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Outline

I Sorted L-One Penalized Estimator (SLOPE)
I Adaptive Bayesian SLOPE
I Varclust - a new algorithm for subspace clustering



Motivation: Paris Hospital, TraumaBase Group Data

I Traumabase R© data:
20000 major trauma patients × 250 measurements..

Accident type Age Sex Blood Lactate Temperature Platelet
pressure (G/L)

Falling 50 M 140 NA 35.6 150
Fire 28 F NA 4.8 36.7 250
Knife 30 M 120 1.2 NA 270
Traffic accident 23 M 110 3.6 35.8 170
Knife 33 M 106 NA 36.3 230
Traffic accident 58 F 150 NA 38.2 400

I Objective:
Develop models to help emergency doctors make decisions.

Measurements Predict−→ Platelet ⇒ X
Regression−→ y

I Challenge :
How to select relevant measurements with missing values?



Model selection in high-dimension
Linear regression model: y = Xβ + ε,

I y = (yi ): vector of response of length n

I X = (Xij ): a standardized design matrix of dimension n × p

I β = (βj ): regression coefficient of length p

I ε ∼ N (0, σ2In)

Assumptions:

I high-dimension: p large (including p ≥ n)

I β is sparse with k < n nonzero coefficients



l1 penalization methods

I LASSO (Tibshirani, 1996)

β̂LASSO = arg min
β∈Rp

1
2
‖y − Xβ‖2 + λ‖β‖1,

detects important variables with high probability but includes
many false positives.

I SLOPE (B, van den Berg, Su, Candès, arxiv 2013, B,van den
Berg, Sabatti, Su, Candès, AoAS , 2015) penalizes larger
coefficients more stringently

β̂SLOPE = arg min
β∈Rp

1
2
‖y − Xβ‖2 + σ

p∑
j=1

λj |β|(j),

where λ1 ≥ λ2 ≥ · · · ≥ λp ≥ 0 and |β|(1) ≥ |β|(2) ≥ · · · ≥ |β|(p).

https://www.jstor.org/stable/2346178
https://projecteuclid.org/euclid.aoas/1446488733
https://projecteuclid.org/euclid.aoas/1446488733


Unit balls for different SLOPE sequences by D.Brzyski

(a) (2,2,2) (b) (2,0,0) (c) (3,2,1)

Clustering in the context of portfolio optimization - Kremmer, Lee, B
and Paterlini ”Journal of Banking and Finance”, 2019
The class of models attainable by SLOPE - Schneider and Tardivel,
arxiv 2020



False discovery rate (FDR) control
I Let β̃ be estimate of β
I We define:

I the number of all discoveries, R :=
∣∣{i : β̃i 6= 0

}∣∣
I the number of false discoveries,

V :=
∣∣{i : βi = 0, β̃i 6= 0

}∣∣
I false discovery rate - expected proportion of false

discoveries among all discoveries

FDR := E
[

V
max{R,1}

]

Theorem (B,van den Berg, Su and Candès (2013))
When X T X = I SLOPE with

λBH
i := σΦ−1

(
1− i · q

2p

)
controls FDR at the level q p0

p .



Orthogonal design, n = p = 5000
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Optimality in prediction and estimation

Su and Candès (Annals of Statistics, 2016),
Bellec, Lecué, Tsybakov (Annals of Statistics, 2018):
SLOPE with the BH related sequence of tuning parameters
adapts to the uknown sparsity and attains minimax prediction
and estimation rates for the estimation error ||β̂ − β||2.

The selection of the optimal λ for LASSO depends on unknown
sparsity k .

Extension to classification by logistic regression by Abramovich
and Grinshtein (2018, IEEE Trans. Inf. Theory)



Heat Maps of MSE(X β̂) by D. Nowakowski
Independent predictors

λi = cΦ

(
1− iq

2p

)
, n = p = 1000, k = 20

for i ∈ S, βi =

√
2 log

p
k



Independent predictors

n = p = 1000, k = 100



Correlated predictors

n = p = 1000, k = 20, ρ(Xi ,Xj) = 0.5 for i 6= j



Correlated predictors

n = p = 1000, k = 100



Extensions and Applications

I Lee, Brzyski, B. Proceedings of the 19th International Conference on Artificial Intelligence and Statistics,
JMLR:W and CP vol.51, 780–789, 2016 - FDR control with Generalized Dantzig Selector.

I Brzyski, Peterson, Sobczyk, Candès, B., Sabatti, Ćontrolling the rate of GWAS false discoveries”, Genetics,
205, 61–75, 2017, geneSLOPE package in R by P. Sobczyk.

I Virouleau, Guilloux, Gaiffas, B., arXiv:1712.02640, 2017 - Robust regression and outliers detection using
the mean-shift model with SLOPE.

I Kos, B., arXiv:1908.08791, 2019 - Consistency and asymptotic FDR control in high-dimensional multiple
regression.

I Kos, PhD thesis, 2019 - Asymptotic FDR control in low dimensional multiple and logistic regression.
I Kremer, Brzyski, B., Paterlini, SSRN 3412061, 2019 - application for index tracking.
I Kremer, Lee, B., Paterlini, Journal of Banking and Finance 110, 105687, 2020 - application for portfolio

selection.
I Brzyski, Gossmann, Su, B., Journal of the American Statistical Association, 114(525), 419–433, 2019 -

group SLOPE for selection of groups of predictors, grpSLOPE package in R by A. Gossmann.
I Lee, Sobczyk, M.Bogdan, ”Structure Learning of Gaussian Markov Random Fields with False Discovery

Rate Control”, Symmetry 11 (10), 1311, 2019 - application for gaussian graphical models using
neighborhood selection strategy.

I P.Sobczyk (PhD Thesis), M.Makowski (MSc Thesis) - application for graphical models using the joint
likelihood function, first prize for M. Makowski in the ”National competition for the best master’s thesis
regarding machine learning or data analysis” in the category ”Methods and Algorithms”

I Larrson,B.,Wallin, arxiv 2020 - strong rule for discarding predictors, speeding up the SLOPE algorithm;
accepted for NeurIPS, 2020.



Packages on CRAN

I SLOPE, SLOPE for Generalized Linear Models, a novel
strong screening rule for SLOPE, maintained by Johan
Larsson (Lund University)

I geneSLOPE - SLOPE for Genome Wide Association
Studies, selection of clusters of correlated SNPs,
maintained by Piotr Sobczyk (OLX group)

I grpSLOPE - SLOPE for selection of groups of predictors,
maintained by Alexey Gossman (FDA, USA)



-



Robust regression with SLOPE
A.Virouleau, A.Guilloux, S.Gaiffas, M.Bogdan (arxive, 2017)



Mean-shift model for robust regression
Candes and Randall (2006), Gannaz (2006) and McCann and
Welsch (CSDA, 2007) ,

y = Xβ + Iµ+ ε (1)

µ ∈ Rn is the sparse vector of “outliers” and ε ∼ N(0, σ2I)

She and Owen (IPOD, JASA, 2012) and Nguyen and Tran
(E-lasso, IEEE Trans. Inf. Th., 2013) use L1 penalty for µ and β

Virouleau, Guilloux, Gaiffas, B (2017) use SLOPE penalties:

min
β∈p,µ∈n

{
‖y − Xβ − µ‖22 + 2ρ1Jλ̃(β) + 2ρ2Jλ(µ)

}

λi(β) = σ

√
log
(2p

i

)
, λi(µ) = σ

√
log
(2n

i

)



Estimation properties and model selection properties

When k log
(
p/k) ≤ s log

(
n/s) then the mean-shift version of

SLOPE retains asymptotic estimation and prediction optimality.

Under some sparsity assumptions the mean-shift SLOPE
asymptotically controls the False Discovery Rate in terms of
outliers detection



Low dimensional set-up; large outliers
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Low dimensional set-up; small outliers
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High dimensional set-up; small outliers

0 500 1000 1500 2000 2500

number of real outliers

0.00

0.05

0.10

0.15

0.20

FD
R

 le
ve

l
FDR for outliers detection

0 500 1000 1500 2000 2500

number of real outliers

0.0

0.2

0.4

0.6

0.8

1.0

P
ow

er
 le

ve
l

Power for outliers detection

0 500 1000 1500 2000 2500

number of real outliers

0.0

0.2

0.4

0.6

0.8

1.0

M
S

E
 re

gr
es

so
rs

MSE for regression coefficients estimation

0 500 1000 1500 2000 2500

number of real outliers

0

2

4

6

8

10

M
S

E
 in

te
rc

ep
ts

MSE for sample intercepts estimation

Target FDR
E-slope
Slope
E-Lasso



Simulated Outliers for the Retail Sales Data
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Mutation Rates in Colorectal Cancer
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Adaptive SLOPE with missing values (1)

W. Jiang, MB, J.Josse, B.Miasojedow, V.Rockova, TraumaBase
Group (2019)



Problems with LASSO and SLOPE

The same parameter λ is used for shrinkage and selection
Elimination of false discoveries leads to a large bias of
important predictors
Unexplained effect of important predictors is taken over by
non-important variables
Identification of the true model is possible only under very
restrictive assumptions on the signal sparsity and the
correlations between predictors
Solution - adaptive versions, use smaller λ for predictors which
seem to be important [prior knowledge or iterations of the
algorithm]



Spike and Slab LASSO
V.Rockova, E. George, JASA 2018

LASSO has a Bayesian interpretation as a posterior mode
under the Laplace prior

π(β) = C(λ)
n∏

i=1

e−|βi |λ

Spike and Slab LASSO uses a spike and slab Laplace prior:

γ = (γ1, . . . , γp)

γi = 1 if βi is ”large” and γi = 0 if βi is ”small”

π(β|λ, γ) ∝ c
∑p

i=1 1(γi=1)
p∏

i=1

e−wi |βi |λ0 ,

where wi = 1 if γi = 0 and wi = c ∈ (0,1) if γi = 1.



Spike and Slab Prior

(d) Null β (e) Non-null β



Spike and Slab LASSO (2)
The maximum aposteriori rule is given by reweighted LASSO

β̂(γ) = argminb∈Rp
1
2
||y − Xb||22 + λ0

p∑
i=1

wi |bi |

wi = cγi + (1− γi)

Prior for γ: γ1, . . . , γp are iid such that

P(γi = 1) = θ = 1− P(γi = 0)

In consecutive iterations γi is replaced with

πt
i = P(γi = 1|βt , c) =

cθe−c|βt
i |λ0

cθe−c|βt
i |λ0 + (1− θ)e−|β

t
i |λ0

and then a new estimate β̂t+1 is calculated by solving
reweighted LASSO with the vector γ replaced with the vector
πt .



Borrowing information

When updating i th variable θ is replaced by E(θ|β−i)

λ1 = cλ0 - fixed at some small value

SSL package creates the path of SSL solutions for the
sequence of 100 λ0 values



Bayesian SLOPE

SLOPE estimate = MAP of a Bayesian regression with SLOPE prior.

β̂SLOPE = arg max
β

p(y | X , β, σ2;λ) ∝ p(y | X , β)p(β | σ2;λ)

where the SLOPE prior:

p(β | σ2;λ) ∝
p∏

j=1

exp

(
−1
σ
λj |β|(j)

)



Adaptive Bayesian SLOPE
We propose an adaptive version of Bayesian SLOPE (ABSLOPE).
After standardizing X so each column has a unit L2 norm, the prior for
β is

p(β | γ, c, σ2;λ) ∝ c
∑p

j=1 I(γj=1)
∏

j

exp

{
−wj |βj |

1
σ
λr(Wβ,j)

}
,

Interpretation of the model:

I βj from the slab component⇒ true signal; from the spike
component⇒ noise.

I γj ∈ {0,1} signal indicator. γj |θ ∼ Bernoulli(θ) and θ the
sparsity.

I 1/c ∈ [1,∞): proportional to the average signal magnitude.

I W = diag(w1,w2, · · · ,wp) and its diagonal element:

wj = cγj + (1− γj ) =

{
c, γj = 1
1, γj = 0

.



Spike and Slab LASSO (Rockova and George, 2018),
vs ABSLOPE

ABSLOPE spike prior models the effects which are not
distinguishable from the noise, which allows for FDR control

Slab component is ”estimated” via the estimation of the
average signal magnitude



Model selection with missing values

Decomposition: X = (Xobs,Xmis)

Pattern: matrix M with Mij =

{
1, if Xij is observed
0, otherwise

Assumption 1: Missing at random (MAR)
p(M | Xobs,Xmis) = p(M | Xobs) ⇒ ignorable missing patterns
e.g. People at older age didn’t tell his income at larger probability.

Assumption 2: Distribution of covariates
Xi ∼i.i.d.Np(µ,Σ), i = 1, · · · , n.
Problem: With NA, only a few methods are available to select a model, and
their performances are limited. For example,

I (Claeskens and Consentino, 2008) adapts AIC to missing values⇒
Impossible to deal with high dimensional analysis.

I (Loh and Wainwright, 2012) LASSO with NA
⇒ Non-convex optimization; requires to know bound of ‖β‖1

⇒ difficult in practice

https://onlinelibrary.wiley.com/doi/abs/10.1111/j.1541-0420.2008.01003.x
https://projecteuclid.org/euclid.aos/1346850068


ABSLOPE with missingness: Summary

y

Xobs Xmisμ, Σ

θ γ

c
β

σ2

X

`comp = log p(y ,X , γ, c, β, θ, σ2)

= log
{
p(y | X , β, σ2)p(X | µ,Σ)p(β | γ, c)p(γ | θ)p(c, σ, θ)

}
Objective: Maximize `obs =

∫∫∫
`comp dXmis dc dθ dγ.



EM algorithm

I E step: evaluate

Qt = E(`comp) wrt p(Xmis, γ, c, θ | y ,Xobs, β
t , σt , µt ,Σt ).

I M step: update

βt , σt , µt ,Σt = arg max Qt

Problem: The function Q is not tractable. ⇒
1. Monte Carlo EM ? (Wei and Tanner 1990) Monte Carlo EM

?
Expensive to generate a large number of samples.

2. Stochastic Approximation EM (book, Lavielle 2014)
I One sample in each iteration;

https://www.tandfonline.com/doi/abs/10.1080/01621459.1990.10474930
https://hal.archives-ouvertes.fr/hal-01122873


Adapted SAEM algorithm

I E step:
Qt = E(`comp) wrt p(Xmis, γ, c, θ | y ,Xobs, β

t , σt , µt ,Σt ).
I Simulation: draw one sample (X t

mis, γ
t , ct , θt ) from

p(Xmis, γ, c, θ | y ,Xobs, β
t−1, σt−1, µt−1,Σt−1);

[Gibbs sampling]
I Stochastic approximation: update function Q with

Qt = Qt−1+ξt
(
`comp(X t

mis, γ
t , ct , θt )−Qt−1) , where ξt ∈ (0,1].

I M step: βt+1, σt+1, µt+1,Σt+1 = arg max Qt+1.
[When ηt = 1: Reweighted SLOPE, Shrinkage of

covariance]
Details of initialization, generating samples and optimization are in the draft
(arXiv:1909.06631)

https://arxiv.org/abs/1909.06631


SLOBE

Instead of using Gibbs sampling γ and c are replaced with the
approximation to their conditional expectations given data, β
and σ



R package: ABSLOPE

Install package:

library(devtools)
install_github("wjiang94/ABSLOPE")

Main algorithm:

lambda = create_lambda_bhq(ncol(X),fdr=0.10)
list.res = ABSLOPE(X, y, lambda)

A fast and simplified algorithm (Rcpp):

list.res.slobe = SLOBE(X, y, lambda)

Values:

list.res$beta
list.res$gamma



Simulation study (200 rep. ⇒ average)
n = p = 100, no correlation and 10% missingness
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n = p = 100, with 10% missingness and strong signal
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Method comparison

I ABSLOPE and SLOBE

I ncLASSO: non convex LASSO (Loh and Wainwright, 2012)

I MeanImp + SLOPE: Mean imputation followed by SLOPE with
known σ

I MeanImp + LASSO: Mean imputation followed by LASSO, with
λ tuned by cross validation

I MeanImp + adaLASSO: Mean imputation followed by adaptive
LASSO (Zou, 2006)

In the SLOPE type methods, λ = BH sequence which controls the
FDR at level 0.1

https://projecteuclid.org/euclid.aos/1346850068
https://www.tandfonline.com/doi/abs/10.1198/016214506000000735


Method comparison (200 rep. ⇒ average)
500×500 dataset, 10% missingness, with correlation
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Rysunek: Comparison of power (a), FDR (b), bias of β (c) and
prediction error (d) with varying sparsity and signal strength, with 10%
missingness over 200 simulations in the case without correlation.



Method comparison (200 rep. ⇒ average)
500×500 dataset, 10% missingness, with correlation
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(a) Bias of β
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(b) Prediction error

Rysunek: Comparison of power (a), FDR (b), bias of β (c) and
prediction error (d) with varying sparsity and signal strength, with 10%
missingness over 200 simulations in the case without correlation.



Variables in the TraumaBase data set (APHP)
Goal - quick prediction of the level of platelets
I Age: Age

I SI: Shock index indicates level of occult shock based on heart
rate (FC) and systolic blood pressure (PAS). SI = FC

PAS .
Evaluated on arrival of hospital.

I PAM: Mean arterial pressure is an average blood pressure in an
individual during a single cardiac cycle, based on systolic blood
pressure (PAS) and diastolic blood pressure (PAD).
PAM = 2PAD+PAS

3 . Evaluated on arrival of hospital.

I delta Hemocue: The difference between the hemoglobin on
arrival at hospital and that in the ambulance.

I Temps.lieux.hop: Time spent in hospital i.e., medicalization time,
in minutes.

I Lactates: The conjugate base of lactic acid.

I Temperature: Patient’s body temperature.



Variables

I FC: heart rate measured on arrival of hospital.

I Remplissage: A volume expander is a type of intravenous
therapy that has the function of providing volume for the
circulatory system.

I CGR.dechoc: A binary index which indicates whether the
transfusion of Red Blood Cells Concentrates is performed.

I SI.SMUR: Shock index measured on ambulance.

I PAM.SMUR: Mean arterial pressure measured in the
ambulance.

I FC.max: Maximum value of measured heart rate in the
ambulance.

I PAS.min: Minimum value of measured systolic blood pressure in
the ambulance.

I PAD.min: Minimum value of measured diastolic blood pressure
in the ambulance.



Percentage of missing values

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●Age

RBC

HR

MBP

SI

SBP.min

HR.max

DBP.min

Temp

Delta.hemo

VE

Lactate

Time.amb

MAP.amb

SI.amb

0 20 40

% Missing

V
ar

ia
bl

es

Rysunek: Percentage of missing values in each pre-selected variable
from TraumaBase.





Rysunek: Number of times that each variable
is selected over 10 replications. Bold numbers
indicate which variables are included in the
model selected by ABSLOPE.

Variable ABSLOPE SLOPE LASSO adaLASSO BIC
Age 10 10 4 10 10
SI 10 2 0 0 9
MBP 1 10 1 10 1
Delta.hemo 10 10 8 10 10
Time.amb 2 6 0 4 0
Lactate 10 10 10 10 10
Temp 2 10 0 0 0
HR 10 10 1 10 10
VE 10 10 2 10 10
RBC 10 10 10 10 10
SI.amb 0 0 0 0 0
MBP.amb 0 0 0 0 0
HR.max 3 9 0 1 0
SBP.min 5 10 10 10 8
DBP.min 2 10 2 1 0



More on the real data...
TraumaBase: Measurements Predict−→ Platelet
Cross-validation: random splits to training and test sets × 10

● ●
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I Comparable to random forest

I Interpretable model selection and estimation results



With interactions
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Method Variables selected
ABSLOPE Age ∗ MBP.amb, Delta.hemo ∗ Lactate

Lactate ∗ RBC, HR ∗ SBP.min
RBC, SBP.min

Age ∗ Lactate, Age ∗ VE
LASSO Delta.hemo ∗ Lactate, Delta.hemo ∗ VE

Lactate ∗ VE, Lactate ∗ RBC
Age ∗ Time.amb, Age ∗ HR

Age ∗ MBP.amb, Age ∗ SBP.min
adaLASSO MBP ∗ HR, Delta.hemo ∗ VE

Lactate ∗ VE,HR ∗ HR.max
HR ∗ SBP.min, VE ∗ RBC



Conclusion & Future research
Conclusion:
I ABSLOPE reduces the estimation bias of large regression

coefficients.
I This allows for

1. Improved estimation and prediction properties
2. FDR control under much wider range of scenarios than for

regular SLOPE
I Modeling in a Bayesian framework allows for the estimation of

the structure of predictors such as the signal sparsity and the
signal strength;

Future research:
I Deal with other missing mechanisms
I Application for other statistical models (e.g. GLM or Gaussian

Graphical Models)
I Theoretical analysis of statistical properties (asymptotic FDR

control, minimaxity)
I Speeding the SLOPE algorithm, see e.g. Larsson, B., Wallin,

”The Strong Screening Rule for SLOPE”, arXiv:2005.03730,
2020.



Varclust Motivation - Gene Expression



Transcription factors



PCA - reduction of dimensionality of ”omics” data

Xn×p - data matrix (e.g. gene expressions), n = k × 100,
p ≈ 20000 - number of genes
Assumptions : X = M + E , where M is of a low rank and E is a
random noise
We usually assume that eij ∼ N(0, σ)

Mathematical goal - recovering M, separation of the signal from
noise
Practical goal - data compression, several basis vectors
[Principal Components] may contain most of the information
and be applied for prediction (of the patient’s response to the
therapy)



Principal Components Analysis (2)

Method - Singular Value Decomposition:

X = Un×lDl×lV T
l×p ,

UT U = Il×l ,V T V = Il×l , l = min{n,p}

Statistical Goal - determining rank k of matrix M



PESEL (PEnalized SEmi-integrated Likelihood)
Sobczyk, Bogdan, Josse, Journal of Computational Graphical
Statistics, 2017



Bayesian Information Criterion (BIC) (1)

A1 ∈ A2 ∈ A3 . . . - nested sequence of statistical models
In our example Ak - rank(M) ≤ k
θ - vector of parameters of Ak :
eleements of Uk ∈ Sk ,n, Vk ∈ Sk ,p,Dk , i σ
Sk ,n - Stiefel manifold of orthonormal matrices of dimension
n × k
l(X , θ) - likelihood function (density of the distribution describing
the data)



Bayesian Information Criterion (BIC) (2)

In general situation BIC suggests selecting the model
maximizing

maxθ∈Ak log l(X , θ)− 1/2dim(Ak ) log N

where N is the number of independent observations.
BIC is justified (consistent) where dim(Ak ) = const when
N →∞
In our case N = np, so dim(Ak ) increases with n and p
Idea - reduction of the number of parameters by integrating
them out with respect to some prior distribution



PESEL for large p

Assume that M = TW T , where
T = [ti,l ]n×k is the matrix of ”hidden factors”,
W = [wi,l ]p×k is the matrix of coefficients
prior distribution -

wj· ∼ N(0, Ik ) ,

which implies, that x·1, . . . , x·p sa̧ are iid random vectors from
the distribution

x·j ∼ N(0; TT T + σ2In) .

Now we have p independent vectors and the number of
parameters does not depend on p - we can apply BIC if only
p >> n



Errors from the log-normal distribution



Varclust

Multiple Latent Component Clustering, Sobczyk, Wilczyński,
Bogdan, Josse
Awards for young scientists P. Sobczyk (Vienna workshop on
simulation, 2015) i S. Wilczyński (International Conference on
Biometrics and Bio-Pharmaceutical Statistics, Wiedeń 2017)
Goal: Identification of groups of co-regulated variables (genetic
pathways) and selection of appropriate Principal Components.
Mathematics: clustering of variables into groups, such that
each of them is spanned by just few of ”hidden” variables.
Package varclust by P. Sobczyk and S. Wilczyński- Algorithm
K-medioids around PCs. Estimation of the number of clusters
and their dimensions by modifications of BIC.



Methodology

K-centroids algorithm
Centers - PCs, distance - BIC
Estimation of clusters dimensions by PESEL
Repeat for different K and estimate K by mBIC



Informative prior distribution and mBIC

I The problem with BIC (non-informative prior)
I Prior distribution taking into account the number of clusters

and maximal dimension of the subspace

P(M) =
1

K p
1

dK

mBIC =
K∑

i=1

ln
(

P̂(Xi |Mi)
)
− p ln(K )− K ln(d)

Application
mBIC can be used to compare different models and to choose
the number of clusters in the data.



Overview of the algorithm

Algorithm 1: Multiple Latent Clustering Components

Input: n - number of individuals, p - number of variables,
Xn×p = (x1, . . . , xp) - data set, d - maximal subspace
dimension, N - number of runs of the algorithm
Scale X to have columns with mean 0 and unit variance
for i ∈ {1, . . . ,N} do

Find the model using K-means and store its value of mBIC
end for
Choose the model with the highest value of mBIC and return
the model (segmentation, mBIC, factors) as the result. =0



K-means step

1. Initialize clusters’ centres
2. Until convergence or maximal number of iterations is

reached repeat:
I For every variable xj and every cluster factors Fj′ fit a linear

regression model without intercept lm(xj ∼ Fj′) and store
BIC value as BICjj′

I Assign variable xj to the cluster Mq where

q = arg max
j′∈{1,...,K}

BICjj′

I For every cluster Mi use PESEL to estimate its
dimensionality ki with an upper bound of d . Use PCA to
compute the first ki principal components and store them in
Fi



Compared methods

1. Sparse Subspace Clustering (SSC)
2. Low Rank Subspace Clustering (LRSC)
3. MLCC with random initialization (MLCC)
4. MLCC with initialization by the result of SSC

(MLCCaSSC)
5. MLCC with initialization by sparse PCA (MLCCsPCA)
6. ClustOfVar (COV)



Data generation - shared factors

Input: n, SNR, K , p, d
Number of factors m← K d

2
Factors F = (f1, . . . , fm), fi ∼ N(0, In)
Draw subspaces’ dimension d1, . . .dK uniformly from
{1, . . . ,d}
for i = 1, . . . ,K do

Fi ← sample of size di from columns of F
Draw matrix of coefficients Ci from
U(0.1,1) · sgn(U(−1,1))
Variables in the i-th subspace are Xi ← FiCi

end for
Scale matrix X = (X1, . . . ,XK ) (columns with unit variance)
return X + Z where Z ∼ N(0, 1

SNR In) =0



Data generation - independent subspaces

Remark
To generate data without shared factors we draw independently
i-th subspaces basis Fi as sample of size di from standard
multivariate normal distribution



Measures of effectiveness

Compare two partitions A = (A1, . . .An), B = (B1, . . . ,Bm)

I Adjusted Rand Index (ARI)
I Integration
I Acontamination
I ARI ∈ [−1,1], Integration, Acontamination ∈ [0,1].

Remark
The bigger the indices, the better the clustering.



Mode



Number of variables



Signal to noise ratio



Estimation of the number of clusters
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