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Preface

A statistical model is a probability distribution constructed to enable infer-

ences to be drawn or decisions made from data. This idea is the basis of most

tools in the statistical workshop, in which it plays a central role by providing

economical and insightful summaries of the information available.

This book is intended as an integrated modern account of statistical models

covering the core topics for studies up to a masters degree in statistics. It can

be used for a variety of courses at this level and for reference. After outlining

basic notions, it contains a treatment of likelihood that includes non-regular

cases and model selection, followed by sections on topics such as Markov

processes, Markov random fields, point processes, censored and missing data,

and estimating functions, as well as more standard material. Simulation is

introduced early to give a feel for randomness, and later used for inference.

There are major chapters on linear and nonlinear regression and on Bayesian

ideas, the latter sketching modern computational techniques. Each chapter has

a wide range of examples intended to show the interplay of subject-matter,

mathematical, and computational considerations that makes statistical work

so varied, so challenging, and so fascinating.

The target audience is senior undergraduate and graduate students, but the

book should also be useful for others wanting an overview of modern statistics.

The reader is assumed to have a good grasp of calculus and linear algebra,

and to have followed a course in probability including joint and conditional

densities, moment-generating functions, elementary notions of convergence

and the central limit theorem, for example using Grimmett and Welsh (1986)

or Stirzaker (1994). Measure is not required. Some sections involve a basic

knowledge of stochastic processes, but they are intended to be as self-contained

as possible. To have included full proofs of every statement would have made

the book even longer and very tedious. Instead I have tried to give arguments

for simple cases, and to indicate how results generalize. Readers in search of

iv
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mathematical rigour should see Knight (2000), Schervish (1995), Shao (1999),

or van der Vaart (1998), amongst the many excellent books on mathematical

statistics.

Solution of problems is an integral part of learning a mathematical subject.

Most sections of the book finish with exercises that test or deepen knowledge

of that section, and each chapter ends with problems which are generally

broader or more demanding.

Real understanding of statistical methods comes from contact with data.

Appendix 1 outlines practicals intended to give the reader this experience.

The practicals themselves can be downloaded from

http://statwww.epfl.ch/davison/SM/

together with a library of functions and data to go with the book, and errata.

The practicals are written in two dialects of the S language, for the freely

available package R and for the commercial package S-plus, but it should not

be hard for teachers to translate them for use with other packages.

Biographical sketches of some of the people mentioned in the text are given

as sidenotes; the sources for many of these are Heyde and Seneta (2001) and

http://www-groups.dcs.st-and.ac.uk/~history/

Part of the work was performed while I was supported by an Advanced

Research Fellowship from the UK Engineering and Physical Science Research

Council. I am grateful to them and to my past and present employers for sab-

batical leaves during which the book advanced. Many people have helped

in various ways, for example by supplying data, examples, or figures, by

commenting on the text, or by testing the problems. I thank Marc-Olivier

Boldi, Alessandra Brazzale, Angelo Canty, Gorana Capkun, James Carpen-

ter, Valérie Chavez, Stuart Coles, John Copas, Tom DiCiccio, Debbie Dupuis,

David Firth, Christophe Girardet, David Hinkley, Wilfred Kendall, Diego

Kuonen, Stephan Morgenthaler, Christophe Osinski, Brian Ripley, Gareth

Roberts, Sylvain Sardy, Jamie Stafford, Trevor Sweeting, Valérie Ventura, Si-

mon Wood, and various anonymous reviewers. Particular thanks go to Jean-

Yves Le Boudec, Nancy Reid, and Alastair Young, who gave valuable com-

ments on much of the book. David Tranah of Cambridge University Press

displayed exemplary patience during the interminable wait for me to finish.

Despite all their efforts, errors and obscurities doubtless remain. I take respon-

sibility for this and would appreciate being told of them, in order to correct

any future versions.

I dedicate this book to my long-suffering family, and particularly to Claire,

without whose love and support the project would never have been finished.

Lausanne, January 2003
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Introduction

Statistics concerns what can be learned from data. Applied statistics com-

prises a body of methods for data collection and analysis across the whole

range of science, and in areas such as engineering, medicine, business, and law

— wherever variable data must be summarized, or used to test or confirm

theories, or to inform decisions. Theoretical statistics underpins this by pro-

viding a framework for understanding the properties and scope of methods

used in applications.

Statistical ideas may be expressed most precisely and economically in math-

ematical terms, but contact with data and with scientific reasoning has given

statistics a distinctive outlook. Whereas mathematics is often judged by its

elegance and generality, many statistical developments arise as a result of con-

crete questions posed by investigators and data that they hope will provide

answers, and elegant and general solutions are not always available. The huge

variety of such problems makes it hard to develop a single over-arching the-

ory, but nevertheless common strands appear. Uniting them is the idea of a

statistical model.

The key feature of a statistical model is that variability is represented us-

ing probability distributions, which form the building-blocks from which the

model is constructed. Typically it must accommodate both random and sys-

tematic variation. The randomness inherent in the probability distribution

accounts for apparently haphazard scatter in the data, and systematic pattern

is supposed to be generated by structure in the model. The art of modelling

lies in finding a balance that enables the questions at hand to be answered

or new ones posed. The complexity of the model will depend on the problem

at hand and the answer required, so different models and analyses may be

appropriate for a single set of data.

1



2 1 · Introduction

Table 1.1 Heights
of young Zea mays

plants, recorded by
Charles Darwin
(Fisher, 1935a,
p. 30).

Pot Height (eighths of an inch) Difference
Crossed Self-fertilized

I 188 139 49
96 163 −67

168 160 8
II 176 160 16

153 147 6
172 149 23

III 177 149 28
163 122 41
146 132 14
173 144 29
186 130 56

IV 168 144 24
177 102 75
184 124 60
96 144 −48

Examples

Example 1.1 (Maize data) Charles Darwin collected data over a period Charles Robert
Darwin (1809–1882)
was rich enough not
to have to earn his
living. His reading
and studies at
Edinburgh and
Cambridge exposed
him to contemporary
scientific ideas, and
prepared him for the
voyage of the Beagle
(1831–1836), which
formed the basis of
his life’s work as a
naturalist — at one
point he spent 8
years dissecting and
classifying barnacles.
He wrote numerous
books including The

Origin of Species, in
which he laid out the
theory of evolution
by natural selection.
Although his
proposed mechanism
for natural variation
was never accepted,
his ideas led to the
biggest intellectual
revolution of the
19th century, with
repercussions that
continue today.
Ironically, his own
family was in-bred
and his health poor.
See Desmond and
Moore (1991).

of years on the heights of Zea mays plants. The plants were descended from

the same parents and planted at the same time. Half of the plants were self-

fertilized, and half were cross-fertilized, and the purpose of the experiment

was to compare their heights. To this end Darwin planted them in pairs in

different pots. Table 1.1 gives the resulting heights. All but two of the dif-

ferences between pairs in the fourth column of the table are positive, which

suggests that cross-fertilized plants are taller than self-fertilized ones.

This impression is confirmed by the left-hand panel of Figure 1.1, which

summarizes the data in Table 1.1 in terms of a boxplot. The white line in the

centre of each box shows the median or middle observation, the ends of each

box show the observations roughly one-quarter of the way in from each end,

and the bars attached to the box by the dotted lines show the maximum and

minimum, provided they are not too extreme.

Cross-fertilized plants seem generally higher than self-fertilized ones. Over-

laid on this systematic variation, there seems to be variation that might be

ascribed to chance: not all the plants within each group have the same height.

It might be possible, and for some purposes even desirable, to construct a

mechanistic model for plant growth that could explain all the variation in

such data. This would take into account genetic variation, soil and mois-

ture conditions, ventilation, lighting, and so forth, through a vast system of

equations requiring numerical solution. For most purposes, however, a deter-
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Figure 1.1

Summary plots for
Darwin’s Zea mays

data. The left panel
compares the heights
for the two different
types of fertilization.
The right panel
shows the difference
for each pair plotted
against the pair
average.
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ministic model of this sort is quite unnecessary, and it is simpler and more

useful to express variability in terms of probability distributions.

If the spread of heights within each group is modelled by random variability,

the same cause will also generate variation between groups. This occurred

to Darwin, who asked his cousin, Francis Galton, whether the difference inFrancis Galton
(1822–1911) was a
cousin of Darwin
from the same
wealthy background.
He explored in
Africa before turning
to scientific work, in
which he showed a
strong desire to
quantify things. He
was one of the first
to understand the
implications of
evolution for homo

sapiens, he invented
the term regression
and contributed to
statistics as a
by-product of his
belief in the
improvement of
society via eugenics.
See Stigler (1986).

heights between the types of plants was too large to have occurred by chance,

and was in fact due to the effect of fertilization. If so, he wanted to estimate

the average height increase. Galton proposed an analysis based essentially on

the following model. The height of a self-fertilized plant is taken to be

Y = µ+ σε, (1.1)

where µ and σ are fixed unknown quantities called parameters, and ε is a

random variable with mean zero and unit variance. Thus the mean of Y is µ

and its variance is σ2. The height of a cross-fertilized plant is taken to be

X = µ+ η + σε, (1.2)

where η is another unknown parameter. The mean height of a cross-fertilized

plant is µ + η and its variance is σ2. In (1.1) and (1.2) variation within the

groups is accounted for by the randomness of ε, whereas variation between

groups is modelled deterministically by the difference between the means of

Y and X . Under this model the questions posed by Darwin amount to:

• is η non-zero?

• Can we estimate η and state the uncertainty of our estimate?

Galton’s analysis proceeded as if the observations from the self-fertilized plants,

Y1, . . . , Y15, were independent and identically distributed according to (1.1),
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and those from the cross-fertilized plants, X1, . . . , X15, were independent and

identically distributed according to (1.2). If so, it is natural to estimate the

group means by Y = (Y1 + · · ·+ Y15)/15 and X = (X1 + · · ·+X15)/15, and

to compare Y and X. In fact Galton proposed another analysis which we do

not pursue.

In discussing this experiment many years later, R. A. Fisher pointed out Ronald Aylmer
Fisher (1890–1962)
was born in London
and educated there
and at Cambridge,
where he had his
first exposure to
Mendelian genetics
and the biometric
movement. After
obtaining the exact
distributions of the t
statistic and the
correlation
coefficient, but also
having begun a
life-long endeavour
to give a Mendelian
basis for Darwin’s
evolutionary theory,
he moved in 1919 to
Rothamsted
Experimental
Station, where he
built the theoretical
foundations of
modern statistics,
making fundamental
contributions to
likelihood inference,
analysis of variance,
randomization and
the design of
experiments. He
wrote highly
influential books on
statistics and on
genetics. He later
held posts at
University College
London and
Cambridge, and died
in Adelaide. See
Fisher Box (1978).

that the model based on (1.1) and (1.2) is inappropriate. In order to min-

imize differences in humidity, growing conditions, and lighting, Darwin had

taken the trouble to plant the seeds in pairs in the same pots. Comparison

of different pairs would therefore involve these differences, which are not of

interest, whereas comparisons within pairs would depend only on the type of

fertilization. A model for this writes

Yj = µj + σε1j , Xj = µj + η + σε2j , j = 1, . . . , 15. (1.3)

The parameter µj represents the effects of the planting conditions for the jth

pair, and the εgj are taken to be independent random variables with mean

zero and unit variance. The µj could be eliminated by basing the analysis on

the Xj − Yj , which have mean η and variance 2σ2.

The right panel of Figure 1.1 shows a scatterplot of pair differences xj − yj
against pair averages (yj + xj)/2. The two negative differences correspond to

the pairs with the lowest averages. The averages vary widely, and it seems

wise to allow for this by analyzing the differences, as Fisher suggested.

Both models in Example 1.1 summarize the effect of interest, namely the

mean difference in heights of the plants, in terms of a fixed but unknown

parameter. Other aspects of secondary interest, such as the mean height of

self-fertilized plants, are also summarized by the parameters µ and σ of (1.1)

and (1.2), and µ1, . . . , µ15 and σ of (1.3). But even if the values of all these

parameters were known, the distributions of the heights would still not be

known completely, because the distribution of ε has not been fully specified.

Such a model is called nonparametric. If we were willing to assume that ε has

a given distribution, then the distributions of Y and X would be completely

specified once the parameters were known, giving a parametric model. Most

of this book concerns such models.

The focus of interest in Example 1.1 is the relation between the height of

a plant and something that can be controlled by the experimenter, namely

whether it is self- or cross-fertilized. The essence of the model is to regard the

height as random with a distribution that depends on the type of fertilization,

which is fixed for each plant. The variable of primary interest, in this instance

height, is called the response, and the variable on which it depends, the type of

fertilization, is called an explanatory variable or a covariate. Many questions
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Table 1.2 Failure
times (in units of
103 cycles) of springs
at cycles of repeated
loading under the
given stress (Cox
and Oakes, 1984,
p. 8). + indicates
that an observation
is right-censored.
The average and
estimated standard
deviation for each
level of stress are y
and s.

Stress (N/mm2)
950 900 850 800 750 700
225 216 324 627 3402 12510+
171 162 321 1051 9417 12505+
198 153 432 1434 1802 3027
189 216 252 2020 4326 12505+
189 225 279 525 11520+ 6253
135 216 414 402 7152 8011
162 306 396 463 2969 7795
135 225 379 431 3012 11604+
117 243 351 365 1550 11604+
162 189 333 715 11211 12470+

y 168 215 348 803 5636 9828
s 33 43 58 544 3864 3355

arising in data analysis involve the dependence of one or more variables on

another or others, but virtually limitless complications can arise.

Example 1.2 (Spring failure data) In industrial experiments to assess

their reliability, springs were subjected to cycles of repeated loading until

they failed. The failure ‘times’, in units of 103 cycles of loading, are given

in Table 1.2. There were 60 springs divided into groups of 10 at each of six

different levels of stress.

As stress decreases there is a rapid increase in the average number of cycles

to failure, to the extent that at the lowest levels, where the failure time is

longest, the experiment had to be stopped before all the springs had failed. The

observations are right-censored : the recorded value is a lower bound for the

number of cycles to failure that would have been observed had the experiment

been continued to the bitter end. A right-censored observation is indicated as,

say, 11520+, indicating that the failure time would be greater than 11520.

Let us represent the jth number of cycles to failure at the kth loading by

ylj , for j = 1, . . . , 10 and l = 1, . . . , 6. Table 1.2 shows the average failure time

for each loading, yl· = 10−1
∑

j ylj , and the sample standard deviation, sl,

where the sample variance is s2l = (10− 1)−1
∑

j(ylj − yl·)2. The average and

variance at the lowest stresses underestimate the true values, because of the

censoring. The average and standard deviation decrease as stress increases.

The boxplots in the left panel of Figure 1.2 show that the cycles to failure

at each stress have the marked pattern already described. The right panel

shows the log variance, log s2l , plotted against the log average, log yl·. It shows

a linear pattern with slope approximately two, suggesting that variance is

proportional to mean squared for these data.

Our inspection has revealed that:
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Figure 1.2 Failure
times (in units of
103 cycles) of springs
at cycles of repeated
loading under the
given stress. The left
panel shows failure
time boxplots for the
different stresses.
The right panel
shows a rough linear
relation between log
average and log
variance at the
different stresses.

0
20

00
60

00
10

00
0

C
yc

le
s 

to
 fa

ilu
re

700 750 800 850 900 950

Stress

•
•

•

•

• •

Log average

Lo
g 

va
ria

nc
e

5 6 7 8 9

8
10

12
14

16

(a) failure times are positive and range from 117–12510×103 or more cycles;

(b) there is strong dependence between the mean and variance;

(c) there is strong dependence of failure time on stress; and

(d) some observations are censored.

To proceed further, we would need to know how the data were gathered. Do

systematic patterns, of which we have been told nothing, underlie the data?

For example, were all 60 springs selected at random from a larger batch and

then allocated to the different stresses at random? Or were the ten springs

at 950 N/mm2 selected from one batch, the ten springs at 900 N/mm2 from

another, and so on? If so, the apparent dependence on stress might be due

to differences among batches. Were all measurements made with the same

machine? If the answers to these and other such questions were unsatisfac-

tory, we might suggest that better data be produced by performing another

experiment designed to control the effects of different sources of variability.

Suppose instead that we are provisionally satisfied that we can treat obser-

vations at each loading as independent and identically distributed, and that

the apparent dependence between cycles to failure and stress is not due to

some other factor. With (a) and (b) in mind, we aim to represent the failure

time at a given stress level by a random variable Y that takes continuous

positive values and whose probability density function f(y; θ) keeps the ra-

tio (mean)2/variance constant. Clearly it is preferable if the same parametric

form is used at each stress and the effect of changing stress enters only through

θ. A simple model is that Y has exponential density

f(y; θ) = θ−1 exp(−y/θ), y > 0, θ > 0, (1.4)
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whose mean and variance are θ and θ2, so that (mean)2 = variance. We can

express systematic variation in the density of Y in terms of stress, x, by

θ =
1

βx
, x > 0, β > 0, (1.5)

though of course other forms of dependence are possible.

Equations (1.4) and (1.5) imply that when x = 0 the mean failure time

is infinite, but it decreases to zero as stress x increases. Expression (1.4)

represents the random component of the model, for a given value of θ, and

(1.5) the systematic component, which determines how mean failure time θ

depends on x.

In Examples 1.1 and 1.2 the response is continuous, and there is a single

explanatory variable. But data with a discrete response or more than one

explanatory variable often arise in practice.

Example 1.3 (Challenger data) The space shuttle Challenger exploded

shortly after its launch on 28 January 1986, with a loss of seven lives. The sub-

sequent US Presidential Commission concluded that the accident was caused

by leakage of gas from one of the fuel-tanks. Rubber insulating rings, so-called

‘O-rings’, were not pliable enough after the overnight low temperature of 31◦F,

and did not plug the joint between the fuel in the tanks and the intense heat

outside.

There are two types of joint, nozzle-joints and field-joints, each containing

a primary O-ring and a secondary O-ring, together with putty that insulates

both rings from the propellant gas. Table 1.3 gives the number of primary

rings, r, out of the total m = 6 field-joints, that had experienced ‘thermal

distress’ on previous flights. Thermal distress occurs when excessive heat pits

the ring — ‘erosion’ — or when gases rush past the ring — ‘blowby’. Blowby

can occur in the short gap after ignition before an O-ring seals. It can also

occur if the ring seals and then fails, perhaps because it has been eroded by

the hot gas. Bench tests had suggested that one cause of blowby was that the

O-rings lost their resilience at low temperatures. It was also suspected that

pressure tests conducted before each launch holed the putty, making erosion

of the rings more likely.

Table 1.3 shows the temperatures x1 and test pressures x2 associated with

thermal distress of the O-rings for flights before the disaster. The pattern

becomes clearer when the proportion of failures, r/m, is plotted against tem-

perature and pressure in Figure 1.3. As temperature decreases, r/m appears

to increase. There is less pattern in the corresponding plot for pressure.

For these data, the response variable takes one of the values 0, 1, . . . , 6, with

fairly strong dependence on temperature and possibly weaker dependence on

pressure. If we assume that at a given temperature and pressure, each of the
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Table 1.3 O-ring
thermal distress
data. r is the number
of field-joint O-rings
showing thermal
distress out of 6, for
a launch at the given
temperature (◦F)
and pressure (pounds
per square inch)
(Dalal et al., 1989).

Flight Date Number of O-rings with Temperature (◦F) Pressure (psi)
thermal distress, r x1 x2

1 21/4/81 0 66 50
2 12/11/81 1 70 50
3 22/3/82 0 69 50
5 11/11/82 0 68 50
6 4/4/83 0 67 50
7 18/6/83 0 72 50
8 30/8/83 0 73 100
9 28/11/83 0 70 100

41-B 3/2/84 1 57 200
41-C 6/4/84 1 63 200
41-D 30/8/84 1 70 200
41-G 5/10/84 0 78 200
51-A 8/11/84 0 67 200
51-C 24/1/85 2 53 200
51-D 12/4/85 0 67 200
51-B 29/4/85 0 75 200
51-G 17/6/85 0 70 200
51-F 29/7/85 0 81 200
51-I 27/8/85 0 76 200
51-J 3/10/85 0 79 200
61-A 30/10/85 2 75 200
61-B 26/11/86 0 76 200
61-C 21/1/86 1 58 200

61-I 28/1/86 — 31 200

six rings fails independently with equal probability, we can treat the number

of failures R as binomial with denominator m and probability π,

Pr(R = r) =
m!

r!(m − r)!π
r(1− π)m−r, r = 0, 1, . . . ,m, 0 < π < 1. (1.6)

One possible relation between temperature x1, pressure x2, and the prob-

ability of failure is π = β0 + β1x1 + β2x2, where the parameters β0, β1, and

β2 must be derived from the data. This has the drawback of predicting prob-

abilities outside the range [0, 1] for certain values of x1 and x2. It is more

satisfactory to use a function such as

π =
exp(β0 + β1x1 + β2x2)

1 + exp(β0 + β1x1 + β2x2)
,

so 0 < π < 1 wherever β0 + β1x1 + β2x2 roams in the real line. It turns out

that the function eu/(1+eu), the logistic distribution function, has an elegant

connection to the binomial density, but any other continuous distribution

function with domain the real line might be used.
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Figure 1.3 O-ring
thermal distress
data. The left panel
shows the proportion
of incidents as a
function of joint
temperature, and the
right panel shows the
corresponding plot
against pressure.
The x-values have
been jittered to
avoid overplotting
multiple points. The
solid lines show the
fitted proportions of
failures under a
model described in
Chapter 4.
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The night before the Challenger was launched, there was a lengthy dis-

cussion about how the O-rings might behave at the low predicted launch

temperature. One approach, which was not taken, would have been to try

and predict how many O-rings might fail based on an estimated relationship

between temperature and pressure. The lines in Figure 1.3 represent the esti-

mated dependence of failure probability on x1 and x2, and show a high prob-

ability of failure at the actual launch temperature. When this is used as input

to a probability model of how failures occur, the probability of catastrophic

failure for a launch at 31◦F is estimated to be as high as 0.16. To obtain this

estimate involves extrapolation outside the available data, but there would

have been little alternative in the circumstances of the launch.

Example 1.4 (Lung cancer data) Table 1.4 shows data on the lung

cancer mortality of cigarette smokers among British male physicians. The

table shows the man-years at risk and the number of cases with lung cancer,

cross-classified by the number of years of smoking, taken to be age minus

twenty years, and the number of cigarettes smoked daily. The man-years at

risk in each category is the total period for which the individuals in that

category were at risk of death.

As the eye moves from top left to the bottom right of the table, the figures

suggest that death rate increases with increased total cigarette consumption.

This is confirmed by Figure 1.4, which shows the death rate per 100,000 man-

years at risk, grouped by three levels of cigarette consumption. Data for the

first two groups show that death rate for smokers increases with cigarette

consumption and with years of smoking. The only nonsmoker deaths are one

in the age-group 35–39 and two in the age-group 75–79.
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Table 1.4 Lung
cancer deaths in
British male
physicians (Frome,
1983). The table
gives man-years at
risk/number of cases
of lung cancer,
cross-classified by
years of smoking,
taken to be age
minus 20 years, and
number of cigarettes
smoked per day.

Years of Daily cigarette consumption d
smoking t

Nonsmokers 1–9 10–14 15–19 20–24 25–34 35+

15–19 10366/1 3121 3577 4317 5683 3042 670
20–24 8162 2937 3286/1 4214 6385/1 4050/1 1166
25–29 5969 2288 2546/1 3185 5483/1 4290/4 1482
30–34 4496 2015 2219/2 2560/4 4687/6 4268/9 1580/4
35–39 3512 1648/1 1826 1893 3646/5 3529/9 1336/6
40–44 2201 1310/2 1386/1 1334/2 2411/12 2424/11 924/10
45–49 1421 927 988/2 849/2 1567/9 1409/10 556/7
50–54 1121 710/3 684/4 470/2 857/7 663/5 255/4
55–59 826/2 606 449/3 280/5 416/7 284/3 104/1

Figure 1.4 Lung
cancer deaths in
British male
physicians. The
figure shows the rate
of deaths per 1000
man-years at risk, for
each of three levels
of daily cigarette
consumption.
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In this problem the aspect of primary interest is how death rate depends

on cigarette consumption and smoking, and we treat the number of deaths in

each category as the response. To build a model, we suppose that the death

rate for those smoking d cigarettes per day after t years of smoking is λ(d, t)

deaths per man-year. Thus we may imagine deaths occurring at random in

the total T man-years at risk in that category, at rate λ(d, t). If deaths are

independent point events in a continuum of length T , the number of deaths,

Y , will have approximately a Poisson density with mean Tλ(d, t),

Pr(Y = y) =
{Tλ(d, t)}y

y!
exp{−Tλ(d, t)}, y = 0, 1, 2, . . . . (1.7)
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One possible form for the mean deaths per man-year is

λ(d, t) = β0t
β1
(
1 + β2d

β3
)
, (1.8)

based on a deterministic argument and used in animal cancer mortality stud-

ies. In (1.8) there are four unknown parameters, and power-law dependence

of death rate on exposure duration, t, and cigarette consumption, d. We ex-

pect that all the parameters βr are positive. The background death-rate in

the absence of smoking is given by β0t
β1 , the death-rate for nonsmokers. This

represents the overall effect of other causes of lung cancer.

Expressions (1.7) and (1.8) give the random and systematic components for

a simple model for the data, based on a blend of stochastic and deterministic

arguments. An increasingly important development in statistics is the use of

very complex models for real-world phenomena. Stochastic processes often

provide the blocks with which such models are built.

There is an important difference between Example 1.4 and the previous

examples. In Example 1.1, Darwin could decide which plants to cross and

where to plant them, in Example 1.2 the springs could be allocated to different

stresses by the experimenter, and in Example 1.3 the test pressure for field

joints was determined by engineers. The engineers would have no control over

the temperature at the proposed time of a launch, but they could decide

whether or not to launch at a given temperature. In each case, the allocation

of treatments could in principle be controlled, albeit to different extents. Such

situations, called controlled experiments, often involve a random allocation of

treatments — type of fertilization, level of stress or test pressure — to units

— plants, springs, or flights. Strong conclusions can in principle be drawn

when randomization is used — though it played no part in Examples 1.1 or

1.3, and we do not know about Example 1.2.

In Example 1.4, however, a new problem rears its head. There is no question

of allocating a level of cigarette consumption over a given period to individu-

als — the practical difficulties would be insuperable, quite apart from ethical

considerations. In common with many other epidemiological, medical, and

environmental studies, the data are observational, and this limits what con-

clusions may be drawn. It might be postulated that propensities to smoking

and to lung cancer were genetically related, causing the apparent dependence

in Table 1.4. Then for an individual to stop smoking would not reduce their

chance of contracting lung cancer. In such cases data of different types from

different sources must be gathered and their messages carefully collated and

interpreted in order to put together an unambiguous story.

Despite differences in interpretation, the use of probability models to sum-

marize variability and express uncertainty is the basis of each example. It is

the subject of this book.
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Outline

The idea of treating data as outcomes of random variables has implications for

how they should be treated. For example, graphical and numerical summaries

of the observations will show variation, and it is important to understand its

consequences. Chapter 2 is devoted to this. It deals with basic ideas such as

parameters, statistics, and sampling variation, simple graphs and other sum-

mary quantities, and then turns to notions of convergence, which are essential

for understanding variability in large samples and generating approximations

for small ones. Many statistics are based on quantities such as the largest item

in a sample, and order statistics are also discussed. The chapter finishes with

an account of moments and cumulants.

Variation in observed data leads to uncertainty about the reality behind

it. Uncertainty is a more complicated notion, because it entails considering

what it is reasonable to infer from the data, and people differ in what they

find reasonable. Chapter 3 explains one of the main approaches to expressing

uncertainty, leading to the construction of confidence intervals via quantities

known as pivots. In most cases these can only be approximate, but they are

often exact for models based on the normal distribution, which are then de-

scribed. The chapter ends with a brief account of Monte Carlo simulation,

which is used both to appreciate variability and to assess uncertainty.

In some cases information about model parameters θ can be expressed as a

density π(θ), separate from the data y. Then the prior uncertainty π(θ) may

be updated to posterior uncertainty π(θ | y) using Bayes’ theorem Thomas Bayes
(1702–1761) was a
nonconformist
minister and also a
mathematician. His
theorem is contained
in his Essay towards

solving a problem in

the doctrine of

chances, found in his
papers after his
death and published
in 1764.

π(θ | y) =
π(θ)f(y | θ)

f(y)
,

which converts the conditional density f(y | θ) of observing data y, given that

the true parameter is θ, into a conditional density for θ, given that y has been

observed. This Bayesian approach to inference is attractive and conceptually

simple, and modern computing techniques make it feasible to apply it to

many complex models. However many statisticians do not agree that prior

knowledge can or indeed should always be expressed as a prior density, and

believe that information in the data should be kept separate from prior beliefs,

preferring to base inference on the second term f(y | θ) in the numerator of

Bayes’ theorem, known as the likelihood.

Likelihood is a central idea for parametric models, and it and its ramifi-

cations are described in Chapter 4. Definitions of likelihood, the maximum

likelihood estimator and information are followed by a discussion of inference

based on maximum likelihood estimates and likelihood ratio statistics. The

chapter ends with brief accounts of non-regular models and model selection.

Chapters 5 and 6 describe some particular classes of models. Accounts are
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given of the simplest form of linear model, of exponential family and group

transformation models, of models for survival and missing data, and of those

with more complex dependence structures such as Markov chains, Markov

random fields, point processes, and the multivariate normal distribution.

Chapter 7 discusses more traditional topics of mathematical statistics, with

a more general treatment of point and interval estimation and testing than

in the previous chapters. It also includes an account of estimating functions,

which are needed subsequently.

Regression models describe how a response variable, treated as random,

depends on explanatory variables, treated as fixed. The vast majority of sta-

tistical modelling involves some form of regression, and three chapters of the

book are devoted to it. Chapter 8 describes the linear model, including its basic

properties, analysis of variance, model building, and variable selection. Chap-

ter 9 discusses the ideas underlying the use of randomization and designed ex-

periments, and closes with an account of mixed effect models, in which some

parameters are treated as random. These two chapters are largely devoted

to the classical linear model, in which the responses are supposed normally

distributed, but since around 1970 regression modelling has greatly broad-

ened. Chapter 10 is devoted to nonlinear models. It starts with an account

of likelihood estimation using the iterative weighted least squares algorithm,

which subsequently plays a unifying role, and then describes generalized linear

models, binary data and loglinear models, semiparametric regression by local

likelihood estimation and by penalized likelihood. It closes with an account of

regression modelling of survival data.

Bayesian statistics is discussed in Chapter 11, starting with discussion of the

role of prior information, followed by an account of Bayesian analogues of pro-

cedures developed in the earlier chapters. This is followed by a brief overview

of Bayesian computation, including Laplace approximation, the Gibbs sam-

pler and Metropolis–Hastings algorithm. The chapter closes with discussion of

hierarchical and empirical Bayes and a very brief account of decision theory.

Likelihood is a favourite tool of statisticians but sometimes gives poor infer-

ences. Chapter 12 describes some reasons for this, and outlines how conditional

or marginal likelihoods can give better procedures.

The main links among the chapters of this book are shown in Figure 1.5.

Notation

The notation used in this book is fairly standard, but there are not enough

letters in the Roman and Greek alphabets for total consistency. Greek letters

generally denote parameters or other unknowns, with α largely reserved for

error rates and confidence levels in connection with significance tests and
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Figure 1.5 A map
of the main
dependencies among
chapters of this
book. A solid line
indicates strong
dependence and a
dashed line indicates
partial dependence
through the given
subsections.
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confidence sets. Roman letters X , Y , Z, and so forth are mainly used for

random variables, which take values x, y, z.

Probability, expectation, variance, covariance, and correlation are denoted

Pr(·), E(·), var(·) cov(·, ·), and corr(·, ·), while cum(·, ·, · · ·) is occasionally used

to denote a cumulant. We use I(A) to denote the indicator random variable,

which equals 1 if the event A occurs and 0 otherwise. A related function is

the Heaviside function

H(u) =

{
0, u < 0,

1, u ≥ 0,
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whose generalized derivative is the Dirac delta function δ(u). This satisfies
∫
δ(y − u)g(u)du = g(y)

for any function g.

The Kronecker delta symbols δrs, δrst, and so forth all equal unity when all

their subscripts coincide, and equal zero otherwise.

We use bxc to denote the largest integer smaller than or equal to x, and

dxe to denote the smallest integer larger than or equal to x.

The symbol ≡ indicates that constants have been dropped in defining a log

likelihood, while
.
= means ‘approximately equals’. The symbols ∼,

.∼ ,
ind∼ ,

and
iid∼ are shorthand for ‘is distributed as’, ‘is approximately distributed

as’, ‘are independently distributed as’, and ‘are independent and identically

distributed as’, while
D
= means ‘has the same distribution as’. X ⊥ Y means

‘ X is independent of Y ’. We use
D−→ and

P−→ to denote convergence in

distribution and in probability. To say that Y1, . . . , Yn are a random sam-

ple from some distribution means that they are independent and identically

distributed according to that distribution.

We mostly reserve Z for standard normal random variables. As usualN(µ, σ2)

represents the normal distribution with mean µ and variance σ2. The standard

normal cumulative distribution and density functions are denoted Φ and φ.

We use cν(α), tν(α), and Fν1,ν2(α) to denote the α quantiles of the chi-squared

distribution, Student t distribution with ν degrees of freedom, and F distri-

bution with ν1 and ν2 degrees of freedom, while U(0, 1) denote the uniform

distribution on the unit interval. Almost everywhere, zα is the α quantile of

the N(0, 1) distribution.

The data values in a sample of size n, typically denoted y1, . . . , yn, are

the observed values of the random variables Y1, . . . , Yn; their average is y =

n−1
∑
yj and their sample variance is s2 = (n− 1)−1

∑
(yj − y)2.

We avoid boldface type, and rely on the context to make it plain when we

are dealing with vectors or matrices; aT denotes the matrix transpose of a

vector or matrix a. The identity matrix of side n is denoted In, and 1n is a

n × 1 vector of ones. If θ is a p × 1 vector and `(θ) a scalar, then ∂`(θ)/∂θ

is the p × 1 vector whose rth element is ∂`(θ)/∂θr, and ∂2`(θ)/∂θ∂θT is the

p× p matrix whose (r, s) element is ∂2`(θ)/∂θr∂θs.

The end of each example is marked thus:

Exercise 2.1.3 denotes the third exercise at the end of Section 2.1, Prob-

lem 2.3 is the third problem at the end of Chapter 2, and so forth.
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Variation

The key idea in statistical modelling is to treat the data as the outcome of a

random experiment. The purpose of this chapter is to understand some con-

sequences of this: how to summarize and display different aspects of random

data, and how to use results of probability theory to appreciate the varia-

tion due to this randomness. We outline the elementary notions of statistics

and parameters, and then describe how data and statistics derived from them

vary under sampling from statistical models. Many quantities used in practice

are based on averages or on ordered sample values, and these receive special

attention. The final section reviews moments and cumulants, which will be

useful in later chapters.

2.1 Statistics and Sampling Variation

2.1.1 Data summaries

The most basic element of data is a single observation, y — usually a number,

but perhaps a letter, curve, or image. Throughout this book we shall assume

that whatever their original form, the data can be recoded as numbers. We

shall mostly suppose that single observations are scalar, though sometimes

they are vectors or matrices.

We generally deal with an ensemble of n observations, y1, . . . , yn, known as

a sample. Occasionally interest centres on the given sample alone, and if n is

not tiny it will be useful to summarize the data in terms of a few numbers. We

say that a quantity s = s(y1, . . . , yn) that can be calculated from y1, . . . , yn is

a statistic. Such quantities may be wanted for many different purposes.

16
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Location and scale

Two basic features of a sample are its typical value and a measure of how

spread out the sample is, sometimes known respectively as location and scale.

They can be summarized in many ways.

Example 2.1 (Sample moments) Sample moments are calculated by

putting mass n−1 on each of the yj, and then calculating the mean, variance,

and so forth. The simplest of these sample moments are

y =
1

n

n∑

j=1

yj =
1

n
(y1 + · · ·+ yn) and

1

n

n∑

j=1

(yj − y)2;

we call the first of these the average. In practice the denominator n in the

second moment is usually replaced by n− 1, giving the sample variance

s2 =
1

n− 1

n∑

j=1

(yj − y)2. (2.1)

The denominator n− 1 is justified in Example 2.14.

Here y and s have the same dimensions as the yj, and are measures of

location and scale respectively.

Potential confusion is avoided by using the word average to refer to a quan-

tity calculated from data, and the words mean or expectation for the corre-

sponding theoretical quantity; this convention is used throughout this book.

Example 2.2 (Order statistics) The order statistics of y1, . . . , yn are

their values put in increasing order, which we denote y(1) ≤ y(2) ≤ · · · ≤ y(n).

If y1 = 5, y2 = 2 and y3 = 4, then y(1) = 2, y(2) = 4 and y(3) = 5. Examples

of order statistics are the sample minimum y(1) and sample maximum y(n),

and the lower and upper quartiles y(dn/4e) and y(d3n/4e). The lowest quarterdue denotes the
smallest integer
greater than or equal
to u.

of the sample lies below the lower quartile, and the highest quarter lies above

the upper quartile.

Among statistics that can be based on the y(j) are the sample median,

defined as

median(yj) =

{
y((n+1)/2), n odd,
1
2

(
y(n/2) + y(n/2+1)

)
, n even.

(2.2)

This is the centre of the sample: equal proportions of the data lie above and

below it.

All these statistics are examples of sample quantiles. The pth sample quan-

tile is the value with a proportion p of the sample to its left. Thus the mini-

mum, maximum, quartiles, and median are (roughly) the 0, 1, 0.25, 0.75 and
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0.5 sample quantiles. Like the median (2.2) when n is even, the pth sam-

ple quantile for non-integer pn is usually calculated by linear interpolation

between the order statistics that bracket it.

Another measure of location is the average of the central observations of

the sample. Suppose that p lies in the interval [0, 0.5), and that k = pn is an

integer. Then the p×100% trimmed average is defined as

1

n− 2k

n−k∑

j=k+1

y(j),

which is the usual average y when p = 0. The 50% trimmed average (p = 0.5)

is defined to be the median, while other values of p interpolate between the

average and the median. Linear interpolation is used when pn is non-integer.

The statistics above measure different aspects of sample location. Some

measures of scale based on the order statistics are the range, y(n) − y(1), the

interquartile range and the median absolute deviation,

IQR = y(d3n/4e) − y(dn/4e), MAD = median {|yi −median(yj)|} .
These are, respectively, the difference between the largest and smallest obser-

vations, the difference between the observations at the ends of the central 50%

of the sample, and the median of the absolute deviations of the observations

from the sample median. One would expect the range of a sample to grow

with its size, but the IQR and MAD should depend less on the sample size

and in this sense are more stable measures of scale.

It is easy to establish that the mapping y1, . . . , yn 7→ a + by1, . . . , a + byn
changes the values of location and scale measures in the previous examples

by m, s 7→ a+ bm, bs (Exercise 2.1.1); this seems entirely reasonable.

Bad data

The statistics described in Examples 2.1 and 2.2 measure different aspects

of location and of scale. They also differ in their susceptibility to bad data.

Consider what happens when an error, due perhaps to mistyping, results in an

observation that is unusual compared to the others — an outlier. If the ‘true’

y1 is replaced by y1 + δ, the average changes from y to y+ n−1δ, which could

be arbitrarily large, while the sample median changes by a bounded amount

— the most that can happen is that it moves to an adjacent observation. We

say that the sample median is resistant, while the average is not. Roughly a

quarter of the data would have to be contaminated before the interquartile

range could change by an arbitrarily large amount, while the range and sample

variance are sensitive to a single bad observation. The large-sample proportion

of contaminated observations needed to change the value of a statistic by an

arbitrarily large amount is called its breakdown point ; it is a common measure

of the resistance of a statistic.
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Table 2.1 Seven
successive days of
times (hours) spent
by women giving
birth in the delivery
suite at the John
Radcliffe Hospital.
(Data kindly
supplied by Ethel
Burns.)

Woman Day
1 2 3 4 5 6 7

1 2.10 4.00 2.60 1.50 2.50 4.00 2.00
2 3.40 4.10 3.60 4.70 2.50 4.00 2.70
3 4.25 5.00 3.60 4.70 3.40 5.25 2.75
4 5.60 5.50 6.40 7.20 4.20 6.10 3.40
5 6.40 5.70 6.80 7.25 5.90 6.50 4.20
6 7.30 6.50 7.50 8.10 6.25 6.90 4.30
7 8.50 7.25 7.50 8.50 7.30 7.00 4.90
8 8.75 7.30 8.25 9.20 7.50 8.45 6.25
9 8.90 7.50 8.50 9.50 7.80 9.25 7.00
10 9.50 8.20 10.40 10.70 8.30 10.10 9.00
11 9.75 8.50 10.75 11.50 8.30 10.20 9.25
12 10.00 9.75 14.25 10.25 12.75 10.70
13 10.40 11.00 14.50 12.90 14.60
14 10.40 11.20 14.30
15 16.00 15.00
16 19.00 16.50

Example 2.3 (Birth data) Table 2.1 shows data extracted from a census

of all the women who arrived to give birth at the John Radcliffe Hospital in

Oxford during a three-month period. The table gives the times that women

with vaginal deliveries —that is, without caesarian section — spent in the

delivery suite, for the first seven of 92 successive days of data.

The initial step in dealing with data is to scrutinize them closely, and to

understand how they were collected. In this case the time for each birth was

recorded by the midwife who attended it, and numerous problems might have

arisen in the recording. For example, one midwife might intend 4.20 to mean

4.2 hours, but another might mean 4 hours and 20 minutes. Moreover it is

difficult to believe that a time can be known as exactly as 2 hours and 6

minutes, as would be implied by the value 2.10. Furthermore, there seems to

be a fair degree of rounding of the data. In fact the data collection form was

carefully prepared, and the midwives were trained in how to compile it, so the

data are of high quality. Nevertheless it is important always to ask how theIdeally the
statistician assists in
deciding what data
are collected, and
how.

data were collected, and if possible to see the process at work.

The average of the n = 95 times in Table 2.1 is y = 7.57 hours. The variance

of the time spent in the delivery suite can be estimated by the sample variance,

s2 = 12.97 squared hours. The minimum, median, and maximum are 1.5, 7.5

and 19 hours respectively, and the quartiles are 4.95 and 9.75 hours. The 0.2

and 0.4 trimmed averages, 7.48 and 7.55 hours, are similar to y because there

are no gross outliers.



20 2 · Variation

Shape

The shape of a sample is also important. For example, the upper tails of

annual income distributions are typically very fat, because a few individuals

earn enormously more than most of us. The shape of such a distribution

can be used to assess inequality, for example by considering the proportion

of individuals whose annual income is less than one-half the median. Since

shape does not depend on location or scale, statistics intended to summarize

it should be invariant to location and scale shifts of the data.

Example 2.4 (Sample skewness) One measure of shape is the standard-

ized sample skewness,

g1 =
n−1

∑n
j=1(yj − y)3

{
(n− 1)−1

∑n
j=1(yj − y)2

}3/2
.

If the data are perfectly symmetric, g1 = 0, while if they have a heavy upper

tail, g1 > 0, and conversely. For the times in the delivery suite, g1 = 0.65: the

data are somewhat skewed to the right.

Example 2.5 (Sample shape) Measures of shape can also be based on

the sample quantiles. One is (y(d0.95ne)−y(d0.5ne))/(y(d0.5ne)−y(d0.05ne)), which

takes value one for a symmetric distribution, and is more resistant to outliers

than is the sample skewness. For the times in the delivery suite, this is 1.43,

again showing skewness to the right. A value less than one would indicate

skewness to the left.

It is straightforward to show that both these statistics are invariant to

changes in the location and scale of y1, . . . , yn.

Graphs

Graphs are indispensable in data analysis, because the human visual system

is so good at recognizing patterns that the unexpected can leap out and hit

the investigator between the eyes. An adverse effect of this ability is that This can lead to
inter-ocular trauma.patterns may be imagined even when they are absent, so experience, often

aided by suitable statistics, is needed to interpret a graph. As any plot can

be represented numerically, it too is a statistic, though to treat it merely as a

set of numbers misses the point.

Example 2.6 (Histogram) Perhaps the best-known statistical graph is

the histogram, constructed from scalar data by dividing the horizontal axis into

disjoint bins — the intervals I1, . . . , IK — and then counting the observations

in each. Let nk denote the number of observations in Ik, for k = 1, . . . ,K, so∑
k nk = n. If the bins have equal width δ, then Ik = [L + (k − 1)δ, L+ kδ),

where L, δ, and K are chosen so that all the yj lie between L and L +Kδ.
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Figure 2.1

Summary plots for
times in the delivery
suite, in hours.
Clockwise from top
left: histogram, with
rug showing values
of observations;
empirical
distribution
function; scatter plot
of daily average
hours against daily
median hours, for all
92 days of data, with
a line of unit slope
through the origin;
and boxplots for the
first seven days.

0 5 10 15 20 25

0.
0

0.
04

0.
08

0.
12

Hours Hours

E
m

pi
ric

al
 d

is
tr

ib
ut

io
n 

fu
nc

tio
n

0 5 10 15 20 25

0.
0

0.
2

0.
4

0.
6

0.
8

1.
0

0
5

10
15

20
25

H
ou

rs

1 2 3 4 5 6 7

Day

•

••
•

•
•

• •

•

•

•

•

•

•

•
•

•

•
•

• •

• •

•

•

•

•

•

•
•

••

••
•

••

• •
•

• •
•

•
•

•

•

•

•• •

• •

•

•

•

•

•

•

•

•

•

•

••

•

•

•••

•

•

•

•

•

•
•

•

•

• •

•

•

•

•

•

•

•

•

•

•

•

Daily average

D
ai

ly
 m

ed
ia

n

4 6 8 10 12

4
6

8
10

12

We then plot the proportion nk/n of the data in each bin as a column over it,

giving the probability density function for a discretized version of the data.

The upper left panel of Figure 2.1 shows this for the birth data in Table 2.1,

with L = 0, δ = 2, and K = 13; the rug of tickmarks shows the data values

themselves. As we would expect from Examples 2.4 and 2.5, the plot shows a

density skewed to the right, with the most popular values in the range 5–10

hours. To increase δ would give fewer, wider, bins, while decreasing δ would

give more, narrower, bins. It might be better to vary the bin width, with

narrower bins in the centre of the data, and wider ones at the tails.
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Example 2.7 (Empirical distribution function) The empirical distri-

bution function (EDF) is the cumulative probability distribution that puts

probability n−1 at each of y1, . . . , yn. This is expressed mathematically as

n−1
n∑

j=1

H(y − yj), (2.3)

where the distribution function that puts mass one at u = 0, that is,

H(u) =

{
0, u < 0,

1, u ≥ 0,

is known as the Heaviside function. The EDF is a step function that jumps

by n−1 at each of the yj ; of course it jumps by more at values that appear in

the sample several times.

The upper right panel of Figure 2.1 shows the EDF of the times in the

delivery suite. It is more detailed than the histogram, but perhaps conveys

less information about the shape of the data. Which is preferable is partly a

matter of taste, and depends on the use to which they will be put.

Example 2.8 (Scatterplot) When an observation has two components,

yj = (uj, vj), a scatter plot is a plot of the vj on the vertical axis against

the uj on the horizontal axis. An example is given in the lower right panel of

Figure 2.1, which shows the median daily time in the delivery suite plotted

against the average daily time, for the full 92 days for which data are available.

As most points lie below the line with unit slope, and as the slope of the

point cloud is slightly greater than one, the medians are generally smaller and

somewhat more variable than the averages. The average and sample variance

of the medians are 7.03 hours and 2.15 hours squared; the corresponding

figures for the averages are 7.90 and 1.54.

Example 2.9 (Boxplot) Boxplots are usually used to compare related sets

of data. An illustration is in the lower left panel of Figure 2.1, which compares

the hours in the delivery suite for the seven different days in Table 2.1. For

each day, the ends of the central box show the quartiles and the white line in

its centre represents the daily median: thus about one-half of the data lie in

the box, and its length shows the interquartile range IQR for that day. The

bracket above the box shows the largest observation less than or equal to the

upper quartile plus 1.5IQR. Likewise the bracket below shows the smallest

observation greater than or equal to the lower quartile minus 1.5IQR. Values

outside the brackets are plotted individually. The aim is to give a good idea

of the location, scale, and shape of the data, and to show potential outliers

clearly, in order to facilitate comparison of related samples. Here, for example,

we see that the daily median varies from 5–10 hours, and that the daily IQR

is fairly stable.
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It takes thought to make good graphs. Some points to bear in mind are:

• the data should be made to stand out, in particular by avoiding so-called

chart-junk — unnecessary labels, lines, shading, symbols and so forth;

• the axis labels and caption should make the graph as self-explanatory as

possible, in particular containing the names and units of measurement

of variables;

• comparison of related quantities should be made easy, for example by

using identical scales of measurement, and placing plots side by side;Perception
experiments have
shown that the eye is
best at judging
departures from 45◦.

• scales should be chosen so that the most important systematic relations

between variables are at about 45◦ to the axes;

• the aspect ratio — the ratio of the height of a plot to its width — can

be varied to highlight different features of the data;

• graphs should be laid out so that departures from ‘standard’ appear as

departures from linearity or from random scatter; and

• major differences in the precision of points should be indicated, at least

roughly.

Nowadays it is easy to produce graphs, but unfortunately even easier to pro-

duce bad ones: there is no substitute for drafting and redrafting each graph

to make it as clear and informative as possible.

2.1.2 Random sample

So far we have supposed that the sample y1, . . . , yn is of interest for its own

sake. In practice, however, data are usually used to make inferences about the

system from which they came. One reason for gathering the birth data, for

example, was to assess how the delivery suite should be staffed, a task that

involves predicting the patterns with which women will arrive to give birth,

and how long they are likely to stay in the delivery suite once they are there.

Though it is not useful to do this for births that have already occurred, the

data available can help in making predictions, provided we can forge a link

between the past and future. This is one use of a statistical model.

The fundamental idea of statistical modelling is to treat data as the ob-

served values of random variables. The most basic model is that the data

y1, . . . , yn available are the observed values of a random sample of size n,Or sometimes a
simple random

sample.
defined to be a collection of n independent identically distributed random

variables, Y1, . . . , Yn. We suppose that each of the Yj has the same cumu-

lative distribution function, F , which represents the population from which

the sample has been taken. If F were known, we could in principle use the

rules of probability calculus to deduce any of its properties — such as its

mean and variance, or the probability distribution for a future observation —

and any difficulties would be purely computational. In practice, however, F
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is unknown, and we must try to infer its properties from the data. Often the

quantity of central interest is a nonrandom function of F , such as its mean or

its p quantile, We use dF (y) to
accommodate the
possibility that F is
discrete. If it bothers
you, take
dF (y) = f(y) dy.

E(Y ) =

∫
y dF (y), yp = F−1(p) = inf{y : F (y) ≥ p}; (2.4)

these are the population analogues of the sample average and quantiles defined

in Examples 2.1 and 2.2. Often there is a simple form for F−1 and the infimum

is unnecessary. Other population quantities such as the interquartile range,

F−1
(

3
4

)
− F−1

(
1
4

)
, are defined similarly.

Example 2.10 (Laplace distribution) A random variable Y for which Pierre-Simon
Laplace (1749–1827)
helped establish the
metric system during
the French
Revolution but was
dismissed by
Napoleon ‘because
he brought the spirit
of the infinitely small
into the government’
— presumably
Bonaparte was
unimpressed by
differentiation.
Laplace worked on
celestial mechanics,
published an
important book on
probability, and
derived the least
squares rule.

f(y; η, τ) =
1

2τ
exp (−|y − η|/τ) , −∞ < y <∞, −∞ < η <∞, τ > 0,

(2.5)

is said to have the Laplace distribution. As f(η + u; η, τ) = f(η − u; η, τ)

for any u, the density is symmetric about η. Its integral is clearly finite, so

E(Y ) = η, and evidently its median y0.5 = η also. Its variance is

var(Y ) =
1

2τ

∫ ∞

−∞
(y − η)2 exp (−|y − η|/τ) dy = τ2

∫ ∞

0

u2e−u du = 2τ2,

as follows after the substitution u = (y − η)/τ and integration by parts; see

Exercise 2.1.3. Integration of (2.5) gives

F (y) =

{
1
2 exp {(y − η)/τ} , y ≤ η,
1− 1

2 exp {−(y − η)/τ} , y > η,

so

F−1(p) =

{
η + τ log(2p), p < 1

2 ,

η − τ log{2(1− p)}, p ≥ 1
2 ,

the interquartile range is

F−1
(

3
4

)
− F−1

(
1
4

)
= η + τ log 2− (η − τ log 2) = 2τ log 2,

and the median absolute deviation is τ log 2 (Exercise 2.1.5).

Quantities such as E(Y ), var(Y ) and F−1(p) are called parameters, and as

their values depend on F , they are typically unknown. If F is determined

by a finite number of parameters, θ, the model is parametric, and we may

write F = F (y; θ), with corresponding probability density function f(y; θ). We use the term
probability density
function to mean the
density function for
a continuous
variable, and the
mass function for a
discrete variable, and
use the notation
f(y; θ) in both cases.

Ignorance about F then boils down to uncertainty about θ.

It is natural to use sample quantities for inference about model parameters.

Suppose that the data Y1, . . . , Yn are a random sample from a distribution F ,

that we are interested in a parameter θ that depends on F , and that we wish

to use the statistic S = s(Y1, . . . , Yn) to make inferences about θ, for example
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Figure 2.2

Comparisons of 92
days of delivery suite
data with Poisson
and gamma models.
The left panel shows
a histogram of the
numbers of arrivals
per day, with the
PDF of the Poisson
distribution with
mean θ = 12.9
overlaid. The right
panel shows a
histogram of the
hours in the delivery
suite for the 1187
births, with the
PDFs of gamma
distributions
overlaid. The gamma
distributions all have
mean κ/λ = 7.93
hours. Their shape
parameters are
κ = 3.15 (solid), 0.8
(dots), 1 (small
dashes), and 5 (large
dashes).
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hoping that S will be close to θ. Then we call S an estimator of θ and say

that the particular value that S takes when the observed data are y1, . . . , yn,

that is, s = s(y1, . . . , yn), is an estimate of θ. This is the usual distinction

between a random variable and the value that it takes, here S and s.

Example 2.11 (Poisson distribution) The Poisson distribution withSiméon Denis
Poisson (1781–1840)
learned mathematics
in Paris from
Laplace and
Lagrange. He did
major work on
definite integrals, on
Fourier series, on
elasticity and
magnetism, and in
1837 published an
important book on
probability.

mean θ has probability density function

Pr(Y = y) = f(y; θ) =
θy

y!
e−θ, y = 0, 1, 2, . . . , θ > 0. (2.6)

This discrete distribution is used for count data. For example, the left panel of

Figure 2.2 shows a histogram of the number of women arriving at the delivery

suite for each of the 92 days of data, together with the probability density

function (2.6) with θ = 12.9, equal to the average number of arrivals over the

92 days. This distribution seems to fit the data more or less adequately.

Example 2.12 (Gamma distribution) The gamma distribution with

scale parameter λ and shape parameter κ has probability density function

Γ(κ) is the gamma

function; see
Exercise 2.1.3 for
some of its
properties.

f(y;λ, κ) =
λκyκ−1

Γ(κ)
exp(−λy), y > 0, λ, κ > 0. (2.7)

This distribution has mean κ/λ and variance κ/λ2.

When κ = 1 the density is exponential, for 0 < κ < 1 it is L-shaped,

and for κ > 1 it falls smoothly on either side of its maximum. These shapes

are illustrated in the right panel of Figure 2.2, which shows the hours in the

delivery suite for the 1187 births that took place over the three months of

data. In each case the mean of the density matches the data average of 7.93



26 2 · Variation

hours; the value κ = 3.15 of the shape parameter was chosen to match the

variance of the data by solving simultaneously the equations κ/λ = 7.93,

κ/λ2 = 12.97. Evidently the solid curve gives the best fit of those shown.

It is important to appreciate that the parametrization of F is not carved in

stone. Here it might be better to rewrite (2.7) in terms of its mean µ = κ/λ

and the shape parameter κ, in which case the density is expressed as

1

Γ(κ)

(
κ

µ

)κ
yκ−1 exp(−κy/µ), y > 0, µ, κ > 0, (2.8)

with variance µ2/κ. As functions of y the shapes of (2.7) and (2.8) are the

same, but their expression in terms of parameters is not. The range of possible

densities is the same for any 1–1 reparametrization of (κ, λ), so one might

write the density in terms of two important quantiles, for example, if this

made sense in the context of a particular application. The central issue in

choice of parametrization is directness of interpretation in the situation at

hand.

Example 2.13 (Laplace distribution) To express the Laplace density

(2.5) in terms of its mean and variance η and 2τ2, we set τ2 = σ2/2, giving

1√
2σ

exp
(
−
√

2|y − η|/σ
)
−∞ < y <∞, −∞ < η <∞, σ > 0.

Its shape as a function of y is unchanged, but the new formula is uglier.

2.1.3 Sampling variation

If the data y1, . . . , yn are regarded as the observed values of random variables,

then it follows that the sample and any statistics derived from it might have

been different. However, although we would expect variation over possible

sets of data, we would also expect to see systematic patterns induced by

the underlying model. For instance, having inspected the lower left panel

of Figure 2.1, we would be surprised to be told that the median hours in the

delivery suite on day 8 was 15 hours, though any value between 5 and 10 hours

would seem quite reasonable. From a statistical viewpoint, data have both a

random and a systematic component, and one common goal of data analysis is

to disentangle these as far as possible. In order to understand the systematic

aspect, it makes sense to ask how we would expect a statistic s(y1, . . . , yn)

to behave on average, that is, to try and understand the properties of the

corresponding random variable, S = s(Y1, . . . , Yn).

Example 2.14 (Sample moments) Suppose that Y1, . . . , Yn is a random

sample from a distribution with mean µ and variance σ2. Then the average
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Y has expectation and variance

E(Y ) = E



 1

n

n∑

j=1

Yj



 =
n

n
E(Yj) = µ,

var(Y ) = var



 1

n

n∑

j=1

Yj



 =
1

n2

n∑

j=1

var(Yj) =
σ2

n
,

because the Yj are independent identically distributed random variables. Thus

the expected value of the random variable Y is the population mean µ.

To find the expectation of the sample variance S2 = (n−1)−1
∑

j(Yj−Y )2,

note that

n∑

j=1

(Yj − Y )2 =

n∑

j=1

{
Yj − µ− (Y − µ)

}2

=

n∑

j=1

(Yj − µ)2 − 2

n∑

j=1

(Yj − µ)(Y − µ) +

n∑

j=1

(Y − µ)2

=

n∑

j=1

(Yj − µ)2 − 2n(Y − µ)2 + n(Y − µ)2

=

n∑

j=1

(Yj − µ)2 − n(Y − µ)2.

As

E
{
(n− 1)S2

}
= nE

{
(Yj − µ)2

}
− nE

{
(Y − µ)2

}

= nσ2 − nσ2/n

= (n− 1)σ2,

we see that S2 has expected value σ2. This explains our use of the denominator

n − 1 when defining the sample variance s2 in (2.1): the expectation of the

corresponding random variable equals the population variance.

The birth data of Table 2.1 have n = 95, and the realized values of the

random variables Y and S2 are y = 7.57 and s2 = 12.97. Thus y has esti-

mated variance s2/n = 12.97/95 = 0.137 and estimated standard deviation

0.1371/2 = 0.37. This suggests that the underlying ‘true’ mean µ of the pop-

ulation of times spent in the delivery suite by women giving birth is close to

7.6 hours.

Example 2.15 (Birth data) Figure 2.2 suggests the following simple

model for the birth data. Each day the number N of women arriving to give

birth is Poisson with mean θ. The jth of these women spends a time Yj in the
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delivery suite, where Yj is a gamma random variable with mean µ and vari-

ance σ2. The values of these parameters are θ
.
= 13, µ

.
= 8 hours and σ2 .

= 13

hours squared. The average time and median times spent, Y = N−1
∑
Yj and

M , vary from day to day, with the lower right panel of Figure 2.1 suggesting

that E(M) < E(Y ) and var(M) > var(Y ), properties we shall see theoretically

in Example 2.30.

Much of this book is implicitly or explicitly concerned with distinguishing

random and systematic variation. The notions of sampling variation and of a

random sample are central, and before continuing we describe a useful tool

for comparison of data and a distribution.

2.1.4 Probability plots

It is often useful to be able to check graphically whether data y1, . . . , yn come

from a particular distribution. Suppose that in addition to the data we had

a random sample x1, . . . , xn known to be from F . In order to compare the

shapes of the samples, we could sort them to get y(1) ≤ · · · ≤ y(n) and

x(1) ≤ · · · ≤ x(n), and make a quantile-quantile or Q-Q plot of y(1) against x(1),

y(2) against x(2), and so forth. A straight line would mean that y(j) = a+bx(j),

so that the shape of the samples was identical, while distinct curvature would

indicate systematic differences between them. If the line was close to straight,

we could be fairly confident that y1, . . . , yn looks like a sample from F — after

all, it would have a shape similar to the sample x1, . . . , xn which is from F .

Quantile-quantile plots are helpful for comparison of two samples, but when

comparing a single sample with a theoretical distribution it is preferable to

use F directly in a probability plot, in which the y(j) are graphed against

the plotting positions F−1{j/(n + 1)}. This use of the j/(n + 1) quantile of

F is justified in Section 2.3 as an approximation to E(X(j)), where X(j) is

the random variable of which x(j) is a particular value. For example, the jth

plotting positions for the normal and exponential distributions Φ{(x− µ)/σ}
and 1 − e−λx are µ + σΦ−1{j/(n+ 1)} and −λ−1 log{1 − j/(n + 1)}. When

parameters such as µ, σ, and λ are unknown, the plotting positions used are

for standardized distributions, here Φ−1{j/(n+1)} and − log{1− j/(n+1)},
which are sometimes called normal scores and exponential scores. Probability

plots for the normal distribution are particularly common in applications and

are also called normal scores plots. The interpretation of a probability plot is

aided by adding the straight line that corresponds to perfect fit of F .

Example 2.16 (Birth data) The top left panel of Figure 2.3 shows a

probability plot to compare the 95 times in the delivery suite with the normal

distribution. The distribution does not fit the largest and smallest observa-

tions, and the data show some upward curvature relative to the straight line.
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Figure 2.3

Probability plots for
hours in the delivery
suite, for the normal,
exponential, gamma,
and log-normal
distributions
(clockwise from top
left). In each panel
the dotted line is for
a fitted distribution
whose mean and
variance match those
of the data. None of
the fits is perfect,
but the gamma
distribution fits best,
and the exponential
worst.
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The top right panel shows that the exponential distribution would fit the data

very poorly. The bottom left panel, a probability plot of the log yj against nor-

mal plotting positions, corresponding to checking the log-normal distribution,

shows slight downward curvature. The bottom right panel, a probability plot

of the yj against plotting positions for the gamma distribution with mean y

and variance s2, shows the best fit overall, though it is not perfect.

In the normal and gamma plots the dotted line corresponds to the theo-

retical distribution whose mean equals y and whose variance equals s2; the

dotted line in the exponential plot is for the exponential distribution whose

mean equals y; and the dotted line in the log-normal plot is for the normal
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distribution whose mean and variance equal the average and variance of the

log yj .

Some experience with interpreting probability plots may be gained from

Practical 2.3.

Exercises 2.1

1 Let m and s be the values of location and scale statistics calculated from
y1, . . . , yn; m and s may be any of the quantities described in Examples 2.1
and 2.2. Show that the effect of the mapping y1, . . . , yn 7→ a+ by1, . . . , a+ byn
b > 0, is to send m, s 7→ a + bm, bs. Show also that the measures of shape in
Examples 2.4 and 2.5 are unchanged by this transformation.

2 (a) Show that when δ is added to one of y1, . . . , yn and |δ| → ∞, the average
y changes by an arbitrarily large amount, but the sample median does not. By
considering such perturbations when n is large, deduce that the sample median
has breakdown point 0.5. A sketch may help.

(b) Find the breakdown points of the other statistics in Examples 2.1 and 2.2.

3 (a) If κ > 0 is real and k a positive integer, show that the gamma function

Γ(κ) =

∫ ∞

0

uκ−1e−u du,

has properties Γ(1) = 1, Γ(κ + 1) = κΓ(κ) and Γ(k) = (k − 1)!. It is useful to

know that Γ( 1
2
) = π1/2, but you need not prove this.

(b) Use (a) to verify the mean and variance of (2.7).
(c) Show that for 0 < κ ≤ 1 the maximum value of (2.7) is at y = 0, and find
its mode when κ > 1. The mode of a

density f is a value y
such that
f(y) ≥ f(x) for all x.

4 Give formulae analogous to (2.4) for the variance, skewness and ‘shape’ of a
distribution F . Do they behave sensibly when a variable Y with distribution F
is transformed to a+ bY , so F (y) is replaced by F{(y − a)/b}?

5 Let Y have continuous distribution function F . For any η, show thatX = |Y −η|
has distribution G(x) = F (η + x) − F (η − x), x > 0. Hence give a definition of
the median absolute deviation of F in terms of F−1 and G−1. If the density of
Y is symmetric about the origin, show that G(x) = 2F (x) − 1. Hence find the
median absolute deviation of the Laplace density (2.5).

6 A probability plot in which y1, . . . , yn and x1, . . . , xn are two random samples
is called a quantile-quantile or Q-Q plot. Construct this plot for the first two
columns in Table 2.1. Are the samples the same shape?

7 The stem-and-leaf display for the data 2.1, 2.3, 4.5, 3.3, 3.7, 1.2 is

1 | 2
2 | 13
3 | 37
4 | 5

If you turn the page on its side this gives a histogram showing the data values
themselves (perhaps rounded); the units corresponding to intervals [1, 2), [2, 3)
and so forth are to the left of the vertical bars, and the digits are to the right.
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Construct this for the combined data for days 1–3 in Table 2.1. Hence find their
median, quartiles, interquartile range, and range.

8 Do Figures 2.1–2.3 follow the advice given on page 23? If not, how could they be
improved? Browse some textbooks and newspapers and think critically about
any statistical graphics you find.

2.2 Convergence

2.2.1 Modes of convergence

Intuition tells us that the bigger our sample, the more faith we can have in

our inferences, because our sample is more representative of the distribution

F from which it came — if the sample size n was infinite, we would effectively

know F . As n→∞ we can think of our sample Y1, . . . , Yn as converging to F ,

and of a statistic S = s(Y1, . . . , Yn) as converging to a limit that depends on

F . For our purposes there are two main ways in which a sequence of random

variables, S1, S2, . . ., can converge to another random variable S.

Convergence in probability

We say that Sn converges in probability to S, Sn
P−→ S, if for any ε > 0

Pr(|Sn − S| > ε)→ 0 as n→∞. (2.9)

A special case of this is the weak law of large numbers, whose simplest form is

that if Y1, Y2, . . . is a sequence of independent identically distributed random

variables each with finite mean µ, and if Y = n−1(Y1 + · · ·+Yn) is the average

of Y1, . . . , Yn, then Y
P−→ µ. We sometimes call this simply the weak law. It

is illustrated in the left-hand panels of Figure 2.4, which show histograms

of 10,000 averages of random samples of n exponential random variables,

with n = 1, 5, 10, and 20. The individual variables have density e−y for

y > 0, so their mean µ and variance σ2 both equal one. As n increases, the

values of Sn = Y become increasingly concentrated around µ, so as the figure

illustrates, Pr(|Sn − µ| > ε) decreases for each positive ε.

Statistics that converge in probability have some useful properties. For

example, if s0 is a constant, and h is a function continuous at s0, then if

Sn
P−→ s0, it follows that h(Sn)

P−→ h(s0) (Exercise 2.2.1).

An estimator Sn of a parameter θ is consistent if Sn
P−→ θ as n → ∞,

whatever the value of θ. Consistency is desirable, but a consistent estimator

that has poor properties for any realistic sample size will be useless in practice.

Example 2.17 (Binomial distribution) A binomial random variable

R =
∑m

j=1 Ij counts the numbers of ones in the random sample I1, . . . , Im,

each of which has a Bernoulli distribution,Jacob Bernoulli
(1654–1705) was a
member of a
mathematical family
split by rivalry. His
major work on
probability, Ars

Conjectandi, was
published in 1713,
but he also worked
on many other areas
of mathematics.
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Figure 2.4

Convergence in
probability and in
distribution. The left
panels show how
histograms of the
averages Y of 10,000
samples of n
standard exponential
random variables
become more
concentrated at the
mean µ = 1 as n
increases through 1,
5, 10, and 20, due to
the convergence in
probability of Y to
µ. The right panels
show how the
distribution of
Zn = n1/2(Y − 1)
approaches the
standard normal
distribution, due to
the convergence in
distribution of Zn to
normality.
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Pr(Ij = 1) = π, Pr(Ij = 0) = 1− π, 0 ≤ π ≤ 1.

It is easy to check that E(Ij) = π and var(Ij) = π(1− π). Thus the weak law

applies to the proportion of successes π̂ = R/m, giving π̂
P−→ π as m → ∞.

Evidently π̂ is a consistent estimator of π. However, the useless estimator
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π̂+ 106/ logm is also consistent — consistency is a minimal requirement, not

a guarantee that the estimator can safely be used in practice.

Each of the Ij has variance π(1 − π), and this is estimated by π̂(1 − π̂), a

continuous function of π̂ that converges in probability to π(1 − π).

Convergence in distribution

We say that the sequence Z1, Z2, . . ., converges in distribution to Z, Zn
D−→ Z,

if

Pr(Zn ≤ z) → Pr(Z ≤ z) as n→∞ (2.10)

at every z for which the distribution function Pr(Z ≤ z) is continuous. The

most important case of this is the central limit theorem, whose simplest version

applies to a sequence of independent identically distributed random variables

Y1, Y2, . . ., with finite mean µ and finite variance σ2 > 0. If the sample average

is Y = n−1(Y1 + · · ·+ Yn), the Central Limit Theorem states that

Zn = n1/2 (Y − µ)

σ

D−→ Z, (2.11)

where Z is a standard normal random variable, that is, one having the nor-

mal distribution with mean zero and variance one, written N(0, 1); see Sec-

tion 3.2.1.

The right panels of Figure 2.4 illustrate such convergence. They show his-

tograms of Zn for the averages in the left-hand panels, with the standard

normal probability density function superimposed. Each of the right-hand

panels is a translation to zero of the histogram to its left, followed by ‘zoom-

ing in’: multiplication by a scale factor n1/2/σ. As n increases, Zn approaches

its limiting standard normal distribution.

Example 2.18 (Average) Consider the average Y of a random sample

with mean µ and finite variance σ2 > 0. The weak law implies that Y is a

consistent estimator of its expected value µ, and (2.11) implies that in addition

Y = µ + n−1/2σZn, where Zn
D−→ Z. This supports our intuition that Y is

a better estimate of µ for large n, and makes explicit the rate at which Y

converges to µ: in large samples Y is essentially a normal variable with mean

µ and variance σ2/n.

Example 2.19 (Empirical distribution function) Let Y1, . . . , Yn be a

random sample from F , and let Ij(y) be the indicator random variable for

the event Yj ≤ y. Thus Ij(y) equals one if Yj ≤ y and zero otherwise. The

empirical distribution function of the sample is

F̂ (y) = n−1
n∑

j=1

Ij(y),
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a step function that increases by n−1 at each observation, as in the upper right

panel of Figure 2.1. We thought of (2.3) as a summary of the data y1, . . . , yn;

F̂ (y) is the corresponding random variable.

The Ij(y) are independent and each has the Bernoulli distribution with

probability Pr{Ij(y) = 1} = F (y). Therefore F̂ (y) is an average of inde-

pendent identically distributed variables and has mean F (y) and variance

F (y){1− F (y)}/n. At a value y for which 0 < F (y) < 1,

F̂ (y)
P−→ F (y), n1/2 {F̂ (y)− F (y)}

[F (y){1− F (y)}]1/2
D−→ Z, as n→∞, (2.12)

where Z is a standard normal variate. It can be shown that this pointwise

convergence for each y extends to convergence of the function F̂ (y) to F (y).

The empirical distribution function in Figure 2.1 is thus an estimate of the

true distribution of times in the delivery suite.

The alert reader will have noticed a sleight-of-word in the previous sentence.

Convergence results tell us what happens as n→∞, but in practice the sample

size is fixed and finite. How then are limiting results relevant? They are used to

generate approximations for finite n — for example, (2.12) leads us to hope

that n1/2{F̂ (y)− F (y)}/[F (y){1− F (y)}]1/2 has approximately a standard

normal distribution even when n is quite small. In practice it is important to

check the adequacy of such approximations, and to develop a feel for their

accuracy. This may be done analytically or by simulation (Section 3.3), while

numerical examples are also valuable.

Slutsky’s lemma
Evgeny Evgenievich
Slutsky (1880–1948)
made fundamental
contributions to
stochastic
convergence and to
economic time series
during the 1920s and
1930s. In 1902 he
was expelled from
university in Kiev for
political activity. He
studied in Munich
and Kiev and worked
in Kiev and Moscow.

Convergence in distribution is useful in statistical applications because we

generally want to compare probabilities. It is weaker than convergence in

probability because it does not involve the joint distribution of Sn and S. If

s0 and u0 are constants, these modes of convergence are related as follows:

Sn
P−→ S ⇒ Sn

D−→ S, (2.13)

Sn
D−→ s0 ⇒ Sn

P−→ s0, (2.14)

Sn
D−→ S and Un

P−→ u0 ⇒ Sn + Un
D−→ S + u0, SnUn

D−→ Su0.(2.15)

The third of these is known as Slutsky’s lemma. Devotees of tricky
analysis will find
references to proofs
of (2.13)–(2.15) in
Section 2.5.

Example 2.20 (Sample variance) Suppose that Y1, . . . , Yn is a random

sample of variables with finite mean µ and variance σ2. Let

Sn = n−1
n∑

j=1

(Yj − Y )2 = n−1
n∑

j=1

Y 2
j − Y

2
,
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where Y is the sample average. The weak law implies that Y
P−→ µ, and the

function h(x) = x2 is continuous everywhere, so Y
2 P−→ µ2. Moreover

E(Y 2
j ) = var(Yj) + {E(Yj)}2 = σ2 + µ2,

so n−1
∑
Y 2
j

P−→ σ2+µ2 also. Now (2.13) implies that n−1
∑
Y 2
j

D−→ σ2+µ2,

and therefore (2.15) implies that Sn
D−→ σ2. But σ2 is constant, so Sn

P−→ σ2.

The sample variance S2 may be written as Sn × n/(n − 1), which evi-

dently also tends in probability to σ2. Thus not only is it true that for all n,

E(S2) = σ2, but the distribution of S2 is increasingly concentrated at σ2 in

large samples.

These ideas extend to functions of several random variables.

Example 2.21 (Covariance and correlation) The covariance between

random variables X and Y is

γ = E[{X − E(X)}{Y − E(Y )}] = E(XY )− E(X)E(Y ).

An estimate of γ based on a random sample of data pairs (X1, Y1), . . . , (Xn, Yn)

is the sample covariance

C =
1

n− 1

n∑

j=1

(Xj −X)(Yj − Y ) =
n

n− 1



n−1
n∑

j=1

XjYj −XY



 ,

where X and Y are the averages of the Xj and Yj . Provided the moments

E(XY ), E(X) and E(Y ) are finite, the weak law applies to each of n−1
∑
XjYj ,

X and Y , which converge in probability to their expectations. The conver-

gence is also in distribution, by (2.13), so (2.15) implies that C
D−→ γ. But γ

is constant, so (2.14) implies that C
P−→ γ.

The correlation between X and Y ,

ρ =
E(XY )− E(X)E(Y )

{var(X)var(Y )}1/2
,

is such that −1 ≤ ρ ≤ 1. When |ρ| = 1 there is a linear relation betweenX and

Y , so that a+ bX + cY = 0 for some nonzero b and c (Exercise 2.2.3). Values

of ρ close to ±1 indicate strong linear dependence between the distributions

of X and Y , though values close to zero do not indicate independence, just

lack of a linear relation. The parameter ρ can be estimated from the pairs

(Xj , Yj) by the sample correlation coefficient,Also known as the
product moment

correlation

coefficient. R =

∑n
j=1(Xj −X)(Yj − Y )

{∑n
i=1(Xi −X)2

∑n
k=1(Yk − Y )2

}1/2
.

The keen reader will enjoy showing that R
P−→ ρ.
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Example 2.22 (Studentized statistic) Suppose that (Tn−θ)/var(Tn)
1/2

converges in distribution to a standard normal random variable, Z, and that

var(Tn) = τ2/n, where τ2 > 0 is unknown but finite. Let Vn be a statistic

that estimates τ2/n, with the property that nVn
P−→ τ2. The function h(x) =

τ/(nx)1/2 is continuous at x = 1, so τ/(nVn)1/2
P−→ 1. Therefore

Zn = n1/2 (Tn − θ)
τ

× τ

(nVn)1/2
D−→ Z × 1,

by (2.15). Thus Zn has a limiting standard normal distribution provided that

nVn is a consistent estimator of τ2.

The best-known instance of this is the average of a random sample, Y =

n−1(Y1 + · · ·+ Yn). If the Yj have finite mean θ and finite positive variance,

σ2, Y has mean θ and variance σ2/n. The Central Limit Theorem states that

n1/2 (Y − θ)
σ

D−→ Z.

Consider Zn = n1/2(Y − θ)/S, where S2 = (n− 1)−1
∑

(Yj − Y )2. Exam-

ple 2.20 shows that S2 P−→ σ2, and it follows that Zn
D−→ Z.

The replacement of var(Tn) by an estimate is called studentization to hon-

our W. S. Gossett. Publishing under the pseudonym ‘Student’ in 1908, he William Sealy
Gossett (1876–1937)
worked at the
Guinness brewery in
Dublin. Apart from
his contributions to
beer and statistics,
he also invented a
boat with two
rudders that would
be easy to
manoeuvre when fly
fishing.

considered the effect of replacing σ by S for normal data; see Section 3.2.

Intuition suggests that bigger samples always give better estimates, but

intuition can mislead or fail.

Example 2.23 (Cauchy distribution) A Cauchy random variable cen-

Augustin Louis
Cauchy (1789–1857)
made contributions
to all the areas of
mathematics known
at his time. He was a
pioneer of real and
complex analysis,
but also developed
applied techniques
such as Fourier
transforms and the
diagonalization of
matrices in order to
work on elasticity
and the theory of
light. His relations
with contemporaries
were often poor
because of his rigid
Catholicism and his
difficult character.

tred at θ has density

f(y; θ) =
1

π{1 + (y − θ)2} , −∞ < y <∞, −∞ < θ <∞. (2.16)

Although (2.16) is symmetric with mode at θ, none of its moments exist, and

in fact the average Y of a random sample Y1, . . . , Yn of such data has the

same distribution as a single observation. So if we were unlucky enough to

have such a sample, it would be useless to estimate θ by Y : we might as well

use Y1. The difficulty is that the tails of the Cauchy density decrease very

slowly. Data with similar characteristics arise in many financial and insurance

contexts, so this is not a purely mathematical issue: the average may be a

poor estimate, and better ones are discussed later.
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2.2.2 Delta method

Variances and variance estimates are often required for smooth functions of

random variables. Suppose that the quantity of interest is h(Tn), and

(Tn − µ)/var(Tn)
1/2 D−→ Z, nvar(Tn)

P−→ τ2 > 0,

as n → ∞, and Z has the standard normal distribution. Then we may write

Tn = µ+n−1/2τZn, where Zn
D−→ Z. If h has a continuous non-zero derivative

h′ at µ, Taylor series expansion gives

h(Tn) = h(µ+ n−1/2τZn) = h(µ) + n−1/2τZnh
′(µ+ n−1/2τWn),

where Wn lies between Zn and zero. As h′ is continuous at µ, it follows that

h′(µ+ n−1/2τWn)
P−→ h′(µ), so (2.15) gives

n1/2{h(Tn)− h(µ)}
τh′(µ)

=
n1/2{h(Tn)− h(µ)}
τh′(µ+ n−1/2τWn)

× h′(µ+ n−1/2τWn)

h′(µ)

= Zn ×
h′(µ+ n−1/2τWn)

h′(µ)
D−→ Z

as n → ∞. This implies that in large samples, h(Tn) has approximately the

normal distribution with mean h(µ) and variance var(Tn)h
′(µ)2, i.e..∼ means ‘is

approximately
distributed as’.

h(Tn)
.∼ N(h(µ), var(Tn)h

′(µ)2). (2.17)

This result is often called the delta method. Analogous results apply if the

limiting distribution of Zn is non-normal.

Furthermore, if h′(µ) is replaced by h′(Tn) and τ2 is replaced by a consistent

estimator, Sn, a modification of the argument in Example 2.22 gives

n1/2{h(Tn)− h(µ)}
S

1/2
n |h′(Tn)|

D−→ Z. (2.18)

Thus the same limiting results apply if the variance of h(Tn) is replaced

by a consistent estimator. In particular, replacement of the parameters in

var(Tn)h
′(µ)2 by consistent estimators gives a consistent estimator of var{h(Tn)}.

Example 2.24 (Exponential transformation) Consider h(Y ) = exp(Y ),

where Y is the average of a random sample of size n, and each of the Yj
has mean µ and variance σ2. Here h′(µ) = eµ, so exp(Y ) is asymptoti-

cally normal with mean eµ and variance n−1σ2e2µ. This can be estimated

by n−1S2 exp(2Y ), where S2 is the sample variance.
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Several variables

The delta method extends to functions of several random variables T1, . . . , Tp;

we suppress dependence on n for ease of notation. As n → ∞, suppose that

for each r, n−1/2(Tr−θr) D−→ N(0, ωrr), that the joint limiting distribution of

n−1/2(Tr − θr) is multivariate normal (see Section 3.2.3) and ncov(Tr, Ts)→
ωrs, where the p× p matrix Ω whose (r, s) element is ωrs is positive-definite;

note that Ω is symmetric. Now suppose that a variance is required for the

scalar function h(T1, . . . , Tp). An argument like that above gives

h(T1, . . . , Tp)
.∼ N

{
h(θ1, . . . , θp), n

−1h′(θ)
T
Ωh′(θ)

}
, (2.19)

where h′(θ) is the p × 1 vector whose rth element is ∂h(θ1, . . . , θp)/∂θr; the

requirement that h′(θ) 6= 0 also holds here. As in the univariate case, the

variance can be estimated by replacing parameters with consistent estimators.

Example 2.25 (Ratio) Let θ1 = E(X) 6= 0 and θ2 = E(Y ), and suppose

we are interested in h(θ1, θ2) = θ2/θ1. Estimates of θ1 and θ2 based on random

samplesX1, . . . , Xn and Y1, . . . , Yn are T1 = X and T2 = Y , so the ratio is con-

sistently estimated by T2/T1. The derivative vector is h′(θ) = (−θ2/θ21, θ−1
1 )T,

and the limiting mean and variance of T2/T1 are

θ2
θ1
, n−1 (−θ2/θ21 θ−1

1 )

(
ω11 ω12

ω21 ω22

)(−θ2/θ21
θ−1
1

)
,

the second of which equals

(nθ21)
−1

{
ω11

(
θ2
θ1

)2

− 2ω12
θ2
θ1

+ ω22

}
,

assumed finite and positive. The variance tends to zero as n → ∞, so we

should aim to estimate nvar(T2/T1), which is not a moving target.

Examples 2.20 and 2.21 imply that ω11, ω22, and ω12 are consistently es-

timated by S2
1 = (n − 1)−1

∑
(Xj − X)2, S2

2 = (n − 1)−1
∑

(Yj − Y )2, and

C = (n − 1)−1
∑

(Xj − X)(Yj − Y ) respectively. Therefore nvar(Y /X) is

consistently estimated by

X
−2

{
S2

1

(
Y

X

)2

− 2C
Y

X
+ S2

2

}
=

1

(n− 1)X
2

n∑

j=1

(
Yj −

Y

X
Xj

)2

,

as we see after simplification.

Example 2.26 (Gamma shape) In Example 2.12 the shape parameter κ

of the gamma distribution was taken to be y2/s2 = 3.15, based on n = 95

observations. The corresponding random variable is T 2
1 /T2, where T1 = Y and

T2 = S2 are calculated from the random sample Y1, . . . , Yn, supposed to be

gamma with mean θ1 = κ/λ and variance θ2 = κ/λ2. We take h(θ1, θ2) =
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θ21/θ2, giving h′(θ1, θ2) = (2θ1/θ2,−θ21/θ22)T. The variance of T1 is θ2/n, that

is, n−1κ/λ2, and it turns out that

var(T2) = var(S2) =
κ4

n
+

2κ2
2

n− 1
, cov(T1, T2) = cov(Y , S2) =

κ3

n
,

where κ2 = κ/λ2, κ3 = 2κ/λ3, and κ4 = 6κ/λ4. Thus

var(T 2
1 /T2)

.
= ( 2λ −λ2 )

( κ
nλ2

2κ
nλ3

2κ
nλ3

6κ
nλ4 + 2κ2

(n−1)λ4

)(
2λ

−λ2

)

=
2κ

n

(
1 +

nκ

n− 1

)
,

or roughly 2n−1κ(κ+ 1).

Big and little oh notation: O and o
This can be skipped
on a first reading. For two sequences of constants, {sn} and {an} such that an ≥ 0 for all n, we

write sn = o(an) if limn→∞(sn/an) = 0, and sn = O(an) if there is a finite

constant k such that limn→∞ |sn| ≤ ank. A sequence of random variables {Sn}
is said to be op(an) if (Sn/an)

P−→ 0 as n → ∞, and is said to be Op(an) if

Sn/an is bounded in probability as n → ∞, that is, given ε > 0 there exist

n0 and a finite k such that for all n > n0,

Pr(|Sn/an| < k) > 1− ε.

This gives a useful shorthand for expansions of random quantities.

To illustrate this, suppose that {Yj} is a sequence of independent identically

distributed variables with finite mean µ, and let Sn = n−1(Y1+· · ·+Yn). Then

the weak law may be restated as Sn = µ+op(1), and if in addition the Yj have

finite variance σ2, the Central Limit Theorem implies that Y = µ+Op(n
−1/2).D

= means ‘has the
same distribution
as’. More precisely, Y

D
= µ+n−1/2σZ+op(n

−1/2), where Z has a standard normal

distribution. Such expressions are sometimes used in later chapters.

Exercises 2.2

1 Suppose that Sn
P−→ s0, and that the function h is continuous at s0, that is, for

any ε > 0 there exists a δ > 0 such that |x−y| < δ implies that |h(x)−h(y)| < ε.
Explain why this implies that

Pr(|Sn − s0| < δ) ≤ Pr{|h(Sn) − h(s0)| < ε} ≤ 1,

and deduce that Pr{|h(s0)−h(Sn)| < ε} → 1 as n→ ∞. That is, h(Sn)
P−→ h(s0).

2 Let s0 be a constant. By writing

Pr(|Sn − s0| ≤ ε) = Pr(Sn ≤ s0 + ε) − Pr(Sn ≤ s0 − ε),

for ε > 0, show that Sn
D−→ s0 implies that Sn

P−→ s0.
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3 (a) Let X and Y be two random variables with finite positive variances. Use
the fact that var(aX + Y ) ≥ 0, with equality if and only if the linear combi-
nation aX + Y is constant with probability one, to show that cov(X,Y )2 ≤
var(X)var(Y ); this is a version of the Cauchy–Schwarz inequality. Hence show
that −1 ≤ corr(X,Y ) ≤ 1, and say under what conditions equality is attained.
(b) Show that if X and Y are independent, corr(X,Y ) = 0. Show that the
converse is false by considering the variables X and Y = X2 − 1, where X has
mean zero, variance one, and E(X3) = 0.

4 Let X1, . . . ,Xn and Y1, . . . , Yn be independent random samples from the expo-
nential densities λe−λx, x > 0, and λ−1e−y/λ, y > 0, with λ > 0. If X and Y

are the sample averages, show that X Y
P−→ 1 as n→ ∞.

5 Show that as n → ∞ the skewness measure in Example 2.4 converges in prob-
ability to the corresponding theoretical quantity

∫
(y − µ)3dF (y)

{∫
(y − µ)2dF (y)

}3/2
,

provided this has finite numerator and positive denominator. Under what ad-
ditional condition(s) is the skewness measure asymptotically normal?

iid∼ means ‘are
independent and
identically
distributed as’.

6 If Y1, . . . , Yn
iid∼ N(µ, σ2), show that n1/2(Y − µ)2

P−→ 0 as n→ ∞. Given that

var{(Yj − µ)2} = 2σ4, deduce that (S2 − σ2)/(2σ4/n)1/2
D−→ Z, where Z ∼

N(0, 1). When is this true for non-normal data?

7 Let R be a binomial variable with probability π and denominator m; its mean
and variance are mπ and mπ(1 − π). The empirical logistic transform of R is

h(R) = log

(
R+ 1

2

m−R+ 1
2

)
.

Show that for large m,

h(R)
.∼ N

{
log
(

π

1 − π

)
,

1

mπ(1 − π)

}
.

What is the exact value of E[log{R/(m−R)}]? Are the 1
2
s necessary in practice?

8 Truncated Poisson variables Y arise when counting quantities such as the sizes
of groups, each of which must contain at least one element. The density is

Pr(Y = y) =
θye−θ

y! (1 − e−θ)
, y = 1, 2, . . . , θ > 0.

Find an expression for E(Y ) = µ(θ) in terms of θ. If Y1, . . . , Yn is a random

sample from this density and n→ ∞, show that Y
P−→ µ(θ). Hence show that

θ̂ = µ−1(Y )
P−→ θ.

9 Let Y = exp(X), where X ∼ N(µ, σ2); Y has the log-normal distribution. Use
the moment-generating function of X to show that E(Y r) = exp(rµ+ r2σ2/2),
and hence find E(Y ) and var(Y ).

If Y1, . . . , Yn is a log-normal random sample, show that both T1 = Y and T2 =
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exp(X + S2/2) are consistent estimators of E(Y ), where Xj = log Yj and S2 is
the sample variance of the Xj . Give the corresponding estimators of var(Y ).
Are the estimators based on the Yj or on the Xj preferable? Why?

10 The binomial distribution models the number of ‘successes’ among indepen-
dent variables with two outcomes such as success/failure or white/black. The
multinomial distribution extends this to p possible outcomes, for example total
failure/failure/success or white/black/red/blue/. . .. That is, each of the dis-
crete variables X1, . . . ,Xm takes values 1, . . . , p, independently with probabil-
ity Pr(Xj = r) = πr, where

∑
πr = 1, πr ≥ 0. Let Yr =

∑
j
I(Xj = r) be

the number of Xj that fall into category r, for r = 1, . . . , p, and consider the
distribution of (Y1, . . . , Yp).
(a) Show that the marginal distribution of Yr is binomial with probability πr,
and that cov(Yr, Ys) = −mπrπs, for r 6= s. Is it surprising that the covariance
is negative?
(b) Hence give consistent estimators of positive probabilities πr. What happens
if some πr = 0?
(d) Suppose that p = 4 with π1 = (2 + θ)/4, π2 = (1 − θ)4, π3 = (1 − θ)/4
and π4 = θ/4. Show that T = m−1(Y1 + Y4 − Y2 − Y3) is such that E(T ) = θ
and var(T ) = a/m for some a > 0. Hence deduce that T is consistent for θ as
m→ ∞.
Give the value of T and its estimated variance when (y1, y2, y3, y4) equals
(125, 18, 20, 34).

2.3 Order Statistics

Summary statistics such as the sample median, interquartile range, and me-

dian absolute deviation are based on the ordered values of a sample y1, . . . , yn,

and they are also useful in assessing how closely a sample matches a specified

distribution. In this section we study properties of ordered random samples.

The rth order statistic of a random sample Y1, . . . , Yn is Y(r), where

Y(1) ≤ Y(2) ≤ · · · ≤ Y(n−1) ≤ Y(n)

is the ordered sample. We assume that the cumulative distribution F of the

Yj is continuous, so Y(r) < Y(r+1) with probability one for each r and there

are no ties.

Density function

To find the probability density of Y(r), we argue heuristically. Divide the line

into three intervals: (−∞, y), [y, y + dy), and [y + dy,∞). The probabilitiesThe dy is a
rhetorical device so
that we can say the
probability that
Y = y is f(y)dy.

that a single observation falls into each of these intervals are F (y), f(y)dy,

and 1− F (y) respectively. Therefore the probability that Y(r) = y is

n!

(r − 1)! 1! (n− r)! × F (y)r−1 × f(y)dy × {1− F (y)}n−r, (2.20)

where the second term is the probability that a prespecified r−1 of the Yj fall

in (−∞, y), the third the probability that a prespecified one falls in [y, y+dy),
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the fourth the probability that a prespecified n− r fall in [y+dy,∞), and the

first is a combinatorial multiplier giving the number of ways of prespecifying

disjoint groups of sizes r − 1, 1, and n− r out of n.

If we drop the dy, expression (2.20) becomes a probability density function,

from which we can derive properties of Y(r). For example, its mean is

E(Y(r)) =
n!

(r − 1)!(n− r)!

∫ ∞

−∞
yf(y)F (y)r−1{1− F (y)}n−r dy (2.21)

when it exists; of course we expect that E(Y(1)) < · · · < E(Y(n)).

Example 2.27 (Uniform distribution) Let U1, . . . , Un be a random sam-

ple from the uniform distribution on the unit interval,

Pr(U ≤ u) =






0, u ≤ 0,

u, 0 < u ≤ 1,

1, 1 < u;

(2.22)

we write U1, . . . , Un
iid∼ U(0, 1). As f(u) = 1 when 0 < u < 1, U(r) has density

fU(r)
(u) =

n!

(r − 1)!(n− r)!u
r−1(1− u)n−r, 0 < u < 1, (2.23)

and (2.21) shows that E(U(r)) equals

n!

(r − 1)!(n− r)!

∫ 1

0

uur−1(1 − u)n−r dy =
n!

(r − 1)!(n− r)!
r!(n − r)!
(n+ 1)!

=
r

n+ 1
;

the value of the integral follows because (2.23) must have integral one for any

r in the range 1, . . . , n and any positive integer n. The expected positions of

the n order statistics divide the unit interval and hence the total probability

under the density into n+ 1 equal parts.

It is an exercise to show that U(r) has variance r(n−r+1)/{(n+1)2(n+2)}
(Exercise 2.3.1). For large n this is approximately n−1p(1−p), where p = r/n,

and hence we can write U(r) = r/(n+1)+{p(1−p)/n}1/2ε, where ε is a random

variable with mean zero and variance approximately one.

Integrals such as (2.21) are nasty, but a good approximation is often avail-

able. Let U,U1, . . . , Un
iid∼ U(0, 1) and F−1(u) = min{y : F (y) ≥ u}. Then Recall that every

distribution function
is right-continuous.Pr{F−1(U) ≤ y} = Pr{U ≤ F (y)} = F (y),

which is the distribution function of Y . Hence Y
D
= F−1(U); note that for

continuous F the variable F (Y ) has the U(0, 1) distribution; F (Y ) is called the

probability integral transform of Y . It follows that F−1(U1), . . . , F
−1(Un) is a

random sample from F and that the joint distributions of the order statistics
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Y(1), . . . , Y(n) and of F−1(U(1)), . . . , F
−1(U(n)) are the same; in fact this is

true for general F . Consequently E(Y(r)) = E{F−1(U(r))}. But Example 2.27

implies that U(r)
D
= r/(n+1)+{p(1−p)/n}1/2ε, where ε is a random variable

with mean zero and unit variance. If we apply the delta method with h = F−1,

we obtain

E(Y(r)) = E{F−1(U(r))} .= F−1{E(U(r))} = F−1{r/(n+ 1)}. (2.24)

Hence the plotting positions F−1{r/(n+ 1)} are approximate expected order

statistics, justifying their use in probability plots; see Section 2.1.4.

Several order statistics

The argument leading to (2.20) can be extended to the joint distribution of any

collection of order statistics. For example, the probability that the maximum,

Y(n), takes value v and that the minimum, Y(1), takes value u, is

n!

1!(n− 2)!1!
× f(u)du× {F (v)− F (u)}n−2 × f(v)dv, u < v,

and is zero otherwise. Similarly the joint density of all n order statistics is

fY(1),...,Y(n)
(y1, . . . , yn) = n!f(y1)× · · · × f(yn), y1 < · · · < yn. (2.25)

In principle one can use (2.25) to calculate other properties of the joint distri-

bution of the Y(r), but this can be very tedious. Here is an elegant exception:

Example 2.28 (Exponential order statistics) Consider the order statis-

tics of a random sample Y1, . . . , Yn from the exponential density with param-

eter λ > 0, for which Pr(Y > y) = e−λy. Let E1, . . . , En denote a random

sample of standard exponential variables, with λ = 1. Thus Yj
D
= Ej/λ.

The reasoning uses two facts. First, the distribution function of min(Y1, . . . , Yr)

is

1− Pr {min(Y1, . . . , Yr) > y} = 1− Pr {Y1 > y, . . . , Yr > y}
= 1− Pr(Y1 > y)× · · · × Pr(Yr > y)

= 1− exp(−rλy);

this is exponential with parameter rλ. Second, the exponential density has

the lack-of-memory property

Pr(Y − x > y | Y > x) =
Pr(Y > x+ y)

Pr(Y > x)
=

exp{−λ(x+ y)}
exp(−λx) = exp(−λy),

implying that given that Y − x is positive, its distribution is the same as the

original distribution of Y , whatever the value of x.

We now argue as follows. Since Y(1) = min(Y1, . . . , Yn), its distribution is

exponential with parameter nλ: Y(1)
D
= E1/(nλ). Given Y(1), n − 1 of the Yj
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Figure 2.5

Exponential order
statistics for a
sample of size n = 5.
The time to y(1) is
the time to first
event in a Poisson
process of rate 5λ,
and so it has the
exponential
distribution with
mean 1/(5λ). The
spacing y(2) − y(1) is
the time to first
event in a Poisson
process of rate 4λ,
and is independent
of y(1) because of
the lack-of-memory
property. It follows
likewise that the
spacings are
independent and
that the rth spacing
has the exponential
distribution with
parameter
(n+ 1 − r)λ.
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remain, and by the lack-of-memory property the distribution of Yj − Y(1) for

each of them is the same as if the experiment had started at Y(1) with just

n− 1 variables; see Figure 2.5. Thus Y(2)−Y(1) is exponential with parameter During the second
world war Alfréd
Rényi (1921–1970)
escaped from a
labour camp and
rescued his parents
from the Budapest
ghetto. He made
major contributions
to number theory
and to probability.
He was a gifted
raconteur who
defined a
mathematician as ‘a
machine for turning
coffee into theorems’.

(n− 1)λ, independent of Y(1), giving Y(2) − Y(1)
D
= E2/{(n− 1)λ}. But given

Y(2), just n − 2 of the Yj remain, and by the lack-of-memory property the

distribution of Yj − Y(2) for each of them is exponential independent of the

past; hence Y(3) − Y(2)
D
= E3/{(n − 2)λ}. This argument yields the Rényi

representation

Y(r)
D
= λ−1

r∑

j=1

Ej
n+ 1− j , (2.26)

from which properties of the Y(r) are easily derived. For example,

E
(
Y(r)

)
= λ−1

r∑

j=1

1

n+ 1− j , cov
(
Y(r), Y(s)

)
= λ−2

r∑

j=1

1

(n+ 1− j)2 , s ≥ r.

The upper right panel of Figure 2.3 shows a plot of the ordered times in the

delivery suite against standard exponential plotting positions or exponential

scores,
∑r

j=1(n+1− j)−1 .
= − log{1− r/(n+1)}. The exponential model fits

very poorly.

The argument leading to (2.26) may be phrased in terms of Poisson pro-

cesses. A superposition of independent Poisson processes is itself a Poisson

process with rate the sum of the individual rates, so the period from zero to

Y(1) is the time to the first event in a Poisson process of rate nλ, the time from

Y(1) to Y(2) is the time to first event in a Poisson process of rate (n−1)λ, and



2.3 · Order Statistics 45

so on, with the times between events independent by definition of a Poisson

process; see Figure 2.5. Exercise 2.3.4 gives another derivation.

Approximate density

Although (2.20) gives the exact density of an order statistic for a random sam-

ple of any size, approximate results are usually more convenient in practice.

Suppose that r is the smallest integer greater than or equal to np, r = dnpe,
for some p in the range 0 < p < 1. Then provided that f{F−1(p)} > 0, we

prove at the end of this section that Y(r) has an approximate normal distri-

bution with mean F−1(p) and variance n−1p(1 − p)/f{F−1(p)}2 as n → ∞.

More formally,

√
n
{Y(r) − F−1(p)}f{F−1(p)}

{p(1− p)}1/2
D−→ Z as n→∞, (2.27)

where Z has a standard normal distribution.

Example 2.29 (Normal median) Suppose that Y1, . . . , Yn is a random

sample from theN(µ, σ2) distribution, and that n = 2m+1 is odd. The median

of the sample is its central order statistic, Y(m+1). To find its approximate

distribution in large samples, note that (m + 1)/(2m + 1)
.
= 1

2 for large m,

and since the normal density is symmetric about µ, F−1(1
2 ) = µ. Moreover

f(y) = (2πσ2)−1/2 exp{−(y − µ)2/2σ2}, so f{F−1(1
2 )} = (2πσ2)−1/2. Thus

(2.27) implies that in large samples Y(m+1) is approximately normal with mean

µ and variance πσ2/(2n).

Example 2.30 (Birth data) In Figure 2.1 and Example 2.8 we saw that

the daily medians of the birth data were generally smaller but more variable

than the daily averages. To understand why, suppose that we have a sample

of n = 13 observations from the gamma distribution F with mean µ = 8 and

shape parameter κ = 3; these are close to the values for the data. Then the

average Y has mean µ and variance µ2/(nκ); these are 8 and 1.64, comparable

with the data values 7.90 and 1.54. The sample median has approximate

expected value F−1(1
2 ) = 7.13 and variance n−1 1

2 (1− 1
2 )/f{F−1(1

2 )}2 = 4.02,

where f denotes the density (2.8); these values are to be compared with the

average and variance of the daily medians, 7.03 and 2.15. The expected values

are close, but the variances are not; we should not rely on an asymptotic

approximation when n = 13. The theoretical variance of the median exceeds

that of the average, so the sampling properties of the daily average and median

are roughly what we might have expected: var(M) > var(Y ), and E(M) <

E(Y ). Our calculation presupposes constant n, but in the data n changes

daily; this is one source of error in the asymptotic approximation.

Expression (2.27) gives asymptotic distributions for central order statistics,

i.e. Y(r) where r/n → p and 0 < p < 1; as n → ∞ such order statistics



46 2 · Variation

have increasingly more values on each side. Different limits arise for extreme

order statistics such as the minimum, for which r = 1 and r/n → 0, and

the maximum, for which r = n and r/n → 1. We discuss these more fully in

Section 6.5.2, but here is a simple example.

Example 2.31 (Pareto distribution) Suppose that Y1, . . . , Yn is a ran-

dom sample from the Pareto distribution, whose distribution function is Vilfredo Pareto
(1848–1923) studied
mathematics and
physics at Turin, and
then became an
engineer and director
of a railway, before
becoming professor
of political economy
in Lausanne. He
pioneered sociology
and the use of
mathematics in
economic problems.
The Pareto
distributions were
developed by him to
explain the spread of
wealth in society.

F (y) =

{
0, y < a,

1− (y/a)−γ , y ≥ a,

where a, γ > 0. The minimum Y(1) exceeds y if and only if all the Y1, . . . , Yn
exceed y, so Pr(Y(1) > y) = (y/a)−nγ . To obtain a non-degenerate limiting

distribution, consider M = γn(Y(1) − a)/a. Now

Pr(M > z) = Pr

(
Y(1) >

az

nγ
+ a

)
=

( az
nγ + a

a

)−nγ
→ e−z

as n → ∞. Consequently γn(Y(1) − a)/a converges in distribution to the

standard exponential distribution.

There are two differences between this result and (2.27). First, and most

obviously, the limiting distribution is not normal. Second, as the power of n

by which Y(1)−a must be multiplied to obtain a non-degenerate limit is higher

than in (2.27), the rate of convergence to the limit is faster than for central

order statistics. Accelerated convergence of extreme order statistics does not

always occur, however; see Example 6.32.

Derivation of (2.27)
This may be omitted
at a first reading.Consider Y(r), where r = dnpe and 0 < p < 1 is fixed; hence r/n → p as

n → ∞. We saw earlier that Y(r)
D
= F−1(U(r)), where U(r) is the rth order

statistic of a random sample U1, . . . , Un from the U(0, 1) density, and that

U(r) = r/(n + 1) + {p(1 − p)/n}1/2ε, where ε has mean zero and variance

tending to one as n → ∞. Recall that F is a distribution whose density f

exists. Hence the delta method gives E(Y(r))
.
= F−1{r/(n + 1)} .

= F−1(p),

and as

var
(
Y(r)

)
= var{F−1(U(r))} .= var

(
U(r)

)
×
{
dF−1(p)

dp

}2

and

d

dp
F{F−1(p)} = f

{
F−1(p)

} d

dp
F−1(p) = 1,

we have var{Y(r)} .= p(1− p)/[f{F−1(p)}2n] provided f{F−1(p)} > 0.
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To find the limiting distribution of Y(r), note that

Pr(Y(r) ≤ y) = Pr




∑

j

Ij(y) ≥ r



 , (2.28)

where Ij(y) is the indicator of the event Yj ≤ y. The Ij(y) are independent,

so their sum
∑
j Ij(y) is binomial with probability F (y) and denominator n.

Therefore (2.28) and the central limit theorem imply that for large n,

Pr(Y(r) ≤ y) .
= 1− Φ

(
r − nF (y)

[nF (y) {1− F (y)}]1/2

)
. (2.29)

Now choose y = F−1(p) + n−1/2z{p(1− p)/f{F−1(p)}2}1/2, so that

F (y) = p+ n−1/2z{p(1− p)}1/2 + o(n−1/2),

and recall that r = dnpe .= np. Then (2.28) and (2.29) imply that, as required,

Pr


n1/2

{
Y(r) − F−1(p)

}
{
p(1− p)/f {F−1(p)}2

}1/2
≤ z




approximately equals

1− Φ

[
np− np− n1/2z {p(1− p)}1/2

{np(1− p)}1/2

]
= 1− Φ(−z) = Φ(z).

Exercises 2.3

1 If U(1) < · · · < U(n) are the order statistics of a U(0, 1) random sample, show

that var(U(r)) = r(n− r+ 1)/{(n+ 1)2(n+ 2)}. Find cov(U(r), U(s)), r < s and
hence show that corr(U(r), U(s)) → 1 for large n as r → s.

2 Let U1, . . . , U2m+1 be a random sample from the U(0, 1) distribution. Find the

exact density of the median, U(m+1), and show that U(m+1)
.∼ N

{
1
2
, (8m)−1

}

for large m.

3 Let the X1, . . . ,Xn be independent exponential variables with rates λj . Show
that Y = min(X1, . . . ,Xn) is also exponential, with rate λ1 + · · ·+λn, and that
Pr(Y = Xj) = λj/(λ1 + · · · + λn).

4 Verify that the joint distribution of all the order statistics of a sample of size n
from a continuous distribution with density f(y) is (2.25). Hence find the joint
density of the spacings, S1 = Y(1), S2 = Y(2) − Y(1), . . . , Sn = Y(n) − Y(n−1),

when f(y) = λe−λy, y > 0, λ > 0. Use this to establish (2.26).

5 Use (2.27) to show that Y(r)
P−→ F−1(p) as n → ∞, where r = dpne and

0 < p < 1 is constant.

Consider IQR and MAD (Example 2.2). Show that IQR
P−→ 1.35σ for normal

data and hence give an estimator of σ. Find also the estimator based on MAD.
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6 Let N be a random variable taking values 0, 1, . . ., let G(u) be the probability-
generating function of N , let X1,X2, . . . be independent variables each hav-
ing distribution function F , and let Y = max{X1, . . . ,XN}. Show that Y has
distribution function G{F (y)}, and find this when N is Poisson and the Xj
exponential.

7 Let M and IQR be the median and interquartile range of a random sample
Y1, . . . , Yn from a density of form τ−1g{(y − η)/τ}, where g(u) is symmetric
about u = 0 and g(0) > 0. Show that as n→ ∞,

n1/2M − η

IQR

D−→ N(0, c),

for some c > 0, and give c in terms of g and its integral G.
Give c when g(u) equals 1

2
exp(−|u|) and exp(u)/{1 + exp(u)}2.

8 The probability that events in a Poisson process of rate λ > 0 observed over
the interval (0, t0) occur at 0 < t1 < t2 < · · · < tn < t0 is

λn exp(−λt0), 0 < t1 < t2 < · · · < tn < t0.

By integration over t1, . . . , tn, show that the probability that n events occur,
regardless of their positions, is

(λt0)
n

n!
exp(−λt0), n = 0, 1, . . . ,

and deduce that given that n events occur, the conditional density of their
times is n!/tn0 , 0 < t1 < t2 < · · · < tn < t0. Hence show that the times may
be considered to be order statistics from a random sample of size n from the
uniform distribution on (0, t0).

9 Find the exact density of the median M of a random sample Y1, . . . , Y2m+1 from
the uniform density on the interval (θ− 1

2
, θ+ 1

2
). Deduce that Z = m1/2(M−θ)

has density

f(z) =
(2m+ 1)!

(m!)2m1/2

(
1

4
+
z2

m

)m
, |z| < 1

2
m1/2,

and by considering the behaviour of log f(z) as m→ ∞ or otherwise, show that Stirling’s formula
implies that
logm! ∼ 1

2 log(2π) +
(m+ 1

2 ) logm−m
as m → ∞.

for large m, Z
.∼ N(0, 1/8). Check that this agrees with the general formula

for the asymptotic distribution of a central order statistic.

2.4 Moments and Cumulants

Calculations involving moments often arise in statistics, but they are generally

simpler when expressed in terms of equivalent quantities known as cumulants.

The moment-generating function of the random variable Y is M(t) =

E(etY ), provided M(t) <∞. Let

M ′(t) =
dM(t)

dt
, M ′′(t) =

d2M(t)

dt2
, M (r)(t) =

drM(t)

dtr
, r = 3, . . . ,
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denote derivatives of M . If finite, the rth moment of Y is µ′
r = M (r)(0) =

E(Y r), giving the power series expansion

M(t) =

∞∑

r=0

µ′
rt
r/r!.

The quantity µ′
r is sometimes called the rth moment about the origin, whereasThe characteristic

function E(eitY ),
with i2 = −1 is
defined more broadly
than M(t), but as we
shall not need the
extra generality,
M(t) is used almost
everywhere in this
book.

µr = E{(Y − µ′
1)
r} is the rth moment about the mean. Among elementary

properties of the moment-generating function are the following: M(0) = 1;

the mean and variance of Y may be written

E(Y ) = M ′(0), var(Y ) = M ′′(O)− {M ′(0)}2 ;

random variables Y1, . . . , Yn are independent if and only if their joint moment-

generating function factorizes as

E {exp(Y1t1 + · · ·+ Yntn)} = E {exp(Y1t1)} · · ·E {exp(Yntn)} ;

and the fact that any moment-generating function corresponds to a unique

probability distribution.

Cumulants

The cumulant-generating function or cumulant generator of Y is the function

K(t) = logM(t), and the rth cumulant is κr = K(r)(0) = drK(0)/dtr, giving

the power series expansion

K(t) =

∞∑

r=1

trκr/r!, (2.30)

provided all the cumulants exist. Differentiation of (2.30) shows that the mean

and variance of Y are its first two cumulants

κ1 = K ′(0) =
M ′(0)

M(0)
= µ′

1, κ2 = K ′′(0) =
M ′′(0)

M(0)
− M ′(0)2

M(0)2
= µ′

2 − (µ′
1)

2.

Further differentiation gives higher-order cumulants. Cumulants are mathe-

matically equivalent to moments, and can be defined as combinations of pow-

ers of moments, but we shall see below that their statistical interpretation is

much more natural than is that of moments.

Example 2.32 (Normal distribution) If Y has the N(µ, σ2) distribution,

its moment-generating function is M(t) = exp(tµ+ 1
2 t

2σ2) and its cumulant-

generating function isK(t) = tµ+ 1
2 t

2σ2. The first two cumulants are µ and σ2,

and all its higher-order cumulants are zero. The standard normal distribution

has K(t) = 1
2 t

2.
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The cumulant-generating function is very convenient for statistical work.

Consider independent random variables Y1, . . . , Yn with respective cumulant-

generating functions K1(t), . . . ,Kn(t). Their sum Y1 + · · ·+Yn has cumulant-

generating function

logMY1+···+Yn(t) = log E {exp(tY1 + · · ·+ tYn)} = log
n∏

j=1

MYj (t) =
n∑

j=1

Kj(t).

It follows that the rth cumulant of a sum of independent random variables is

the sum of their rth cumulants. Similarly, the cumulant-generating function

of a linear combination of independent random variables is

Ka+
∑n

j=1
bjYj

(t) = log E {exp(ta+ tb1Y1 + · · ·+ tbnYn)} = ta+
n∑

j=1

Kj(bjt).

(2.31)

Example 2.33 (Chi-squared distribution) If Z1, . . . , Zν are indepen-

dent standard normal variables, each Z2
j has the chi-squared distribution on

one degree of freedom, and (3.10) gives its moment-generating function, (1−
2t)−1/2. Therefore each Z2

j has cumulant-generating function − 1
2 log(1− 2t),

and the χ2
ν random variable W =

∑ν
j=1 Z

2
j has cumulant-generating function

K(t) = −ν
2

log(1− 2t) = −ν
2

∞∑

r=1

(−1)r−1 (−2t)r

r
= ν

∞∑

r=1

2r−1(r − 1)!
tr

r!
,

provided that |t| < 1
2 . Therefore W has rth cumulant κr = ν2r−1(r − 1)!. In

particular, the mean and variance of W are ν and 2ν.

Example 2.34 (Linear combination of normal variables) Let L =

a+
∑n
j=1 bjYj be a linear combination of independent random variables, where

Yj has the normal distribution with mean µj and variance σ2
j . Then L has

cumulant-generating function

at+

n∑

j=1

{
(bjt)µj +

1

2
(bjt)

2σ2
j

}
= t



a+

n∑

j=1

bjµj



+
t2

2




n∑

j=1

b2jσ
2
j



 ,

corresponding to a N(a+
∑
bjµj ,

∑
b2jσ

2
j ) random variable.

Skewness and kurtosis

The third and fourth cumulants of Y are called its skewness, κ3, and kurtosis,

κ4. Example 2.32 showed that κ3 = κ4 = 0 for normal variables. This suggests Some authors define
the kurtosis to be
κ4 + 3κ2

2, in our
notation.

that they be used to assess the closeness of a variable to normality. However,

they are not invariant to changes in the scale of Y , and the standardized

skewness κ3/κ
3/2
2 and standardized kurtosis κ4/κ

2
2 are used instead for this

purpose; small values suggest that Y is close to normal.
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The average Y of a random sample of observations, each with cumulant-

generating function K(t), has mean and variance κ1 and n−1κ2. Expression

(2.31) shows that the random variable Zn = n1/2κ
−1/2
2 (Y − κ1), which is

asymptotically standard normal, has cumulant-generating function

nK
(
n−1/2κ

−1/2
2 t

)
− n1/2κ

−1/2
2 κ1t,

and this equals

n

{
t

n1/2

κ1

κ
1/2
2

+ 1
2

t2

n

κ2

κ2
+ 1

6

t3

n3/2

κ3

κ
3/2
2

+ 1
24

t4

n2

κ4

κ2
2

+ o

(
t4

n2

)}
− n1/2t

κ1

κ
1/2
2

.

After simplification we find that the cumulant-generating function of Zn is

1
2 t

2 + 1
3n

−1/2t3
κ3

κ
3/2
2

+ 1
24n

−1t4
κ4

κ2
2

+ o

(
t4

n

)
. (2.32)

Hence convergence of the cumulant-generating function of Zn to 1
2 t

2 as n→∞
is controlled by the standardized skewness and kurtosis κ3/κ

3/2
2 and κ4/κ

2
2.

Example 2.35 (Poisson distribution) Let Y1, . . . , Yn be independent

Poisson observations with means µ1, . . . , µn. The moment-generating func-

tion of Yj is exp{µj(et − 1)}, so its cumulant-generating function is Kj(t) =

µj(e
t−1) and all its cumulants equal µj . As the cumulant-generating function

of Y1 + · · · + Yn is
∑

j µj(e
t − 1), the sum

∑
Yj has a Poisson distribution

with mean
∑
µj .

Now suppose that all the µj equal µ, say. From (2.31), the cumulant-

generating function of the standardized average, n1/2µ−1/2(Y − µ), is

nK
{
t(nµ)−1/2

}
− t(nµ)1/2 = nµ

{
et(nµ)−1/2 − 1

}
− t(nµ)1/2

= nµ

∞∑

r=2

tr

(nµ)r/2r!
.

Thus Y has standardized skewness and kurtosis (nµ)−1/2 and (nµ)−1; in gen-

eral κr = (nµ)−(r−2)/2 for r = 2, 3, . . . Hence Y approaches normality for fixed

µ and large n or fixed n and large µ.

Vector case

A vector random variable Y = (Y1, . . . , Yp)
T has moment-generating function

M(t) = E(et
TY ), where tT = (t1, . . . , tp). The joint moments of the Yr are the

derivatives

E(Y r11 · · ·Y rpp ) =
∂r1+···+rpM(t)

∂tr11 · · · ∂t
rp
p

∣∣∣∣
t=0

.

The cumulant-generating function is again K(t) = logM(t), and the joint

cumulants of the Yr are given by mixed partial derivatives ofK(t) with respect
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to the elements of t. For example, the covariance matrix of Y is the p × p
symmetric matrix whose (r, s) element is κr,s = ∂2K(t)/∂tr∂ts, evaluated at

t = 0.

Suppose that Y = (Y1, Y2)
T, and that the scalar random variables Y1 and

Y2 are independent. Then their joint cumulant-generating function is

K(t) = log E {exp(t1Y1 + t2Y2)} = log E {exp(t1Y1)} + log E {exp(t2Y2)} ,

because the moment-generating function of independent variables factorizes.

But since every mixed derivative of K(t) equals zero, all the joint cumulants of

Y1 and Y2 equal zero also. This observation generalizes to several variables: the

joint cumulants of independent random variables are all zero. This is not true Joint derivatives are
not needed to obtain
first cumulants,
which are not joint
cumulants.

for moments, and partly explains why cumulants are important in statistical

work.

Example 2.36 (Multinomial distribution) The probability density of

a multinomial random variable Y = (Y1, . . . , Yp)
T with denominator m and

probabilities π = (π1, . . . , πp), that is Pr(Y1 = y1, . . . , Yp = yp), equals

m!

y1! · · · yp!
πy11 · · ·πypp , yr = 0, 1, . . . ,m,

p∑

r=1

yr = m;

note that πr ≥ 0,
∑
r πr = 1. This arises when m independent observations

take values in one of p categories, each falling into the rth category with

probability πr. Then Yr is the total number falling into the rth category.

If Y1, . . . , Yp are independent Poisson variables with means µ1, . . . , µp, then

their joint distribution conditional on Y1 + · · ·+ Yp = m is multinomial with

denominator m and probabilities πr = µr/
∑
µs.

The moment-generating function of Y is

E
(
et

TY
)

=
∑ m!

y1! · · · yp!
πy11 · · ·πypp ey1t1+···+yptp =

(
π1e

t1 + · · ·+ πpe
tp
)m

;

the sum is over all vectors (y1, . . . , yp)
T of non-negative integers such that∑

r yr = m. Thus K(t) = m log (π1e
t1 + · · ·+ πpe

tp). It follows that the joint

cumulants of the elements of Y are

κr = mπr,

κr,s = m (πrδrs − πrπs) ,
κr,s,t = m (πrδrst − πrπsδrt[3] + 2πrπsπt) ,

κr,s,t,u = m {πrδrstu − πrπs (δrtδsu[3] + δstu[4]) + 2πrπsπtδru[6]− 6πrπsπtπu} ;

here a Kronecker delta symbol such as δrst equals 1 if r = s = t and 0

otherwise, and a term such as πrπsδrt[3] indicates πrπsδrt+πsπtδrs+πrπtδst.

The value of κr,s implies that components of Y are negatively correlated,
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because a large value for one entails low values for the rest. Zero covariance

occurs only if πr = 0, in which case Yr is constant.

Exercises 2.4

1 Show that the third and fourth cumulants of a scalar random variable in terms
of its moments are

κ3 = µ′
3 − 3µ′

1µ
′
2 + 2(µ′

1)
3, κ4 = µ′

4 − 4µ′
3µ

′
1 − 3(µ′

2)
2 + 12µ′

2(µ
′
1)

2 − 6(µ′
1)

4.

2 Show that the cumulant-generating function for the gamma density (2.7) is
−κ log(1 − t/λ). Hence show that κr = κ(r − 1)!/λr , and confirm the mean,
variance, skewness and kurtosis in Examples 2.12 and 2.26.
If Y1, . . . , Yn are independent gamma variables with parameters κ1, . . . , κn and
the same λ, show that their sum has a gamma density, and give its parameters.

This demands
nodding
acquaintance with
characteristic
functions.

3 The Cauchy density (2.16) has no moment-generating function, but its char-
acteristic function is E(eitY ) = exp(itθ − |t|), where i2 = −1. Show that the

average Y of a random sample Y1, . . . , Yn of such variables has the same char-
acteristic function as Y1. What does this imply?

2.5 Bibliographic Notes

The idea that variation observed around us can be represented using prob-

ability models provides much of the motivation for the study of probability

theory and underpins the development of statistics. Cox (1990) and Lehmann

(1990) give complementary general discussions of statistical modelling and a

glance at any statistical library will reveal hordes of books on specific topics,

references to some of which are given in subsequent chapters. Real data, how-

ever, typically refuse to conform to neat probabilistic formulations, and for

useful statistical work it is essential to understand how the data arise. Initial

data analysis typically involves visualising the observations in various ways,

examining them for oddities, and intensive discussion to establish what the

key issues of interest are. This requires creative lateral thinking, problem solv-

ing, and communication skills. Chatfield (1988) gives very useful discussion of

this and related topics.

J. W. Tukey and his co-workers have played an important role in stimulatingJohn Wilder Tukey
(1915–2000) was
educated at home
and then studied
chemistry and
mathematics at
Brown University
before becoming
interested in
statistics during the
1939–45 war, at the
end of which he
joined Princeton
University. He made
important
contributions to
areas including time
series, analysis of
variance, and
simultaneous
inference. He
underscored the
importance of data
analysis, computing,
robustness, and
interaction with
other disciplines at a
time when
mathematical
statistics had
become somewhat
introverted, and
invented many
statistical terms and

development of approaches to exploratory data analysis both numerical and

graphical; see Tukey (1977), Mosteller and Tukey (1977), and Hoaglin et al.

(1983, 1985, 1991). Two excellent books on statistical graphics are Cleveland

(1993, 1994), while Tufte (1983, 1990) gives more general discussions of visu-

alizing data. For a brief account see Cox (1978).

Cox and Snell (1981) give an excellent general account of applied statistics.

Most introductory texts on probability and random processes discuss the

main convergence results; see for example Grimmett and Stirzaker (2001).
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Figure 2.6 Match
the sample to the
density. Upper
panels: four densities
compared to the
standard normal
(heavy). Lower
panels: normal
probability plots for
samples of size 100
from each density.y
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Bickel and Doksum (1977) give a more statistical account; see their page 461

for a proof of Slutsky’s lemma. See also Knight (2000).

Arnold et al. (1992) give a full account of order statistics and many further

references.

Most elementary statistics texts do not describe cumulants despite their

usefulness. McCullagh (1987) contains forceful advocacy for them, includ-

ing powerful methods for cumulant calculations. See also Kendall and Stuart

(1977), whose companion volumes (Kendall and Stuart, 1973, 1976) overlap

considerably with parts of this book, from a quite different viewpoint.

2.6 Problems

1 Figure 2.6 shows normal probability plots for samples from four densities. Which Pin the tail on the
density.goes with which?

2 Suppose that conditional on µ, X and Y are independent Poisson variables
with means µ, but that µ is a realization of random variable with density
λνµν−1e−λµ/Γ(ν), µ > 0, ν, λ > 0. Show that the joint moment-generating
function of X and Y is

E
(
esX+tY

)
= λν

{
λ− (es − 1) − (et − 1)

}−ν
,

and hence find the mean and covariance matrix of (X,Y ). What happens if
λ = ν/ξ and ν → ∞?

3 Show that a binomial random variable R with denominator m and probability
π has cumulant-generating function K(t) = m log

(
1 − π + πet

)
. Find limK(t)

as m→ ∞ and π → 0 in such a way that mπ → λ > 0. Show that

Pr(R = r) → λr

r!
e−λ,
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and hence establish that R converges in distribution to a Poisson random vari-
able. This yields the Poisson approximation to the binomial distribution, some-
times called the law of small numbers. For a numerical check in the S language,
try

y <- 0:10; lambda <- 1; m <- 10; p <- lambda/m
round(cbind(y,pbinom(y,size=m,prob=p),ppois(y,lambda)),digits=3)

with various other values of m and λ.

4 (a) Let X be the number of trials up to and including the first success in a
a sequence of independent Bernoulli trials having success probability π. Show
that Pr(X = k) = π(1 − π)k−1, k = 1, 2, . . ., and deduce that X has moment-
generating function πet/{1 − (1 − π)et}; hence find its mean and variance. X
has the geometric distribution.
(b) Now let Yn be the number of trials up to and including the nth success in
such a sequence of trials. Show that

Pr(Yn = k) =

(
k − 1

n− 1

)
πn(1 − π)k−n, k = n, n+ 1, . . . ;

this is the negative binomial distribution. Find the mean and variance of Yn, and
show that as n → ∞ the sequence {Yn} satisfies the conditions of the Central
Limit Theorem. Deduce that

lim
n→∞

21−n

n∑

k=0

(
k + n− 1

n− 1

)
1

2k
= 1.

(c) Find the limiting cumulant-generating function of πYn/(1 − π) as π → 0,
and hence show that the limiting distribution is gamma.

5 Let Y1, . . . , Yn be a random sample from a distribution with mean µ and variance
σ2. Find the mean of

T =
1

2n(n− 1)

∑

j 6=k

(Yj − Yk)
2,

and by writing Yj − Yk = Yj − Y − (Yk − Y ), show that T = S2.

6 Let Y1, . . . , Yn be a random sample from the uniform distribution on the interval
(θ− 1

2
, θ+ 1

2
). Show that the joint density of the sample maximum and minimum,

Y(n) and Y(1), is

fY(1),Y(n)
(u, v) = n(n− 1)(v − u)n−2, θ − 1

2
< u < v < θ + 1

2
.

The sample range is R = Y(n)−Y(1), and a natural estimator of θ is the midrange,
T = (Y(n) + Y(1))/2. Show that the conditional density of T given R is

f(t | r; θ) = (1 − r)−1, 0 < r < 1, θ + 1
2
− r

2
> t > θ − 1

2
+
r

2
.

How precisely is θ determined by this density as r → 0 and r → 1?
Waloddi Weibull
(1887–1979) was a
Swedish engineer
who in 1937
published the
distribution that
bears his name; it is
widely used in
reliability.

7 A random variableX with the Weibull distribution with index α has distribution
function 1 − exp{−(x/λ)α}, x > 0, λ, α > 0. The idea that a system with
many similar components will fail when the weakest component fails has led to
widespread use of this distribution in industrial reliability.
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(a) Suppose that X1, . . . ,Xn are independent identically distributed continuous
non-negative random variables such that as t→ 0, the density and distribution
functions are asymptotically atκ−1 and atα/α respectively, where a, α > 0. Let

Y = min(X1, . . . ,Xn) and let W = (a/α)1/αn1/αY . Show that as n → ∞, W
has as its limiting distribution the Weibull distribution with index α.
(b) Explain why a probability plot for the Weibull distribution may be based on

plotting the logarithm of the rth order statistic against log
{
− log

(
1 − r

n+1

)}
,

and give the slope and intercept of such a plot. Check whether the data in
Table 1.2 follow Weibull distributions.

8 Let Y1, . . . , Y2m+1 be a random sample from the uniform density

f(y) =
{
θ−1, 0 ≤ y ≤ θ,
0, otherwise.

Derive the density function of the sample median T = Y(m+1) and find its exact
mean and variance.
Find the density function of Z = 2(2m+3)1/2(Y(m+1)−θ/2)/θ and use Stirling’s
formula to show directly that, as m → ∞, Z has asymptotically a standard
normal distribution. Deduce that asymptotically var(T ) ∼ 3var(Y ).

9 The coefficient of variation of a random sample Y1, . . . , Yn is C = S/Y , where

Y and S2 are the sample average and variance. It estimates the ratio ψ = σ/µ
of the standard deviation relative to the mean. Show that

E(C)
.
= ψ, var(C)

.
= n−1

(
ψ4 − γ3ψ

3 + 1
4
γ4ψ

2
)

+
ψ2

2(n− 1)
.

10 If T1 and T2 are two competing estimators of a parameter θ, based on a
random sample Y1, . . . , Yn, the asymptotic efficiency of T1 relative to T2 is
limn→∞ var(T2)/var(T1) × 100%. If n = 2m + 1, find the asymptotic efficiency

of the sample median Y(m+1) relative to the average Y = n−1
∑

j
Yj when the

density of the Yj is: (a) normal with mean θ and variance σ2; (b) Laplace,
(2σ)−1 exp{−|y− θ|/σ} for −∞ < y <∞; and (c) Cauchy, σ/[π{σ2 +(y− θ)2}]
for −∞ < y <∞.

11 Show that the covariance matrix for the multinomial distribution may be writ-
ten m(diag{π} − ππT), and deduce that it has determinant zero. Explain why
the distribution is degenerate.

12 (a) If X has the N(µ, σ2) distribution, show that X2 has cumulant-generating
function

tµ2/(1 − 2tσ2) − 1
2

log(1 − 2tσ2).

(b) If X1, . . . ,Xν are independent normal variables with variance σ2 and means
µ1, . . . , µν , show that the cumulant-generating function of W = X2

1 + · · · +X2
ν

is

tδ2σ2/(1 − 2tσ2) − ν
2

log(1 − 2tσ2),

where δ2 = (µ2
1 + · · · + µ2

ν)/σ
2. The distribution of W/σ2 is said to be non-

central chi-squared with ν degrees of freedom and non-centrality parameter δ2.
Show that the moment-generating function of W may be written

exp
{
− 1

2
δ2 + 1

2
δ2(1 − 2tσ2)−1

}
(1 − 2tσ2)−ν/2,
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and that this equals

e−δ
2/2

∞∑

r=0

1

r!

(
δ2

2

)r
(1 − 2tσ2)−r−ν/2. (2.33)

Use (2.33) and (3.10) to write down an expression for the density of W .

(c) Hence deduce that (i) W
D
= Wν + W2N , where W ∼ σ2χ2

ν independent of
W2N ∼ σ2χ2

2N , with χ2
0 taking value 0 with unit probability, and N is Poisson

with mean δ2/2, and (ii) W
D
= (δσ + Y1)

2 + Y 2
2 + · · · + Y 2

ν .


