Statistical Molecular THERMODYNAMICS

Christopher J. Cramer

Video 9.5

Chemical Potentials and the Clapeyron Equation

Free Energy of a Two-Phase System

The Gibbs energy of two phases in equilibrium with one another - we'll use gas (g) and liquid (l) here for convenience, but the equations are general - is simply the sum of the individual phase's Gibbs free energies:

$$
G=G^{g}+G^{l}
$$

Now, consider transfer of $d n$ moles from the liquid phase to the gas phase with T and P kept constant. The change in the Gibbs energy is:

$$
d G=\left(\frac{\partial G^{g}}{\partial n^{g}}\right)_{P, T} d n^{g}+\left(\frac{\partial G^{l}}{\partial n^{l}}\right)_{P, T} d n^{l}
$$

Free Energy of a Two-Phase System

Change in Gibbs free energy with phase transfer:

$$
d G=\left(\frac{\partial G^{g}}{\partial n^{g}}\right)_{P, T} d n^{g}+\left(\frac{\partial G^{l}}{\partial n^{l}}\right)_{P, T} d n^{l}
$$

But mass balance dictates: $\quad d n^{g}=-d n^{l}$
So we have:

$$
d G=\left[\left(\frac{\partial G^{g}}{\partial n^{g}}\right)_{P, T}-\left(\frac{\partial G^{l}}{\partial n^{l}}\right)_{P, T}\right] d n^{g}
$$

CHEMICAL POTENTIAL DEFINED

$$
d G=\left[\left(\frac{\partial G^{g}}{\partial n^{g}}\right)_{P, T}-\left(\frac{\partial G^{l}}{\partial n^{l}}\right)_{P, T}\right] d n^{g}
$$

The partial derivatives above are called partial molar Gibbs free energies or, more commonly, chemical potentials, μ, where:

$$
\mu^{i}=\left(\frac{\partial G^{i}}{\partial n^{i}}\right)_{P, T}
$$

in which case we write: $\quad d G=\left[\mu^{g}-\mu^{l}\right] d n^{g}$

Phase Transfers
 $$
d G=\left[\mu^{g}-\mu^{l}\right] d n^{g}
$$

At equilibrium, $d G=0$ — this will be true if $\mu^{g}=\mu^{l}$
If $\mu^{g}>\mu^{l}$, then $d G<0$ (spontaneous change) iff $d n^{g}<0$, i.e., matter transfers from gas phase to liquid phase

If $\mu^{g}<\mu^{l}$, then $d G<0$ (spontaneous change) iff $d n^{g}>0$, i.e., matter transfers from liquid phase to gas phase

Out of equilibrium, matter flows from a higher chemical potential to a lower chemical potential

PhAse Change Characteristics

For a pure substance, the chemical potential is simply the molar Gibbs energy, $\quad \mu^{i}=\left(\frac{\partial G^{i}}{\partial n^{i}}\right)_{P, T}=\bar{G}^{i}$
an intensive quantity (i.e., like T and P). At equilibrium: $\mu^{\alpha}(T, P)=\mu^{\beta}(T, P)$ so we may write:
$\left(\frac{\partial \mu^{\alpha}}{\partial P}\right)_{T} d P+\left(\frac{\partial \mu^{\alpha}}{\partial T}\right)_{P} d T=\left(\frac{\partial \mu^{\beta}}{\partial P}\right)_{T} d P+\left(\frac{\partial \mu^{\beta}}{\partial T}\right)_{P} d T$
or, equivalently:
$\left(\frac{\partial \bar{G}^{\alpha}}{\partial P}\right)_{T} d P+\left(\frac{\partial \bar{G}^{\alpha}}{\partial T}\right)_{P} d T=\left(\frac{\partial \bar{G}^{\beta}}{\partial P}\right)_{T} d P+\left(\frac{\partial \bar{G}^{\beta}}{\partial T}\right)_{P} d T$

THE CLAPEYRON EQUATION

$\left(\frac{\partial \bar{G}^{\alpha}}{\partial P}\right)_{T} d P+\left(\frac{\partial \bar{G}^{\alpha}}{\partial T}\right)_{P} d T=\left(\frac{\partial \bar{G}^{\beta}}{\partial P}\right)_{T} d P+\left(\frac{\partial \bar{G}^{\beta}}{\partial T}\right)_{P} d T$
may be rewritten: $\quad \bar{V}^{\alpha} d P-\bar{S}^{\alpha} d T=\bar{V}^{\beta} d P-\bar{S}^{\beta} d T$
which rearranges to: $\frac{d P}{d T}=\frac{\bar{S}^{\beta}-\bar{S}^{\alpha}}{\bar{V}^{\beta}-\bar{V}^{\alpha}}=\frac{\Delta_{\text {trs }} \bar{S}}{\Delta_{\text {trs }} \bar{V}}=\frac{\Delta_{\text {trs }} \bar{H}}{T \Delta_{\text {trs }} \bar{V}}$
cf. video 7.3
The Clapeyron equation relates the slope of the coexistence curve ($d P / d T$) to the changes in molar enthalpy and volume associated with a phase change

$$
\frac{d P}{d T}=\frac{\Delta_{\mathrm{ttr}} \bar{H}}{T \Delta_{\mathrm{trs}} \overline{\bar{V}}}
$$

Self-assessment

At its standard melting point, water has an enthalpy of fusion of $6.01 \mathrm{~kJ} / \mathrm{mol}$ and a volume of fusion of $-1.63 \mathrm{~cm}^{3} / \mathrm{mol}$. Using the Clapeyron equation (below), predict the melting point of water at 1000 bar pressure.

$$
\frac{d P}{d T}=\frac{\Delta_{\mathrm{trs}} \bar{H}}{T \Delta_{\mathrm{trs}} \bar{V}}
$$

Self-assessment Explained

We can invert the Clapyeron equation to compute how temperature should vary with pressure, using the data for water at its standard melting point (273.15 K, 1 bar), thus:

$$
\begin{aligned}
\frac{d T}{d P} & =\frac{T \Delta_{\mathrm{trs}} \bar{V}}{\Delta_{\mathrm{trs}} \bar{H}}=\frac{(273.15 \mathrm{~K})\left(-1.63 \times 10^{-3} \mathrm{dm}^{3} \mathrm{~mol}^{-1}\right)}{6010 \mathrm{~J} \mathrm{~mol}^{-1}} \cdot\left(\frac{0.01 \mathrm{~J} \mathrm{bar}^{-1}}{1 \mathrm{dm}^{3}}\right) \\
& =-7.41 \times 10^{-3} \mathrm{~K} \mathrm{bar}^{-1}
\end{aligned}
$$

So a pressure increase of 999 bar should lower the melting point by 7.40 K . Experiment gives 9.3 K . The error derives from our assumption that the transition enthalpy and volume are independent of temperature, implicit in the Clapeyron equation.

Next: Clausius-Clapeyron Equation

