach considers all possible alignments between each sentence pair and
works out which ones are the most likely. In order to work out the probability of a par-
ticular alignment, several factors are taken into consideration; the most important is the
probability that the aligned words correspond to each other in meaning, at least in this
specific context, but others include the likelihood of the degree of reordering specified
by that alignment (‘distortion’, in the words of Brown et al. (1990, 1993)) and the likeli-
hood of inserting and deleting words (‘fertility’; Brown et al. 1990, 1993).

Statistical Machine Translation 19

ª 2011 The Authors Language and Linguistics Compass (2011): 1–21, 10.1111/j.1749-818x.2011.00274.x
Language and Linguistics Compass ª 2011 Blackwell Publishing Ltd

1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49

At this point, the main ‘chicken and egg’ problem for statistical word alignment
becomes apparent (Knight 1999b): we have only sentence pairs. If we had access to the
probabilistic dictionary and other statistical information mentioned above, we could use
this information to work out the most likely word alignments for our sentence pairs. On
the other hand, if we had word-aligned sentence pairs we could gather the word corre-
spondence and other statistics we need. In other words, to obtain the statistics we need
word-aligned data and to obtain word-aligned data we need the statistics, but we have
neither.
Much of the information we need, however, is actually hidden within the sentence-

aligned data. Consider, for example, the sentence-aligned pairs in (22). While we have
no prior knowledge of the language pair in question, we can see clearly that there is one
word common to both source sentences (ozftsh) and one word common to both target
sentences (irg). Thus, it seems reasonable to conclude that these words correspond to each
other and should be aligned.7

s1: gsv ylb ozftsh s2: z trio ozftsh

t1: ov tzixlm irg t2: fmv uroov irg
ð22Þ

The English–French version of this parallel corpus is given in (23). The common Eng-
lish word is laughs and the common French word is rit, and it is clear that our deduction
that they correspond is correct.

s1: the boy laughs s1: a girl laughs

t1: le garccon rit t2: une fille rit
ð23Þ

This method of deducing word alignments is employed on a large scale in SMT using
the Expectation-Maximisation (EM) algorithm (Dempster et al. 1977). That is, the EM
algorithm allows us to systematically discover the word alignments for which sufficient
evidence exists across the parallel corpus (without recourse to external resources). In the
following paragraphs, we explain how EM works using a very simple example.
Consider first the corpus shown in (24(a)) which comprises two sentence pairs. As we

currently know nothing about how they should be word-aligned, we simply assume that
all possible word alignments are equally likely; the possible word alignments for each
sentence pair are given in (24(b)).

(a) Corpus:
green house

maison verte

the house

la maison

(b) word alignments:
green house

maison verte

green house

maison verte

the house

la maison

the house

la maison

(24)

Before starting the EM algorithm we must first initialise our model as shown in (25).
We first collect all the word pairs which exist in the set of word-aligned sentence pairs
given in (24(b)). We are assuming that English is the source language and French the tar-
get, and that our model gives estimates of P(sourcejtarget) for each word pair identified.
Thus, the word pairs extracted from (24(b)) are given down the left side of (25). For
instance, we see that maison is associated in our dataset with green, house and the. During
initialisation, we must also assign some probability to each word pair. As we have no
way, as yet, of distinguishing between the suggested English translations for each given
French word, we must assume that they are all equally likely. Therefore, as shown in the
column labelled ‘0 (Init)’, the three possible translations for maison are each assigned prob-

10 Mary Hearne and Andy Way

ª 2011 The Authors Language and Linguistics Compass (2011): 1–21, 10.1111/j.1749-818x.2011.00274.x
Language and Linguistics Compass ª 2011 Blackwell Publishing Ltd

1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49

ability 1/3 while the two possible translations for verte are each assigned probability 1/2,
as are the two possible translations for la. For any given French word, the probabilities of
its set of English translations must always sum to 1.

0 ðInitÞ 1 2 ::: n

PðgreenjmaisonÞ ¼ 1
3

1
4

1
6

::: 0:01
PðhousejmaisonÞ ¼ 1

3
1
2

4
6

::: 0:98
PðthejmaisonÞ ¼ 1

3
1
4

1
6

::: 0:01
PðhousejverteÞ ¼ 1

2
1
2

1
3

::: 0:01
PðgreenjverteÞ ¼ 1

2
1
2

2
3

::: 0:99
PðhousejlaÞ ¼ 1

2
1
2

1
3

::: 0:01
PðthejlaÞ ¼ 1

2
1
2

2
3

::: 0:99

ð25Þ

At this point, the initialisation procedure is complete. The EM algorithm is an iterative
algorithm, meaning that it will be carried out a number of times, and the probabilities
given in the model are updated after every iteration. The remaining columns in (25) cor-
respond to successive iterations of the algorithm, i.e. column 1 gives the probabilities as
they are at the end of the first iteration, column 2 gives them as they are at the end of
the second iteration and column n gives the probabilities at the end of the final iteration.
Each iteration comprises two steps which can be referred to as the E(xpectation)-step

and the M(aximisation)-step. During the E-step, we assign a probability to the alternative
word alignments for each of the sentence pairs in the corpus using the word pair proba-
bilities specified in the model. During the M-step, we compute new probabilities for the
word pairs in the model based on the probabilities of the word alignments specified in
the corpus, and update the model using these new word pair probabilities. We will
further explain these steps by showing how the probabilities in column 1 in (25) are
computed given the word alignments in (24(b)) and the word pair probabilities in col-
umn 0 in (25); the steps are illustrated in (26).
First the E-step: in order to compute the probability of a particular word alignment for

a sentence pair, we multiply together the probabilities (given in the model) of each linked
source word given the target word to which it is linked. Thus, for example, for the first
word-aligned sentence pair shown in (26), we see that the probability of green given
maison is 1/3 and the probability of house given verte is 1/2 according to column 0 of our
model. Multiplied together, they give a probability of 1/6 for the overall word alignment.
Similarly, for the other possible word alignment of that same sentence pair, we see that
the probability of house given maison is 1/3 and the probability of green given verte is 1/2,
thus also giving an overall probability of 1/6 for the word alignment. Once this calcula-
tion has been completed for all the word alignments in the dataset, a final piece of
book-keeping remains: wherever we have more than one possible word alignment for a
sentence pair, we must normalise such that the probabilities of those alternative word
alignments sum to 1. To achieve this, we add up the probabilities of the alternative align-
ments for the given sentence pair and then divide each alternative word alignment by the
total. For instance, as we have two different word alignments for the sentence pair
<green house,maison verte> and each has probability 1/6, we divide both those probabilities
by 2/6 to give the final probability for each. Not surprisingly, given the probabilities in
column 0 of our model, both these alignments are judged to be equally likely at this
point (each having probability of 1/2). However, our first iteration is still not complete
as we have not yet addressed the M-step.

Statistical Machine Translation 111

ª 2011 The Authors Language and Linguistics Compass (2011): 1–21, 10.1111/j.1749-818x.2011.00274.x
Language and Linguistics Compass ª 2011 Blackwell Publishing Ltd

1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49

Iteration 1 – E-step: Iteration 1 – M-step:

P

green house

green house

maison verte

maison verte

= 1
3
. 1

2
= 1

6
/ 2

6
= 1

2

P = 1
3
. 1

2
= 1

6
/ 2

6
= 1

2

P

the house

the house

la maison

la maison

= 1
2
. 1

3
= 1

6
/ 2

6
= 1

2

P = 1
2
. 1

3
= 1

6
/ 2

6
= 1

2

P(green|maison) = 1
2

/ 2 = 1
4

P(house|maison) = 1
2

+ 1
2

= 1 / 2 = 1
2

P(the|maison) = 1
2

/ 2 = 1
4

P(house|verte) = 1
2

/1 = 1
2

P(green|verte) = 1
2

/1 = 1
2

P(house|la) = 1
2

/1 = 1
2

P(the|la) = 1
2

/1 = 1
2

(26)

During the M-step, we re-estimate the model’s probabilities given the relative fre-
quency of occurrence of each word pair in the set of word alignments. Crucially, how-
ever, we do not count a frequency of 1 each time we see a link in the dataset between
the word pair we are interested in. Instead, we count the probability that we associated
with that particular word alignment during the E-step. This is illustrated in the M-step
part of (26). Consider, for example, the word pair green and maison. This word pair is
linked in a single-word alignment in the dataset (the first one), and this word alignment
has probability 1/2 according to the E-step. Thus, the frequency of green given maison is
1/2. We can contrast this with the word pair house and maison: this word pair is linked in
two different word alignments in the dataset, each of which has probability 1/2. Thus,
we add together the probabilities of those word alignments, meaning that the frequency
of house given maison is 1. At this point, we still have frequencies rather than probabilities.
In order to obtain probabilities, we add up the frequencies of the alternative translations
for each target word and then divide each alternative translation frequency by the total.
For instance, as we have three different translations for the word maison and their fre-
quencies sum to 2, we divide each frequency by 2 to give a probability. Once this has
been done, the M-step is complete. The model probabilities in (25) are updated by
simply replacing the existing probabilities with those output from the M-step – as shown
in column 1 – and iteration 1 is complete.
After just one iteration, we can clearly see that we have improved our knowledge

regarding how likely particular word pairs are given the dataset. The three proposed
translations for maison – green, house and the – are no longer equally likely. Rather, our
model now says that, given maison, house is twice as likely as either green or the. However,
our model still tells us that house and green are still equally likely given verte, and that house
and the are still equally likely given la. Thus, we repeat the process in the hope that
further improvements in our estimates can be made.
The E- and M-steps for iteration 2 are shown in (27). During the E-step, the probabil-

ities of the different word alignments are computed in exactly the same way as before.
This time, however, when we multiply together the probabilities of each linked source
word given the target word to which it is linked, those probabilities come from the
updated model, i.e. from column 1 in (25) rather than column 0. Thanks to these updated
probabilities, we can now differentiate between the different word alignments for each
sentence pair: the second word alignment is preferred over the first and the third is pre-
ferred over the fourth.

12 Mary Hearne and Andy Way

ª 2011 The Authors Language and Linguistics Compass (2011): 1–21, 10.1111/j.1749-818x.2011.00274.x
Language and Linguistics Compass ª 2011 Blackwell Publishing Ltd

1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49

Iteration 2 – E-step: Iteration 2 – M-step:

P

green house

maison verte
= 1

4
. 1

2
= 1

8
/ 3

8
= 1

3

P

green house

maison verte
= 1

2
. 1

2
= 1

4
/ 3

8
= 2

3

P

the house

la maison
= 1

2
. 1

2
= 1

4
/ 3

8
= 2

3

P

the house

la maison
= 1

2
. 1

4
= 1

8
/ 3

8
= 1

3

P(green|maison) = 1
3

/ 2 = 1
6

P(house|maison) = 2
3

+ 2
3

= 4
3

/ 2 = 4
6

P(the|maison) = 1
3

/ 2 = 1
6

P(house|verte) = 1
3

/1 = 1
3

P(green|verte) = 2
3

/1 = 2
3

P(house|la) = 1
3

/1 = 1
3

P(the|la) = 2
3

/1 = 2
3

(27)

These probabilities in turn feed into the re-estimation of the word pair probabilities in
the M-step. For example, although the word pairs house given verte and green given verte
each occur in a single-word alignment, it is the word alignment probabilities which are
counted. Therefore, the latter is counted 2/3 times whereas house given verte is counted
just 1/3 times. After the M-step, the model is updated, allowing us to complete column
2 in (25). Again, we have improved our knowledge: the proposed translations for verte
are no longer equally likely, but rather green is twice as likely as house. We continue iter-
ating until we stop improving our estimates; column n in (25) suggests the kind of model
we may end up with when the process is complete.

3.2.2. Phrase Alignment
Two important characteristics of the word alignment process described above are as
follows. Firstly, the alignment algorithm is directional, i.e. if we have an English–French
parallel dataset, word-aligning it with English as source and French as target will not nec-
essarily yield exactly the same result as word-aligning it with French as source and English
as target. Secondly, the alignment algorithm can produce 1-to-1 alignments (i.e. with one
source word mapping to one target word), and 1-to-many alignments (one source word
mapping to more than one target word) but not many-to-1 alignments and many-
to-many alignments. In practice when training an SMT system, the parallel corpus is
word-aligned in both directions. This means that even when the objective is to build a
French-to-English system, both French-to-English and English-to-French alignments are
generated. This allows us to also extract many-to-1 alignments from the target-to-source
alignment. However, we still do not have many-to-many alignments, i.e. source-target
phrase pairs.
Phrase-alignment heuristics (Koehn et al. 2003; Och and Ney 2003) which operate on

the output of the word alignment algorithm are frequently used to extract these many-
to-many alignments. Firstly, word alignment is performed in both directions on each
training sentence pair and mapped to a bitext grid as shown in Figures 2a,b. We then
compute a more precise set of word alignments by taking only those that occur in both
sets, as shown in Figure 2c. From this point, it is possible to proceed by iteratively adding
further alignments where (i) the alignments are adjacent, and (ii) either the source or
target word is currently unaligned: this is shown in Figure 2(d). Finally, phrase pairs can
be read from this extended grid: examples given in Groves and Way (2005) include the
following:

Statistical Machine Translation 113

ª 2011 The Authors Language and Linguistics Compass (2011): 1–21, 10.1111/j.1749-818x.2011.00274.x
Language and Linguistics Compass ª 2011 Blackwell Publishing Ltd

1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49

• could not « impossible
• could not get « impossible d’extraire
• get an « d’extraire une
• ordered list « liste ordonnées
• get an ordered list « d’extraire une liste ordonnées
• could not get an ordered list « impossible d’extraire une liste ordonnées.

3.3. TRANSLATION AND EVALUATION FOR TRAINING PURPOSES

Once we have learned the required models from the training data, and assuming we have
an algorithm that accepts an input sentence and returns a translation (to be discussed in
detail in Section 4), a final training task still remains before we have a full system that can
then be used to translate. In Section 2, we looked at the righthand-side of the log-linear
model equation

PM
m¼1 km:hmðT ; SÞ and we saw that it comprises a set of log feature

scores to be added together. Recall that the feature scores are computed by multiplying
together two feature-specific values, km and hm(T, S), where km is a weight indicating the
importance of that feature relative to the other features being used. By changing the k

values, we can adjust (or ‘tune’) the relative importance of the features being used. While
we have focused on the language model and translation model features in this paper,
other features are frequently used in addition to these, typically including:

1. an n-gram language model over target sequences,
2. a source-to-target phrase table,

(a)

(c)

(b)

(d)

Fig 2.1818 Extracting phrase alignments from word alignments (Groves and Way 2005). The example was taken from a
parallel corpus, hence the grammatical error in the French string. (a) English–French word alignment, (b) French–
English word alignment, (c) Intersection of alignments and (d) Intersection extended to union.

C
o
lo
u
r
o
n
li
n
e
,
B
&
W

in
p
ri
n
t

L
O
W

R
E
S
O
L
U
T
IO

N
C
O
L
O
R

F
IG

14 Mary Hearne and Andy Way

ª 2011 The Authors Language and Linguistics Compass (2011): 1–21, 10.1111/j.1749-818x.2011.00274.x
Language and Linguistics Compass ª 2011 Blackwell Publishing Ltd

1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49

3. a target-to-source phrase table,
4. source-to-target lexical translation probabilities,
5. target-to-source lexical translation probabilities,
6. a phrase reordering model,
7. the standard word/phrase penalty which allows for control over the length of the

target sentence.

Each of these features must be associated with a k value controlling its influence on the
final translation decision. Och (2003) proposed a widely adopted approximation tech-
nique called Minimum Error Rate Training (MERT) to estimate the model parameters
for a small number of features, such as those listed above.
MERT requires that we define an error function that corresponds to translation accu-

racy. Most commonly, the error function used is the BLEU evaluation metric (Papineni
et al. 2001, 2002), which works by comparing each output translation to a reference
translation and computing a similarity/dissimilarity score; we describe BLEU in detail in
Section 3.3.1. MERT also requires a second component – a development set (or ‘devset’)
– which is a set of source–target sentence pairs that were not part of the training set used
to induce the translation model (or any other features), and that are not part of any test
set that might be used to evaluate overall system performance. For any set of k values,
we translate the source sentences in the devset via the MT system and use BLEU to com-
pare the output translations against the devset target sentences. This gives us a measure of
translation accuracy, where we assume the target sentences in the devset to be the correct
‘reference’ translations that we are aiming to produce from the MT system. Using
MERT, if we then adjust the k values, we can again translate and evaluate using the dev-
set to see whether the BLEU score has gone up or down. Thus, MERT is an iterative
process: we repeatedly translate the devset using different k values in order to identify the
set of k values that gives the best performance according to our error function on that
devset.
Essentially, therefore, MERT involves optimising system performance to one particular

metric on a devset of sentences, and hoping that this carries forward to the test set at
hand; the closer the devset to the test set, the more appropriate the settings obtained via
MERT will be. MERT provides a simple and efficient method to estimate the optimal
weights for the features in the SMT model; however, it can only handle a small number
of parameters, and when the number of features increases, there is no guarantee that
MERT will find the most suitable combination (Chiang et al. 2008).

3.3.1. The BLEU Metric
In this short section, we digress into the related field of MT evaluation in order to
describe how the evaluation metric most commonly used for MERT works.
The BLEU metric (Papineni et al. 2001, 2002) evaluates MT system quality by compar-

ing output translations to their reference translations in terms of the numbers of
co-occurring n-grams. The main score calculated is the n-gram precision pn for each pair
of candidate and reference sentences. This score represents the proportion of n-word
sequences in the candidate translation which also occur in the reference translation.
Importantly, if an n-gram occurs j times in the candidate translation and i times in the
reference translation such that i £ j then this sequence is counted only i times; this corre-
sponds to the intuition that ‘a reference word sequence should be considered exhausted
after a matching candidate word sequence has been identified’ (Papineni et al. 2001).
Thus, n-gram precision pn is calculated according to equation (28):

Statistical Machine Translation 115

ª 2011 The Authors Language and Linguistics Compass (2011): 1–21, 10.1111/j.1749-818x.2011.00274.x
Language and Linguistics Compass ª 2011 Blackwell Publishing Ltd

1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49

pn ¼
jcn \ rnj

jcnj
ð28Þ

where

• cn is the multiset of n-grams occurring in the candidate translation.
• rn is the multiset of n-grams occurring in the reference translation.
• jcnj is the number of n-grams occurring in the candidate translation.
• jcn\rnj is the number of n-grams occurring in cn that also occur in rn such that elements
occurring j times in cn and i times in rn occur maximally i times in jcn\rnj.

As it is generally not the case that MT output is evaluated one sentence at a time, n-gram
precision is usually calculated over large sets of sentences (typically not less than 1000). In
this case, pn is the proportion of co-occurring n-word sequences in the set over the total
number of n-word sequences in the set.
While precision scores pn can be obtained for any value of n,8 Papineni et al. (2001)

point out that greater robustness can be achieved by combining scores for all values of n
into a single metric. It is not surprising that as the value of n increases, the score pn
decreases because longer matching word sequences are more difficult to find (cf. Sec-
tion 3.1 for a similar discussion regarding higher-order n-grams in language modelling). If
the average n-gram precision score is calculated without taking this factor into account
(i.e. by simply summing the values for pn and dividing by N, the largest value for n), then
the scores for longer n-grams will be too small to have much influence on the final score.
In order to make the BLEU metric more sensitive to longer n-grams, the combined score
pN is calculated by summing over the logarithm of each pn multiplied by weight 1/N as
given in equation (28):

pN ¼ exp
X

N

n¼1

1

N
logðpnÞ

 !

ð29Þ

A candidate translation which is longer than its reference translation is implicitly pena-
lised during the calculation of pn. In order to impose a corresponding penalty on candi-
date translations which are shorter than their reference translations, a brevity penalty BP is
introduced and the combined precision score pN is multiplied by this penalty. BP is
incorporated to prevent the output of single-word utterences like ‘the’, which would
otherwise score highly. Papineni et al. (2001) state that BP is a decaying exponential in
the length of the reference sentence over the length of the candidate sentence. This
means that if the reference is the same length or longer than the candidate, then the pen-
alty is 1, and greater than 1 if the candidate is shorter than the reference. Furthermore, if
candidate cx is 1 word shorter than its reference rx and cy is also 1 word shorter than ry,
but rx is longer than ry, then the BP for cy should be greater than the BP for cx. Thus, BP
is calculated according to equation (30):

BP ¼ e
max 1�

lengthðRÞ
lengthðCÞ

;0

� �

ð30Þ

Note that as calculating the brevity penalty for each sentence and averaging it over the
set of sentences is considered by Papineni et al. (2001) to be unduly harsh, it is computed
over the entire corpus, i.e. length(R) is the number of words in the reference set and
length(C) the number of words in the candidate set. This penalty is then applied to the
precision score for the entire candidate translation corpus according to equation (31):

16 Mary Hearne and Andy Way

ª 2011 The Authors Language and Linguistics Compass (2011): 1–21, 10.1111/j.1749-818x.2011.00274.x
Language and Linguistics Compass ª 2011 Blackwell Publishing Ltd

1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49

BLEU ¼ BP � pN ð31Þ

As the ranking behaviour is more visible in the log domain, Papineni et al. (2001) give
equation (32):

logBLEU ¼ min 1�
lengthðRÞ

lengthðCÞ
; 0

� �

þ
X

N

n¼1

1

N
logðpnÞ ð32Þ

In summary, the combination of n-gram precision and penalties for shorter translations
mean that in order to achieve a high BLEU score, a set of candidate translations must
match the reference translations in length, in word choice and in word order Papineni
et al. (2001).
Other evaluation metrics based on similar principles as BLEU have also been introduced,

e.g. NIST (Doddington 2002), followed soon thereafter by GTM (Turian et al. 2003),
and a couple of years later by METEOR (Banerjee and Lavie 2005). Despite a number of
researchers pointing out various problems with such metrics (cf. Callison-Burch et al.
(2006) for a criticism of BLEU), all these metrics are still actively used in MT research.
While a wide variety of techniques, including human evaluation, are used to compare
systems and assess overall translation quality, automatic similarity-based metrics are critical
in facilitating the use of MERT.

4. Translation

In previous sections we showed how SMT language and translation models are induced
from data (training), and how these and any other parameters in the log-linear model can
be optimised (tuning). In Section 3.3, we explicitly assumed that we have an algorithm
that accepts an input sentence and returns the most likely translation, but we did not pro-
vide any details. In this section, we outline this final piece of the puzzle: the translation
phase, referred to also as ‘decoding’ (or ‘testing’).
Given any source sentence and a hypothesised translation, we can compute a corre-

sponding probability by using the models generated during training in relation to equa-
tion (2) for the log-linear model. By extension, given any source sentence and a set of
hypothesised translations, we can work out which hypothesis is most likely. Decoding,
therefore, is a search problem: we must find the most probable translation amongst all
translations possible given the model.
In theory, this would involve generating the full set of possible translations for any

input string. Translations are generated by simply matching substrings from the input sen-
tence against the translation model and, where available, retrieving their translations.
These substring translations can then be concatenated in any order to generate a full
translation hypothesis. Figure 3 shows some of the possible substring translations for a
Spanish sentence, from which any sequence of substrings which fully covers the source
sentence can be selected in any order to form a hypothesis.
There is no necessity in the decoding process to start with the leftmost source word,

and proceed on a strictly left-to-right basis. In our Spanish-to-English example it would
seem like a reasonable strategy but of course for some language pairs (Arabic-to-English,
say) that would be entirely the wrong thing to do. The good thing for the decoder is that
it essentially makes no difference, and the best translation – based on the probability
computed using the log-linear formula – will be chosen irrespective of which source-lan-
guage words are translated in which order.

Statistical Machine Translation 117

ª 2011 The Authors Language and Linguistics Compass (2011): 1–21, 10.1111/j.1749-818x.2011.00274.x
Language and Linguistics Compass ª 2011 Blackwell Publishing Ltd

1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49

However, it was shown in Knight (1999a) that the decoding problem is NP-complete,
i.e. that it cannot be guaranteed that we can generate and score all hypotheses for a
source sentence in a finite amount of computing time. Accordingly, decoding is also an
optimisation problem; we must avoid generating target-language hypotheses which are
unlikely to end up being the most probable, without also missing the good solutions by
accident. In short, we must try to find the most probable translation without actually
generating all of the hypotheses.
The state-of-the-art implementation of decoding for SMT is a beam-search decoder

(Kochn et al., 2003, 2007). A ‘beam’ is just an arbitrary number of hypotheses (say,
10,000) that are maintained at any point in the translation process, and such a cut-off
ensures that the runtime of any system is manageable in practice. At the start of the trans-
lation process, no words have yet been translated. Source-language words are expanded
in a monotone or non-monotone manner, i.e. following the source word/phrase order
or not. New hypotheses are generated from the existing expanded hypotheses by extend-
ing them with a phrasal translation that covers some of the source input words which
have not yet been translated. Each hypothesis is added into a beam stack as a new node.
Figure 4 shows six stacks, which is sufficient for covering the first 6 words in target-lan-
guage hypotheses. Each stack is marked by the covered source words (one word covered
in stack 1, two words in stack 2, etc.) during expansion. A newly created hypothesis will
be placed in a new stack further down. For example, if we return to Figure 3, the second
from the top phrase in stack 2 (comprising two words, Mary did, say) is linked to various
hypotheses in stacks 3 (not, i.e. three words – Mary did not – are now covered), 4 (give,
four words: Mary did not give) and 5 (a, five words: Mary did not give a), all of which
might be partial candidate translations (i.e. valid paths through the search space in Figure
3) of the source string Maria no daba una bofetada a la bruja verde.

bofetadaunadaba verdelaa brujanoMaria

Mary not give a slap to the witch green

to theno slap

did not by green witcha slap

todid not give

the

slap the witch

Fig 3. Some English translation options for the Spanish sentence Maria no daba una bofetada a la bruja verde
(Koehn 2004).

1 2 3 4 5 6

Fig 4. Hypothesis expansion via stack decoding (Koehn 2004).

18 Mary Hearne and Andy Way

ª 2011 The Authors Language and Linguistics Compass (2011): 1–21, 10.1111/j.1749-818x.2011.00274.x
Language and Linguistics Compass ª 2011 Blackwell Publishing Ltd

1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49

The key idea is that each beam stack has a maximum size, and once the maximum size
is reached a new hypothesis can be added only if its score is higher than the lowest-scor-
ing hypothesis on the stack (in which case that lowest-scoring hypothesis is dropped to
make room). Of course, hypotheses are scored in part by computing how likely they are
according to the log-linear formula. However, relying on just this probability is not suffi-
cient for pruning purposes. Stack 4, for instance, holds the hypothesised four-word trans-
lation sequences from the source sentence. Some of those word sequences will have been
easier to translate than others, meaning they will likely have higher probabilities. How-
ever, we do not want to prune away hypotheses from the stack that have lower probabil-
ities simply because they are more difficult to translate, leaving only translations for the
easier sequences behind. Therefore, when scoring a hypothesis to decide its inclusion on
a stack we also factor in the future translation cost (Koehn 2010:167–72); this reflects how
difficult it might be to translate the source words not covered by that hypothesis. Thus,
the future cost estimation should favour hypotheses that have already covered difficult
parts of the sentence and have only easy parts left, while discounting hypotheses that have
covered the easy parts first.9

The final states in the search are hypotheses that cover all source words: these are
found in stack n where n is the length of the source sentence (9, in Figure 3). Among
the n-best list of possible translations created by the decoder following different paths
through the search space, the one with the highest probability is finally selected as the
best translation.

5. Conclusion

In this paper, we have given an overview of the basic model of SMT, along with in-
depth presentations of the core components of SMT systems. In Section 2 we presented
the big-picture view of the SMT approach. In Section 3 we described the main
approaches to inducing training data from corpora, focusing in particular on language
modelling, translation modelling and tuning via Minimum Error Rate Training. Finally,
in Section 4 we gave an overview of the decoding process used in SMT systems to gen-
erate translations for previously unseen text. For a detailed discussion on the role of lin-
guists, translators and translations in SMT, along with a description of how the ideas
behind SMT developed and how they relate to other MT approaches, please see Way
and Hearne (2010). For those readers who are interested in more in-depth accounts of
SMT, we recommend Brown et al. (1993), Knight (1999b) and Knight (2010) 3. For
pointers to the primary literature relating to each of the sub-tasks in SMT, as well as
other MT paradigms, consult section 7 of Way (2010), or the appropriate sections in
Koehn (2010).

Short Biographies

????????. 5

Acknowledgement

This work was partially funded by a number of Science Foundation Ireland (<http://
www.sfi.ie> 4) awards, namely: Principal Investigator Award 05/IN/1732, Basic Research
Award 06/RF/CMS064 and CSET Award 07/CE/I1142. Thanks also to Philipp Koehn
for making available some of his original figures.

Statistical Machine Translation 119

ª 2011 The Authors Language and Linguistics Compass (2011): 1–21, 10.1111/j.1749-818x.2011.00274.x
Language and Linguistics Compass ª 2011 Blackwell Publishing Ltd

1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49

Notes

* Correspondence address: Andy Way, NCLT & CNGL, School of Computing, Dublin City University, Collins
Avenue, Glasnevin, Dublin D9, Ireland. E-mail: away@computing.dcu.ie

1 This is done for a very simple reason: the number of multiplications of probabilities performed is often very large.
In almost all cases, these probabilities are less than 1, so the resultant score is often extremely small, and cannot be
accurately captured unless a large number of decimal places are used.
2 Note that these k values sum to 1. In practice, as long as two equivalently weighted features have the same value,
and that normalisation (cf. (13) and (15) below) later takes place, this requirement that the k values sum to 1 can be
relaxed.3 The main differences between different smoothing techniques relate to how much probability mass is sub-
tracted out (‘discounting’) and how it is redistributed (‘back-off’). The most popular method used in SMT is Kne-
ser–Ney smoothing (Kneser and Ney 1995).
4 In Section 3.3, the reader will note that both a source-to-target and a target-to-source translation model (also
known as a phrase table, translation table or indeed t-table) are employed as typical features used in an SMT system (cf.
Figure 1). While there is little justification per se for including both – translation is, after all, directional by its very
nature – doing so causes translation quality to improve. Anecdotally, the story goes that one of the major SMT
developers in our field one day selected the wrong translation table, but that the system’s BLEU score didn’t go
down by very much. Once the error was discovered, including both t-tables caused performance to improve upon
using just the one, correct t-table, and henceforth we all use both!
5 The~indicates that we are dealing with ‘phrases’, as opposed to ‘sentences’; note that the term ‘phrase’ is not used
in any linguistic sense here, but rather is used to refer to any substring (n-gram sequence) of between 1 and (usually
around) 7 words in length.
6 <http://www.fjoch.com/GIZA++.html>.
7 Our exposition here draws heavily on how one might translate between Arcturan and Centauri (Knight 1997,
1999b). For newcomers to SMT, these resources are an excellent starting point.
8 Scores can be obtained for any reasonable value of n; in Papineni et al. (2001, 2002) the maximum value for n
considered was 4.
9 The ‘ease’ or ‘difficulty’ associated with translating certain parts of a sentence is usually expressed in terms of
weighted log probabilities which take into account (at least) language model, translation model and reordering costs.
As you might expect, common words are ‘easier’ to translate in this model than less frequent words, despite these
being among the ‘hardest’ words to get right for humans.

Works Cited

Banerjee, S. and A. Lavie. 2005. METEOR: An automatic metric for MT evaluation with improved correlation
with human judgments. Proceedings of the ACL Workshop on Intrinsic and Extrinsic Evaluation Measures for
Machine Translation and/or Summarization, 65–72. Ann Arbor, MI. 6

Brown, P., J. Cocke, S. Della Pietra, V. Della Pietra, F. Jelinek, J. Lafferty, R. Mercer, and P. Roosin. 1990.
A statistical approach to machine translation. Computational Linguistics 16. 79–85.

——, S. Della Pietra, V. Della Pietra, and R. Mercer. 1993. The mathematics of statistical machine translation:
parameter estimation. Computational Linguistics 19. 263–311.

Callison-Burch, C., M. Osborne, and P. Koehn. 2006. Re-evaluating the role of BLEU in machine translation
research. EACL-2006 11th Conference of the European Chapter of the Association for Computational Linguis-
tics, Proceedings. 249–56. Trento, Italy. 7

Chiang, D., Y. Marton, and P. Resnik. 2008. Online large-margin training of syntactic and structural translation
features. Proceedings of the 2008 Conference on Empirical Methods in Natural Language Processing, 224–33.
Honolulu, HI.

Dempster, A., N. Laird, and D. Rubin 1977. Maximum likelihood from incomplete data via the EM algorithm.
Journal of the Royal Statistical Society Series B 39. 1–38.

Doddington, G. 2002. Automatic evaluation of MT quality using N-gram co-occurrence statistics. Proceedings of
Human Language Technology Conference 2002, 138–45. San Diego, CA. 8

Groves, D. and A. Way 2005. Hybrid data-driven models of machine translation. Machine Translation 19. 301–23.
Jelinek, F. 1977. Statistical methods for speech recognition. Cambridge, MA: MIT Press.
Kneser, R. and H. Ney. 1995. Improved backing-off for m-gram language modeling. Proceedings of the IEEE
International Conference on Acoustics Speech and Signal Processing, Vol. 1, 181–4, Detroit, MI.

Knight, K. 1997. Automating knowledge acquisition for machine translation. AI Magazine 18. 81–96.
——. 1999a. Decoding complexity in word-replacement translation models. Computational Linguistics 25. 607–15.
——. 1999b. A statistical machine translation tutorial workbook. <http://www.isi.edu/natural-language/mt/
wkbk.rff>.

20 Mary Hearne and Andy Way

ª 2011 The Authors Language and Linguistics Compass (2011): 1–21, 10.1111/j.1749-818x.2011.00274.x
Language and Linguistics Compass ª 2011 Blackwell Publishing Ltd

1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49

Koehn, P. 2004. ‘Pharaoh:’ A beam search decoder for phrase-based statistical machine translation models. Machine
Translation: from Real Users to Research, 6th Conference of the Association for Machine Translation in the
Americas, AMTA 2004, Proceedings, 115–24, Washington, DC. 9

——. 2010. Statistical machine translation. Cambridge, UK: Cambridge University Press.
——, F. Och, and D. Marcu. 2003. Statistical phrase-based translation. HLT-NAACL: Human Language Technol-
ogy Conference of the North American Chapter of the Association for Computational Linguistics, 127–33.
Edmonton, AL, Canada. 10

——, H. Hoang, A. Birch, C. Callison-Burch, M. Federico, N. Bertoldi, B. Cowan, W. Shen, C. Moran,
R. Zens, C. Dyer, O. Bojar, A. Constantin, and E. Herbst. 2007. Moses: open source toolkit for statistical
machine translation. Proceedings of the 45th Annual Meeting of the Association for Computational Linguistics
Companion Volume Proceedings of the Demo and Poster Sessions, 177–80. Prague, Czech Republic. 11

Och, F. 2003. Minimum error rate training in statistical machine translation. 41st Annual Meeting of the Associa-
tion for Computational Linguistics, 160–7. Sapporo, Japan. 12

——, and H. Ney. 2002. Discriminative training and maximum entropy models for statistical machine translation.
40th Annual Meeting of the Association for Computational Linguistics, 295–302. Philadelphia, PA. 13

——, and ——. 2003. A systematic comparison of various statistical alignment models. Computational Linguistics
29. 19–51.

Papineni, K., S. Roukos, T. Ward, and W.-J. Zhu. 2001. BLUE: a method for automatic evaluation of machine
translation. Technical report, IBM T.J. Watson Research Center, Yorktown Heights, NY.

——, ——, ——, and ——. 2002. BLEU: a method for automatic evaluation of machine translation. 40th Annual
Meeting of the Association for Computational Linguistics, 311–8. Philadelphia, PA. 14

Turian, J., L. Shen, and D. Melamed. 2003. Evaluation of machine translation and its evaluation. Machine transla-
tion summit IX, ed. by ???, 386–93. New Orleans, LA: ????. 15

Way, A. 2010. Machine translation. Handbook for computational linguistics and natural language processing, ed. by
S. Lappin, C. Fox, and A. Clark. Chichester, UK: Wiley Blackwell. 16

——, and M. Hearne. forthcoming. On the role of translations in state-of-the-art statistical machine translations.
Compass. 17

Statistical Machine Translation 121

ª 2011 The Authors Language and Linguistics Compass (2011): 1–21, 10.1111/j.1749-818x.2011.00274.x
Language and Linguistics Compass ª 2011 Blackwell Publishing Ltd

1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49

Author Query Form

Journal: LNC3

Article: 274

Dear Author,

During the copy-editing of your paper, the following queries arose. Please respond to these by

marking up your proofs with the necessary changes/additions. Please write your answers on the

query sheet if there is insufficient space on the page proofs. Please write clearly and follow the

conventions shown on the attached corrections sheet. If returning the proof by fax do not write

too close to the paper’s edge. Please remember that illegible mark-ups may delay publication.

Many thanks for your assistance.

Query reference Query Remarks

Q1 AUTHOR:A running head short title was not
supplied; please check if this one is suitable
and, if not, please supply a short title of up to
40 characters that can be used instead.

Q2 AUTHOR:Can ’equation in (1)’ be changed to
’equation (1)’? Please confirm.

Q3 AUTHOR:Knight (2010) has not been included
in the list, please supply publication details.

Q4 AUTHOR:Please check this website address
and confirm that it is correct.

Q5 AUTHOR:Please provide short biographies for
both the authors as per the journal style.

Q6 AUTHOR:Please provide the publisher for ref-
erence ’Banerjee and Lavie (2005)’.

Q7 AUTHOR:Please provide the publisher for ref-
erence ’Callison-Burch 2006’.

Q8 AUTHOR:Please provide the publisher for ref-
erence ’Doddington 2002’.

Q9 AUTHOR:Please provide the publisher for ref-
erence ’Koehn 2004’.

Q10 AUTHOR:Please provide the publisher for ref-
erence ’Koehn et al. 2003’.

Q11 AUTHOR:Please provide the publisher for ref-
erence ’Koehn et al. 2007’.

Q12 AUTHOR:Please provide the publisher for ref-
erence ’Och 2003’.

Q13 AUTHOR:Please provide the publisher for ref-
erence ’Och and Ney 2002’.

Q14 AUTHOR:Please provide the publisher for ref-
erence ’Papineni et al. 2002’.

Q15 AUTHOR:Please provide the Editors and
name of the publisher for this book.

Q16 AUTHOR:Please provide page range for refer-
ence ’Way 2010’.

Q17 AUTHOR:Please provide the correct journal
name, volume number and page range for ref-
erence ’Way and Hearne 2010’.

Q18 AUTHOR: Figure 2 has been saved at a low
resolution of 169 dpi. Please resupply at 600
dpi. Check required artwork specifications at
http://authorservices.wiley.com/submit_illust.
asp?site=1

Page 1 of 3

USING E-ANNOTATION TOOLS FOR ELECTRONIC PROOF CORRECTION

Required Software

Adobe Acrobat Professional or Acrobat Reader (version 7.0 or above) is required to e-annotate PDFs.
Acrobat 8 Reader is a free download: http://www.adobe.com/products/acrobat/readstep2.html

Once you have Acrobat Reader 8 on your PC and open the proof, you will see the Commenting Toolbar (if it
does not appear automatically go to Tools>Commenting>Commenting Toolbar). The Commenting Toolbar
looks like this:

If you experience problems annotating files in Adobe Acrobat Reader 9 then you may need to change a
preference setting in order to edit.

In the “Documents” category under “Edit – Preferences”, please select the category ‘Documents’ and
change the setting “PDF/A mode:” to “Never”.

Note Tool — For making notes at specific points in the text

Marks a point on the paper where a note or question needs to be addressed.

Replacement text tool — For deleting one word/section of text and replacing it

Strikes red line through text and opens up a replacement text box.

Cross out text tool — For deleting text when there is nothing to replace selection

Strikes through text in a red line.

How to use it:

1. Right click into area of either inserted
text or relevance to note

2. Select Add Note and a yellow speech
bubble symbol and text box will appear

3. Type comment into the text box

4. Click the X in the top right hand corner
of the note box to close.

How to use it:

1. Select cursor from toolbar

2. Highlight word or sentence

3. Right click

4. Select Replace Text (Comment) option

5. Type replacement text in blue box

6. Click outside of the blue box to close

How to use it:

1. Select cursor from toolbar

2. Highlight word or sentence

3. Right click

4. Select Cross Out Text

http://www.adobe.com/products/acrobat/readstep2.html�

Page 2 of 3

Approved tool — For approving a proof and that no corrections at all are required.

Highlight tool — For highlighting selection that should be changed to bold or italic.

Highlights text in yellow and opens up a text box.

Attach File Tool — For inserting large amounts of text or replacement figures as a files.

Inserts symbol and speech bubble where a file has been inserted.

Pencil tool — For circling parts of figures or making freeform marks

Creates freeform shapes with a pencil tool. Particularly with graphics within the proof it may be useful to use
the Drawing Markups toolbar. These tools allow you to draw circles, lines and comment on these marks.

How to use it:

1. Click on the Stamp Tool in the toolbar

2. Select the Approved rubber stamp from
the ‘standard business’ selection

3. Click on the text where you want to rubber
stamp to appear (usually first page)

How to use it:

1. Select Highlighter Tool from the
commenting toolbar

2. Highlight the desired text

3. Add a note detailing the required change

How to use it:

1. Select Tools > Drawing Markups > Pencil Tool

2. Draw with the cursor

3. Multiple pieces of pencil annotation can be grouped together

4. Once finished, move the cursor over the shape until an arrowhead appears
and right click

5. Select Open Pop-Up Note and type in a details of required change

6. Click the X in the top right hand corner of the note box to close.

How to use it:

1. Click on paperclip icon in the commenting toolbar

2. Click where you want to insert the attachment

3. Select the saved file from your PC/network

4. Select appearance of icon (paperclip, graph, attachment or
tag) and close

	Using e-Annotation Tools for Electronic Proof Correction
	Required Software
	Note Tool — For making notes at specific points in the text
	Replacement text tool — For deleting one word/section of text and replacing it
	Cross out text tool — For deleting text when there is nothing to replace selection
	Approved tool — For approving a proof and that no corrections at all are required.
	Highlight tool — For highlighting selection that should be changed to bold or italic.
	Attach File Tool — For inserting large amounts of text or replacement figures as a files.
	Pencil tool — For circling parts of figures or making freeform marks
	Help

	How to use it:
	How to use it:
	How to use it:
	How to use it:
	How to use it:
	How to use it:
	How to use it:

