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Foreword

This script is written for the course Theoretical Statistical Physics which is one of the
core courses for the master studies of physics at Heidelberg University, although in
practise it is also attended by many bachelor students from the 5th semester.  have been
giving this course several times before, namely in the winter terms of 2012, 2015, 2017
and 2020, and it is my experience that a script helps to correct the unavoidable errors
made at the blackboard, to solidify the new knowledge through a coherent presentation
and to prepare for the final exam. There exist many very good textbooks on statistical
physics and the purpose of this script is soley to document my personal choice of the
relevant material.

Statistical physics provides the basis for many important parts of physics, including
atomic and molecular physics, solid state physics, soft matter physics, biophysics, as-
trophysics, environmental and socioeconomic physics. For example, you cannot under-
stand the greenhouse effect or the cosmic microwave background without the Planck
formula for the statistics of photons at a given temperature (black body radiation) or
the electrical conduction of solids without the concept of a Fermi sphere (the ground
state of a fluid of electrons at low temperature). Equally important, however, statistical
physics provide the basis for our understanding of phase transitions, which are truely
collective effects and often do not depend much on microscopic details. As you will
learn in this course, at the heart of statistical physics is the art of counting, which is for-
malized in the concept of a partition sum. The details of how this has to be done in
different systems can be quite challenging, and thus it should not come as a surprise
that statistical physics is still a very active research area, continuously expanding into
new applications and developing new methods.

Several guiding principles and helpful books determined the design of this course.
First I completely agree with Josef Honerkamp who in his book Statistical Physics notes
that statistical physics is much more than statistical mechanics. A similar notion is ex-
pressed by James Sethna in his book Entropy, Order Parameters, and Complexity. Indeed
statistical physics teaches us how to think about the world in terms of probabilities.
This is particularly relevant when one deals with complex systems and real world data.
Therefore applications of statistical physics can also be found in data-intensive research
areas such as astrophysics, environmental physics, biophysics, socioeconophysics and
physics of information (including machine learning). As instructive examples, consider
the models for the spread of rumours or viruses on networks, or the algorithms used for
segmentation and object recognition in image processing. If you investigate how these
models work, you will realize that they often relate to the Ising model for ferromagnets,
arguably the most important model of statistical physics and an important subject for
this course.



Second a course on statistical physics certainly has to make the connection to thermo-
dynamics. Thermodynamics can be quite cubersome and hard to digest at times, so
a pedagogical approach is highly appreciated by most students. Here I am strongly
motivated by the axiomatic and geometrical approach to thermodynamics as layed out
in the beautiful book Thermodynamics and an introduction to Thermostatistics by Herbert
Callen. Historically thermodynamics developed as a phenomenological theory of heat
transfer, but when being approached from the axiomatic and geometrical side, it be-
comes the convincing and universal theory that it actually is. The book by Callen also
draws heavily on the work by Edwin Jaynes on the relationship between statistical
physics and information theory as pioneered by Claude Shannon. Although somehow
debated, this link shows once again that statistical physics is more than statistical me-
chanics. Information theory provides very helpful insight into the concept of entropy,
which is the cornerstone of statistical mechanics. Recently this area has been revived
by the advent of stochastic thermodynamics, which shows that entropy is not only an
ensemble property, but can also be defined for single trajectories.

Third a comprehensive course on statistical physics should also include some numeri-
cal component, because modern statistical physics cannot be practised without compu-
tational approaches, as again nicely argued by Josef Honerkamp and James Sethna.
Moreover statistical physics is much more than thermodynamic equilibrium and if
time permits, a course on statistical physics should also cover some aspects of non-
equilibrium physics, for example the exciting recent developments in stochastic ther-
modynamics. Although it is hard to fit all of these aspects into a one-semester course,
some of them are included here.

Together, these considerations might explain the structure of this script. We start with
an introduction to the concepts of probability theory, which should be useful also in
other contexts than only statistical mechanics. We then introduce the fundamental pos-
tulate of equilibrium physics, namely that each microstate is equally probable, leading
to the microcanonical ensemble and the principle of maximal entropy. We then discuss
the canoncial and grandcanonical ensembles, when reservoirs exist for exchange of heat
and particle number, respectively. We then apply these concepts to quantum fluids, in
particular the Fermi fluid (e.g. electrons in a solid) and the Bose gas (e.g. black body
radiation with photons or the Debye model for crystal vibrations). These are interact-
ing systems, but this is accounted for by the right way to count, not by investigating
direct interactions. Yet, here we encounter our first phase transition, the Bose-Einstein
condensation. We then introduce the concept of phase transitions emerging from direct
interactions through the example of the Ising model. In particular, it is here that we
introduce one of the most important advances of theoretical physics of the 20th cen-
tury, namely the renormalization group. We then continue to discuss phase transitions,
now for complex fluids, starting with the van der Waals fluid and the virial expan-
sion. We close with a discussion of thermodynamics, from which we see that statistical
physics and thermodynamics essentially use the same formal structure, but that they
complement each other in a unique manner: statistical physics focuses on the emer-
gence of macroscopic properties from microscopic mechanisms, and thermodynamics
on the macroscopic principles that necessarily have to be valid in the thermodynamic



limit of very large system size, independent of microscopic details.

Finally one should note some subjects which are not covered in the script due to space
reasons. We do not cover kinetic and transport theories, which would also include
the Boltzmann equation. The very important subject of fluctuations and correlations
(including the fluctuation-dissipation theorem) is mentioned only in passing. We also
cannot treat much out-of-equilibrium physics here, in particular we do not cover Green-
Kubo relations, Onsager’s reciprocity theorem, Kramers-Kronig relations or linear re-
sponse theory. From the subject side, we will not have time to cover such interest-
ing subjects as liquid crystals, percolation, disordered and glassy systems (including
the replica method), nucleation, coarsening and Ostwald ripening, or the dynamics of
chemical reactions and populations.

Heidelberg, winter term 2020/21 Ulrich Schwarz
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1 Introduction to probability theory

1.1 Probability in physics

Classical physics (classical mechanics and electrodynamics) is deterministic, that means
the governing equations (Newton’s and Maxwell’s equations, respectively) are differ-
ential equations that have a unique solution once we know the initial conditions (and
boundary conditions for the case of Maxwell’s equations, which are partial differential
equations). Quantum mechanics of course introduces probability into physics in the
form of the statistical (Kopenhagen) interpretation, that is experiments lead to the col-
lapse of the wavefunction with probabilistic outcomes, but still we solve a deterministic
differential equation (Schrédinger’s equation for the wavefunction) and then probabil-
ity for the outcome follows as the squared modulus of the complex wavefunction.

In marked contrast, statistical physics directly brings the concept of probability into
physics. Now the central concept is to calculate the probability of a certain macroscopic
state, thus probability is not a derived quantity, but the most elementary concept. For
example, in the canonical ensemble the relevant statistics will be the Boltzmann dis-
tribution. Therefore we start our course on statistical physics with an introduction
into probability theory. Later of course we have to ask how the probabilistic nature
of statistical physics emerges from more microscopic descriptions, and we will see that
both classical and quantum mechanics provide some justification for this (deterministic
chaos and thermalization of the wavefunction, respectively).

1.2 Frequentist approach

The history of probability theory is long and twisted. Yet everybody has an intuitive
notion of probability that is related to frequencies of certain outcomes. We start with
a simple example (throwing dice) to illustrate what this means and what one would
expect from a theory of probability. Possible outcomes for a die are {1,2,3,4,5,6}. For
N throws the event {i} occurs N; times. We then identify the probability p; for event
{i} with its frequency:

_ #favorable outcomes  N;

;= — in the limit N —
Pi # possible outcomes N i Hhe Him =

For an ideal die we expect p; = i ~ 0.167. Hence for 1000 throws {6} should occur
around 167 times.



We first note that our definition is normalized:

1/N

6 6
N, =N = pi = 1
i=1 i=1

1

We next consider events that are not directly an experimental outcome, but a more
complicated question to ask about the system. E.g. what is the probability to get an
odd outcome?

# favorable outcomes  Nj + N3 + N5
# possible outcomes N

Podd = =p1+p3s+ps

= sum rule: summation of probabilities for simultaneous disjunct events

What is the probability to get twice {6} when throwing two times? We first throw N
times and find Ng times a 6. We then throw M times and find Mg times a 6. Thus we

count
# favorable outcomes  Ng-Ms Ns Mg 1

# possible outcomes  N-M N ™M PerPeT 36

= product rule: multiplication of probabilities for subsequent independent events

Pe6 =

Finally we note that we could either throw N dice at once or the same die N times - the
result should be the same

= ergodic hypothesis of statistical physics: ensemble average = time average

Identifying probability with frequency is called the classical or frequentist interpretation
of probability. There are two problems with this. First there are some examples for
which naive expectations of this kind fail and a more rigorous theory is required. Sec-
ond there are many instances in which an experiment cannot be repeated. Consider e.g.
the statistical distribution of galaxy sizes in the universe, for which we have only one
realization in our hands. In order to address these problems, the concept of probability
can be approached by an axiomatic approach.

1.3 Axiomatic approach

Above we described an empirical approach to measure probability for the dice throw-
ing experiment and this sharpened our intuition what we expect from a theory of prob-
ability. We now construct a mathematical theory of probability by introducing an ax-
iomatic system (Kolmogorov 1933). It has been shown that this approach allows to de-
scribe also complex systems without generating contradiction

Let O = {w;} be the set of elementary events. The complete set of possible events is
the event space B defined by:

For an introduction into probability theory, we recommend Josef Honerkamp, Stochastische Dynamische
Systeme, VCH 1990; and Geoffrey Grimmett and Dominic Welsh, Probability: an introduction, 2nd edition
2014, Oxford University Press.



@ QOepB
@ ifAcB,then A€ B

® if Ay, Ay, - € B, then U2, A; € B

By setting all A; with i larger than a certain value to empty sets, the last point includes
unions of a finite number of sets. We see that the event space is closed under the op-
erations of taking complements and countable unions. This concept is also known as
o-algebra. In our case we actually have a Borel-algebra, because the o-algebra is gener-
ated by a topology. The most important point is that we have to avoid non-countable
unions, because this might lead to pathological situations of the nature of the Banach-
Tarski paradoxon (which states that a sphere can be disassembled into points and that
they then can be reassembled into two spheres because the set of real numbers is non-
countable).

Corollaries
@ ehB
@ ANB=AUB €8

Examples

ONe = {1,..,6} for the ideal die. This set of elementary events is complete and
disjunct (w; Nw; = @ if i # |, S, w; = Q). This event space is discrete.

@ All intervals on the real axis, including points and semi-infinite intervals like x <
A. Here x could be the position of a particle. This event space is continuous.

We now introduce the concept of probability. For each event A in the event space B we
assign a real number p(A), such that

@ pA)>0 VYAEB
@ p) =1
® p(UiA) =Sip(A) fANA =Dfori# ]

Note that the last assumption is the sum rule. Kolmogorov showed that these rules are
sufficient for a consistent theory of probability.



Corollaries
@ p@) =0
@ p(A)+pA)=p(Q) =1 =p(A)=1-p(Ad) =0<p(4)<1
@ Consider A1, A; € B:
p(A1) = p(A1 N Az) + p(A1N Ay)
=C
p(Az2) = p(A2N A7) + p(A2 N Ay)
=C,

= p(A1) +p(A2) = p(C1) + p(C2) +2p(A1 N Az)

p
p(A1UA) + p(A1 N Ay)
p(A1) +p(Az) — p(A1 N Az)

= p(A1 UAz)

1.4 Continuous distributions and distribution function

Consider the event space containing the intervals and points on the real axis. p(x < A)
is the probability that x is smaller or equal to a given A (eg the position of a particle in
1D):

P(A) :=p(x <A) cumulative distribution function

If P(A) is differentiable, then

where
dP(A) . . e .
p(A) = T probability density or distribution function

We now can write the probability for x € [x1,x2] as fxﬁz p(x)dx. With x, = x1 +dxy,
we can approximate the integral by a product and thus find that p(x;)dx; is the proba-
bility to have x € [x1,x7 + dx;]. Thus p(x) is the probability density and p(x)dx is the
probability to find a value around x. Note that the physical dimension of p(x) is 1/m,
because you still have to integrate to get the probability.

1.5 Joint, marginal and conditional probabilities

A multidimensional distribution ¥ = (x1, ...x;) is called a multivariate distribution, if
p(X) dx; ... dx, is the probability for x; € [x;, x; + dx;]

We also speak of a joint distribution. Note that in principle we have to distinguish
between the random variable and its realization, but here we are a bit sloppy and do
not show this difference in the notation.



Examples

@ A classical system with one particle in 3D with position and momentum vectors
has six degrees of freedom, thus we deal with the probability distribution p(g, 7).
For N particles, we have 6N variables.

@ We measure the probability p(a, i) for a person to have a certain age a and a certain
income i. Then we can ask questions about possible correlations between age and
income.

® Consider a collection of apples (a) and oranges (o) distributed over two boxes (left
1 and right r). We then have a discrete joint probability distribution p(F, B) where
F = a,0is fruits and B = [, r is boxes.

Marginal probability: now we are interested only in the probability for a subset of all
variables, e.g. of x1:

p(x1) = / dxy ... dx, p(X)

is the probability for x1 € [x1, x1 + dx;] independent of the outcome for xy, ..., x;.

Examples
@ we integrate out the momentum degrees of freedom to focus on the positions.
@ we integrate p(a,i) over i to get the age structure of our social network.

® We sum over the two boxes to get the probability to have an orange

p(o) =p(o, 1)+ p(o,r)

This example shows nicely that the definition of the marginal probability essen-
tially implements the sum rule.

Conditional probability: we start with the joint probability and then calculate the marginal
ones. From there we define the conditional ones. Consider two events A, B € B. The
conditional probability for A given B, p( A| B), is defined by

p(AB) = p(A|B) : p(B)
—— —— ——
joint probability conditional probability for A given B marginal probability for B

Thus the definition of the conditional probability essentially introduces the product
rule.



Example
Consider a fair die and the events A = {2} and B = {2,4,6}.

_p(AB)_pa) 1
PLAIB) =) = o(B) 3
gy PAB) _p(A) |

p(A)  p(4)
Statistical independence: p( A1| Az2) = p(A1) A isindependent of A

= p(A1, A2) = p(A1| A2) p(A2) = p(A1) p(A2)

Thus we get the product rule (multiplication of probabilities) that we expect for inde-
pendent measurements, compare the example of throwing dice discussed above. We
also see that

p(A1, Az)

:>p(A2|A1): P(Al)

= p(A2)

Statistic independence is mutual.
Bayes’ theorem: p(A,B) = p(A|B) - p(B) = p(B,A) = p(B| A) - p(A)

p(A|B)-p(B) _  p(A|B)-p(B)
p(A) Lp p(A[B') - p(B')

p(B|A) = Bayes’ theorem

where for the second form we have used the sum rule. Despite of its simplicity, this for-
mula named after Thomas Bayes (1701-1761) is of extremely large practical relevance. It
allows to ask questions about the data that are not directly accessible by measurements.

Examples

@ Consider again the fruits (F = a,0) in the boxes (B = [,r). We assume that left
and right are selected with probabilites p(I) = 4/10 and p(r) = 6/10 (they sum
to 1 as they should). We next write down the known conditional probabilities by
noting that there are two apples and six oranges in the left box and three apples
and one orange in the right box:

p(a|l) =1/4,p(o|l) =3/4,p(alr) =3/4,p(o|r) =1/4
We now ask: what is the probability of choosing an apple ?
pla) = p(all)p(l) + p(alr)p(r) = 11/20

Note that the result is not 5/12 that we would get if there was no bias in choosing
boxes. The probability of choosing an orange is

p(o) =1—p(a) =9/20



We next ask a more complicated question: if we have selected an orange, what is
the probability that it did come from the left box ? The answer follows by writing
down the corresponding conditional probability:

p(1]0) = p(oll(lzf(l) =2/3

Therefore
p(rlo)=1-2/3=1/3

Above we have formulated the probability p(F| B) for the fruit conditioned on
the box. We now have reverted this relation to get the probability p( B| F) for the
box conditioned on the fruit. Our prior probability for the left box was p(I) =
4/10 < 0.5. Our posterior probability for the left box, now that we know that
we have an orange, is p(I|o) = 2/3 > 0.5. Thus the additional information has
reverted the bias for the two boxes.

@ We discuss the statistics of medical testing. Imagine a test for an infection with
the new Corona virus Sars-CoV-2. The standard test is based on the polymerase
chain reaction (PCR), but now there new tests that are cheaper and faster, but
not as reliable (e.g. the LAMP-test from ZMBH Heidelberg or the rapid antigen
test by Roche). At any rate, such a test always has two potential errors: false
positives (test is positive, but patient is not infected) and false negatives (test is
negative, but patient is infected). We have to quantify these uncertainties. Let’s
assume that the probability that the test is positive if someone is infected is 0.95 (so
the probability for false negatives is 0.05) and that the probability that the test is
positive if someone is not infected is 0.01 (false positives). Actually these numbers
are quite realistic for antigen tests against Sars-CoV-2 (PCR-tests are much more
reliable).

Let A be the event that someone is infected and B the event that someone is tested
positive. Our two statements on the uncertainties are then conditional probabili-
ties:

p(BJ|A) =095, p(B|A) =0.01.

We now ask what is the probability p(A|B) that someone is infected if the test was
positive. As explained above, this question corresponds to the kind of change of
viewpoint that is described by Bayes’ theorem. We will answer this question as
a function of p(A) = x, because the answer will depend on which fraction of the
population is infected.

According to Bayes’ theorem, the conditional probability p(A|B) is determined
by
B|A)x B|A)x
Sl PEIAY _ p(BA)

p(B)  p(B|A)x+ p(B|A)p(A) (1.1)




Using x + p(A) = 1, we get

(BJA)x ad
A p(B|4 L _ —. (12
[p(BIA) ~ p(BIA)] x +p(BIA) — [1 - tlAAT 1 2B

Introducing the ratio of false positive test results to correctly positive ones, ¢ :=
p(B|A)/p(B|A), we have our final result

p(A|B) = (1.3)

x

Thus the probability p(A|B) that someone is in fact infected when tested positive
vanishes for x = 0, increases linearly with x for x < ¢ and eventually saturates
at p(A|B) = 1as x — 1. This type of saturation behaviour is very common in
many applications, e.g. for adsorption to a surface (Langmuir isotherm) or in the
Michaelis-Menten law for enzyme kinetics.

Putting in the numbers from above gives ¢ = 0.01 < 1. Therefore we can replace
the expression for p(A|B) from above by

X
c+x’

p(A|B) ~ (1.4)

For a representative x-value below ¢, we take x = 1/1000 (one out of 1000 people
is infected). Then p(A|B) = 0.1 and the probability to be infected if the test is pos-
itive is surprisingly small. It only becomes 1/2 if x = c (one out of 100 people is
infected). Thus the test only becomes useful when the fraction of infected people
x is larger than the fraction of false positives c.

® A company produces computer chips in two factories:

— | 60% come from factory A
factory: events A and A
40% come from factory B

— [ 35% from factory A
defect or not: events d and d

25% from factory B
What is the probability that a defect chip comes from factory A?
p(d|A) p(A)
p(d)
p(d) = p(d| A) p(A) + p(d| B) p(B)
p(A) =0.6, p(B) =04, p(d|A) =0.35,p(d| B) = 0.25
= p(A|d) =0.68

p(Ald) =



@ We can design a webpage that makes offers to customers based on their income.
However, the only data we are allowed to ask them for is age. So we buy the
correlation data p(a,i) from the tax office and then estimate the income of our
users from their age information. The more multivariate data sets we can use for
this purpose, the better we will be with these estimates and the more accurate our
offers will be.

1.6 Expectation and covariance

Both for discrete and continuous probability distributions, the most important opera-
tion is the calculation of the expectation of some function f of the random variable:

() =LA or ()= [ fop(x)d
In particular, the average of the random variable itself is

p=(i)=Yip or p=(x)= [xp(x)x

1

Examples
©, Throwing the dice: (i) =21/6 = 3.5
@ Particle with uniform probability for position x € [—L, L]: (x) =0

The next important operation is the calculation of the mean squared deviation (MSD) or
variance, which tells us how much the realization typically deviates from the average
(now only for the discrete case):

o = ((i— () = (2 =2i (i) + (i)))
= () = 200)" + (i) = () - ()"
Here we have used the fact that averaging is a linear operation. ¢ is called the standard

deviation.
For two random variables, the covariance is defined as

o5 = ((i = ()G — () = (if) — (i) (i)

where the average has to be taken with the joint probability distribution if both vari-
ables are involved. If i and j are independent, then their covariance vanishes.

Examples
@ Throwing the dice: ¢ = 35/12 = 2.9

@ Particle with uniform probability for position x € [—L,L]: 0> = L?/3



1.7 Binomial distribution

The binomial distribution is the most important discrete distribution.
We consider two possible outcomes with probabilities p an q (p + g = 1, binary pro-
cess), respectively, and repeat the process N times.

Examples

©, flipping a coin N times, outcomes head or tail

0.5 0.5
0.5 05 0.5 0.5

05/\os  05/\os 05/\os 05/\0s

Figure 1.1: lineage tree for the ideal coin experiment

@ following a ball falling through an ‘obstacle array’

N
N2 N

4 .\/.v.\

Figure 1.2: obstacle array

® stepping N times forward or backward along a line = 1D Brownian random walk

(‘drunkard’s walk”)
@ throwing the dice N times and counting # {6} =p=1,49=2

® N gas atoms are in a box of volume V which is divided into subvolumes pV and
gqV. On average (n) = p- N atoms are in the left compartment. What is the
probability for a deviation An? Or the other way round: Can one measure N by
measuring the frequencies of deviations An ?

10
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Figure 1.4: gas box with two compartments

In the following we use the terms of example 1. What is the probability to get i €
{0,1, ..., N} heads? Because every throw is independent we have to multiply the prob-
abilities:

pi ] qN—i
However, there is more than one sequence of head and tails to arrive at i heads. The
number of realizations is given by the binomial coefficient:

N(N=1)...(N=(i—1)) N!

N
_ _ ) a1 ffici
ii—1)...1 (N — )il < ; > binomial coefficient

The binomial coefficient is the number of ways one can choose i objects out of N. The
numerator is the number of ways we can select i objects out of N without putting them
back. However, here we assume that we have numbered the objects and care for their
identify. We therefore have to correct for the number of ways to rearrange the i objects,
which is the denominator.

Another way to understand that the binomial coefficient has to appear here is to write
our procedure of repeating the experiment with the two possible outcomes N times:

N
(p+)N=p+a)p+a)..(p+q) =Y, (N> PN

i—o \'!

N times

11



where in the last step we have used the binomial formula (x +y)N = YN (N)xiyN-i.

Thus the binomial coefficient simply gives the multiplicity that arises from multiplying
out this expression. Remember Pascal’s triangle (Figure [L.5):

(Azl> - (Ij—_ 11) " <Nz'_1>

]|

1 1 —— 2

1|21 | =24

1|3|(3|1|=— 18
1/4(6|4 (1| =16
1(5]10({10| 5|1 | =— 32
1|6(15(20|15({6 (1| =64
1|7(|21|35(35|22| 7|} | =126

Figure 1.5: Pascal’s triangle with sums on the right

In summary, we now have for the binomial distribution:

N\ i N

Note that normalization is ensured:

A al N i N—i N N
ZmzZ(i)-M T=(prpN=1=1
i=0

i=0

Obviously we have 2N possible outcomes of the experiment, which we also see by con-

sidering
() -5 ()
) = SNt = (14 1)N =2N
> (1) =1(} (1+1)

Example

We plot the binomial distribution in Figure for p = % and N = 10. This is the
probability to get i times a 6 when we throw the dice 10 times. The average of this
distribution is N - p = 10/6 = 1.67 and close to the peak.

Next we want to characterise the binomial distribution. It typically looks like in Fig-
ure L.l with one clear peak. We first calculate the average

12



0.35

0.3

Ll

widtho !

0.1

-

10

8 9
Figure 1.6: Binomial distribution for p = 1

5, N = 10. Points are joined by lines to
better show the shape of the distribution. The average is y = 1.67 and the
width is ¢ = 1.18.

where we relabeled accordingto M = N —1,
(i—-1)=M-—j.

j=i—1landused (N—i)=(N—-1)—

A more elegant way to get the same result is:

(i) = é QI) (P'di)zo“q’“‘i

=g P+ )" =N-plp+q)" T =N-p
The trick is to consider p as a variable before using p + g = 1 in the final step.

We now use the same trick to calculate the second moment:

13



d d _
=(p P p+a) = (P@)P'N(PJFQ)N '
=p Np+g)" ' +p* N(N=1)(p+q9)"?
=p-N+p* N-(N-1)
The mean squared deviation (MSD or variance) follows as:
o? = ((i— () = () - (i)
=p-N+p* N(N-1)-p*-N*=p-N—p*-N
=p-N(1—p)=N-p-q vanishesforp=00rg=0

= |()=p-N, c*=N-p-q

o is called ‘width” or ‘standard deviation” (SD). The ‘relative width” or “coefficient of variation’

is then given as

c_VN-pq_  [g1 Now

- = =,/-—— — 0

woo Nep PVN
This is an example of the ‘law of large numbers”: For large N the distribution becomes
very sharp.

Examples

@© 102 gas atoms in a box, divided into two compartments of equal size
= p=g=05

= u=N-p=N/2 atomson average on left side

The actual number deviates by
c=+/N-p-qg=05-10"
o

= — =10"'? the relative deviation is tiny! This is the reason why thermodynamics works!

K

@ We can use the result for the standard deviation to check experimentally if a die
is ideal. We throw N = 10° times and find n = 1.75 - 10* times a {6}

= = % —0.175

14



This is not in agreement with the ideal value ps = 0.167. However, how relevant
is the deviation? We calculate the expected deviation for pg:

An _VN-q-p_ V5 a0
N N 6vVN

where we have used p = 1/6 and q = 5/6 for the ideal die. Because the measured
value is farther away from the ideal pg than this, we conclude that the die is not
ideal. Note that for N = 103 the width ¢ = 0.012 would have been too large to
draw this conclusion.

1.8 Gauss distribution

1 N increasing

:

' il
;

|
0 ~
PNy X p-No

Figure 1.7: change of the binomial distribution with increasing N

We now consider the case that we perform infinitely many realizations of the binary
process. For p = const the limit N — oo implies:

u=p-N—+o00 for N — co.

However, the relative width % becomes smaller and smaller:

o_ 1-p 1
p r VN

Where is the peak of the distribution?

N i —i
Pz:(i>;9~qN

A Taylor expansion around the peak is problematic, because p; = (I:] YpigN~ is a sen-
sitive function of i. Therefore it is better to expand its logarithm In p;. In regard to the
normalization, our method is an example of the saddle-point approximation or method of
steepest descent.

—0 for N — oo.

15



We start by taking the logarithm:
Inpi=InN!—Ini! = In(N —i)! +ilnp+ (N —i)Ing

We need derivatives:

dlni! _In(i+1)! —Ini!
di

=In(i+1)~Ini fori>1

Integration yields:
Ini! ~i(lni —1)

This agrees with Stirling’s formula:

Ini' =ilni —i+ O (In(7))

Back to p;:
% =—Ini+In(N—i)+Inp—1Ing
:lnw 20 at peak iy,
4/

= (N—in)p=in(l—p)
= ‘im:p-N:y‘

We note that peak and average of the binomial distribution are the same in this limit.
We next consider the second derivative
d?In(p;) 1 1 N

a2~ i N-i i(N—i)

which we then evaluate at the peak position as

1
N-p-q

=-—<0 therefore it is a maximum
o

11 .
=1Inp,=Inp, — Eﬁ(l_y)z—i_"‘

_(=w)?
= |pi=pPm-e 202

This is a Gaussian with average # = p - N and variance 0> = N - p - g.
We now change from index i to a spatial variable x = N - Ax with p, = u - Ax and
ox = 0 - Ax;.

Axa%—>0 for N — oo

16



= iy =p-N-Ax = const
= p(x) = pm Lo~ (1) (2% continuous probability density

The probability for the continuous random variable x € [x1, xp] is given by [ x’iz dx p(x)

where we integrated over p(x)dx, the probability to find x between x and x + dx. The
continuous probability distribution p(x) is actually a probability density, because we
have to integrate to turn it into a probability. For simplicity, in the following we drop
the subscript x again.

Regarding the normalization, we first note that it is independent of the average y, so
we can take y = 0:

/P(x)dx =1= Pm/ dx e~/ (27%)

Thus we have to deal with the Gauss integral:

1

/dx e = (/ dx e_”xz/dy e_”y2)2
an wd _mz%

—</0 4)/0 rr-e >

= <27‘c/0m;due””)2
1
-1(3)

In the following, we often need the second moment of this distribution:

= (8) [arvest = (8) L [apen
a d

2 1
= (7) w5

NI—=

N|—

In our case a = 1/(202) and thus p,, = (2710?) "2

= |plx) = _ .e~(=1*/(27) | Gauss or normal distribution

(270?)2
1
2a

Its variance is (x?) = 5- = 0. Thus the factor of 2 in the Gaussian is needed to get the
correct variance.
The probability to find x within an interval of one, two or three standard deviations

around y is

0.683, m=1
u+mo
/ dx p(x) =0954, m=2
U—mo
0997, m =

17



X

Figure 1.8: Gaussian with indicated 1o-interval

1.9 Poisson distribution

Note that the continuum limit to the Gauss distribution does not work for rate events,
e.g. when p — 0. For the above arguments to work we need p = const, hence y =
p - N — oo. If we take the alternative limit

N -0, p—0, p-N=pu=const
we get a different result called the ‘Poisson distribution’. We now have

N! iN—i_N(N—l)...(N—i—i—l)(y)i(l_‘M>N( y)—i

Pi=Nn—pul il N N/ UTN

-0 4) - e

where we have used that in the limit N — oo the first and the last parts go to 1, and that
(1— %)N — e~ #. Thus we get

i=0 i=o b
The first moment is:
00 i 00 i—1
(i) = ;)ﬂi‘!e—u = pe ! ; (lf‘_ i = ¥ (1.6)
Higher moments can be derived recursively:
d . N A . "
P = D (=) = ) ) (17)
i=0 **

18



For n = 1, this results in (i) = p + u?, which means that 02 = y. Thus variance and
average are identical. For n = 2 we get (i) = y(d% +1)(p+p?) = u+3u>+p’ In
general, the Poisson distribution is completely determined by its first moment y, this
distribution has only one parameter.

1.10 Random walks

As indicated in Figure a random walk is the trajectory in which for each step we
draw a random number to decide whether to step to the left or to the right. This has
been compared to a drunkard walking home along the pavement.

To make this more precise, we define the following quantities:

#right steps: n, =i

#left steps: n; = N — i
time: t = N - At
position: x = m - Ax
m=n,—n=i—(N—i)=2i—N

Note that at a given time step the particle can be only at an even or odd position. Our
terms yield the following average:

= (x)=2@#§ -N)Ax=(2p—1)N-Ax
Ax
drift velocity v

p = q = 1/2 (symmetric random walk) = v =0.

(x*) = ((2i — N)*) Ax*
= (4(i*) —4 (i) N + N*)Ax?
= (4Np(1—p) + N*(4p*> —4p + 1)) Ax*
Ax? Ax . 5 »

= 2(4pq ot +((2p = 1) 5)7t)
The second term quadratic in ¢ is the drift term with the same drift velocity v above,
which vanishes for the symmetric random walk. Then only the first term remains,
which is linear in t. This is the famous diffusion part of the random walk. The term in
brackets is called the diffusion constant D. For the symmetric random walk, 4pg = 1
and we have the standard definition of D. We now have the most important result for
random walks:
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= Uocx/f

The ‘mean squared displacement’ (MSD) grows o t, the ‘root mean squared displacement’
(RMSD) grows as o 9,

ar- ballistic movement E
—u-t

=v2-D-t

diffusive movement

uncorrelated
jumps

®

Figure 1.10: The uncorrelated jumps of a particle starting at position 1 and ending at 6.
R is the resulting end-to-end vector.

A more general derivation for arbitrary dimensions d is as follows: We consider the
end-to-end vector defined by

20



For the mean squared displacement we get

= PN=Y"d-Ax*=N-d-Ax*=2-d-—— -t
z:1<l> g &A,.t/
=D

= <1€2>:2-d-D-t

The most important aspect here is that two random vectors are uncorrelated if i # j,
so all off-diagonal terms vanish and only the diagonal terms survive. This creates the
linear scaling with N and therefore also with t. d is the spatial dimension and we
use Pythagoras and the fact that all dimensions are equivalent (in each dimension, the
walker must make a step a size Ax). In one dimension, d = 1, this result becomes the
same as above. Note that if you identify time with contour length, this would be a
model for a polymer (freely jointed chain).

Rate equation approach

Above we have derived the global properties of the random walk. Now we address its
local properties and see that in the end we essentially get the same results again. We ask
how the equation of motion looks like for a random walk particle. In contrast to above,
we even allow for the possibility that the walker can stand still. Thus we introduce the
probabilities p, ¢ and r to jump to the right, to jump to the left and not to jump at all,
with p + g +r = 1. We then write the jump (or master) equation:

p(x, t+ At) = pp(x — Ax,t) + gp(x + Ax, t) + rp(x, t)
We next Taylor-expand both in time and space:
p(x, t+ At) = p(x,t) + p(x, ) At + ...
p(x + Ax,t) = p(x,t) +p'(x,t)Ax + %p”(x,t)sz +...
p(x — Ax,t) = p(x,t) — p'(x,t)Ax + %p”(x,if)Ax2 +...

Inserting into the jump equation give

plxt) +p(x, At = (p+q+r)p(x,t) + (=p+q)p (v, ) dx + %p”(x, B (p+q)x*

21



The first terms on both sides cancel and we can divide by At and take the continuum
limit:

Ax,At -0 = |p(x,t)=—ovp'(x,t)+Dp"(x,t)| Fokker-Planck equation

Here the drift velocity v is defined as above. The diffusion constant D is a bit different,
it used to be D = 4pqAx?/2At above, now itis D = (p + q)Ax?/2At. If r = 0 (particle
is forced to jump), p + g = 1 and we get D = Ax?/2At, which is the basic definition of
the diffusion constant.

The Fokker-Planck equation is a PDE that has a similar character as does the Schrodinger
equation. For v = 0itis the time-dependent diffusion equation. For the initial condition

plx,t=0)=0(x)
the solution is given by a Gaussian

1 o (x—01)2/(4D¥)

Pt = Vbt

as you can check by reinserting it into the FPE. This is the same solution as above, with
o = +2-D-t. So as the global analysis, also the local considerations give us again the
square root scaling of a random walk.

ty >t
0.05- Bl
0 1 |
-2

-8 s -4 2 4 6 8

L
0
X

Figure 1.11: Two distributions with different t values (without drift). The distribution’s
width ¢ = v/2- D - t increases with the root of time.

Mean first passage time

We finally consider the following question. A particle is performing a symmetric ran-
dom walk in d = 1 with step size 6 and jump time 7 in the interval x € [0,b]. We
ask how long it will take to leave this boundary. Obviously this time will depend on
the starting position x and we call it T(x), the mean first passage time. We now use a
similar consideration as for the rate equation to write

T(x) =1+ %[T(x+5) + T(x —96)]
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We rearrange to get

1 2t
S T(xr+0) + T(x = 6) = 2T(x)] + 55 = 0

We identify again a second spatial derivate and perform the continuum limit to get

1
1 g
T"(x) + ) 0
Thus we have obtained an ordinary differential equation for T(x). The solution has to
be a polynomial of order 2 that depends on boundary conditions. For two absorbing
boundaries we have T(0) = T(b) = 0 and the solution is

1

T(x) = 5D

—(2bx — x )

We assume that the position is released at a random position and therefore we average

over x.
b / x)dx = 12D

Again we see that the time scales with the distance b squared. The inverse scaling with
D is expected for dimensional reasons. The prefactor 12 can only be obtained by doing
the full calculation. For a reflecting boundary at x = 0, one has to use the boundary
condition T'(0) = 0.

1.11 Computation with random variables

Let x be some random variable with a continuous distribution p(x). We consider a
coordinate transformation x — y(x). Assuming that also the inverse transformation
y — x(y) exists, we want to know what the probability distribution p,(y) is. This
result is easily obtained using the transformation theorem.

1—/dxpx /dylfl px(x(y))

—
=py(y)
Examples
@)
y=c-x
1 y
= pyly) = o Px(z)
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Another way to see this:

Moments:

1
y=-= In(1—x)
>x=1—e
= py(y) = w- e px(x(y))

Let’s take x to be a uniformly distributed variable in [0, 1] with p,(x) := 1. We
will need this later, eg for Monte Carlo simulations of the Boltzmann distribution.

= px = 1 = y is exponentially distributed

® A similar procedure exists in higher dimensions. We have a look at an n-tupel
X = (x1,...,xy). This tupel is transformed to another tupel y;(X) with the index i

in the set [1, ..., n]:
o 0(X1, e, )
py(y) |a(y1’m’yn)

—_——
Jacobian

| -px(X(¥))

-

A standard method to obtain Gaussian random variables is the Box-Miiller pro-
cedure:

Y1 = v/ —2Inxq cos2mxy
Y2 = v/ —2Inx;sin27mx

— oy = e 20D

1
= X» = — arctan Y2
27T 1
1 1
= pi(i) = L L pz(%)



Both y; and y, are Gaussian distributed with ¢ = 1, if x; and x; are uniformly
distributed in [0, 1].

1.12 Addition of random variables

We next consider the addition of two random variables x and y. Given p,(x), p,(y), we
define z = x + y and write

po(z) = [ [dxaysz— (x+y)pxy) = [dxplrz—x) = [dxp(x)py(z - )

where in the last step we have assumed that the two variables are independent. We see
that the resulting probability distribution is a convolution. This suggests that it might
be helpful to use Fourier transforms.

For a given probability distribution p(x), we define the following characteristic or gen-
erating function:

G(k) = <eik"> = /dx p(x)e*

which is the Fourier transform of p(x).
If all moments exist and grow sufficiently slowly, we can make a Taylor expansion:

6l = - O
1 d"G(k)

n — —_ — .
> W EmEE e,
Hence if we know the characteristic function we can generate all moments ;.
Now let us do the same thing for the logarithm:
_ v (k)"
InG(k) =) s

n=0

Kn

cumulants of order n

The cumulants can be generated using the same trick as above:

= 1 d"InG(k)

i" dk

k=0

Looking at the first few cumulants, we see that they are interesting quantities:

ko= InG(k)|,_y =In1=0

1 G
R
1 G'G-G"? 2
n=5 T ey =
k=0
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The third cumulant looks more complicated:
1
K3 =5 (G" ~3G'G" + 2G"°) = e B+ 2

The cumulants are specific combinations of the moments. The relation can also be re-
versed:

H1 =K1
U2 = K2 +K%
U3 = K3 + 3KaK71 + K%

You can characterize a probability distribution either by its moments or by its cumu-
lants (except if its moments are not finite, as for the Lorentz distribution, or if they grow
too fast, then you have to know the distribution directly).

Examples

The most important example is the Gauss distribution. Its characteristic function is
given as:

/ dy e . e/
27'[02)2

(= pfik02)2+21<2¢7472ikt72;4
. 20
= / — e (204)

27102 2
—e — K202 +ikp

= InG(k) = iky — %k‘ZO’z

:>K1:1dlnG .
i dk |
Kz:ldzlnG _ 2
2 dk |

All other «; vanish. The Gauss distribution is the only one having just two non-zero
cumulants.

Back to addition of two random variables x and y:

zZ=Xx+Yy

> pu() = [drp(x) py(x—2)
Due to the convolution theorem this becomes

G2(K) = Gx(K) - G, (K)
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= InG. (k) = In Gy (k) + In Gy (k)

Having in mind the definition of the cumulants this yields

() _ ) | )

Ki’l n

By iteration, hence z = x; + ... + xy, it is possible to construct the n-th cumulant:

e

M=

Il
—_

Z
K)’l
1

We are now in a state to formulate the law of large numbers:

The average of many realizations approaches the expectation value.

Proof
Z—l(x + ..+ xn)
=yt N
1 N
= @=yx L)
X=X
1., Y 1 02
2 12 > _ 1 o2 Oy
= UZ - (N) ;UXi \x”:x, N Ux N
1., & 1
% () L ot
n>2 =1 xp=x

Thus the variance and all higher order moments / cumulants vanish in the large N
limit.

In order to get a finite variance, we have to sum differently. This leads to the central
limit theorem:

The sum of many independent variables has a Gauss distribution after ap-
propriate rescaling.

From above we see how we have to rescale to get this result:

1
Z = ﬁ((le — <x1>) + ...+ (XN — <XN>)
Then (Z) = 0, ¢? = 02 and all higher cumulants vanish in the limit of very large N.
Therefore this sum indeed has a Gauss distribution (normal distribution if we also scale
the variance to 1).
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1.13 Information entropy

In 1948 Claude Shannon introduced a measure for uncertainty of a probability distribu-
tion which agrees with the thermodynamic definition of entropy. The relation between
information theory and statistical physics was further discussed by Edwin Jaynes in
1957, who introduced the maximum entropy principle, which today is widely used in
statistical data analysis (eg image processing).

For a given discrete probability distribution p;, we introduce a dimensionless measure
for its disorder, the entropy:

S = —Zpi lnpi

Comments
@o<p<1=5>0

0 0.2 0.4 0.6 0.8 1 12

Figure 1.12: —x - In x as a function of x

@Elj: pi=1= pi=0fori#j= S5=0

The entropy is minimal, if outcome is certain.

® Fora given homogeneous distribution p; = const = &, with Q = #states:

1 1

Lpi=
i

=0 =—=1
Q Q

Mo

1 1
1=

Hence we see that entropy increases with the number of states.
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@ Entropy is maximal for the homogeneous distribution.

Q
S5, —S5= Zpl Inp; +InQ)
i=1

(@) (@)
= Zpl 111}71'—1‘2}71' InQ
i=1

Q
Z ) In( pl 0)

=1~

D\H I

xi
Our aim is to minimize S, — S. Direct minimization gives us

1 & ! -
5(S,—8) = ag(lnxi—kl)éxi =0=>x=¢!
because x = 1/e¢ is the position of the minimum of x In x and because each term
has to be minimized by itself independent of the others. However, this result does

not satisfy the normalization constraint Y52 | x; = Q. We add this constraint to the
target function with a Lagrange parameter A and thus have

0
(1)Z(lnxl+1+/\)(5xZ =0=x;=e 1Y
i=1
Implementing the constraint specifies A = —1 and thus x; = 1 will be the cor-

rect solution. Hence the entropy (or disorder) is maximal for the (normalized)
homogeneous distribution and all other distributions have smaller entropies.

The same result can also be obtained by using a small trick rather than a Lagrange
parameter. Rather than introducing A, we add zero to the target function in a way
that only works for the properly normalized distribution:

1 & 18
S;Z—S:6 ;xi lnxi—i—ag(l
| S ——
=0
Q

1
6 Z(xl- Inx; +1— Xl')
i=1

= The only minimum (Figure|1.13) is at x; = 1.

Thus we get the same result as for the calculation with the Lagrange parameter.

® We consider two independent subsystems 1 and 2:

pij = pz(l) ) P]('Z)
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X*In(x) +1-x

L I 1
1 15 2 25

Figure 1.13: x - Inx 4+ 1 — x as a function of x

= §==) pij Inp;
7

=y p® [npl +inp?]
ij

(A7) ol () 5 s

=51+5;

Entropy is additive for independent subsystems.

® A bit of information theory: How many ‘yes-or-no” questions do we have to ask
to find out which state j is realized? We divide ) into two disjunct domains ()4
and O, such that
Yo=Y pi-;

ey i€y

Firstly we ask: Is j in (2;? We then choose the correct domain and scale the prob-

ability by 2 and repeat the dividing procedure. This has to be done k-times while
k is given by

2 pi=1

= k:—h’lzpj

On average, the number of questions required is

0
Y pi (—Ingp;) = S + const
i=1

We conclude that entropy is not only a measure for disorder but also for uncer-
tainty.
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@ We now aim to maximize entropy with the additional constraint:

u= Zpi E; = const
i

Here E; is some scalar property of each state (later this will be energy, thus U will
be the average energy).

Q !
= 65=—) (Inp;+1)ép; =0
i=1

Auxiliary conditions:

@ yipi=1= Lop=0

@ ypEi=U = YEdp=0
Method of Lagrange multipliers:

—Z(lnpi—Fl—}—)\l—i—)\in)'épi:O
i
=0

= pi = e—(1+/\]+/\2 Eq)

The auxiliary conditions then yield

@

e~ (1+A1) Ze—/\z Ei _1q
i

37(1+)\]) — 1 — 1

Yie BT Z

YiEiehh
Yie Mk

= Ay := Bis afunction of U

=Uu

1 4
= pi:Z.eﬁEt

This exponential distribution later becomes the Boltzmann distribution.
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Continuous distribution

In the case of a continuous distribution the entropy becomes:

S = —/dx p(x) Inp(x)

For a Gaussian distribution this yields

_ 2
S e /dx 1 ef(xflu)z/(Za) (M _’_1 1n2n 0—2>
1

V2o 207 2
S= > (1+1In(27r 0?))

The entropy increases with the variance: The broader the distribution, the larger the
disorder or uncertainty.
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2 The microcanonical ensemble

2.1 Thermodynamic equilibrium

It is a matter of experience that after some time (relaxation time) an isolated physical
system arrives at a state of macroscopic rest (thermodynamic equilibrium). Then a few
macroscopic quantities (such as volume V, pressure p and temperature T) are suffi-
cient to completely characterise the system (state variables). If external conditions are
changed, the system adopts a new equilibrium state. If we change external conditions
very slowly, the system is going through a series of equilibrium states (quasi-stationary
process). Even if a system is in macroscopic equilibrium, its constituents move on a
microscopic level as long as temperature is finite. This becomes evident when observ-
ing dust particles in gas or liquid, or to be more specific, aerosols in the atmosphere or
colloids in a fluid solvent: they all undergo Brownian motion. Therefore many micro-
scopic states correspond to the macrosopic state. The essence of equilibirum statistical
physics is to calculate the macroscopic properties of equilibirum states from our knowl-
edge of the underlying microscopic physics.

Examples

@ Consider a gas container with two compartments, of which only one is filled. If
the wall is removed, the gas expands until it fills the whole space (Figure [2.1).

|
|
|
|
|
|
|
|
|
T
|
|
|
|
|

Py
@
|
|
|
|
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|
|
|
' . .

|
|
|
|
|
1

Figure 2.1: A gas expands into empty space if the wall is removed.

@ Again we consider a box with two compartments, this time with two different
fluids (black and white). After the separating wall is removed, the fluids mix due
to diffusion. A grey final state is established (Figure[2.2).
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Figure 2.2: Two fluids mix by diffusion.

® Stretch a polymer to its maximal extension and let it shrink afterwards. The fol-
lowing movement results in a coiled equilibrium state (Figure 2.3).

1 2 3

e B

Figure 2.3: The equilibrium state of a polymer is a random coil.

2.2 Micro- and macrostates

Talking about many (= 10%) particles, it is neither possible nor desirable to follow
their trajectories. Moreover we could be never certain about the initial conditions to
assume for such a calculation. Therefore the statistical description aims at averaging
or projecting the microstates onto the macrostates without going into the issue of time
evolution. The solution to this challenge is a central postulate which will allow us to
perform such a procedure. For the averaging procedure, we need a statement about the
probability p; that a certain microstate i occurs.

In thermodynamic equilibrium, the microstates are visited one after the other (‘time
average’) or occur simultaneously in equivalent realizations (‘ensemble average’). The
equivalence of time and ensemble averages is called ‘ergodicity’.

In statistical physics, we first have to identify the relevant microstates. In general, they
are characterised by their quantum numbers resulting from the solution of Schrodinger’s
equation. Each state i then has a distinct probability p;.

Examples

@ Consider a spin-3 particle with spin |1) and |/), hence this is a two state system.
For an electron we have the magnetic moment y = efi/2mc, energy E = —2uHm,
and spin m, = £1/2. H is the external magnetic field.
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@ N non-interacting spin-1 particles. Now the system has 2V possible states. The
energy of the system is then given as E = YN E;.

® 1D harmonic oscillator E, = f w (n+1), n=0,1,.. This system has infinitely
many but countable states.

@ N atomsina crystal, each vibrating around its mechanical equilibrium state ("har-
monic crystal”). In three dimensions, a simple model is to consider this is a col-
lection of 3N non-interacting harmonic oscillators ("Einstein model"). Although
these are infinitely many states, they can be counted easily.

® A particle in a box. The Schrodinger equation then is:
L,

L, /L

X

Figure 2.4: 3D potential well

—H?
—AY=EVY
2m
T
= Y(t) = sin thzx . sin Lyyy' ; LIZZZ
232 .2 2 2
wht on n n
=ow Bt
m x Y 2

This system has infinitely many but countable states (1, 1, 11).

® Now consider N such particles in a box without interaction ("ideal gas"). Like for
the harmonic crystal, this will be infinitely many states, but they can be counted.

2.3 Density of states

We see that in quantum mechanics we can easily count the number of states. The ques-
tion now is how to deal with classical systems. We clarify this issue using the 1D har-
monic oscillator.
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In quantum mechanics the energy levels are given as:

The number of states with E,, < E is then obtained as

E
Np ~ —
E™ hw

In the classical case it is a bit more complicated:

mi+kx=0 = w2:E
m

p=xm,q=x

& Hp) = imar@+ B LE
L2 R

Defining the quantities:

a:=v2mE b:= E

mw?

ORIOR

This is the equation of an ellipse in phase space with area A = 7t a b which represents
the number of states with energy < E.

Figure 2.5: The classical 1D harmonic oscillator corresponds to a movement in 2D phase
space on the elliptical path that corresponds to energy conservation. The
enclosed area A represents all states with equal or lower energy. In quantum
mechanics, state space is divided into small boxes of size h. Thus A/ is the
number of states corresponding to the classical system.
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2ntE
= VE:nab:L
w

Comparing this result with the quantum mechanics one gets

NE:?

Hence we see that the number of classical states is obtained by dividing the phase space
volume through the Planck constant h.

This example suggests to count states in a classical system by dividing phase space into
boxes of size h. Another argument leading to the same conclusion comes from wave
mechanics. According to de Broglie, for a single particle with mass m we have p =
hik = mv = h/ A, therefore v = h/(mA), where A is the wavelength of the particle. For a
wave packet with size /, the uncertainty in position is dx = I. The relative uncertainty in
wavelength is A /A = A/I. Therefore 5p = mév = h6A/A? = I/l and we finally get the
Heisenberg uncertainty relation éxdp = h, because I drops out. Therefore in quantum
mechanics it is meaningless to choose a smaller box size in phase space and it becomes
possible to count the number of states by dividing classical phase space volume by the
Planck constant / (for one particle).

2.4 The fundamental postulate

For both classical and quantum mechanical systems, energy E is a conserved quantity
for an isolated system. For a system at rest, E is the only relevant integral of motion, as
suggested by Noether’s theorem (energy conservation follows from invariance to trans-
lation in time, and this is always valid). We now consider the ensemble of microstates
corresponding to a macrostate with state variables E, V, N given (‘microcanonical ensem-
ble’). For a system at rest, there is no physical reason to single out any other features
of the system as being relevant on the macroscopic level. Let’s assume that the value
of E can be determined with an uncertainty JE. We look at the quantum mechanical
number of microscopic states between E — 6E and E (‘microcanonical partition sum’):

QE)= Y 1

n: E-0E<E,<E

For a classical multiparticle system, one has to correct not only for the microscopic
box size as explained above for a single particle, but also for the fact that in quantum
mechanics particles are indistinguishable (the wavefunction is invariant under parti-
cle exchange) - which yields a factor of 1/N! due to N! being the number of possible
permutations:

O(E, 6E) = —

= dg dp
h3N N! /E-aEgH@mSE T
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if we count the number of microscopic states in classical phase space (counting from
quantum mechanics is straight forward and does not need any further comments).
What is the probability density p for the microcanonical ensemble? First we know that
p has to vanish outside the energy hypersurface in phase space. Second we expect that
the system smears out its presence in phase space as it goes towards equilibrium. Sev-
eral reasons have been evoked for this expectation, including deterministic chaos and
spreading of the wavefunction in a system that is not perfectly isolated. Also one can
use Liouville’s and von Neumann’s equations to motivate this (see below). Here how-
ever we take this expectation as our fundamental postulate and show that the whole
machinery of statistical mechanics and thermodynamics follows from this one postu-
late:

For an isolated system at equilibrium, all microstates are equally probable. ‘

1
——— = const E—-JE<E; <E
= pi(E)={ QE) Z

0 otherwise

Due to its huge success, there is no doubt that the fundamental postulate is correct.
We note that the homogeneous distribution maximizes entropy

Q
S = —kB Epl 11’1]91' :kB InQ)
i=1

This is ‘Boltzmann's postulate” after whom the physical constant kp is named which we
introduce here such that later it gives us a temperature scale. Thus the fundamental
postulate immediately suggests an extremum principle, which in many physics theo-
ries is the most convenient and elegant way to solve problems (e.g. in analytical me-
chanics). Note that the maximum entropy principle does not require any more physical
reasoning, it is simply a mathematical consequence of the fundamental postulate, as
shown in the section on information entropy in the first chapter.

Examples for the microcanonical ensemble

@ three spin-3 particles
Possible states are:
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n mpy mp; mz energy E
1 + + + -3 uH
2 + + - —1uH
3 + - + —1uH
4 - + o+ —1uH
5 = = = +1 uH
6 - &+ = +1uH
7 - - i +1uH
8 - = - +3 uH
If we know that E = —u H, then the corresponding microcanonical ensemble is

{++-),(+—+),(—++)} = Q=3

Each state is equally likely with

@ ideal gas

h3N Nt /E—<5E<’H(07,]ﬁ)<E ——

= QO=_—--— VN f(RJR)
where f(R,6R) is the volume of a spherical shell with radius R = v/2mE and
thickness 6R = } \/(2m)/E SE in 3N-dimensional space.

From analysis we know the expression for the volume of a sphere with radius R
in D-dimensional space:
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Taking D = 3 we recover the well known formula:
4r

R3
3

1%

because (3/2)! =T(3/2) = 3\/7t/4.

= f(R,0R) = V(R) — V(R —$R)

P/ D D
:(D/Z)! R” — (R—4R)

R0 [1-(1-)7]

For D = const, we could expand this expression in % and got DT‘SR for the square
bracket. Here however we are interested in the limit D — oo for 28 « 1

(1— ‘%R)D — D In(1-%) o ,~D % P3®
a2
= f(RR) = o R = V(R)

JR drops out; in high dimensions the volume of the sphere is manly at its surface.

VN 7.[3N/2 (2mE)3N/2
= |Q(E) =
(E) h3N NIt (2!

microcanonical partition sum for an ideal gas

The entropy of an ideal gas then becomes:

S=kginQ =kz{ NInV + % 1n(2727’fE) —InN! —1n(%)!

1= expression A

Considering N > 1 and applying two times Stirling’s formula, expression A be-
comes:

—1nN!—1n(¥)z __ [N <mw-1)+¥ (1n¥ —1)}
5 3 3 5
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Comments

4

zI<

@ S,V,E, N are all extensive and occur only in the combinations s = %, v =
e = & (‘specific quantities’).

@ The exponent 3 reflects the fact, that each particle has 3 degrees of freedom.

47tme
s=kg {In(5) +3}

@ This first non-trivial result from statistical physics has been known before in
thermodynamics as ‘Sackur-Tetrode-equation’. It has been impressively veri-
fied in experiments.

1
® With A == ( a2 )2 (‘thermal de Broglie” wavelength) we get:

2.5 Equilibrium conditions

We consider two isolated systems to form a composite isolated system. The entropy
then is given as:

S = kB h‘l(Ql . QQ)
=kg InQ + kg In)y
=51+5;

The quantities E, V and N are also additive (‘extensive’).

Thermal contact

We next bring the systems in thermal contact, such that they can exchange energy, but
not volume or particles:

Figure 2.6: Thermal contact allows for heat exchange between the two systems.

In the new equilibrium state, energy will be E{ and Ej, with:

E=E +E=E|+E
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In equilibrium, S = kp In () must be maximal:

= dS:ﬁdEﬁJr

aSZ ;!
dE, =0
OE] 2

aEé ~—~
=—dE]

(38195
‘<aE1 aE;)‘*El‘O

=0

We define a new state variable T (‘temperature’) by:

dS(E,V,N)
oE

1
V.N "~ T(E,V,N)

1 1
> (g-5) a5 =0
- =1

The two systems exchange energy until their temperatures are the same.

Usually the number of states () and therefore entropy S = kp In () increases with energy
E and therefore 1/ T and with this also T will be positive (e.g. S ~ In E3/2 for the ideal
gas, see above). There are, however, completely reasonable models in statistical physics
in which Q) can go down with E, namely if the number of states has an upper limit, e.g.
in a finite-sized spin system or the two-state system from below. Then we formally get
a negative temperature. Although this does not agree with our everyday life intuition
about temperature, there is nothing wrong with such a result.

S(E) usually flattens with increasing energy (e.g. S ~ InE3/2 for the ideal gas, see
above). This implies that high energy corresponds to high temperature, in agreement
with our everyday life intuition about temperature.

In general, temperature T describes the coupling between energy and entropy. Inverse
temperature is the cost in entropy when buying a unit of energy from the environment.
Due to the equipartition theorem (compare the chapter on the canonical ensemble),
temperature is often identified with kinetic energy; however, the temperature definition
of statistical physics from above is much more general.

Before equilibrium is reached, entropy grows:

1 1

T, >T, =dE;1 <0

Hence we see that energy flows to the cooler system. Temperature defined this way
agrees with our intuitive understanding of temperature.
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If the two systems only exchange energy, then:

dE; = T; dS;

dE,  dE; T
= dS, = TZ = TZ = T, dSl
= dS =d5; +dS,

T
=dS; <1 - T1> > 0 before equilibrium is reached
2

Ty >T, = dS; <0, dS; >0, |d52| > |d51|

The warmer system loses entropy, the cooler system gains entropy. Overall more en-
tropy is generated.

= entropy is not conserved (unlike energy E)

Contact with volume exchange
We now assume that the wall is also mobile, thus volume can be exchanged:

651 852 851 aSZ

d dE; + === dE} dVi + =2 4V;
5= aE ‘T aE S22 oy oy, &2
=—dE] =—d\

We define another new state variable (‘pressure’) by:

3S(E,V,N) p(E,V,N)
WV |y T(EV,N)
(L1 PL_p2 il
= dS = <T1 T2>dE1—|—<T1 T, dv; =0
=0 -0
Th=T, p1 =p2

Volume is exchanged until the pressures are the same.
If temperatures are equal:

Pl p2
ds T ——r=dV; >0

The system with larger pressure increases its volume.
This definition of pressure might seem a bit odd to you because it relates to entropy
and not to energy, as you might have expected. Therefore we aim to rewrite it in terms
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of energy. We start with a mathematical identity for any smooth function f(x, y) that is
explained in the appendix:
of

ox

9x| 9y
v ls of

Note that this result might look odd if you like to think about differentials as real num-
bers that you can cancel like in fractions. This result teaches you not to do this, and
reflects the fact that for two positive changes you need one negative change to close a
loop in (f, x, y)-space. We now apply this formula to S(E, V, N):

X

as
v

oV

E,N oE V,N

1 1
p(9F 95 _
=T (av S,N) <8E on) 1

Noting that the last term simply gives T, we finally have

oE

= =-1
S,N aS

__9E
P="%v

S,N

Therefore pressure p can also be interpreted as the increase in energy when reducing
volume. This is closer to our intuition on pressure, but note that this should be done at
constant entropy, which basically means without heat flux.

Contact with exchange of particle number

Finally let’s assume a permeable membrane and define a new state variable y (“chemical
potential’) by:

dS(E,V,N) u(E,V,N)
ON |y  T(EV,N)

The equilibrium condition becomes:

#1(E1, Vi, N1) = pa(Ep, Vo, Np)
Assume T1 = Ty, but uo > uy:

dN
= dS = (- +m2) T1>0

dN; >0 = ur > m

= particles flow from large to small chemical potential
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Again it might be more intuitive to rewrite the definition of chemical potential in terms
of energy rather than entropy. We now apply our mathematical relation to S(E, N, V):

as| N el _
9| \ fas| \
H
_r == e ——
= T'(BN’&V> <8E WN)
The last term again cancels the T in the first term and we thus get the final result
L
oN SV

This means that the chemical potential is the energy cost when increasing particle num-
ber (at constant S and V, that is without heat flux and with a constant volume).

Equations of state

We note that the three newly introduced variables:
T=T(EV,N), p=p(EV,N), u=u(EV,N)

defined by
_ l P _K
dS—TdE+TdV TdN

are intensive, that is their values do not change if the system is doubled, because other-
wise S could not be extensive.

Rearranging the equation above for dE gives:

dE=TdS—pdV +udN

The pairs (T,S), ((—) p, V) and (y, N) are ‘conjugate’ variables in regard to energy. We
identify the three types of energies as heat, mechanical energy and chemical energy.

S = S(E,V,N) is the ‘fundamental equation’, containing the complete information on
the system. The three equations for T, p and yu are ‘equations of state’. Each by itself
contains only incomplete information on the system. Typically the equations of state
are experimentally accessible and thus ground our theory in experiments. If only some
of them are known, the others have to be guessed based on some additional information
(e.g. a model). Moreover thermodynamic relations give strong additional constraints
on possible equations of state (see other chapter).
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2.6 Equations of state for ideal gas

S=kg N [ln ( 4 > + g] fundamental equation

NA3
N\ 2
A i
“(%)
1 0S 0 3 3
T—EVN kBNﬁlnEZ—EkBN*
3 . .
= |E= 5 N kg T| caloric equation of state
E 3
=—=—kgT
= e N 5 B

Hence each degree of freedom carries energy 3 kg T. We also note for the specific heat:

dE 3
= — = =Nk
CTar T2
thus the specific heat is independent of temperature. In fact this result is the classical
high-temperature limit for the quantum mechanical fluids we are discussing later.

p _0dS

T= 37 =kg N 1 = ’p V = Nks T‘ thermal equation of state

E,N 4

The thermal equation of state is also known as the ideal gas law (combining the two laws
of Gay-Lussac and Boyle-Mariotte).

B A2 OO IR B
T~ 3N E,V_kB [ln<N)L3)+2 kBNaN InN"2
NA3 . . .
= |pu=kpT In A equation of state for chemical potential

Defining density p = ¥, p becomes:

p=pksgT
i N
[P]:ﬁzﬁzpﬂ

Pressure can be interpreted as force per area or as energy density. For the chemical
potential we can write

U=ks T InpA3 =k T In 2~ with py = kB—ST
Po A

46



Thus for an ideal (=dilute) gas chemical potential is grows logarithmically with pres-
sure.
The following numbers are quite instructive:

At room temperature: T ~ 300K.
1
= kpT=41-10%]=41pN -nm= 0 eV =25meV thermal energy
41-10721]
= ———= =41GP
PO~ 71010 )3 g

Because ambient pressure p = latm = 10° Pa, the chemical potential y is usually
negative. We calculate the volume of one mole ideal gas at ambient pressure:

 NksT 602210841102 |
- p 10° Pa

174 ~24-103md =241

2.7 Two-state system

We now consider other important examples for the microcanonical ensemble. We first
consider an “atom’” which can either be in its ground (zero energy) or excited state (en-

ergy €).

0

Figure 2.7: Two state system with corresponding energies Eg,pyns = 0 and Eeycired = €.

As the total energy E and the number of particles N are fixed, we know exactly how
many atoms are in the excited state:

E . .
N, = - number of atoms in excited state

No = N — N atoms in ground state

The number of microstates is the number of ways one can choose N out of N:

N!
Ne! (N—N,)!

The entropy then becomes, using Stirling’s formula:

Q=
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S=kp InQ)
~kp[(NInN—-N)—(Ne InNe — Ne) — ((N — N¢) In(N — N¢) — (N — Ne))]

N, N,
=kp |—Ne lnﬁe—(N—Ne) In (1—N€>}

= |s= —kp[pe Inpe + (1 —pe) In(1 —pe)]

where p. = % = %, 0 < pe < 1is the density of the excited state and 1 — oo = &~ ;\]Nf
is the density of the ground state. Note that this result make a lot of sense. It basically
is Shannon’s formula, S = —); p;In p; with i running over the two possible states,
ground and excited. We note that the fundamental equation is independent of volume
and depends only on E and N.

Thermal equation of state:

1 a8 1 E 1 1 E 17 k. (Ne
- S 4 In(1- o =2
Lo ke N [eN "eNTEeN T eN n( 6N> GN} ¢ n( E >

T  OE

_ Ne _ Ne
1 4ee/ksT) ] 4P

where we have introduced a dimensionless inverse temperature § = €/ (kg T).
We consider the two limits:

@ High T, small 8:

=

Ne E 1 1
Ezi = —_— = — l— = —
2 ' PeTeN T2 TP

= both states have equal density.

@ Low T, large B:
E=0,0=0,1-pc=1
= only the ground state is populated.

Here we see a very general principle of statistical physics: at low T, energy wins (ev-
erybody is in the ground state), and at high T, entropy wins (all states are equally
populated).

Interestingly at high temperature we only reach half of the maximally possible energy.
If we push more energy into the system, then formally temperature jumps from oo to
—oo (negative temperature, see above) and then approaches 0 from below.

We finally calculate the specific heat:

dE 1 e 1
= — — ﬁ —_—

=t TN AR Y kT2
= Nkpp? L

(e P21 e h/2)2
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T T

Figure 2.8: Energy and specific heat of the two state model as a function of tempera-

ture. The energy approaches 25¢ asymptotically. The capacity peaks at the

temperature T,y = Oﬁi €.

We see that the heat capacity vanishes both for low and high T. It peaks at a finite
temperature T = %. Such a “Schottky hump’ reveals the existence of two low lying
energy states in a spectrum.

Alternative derivation

We consider an alternative way to calculate Q)(E). For each atom we introduce an
occupation (or occupancy) number 7; € {0,1} for the external state:

Q(E) = tt 5<E—eini>

711:0 HNZO
~———

sum over 2N states

N
— dk ikE te—iken
27r =0
N——
=14 ike
_ dk . E —iek
= | 5, &P N zkﬁ-l-ln(l-i-e )
=f(k)

In the limit N — oo, we solve this integral with the ‘saddle point approximation”:

1 17 1 27 172
1 N £ o ko) L) (k—ko? _ L N flko) (27T
/dk /dke e (Nf,,(ko)>
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where f (k) has a maximum at k.

We define ¢y = %:

e |
P =it D iy L
= ko:ilelne;’y

- f(ko):21n€;7_1n€;7
£ (ko) = ((k)+"1) o)y

= Q(E) = M) (M) '

= exp § Nf (ko) - % In (277N " (ko))
s

« InN — neglect in limit N — oo

= Q(E) = eNfko)

= S=kgN f(ko) =kp N | pe ln<1—1> —In(1 - pe)

Pe

=—Inpe+In(1—pe)

because p. = /€.

= |s=—kg[pe Inpe + (1 —pe) In(1 — pe)]

Thus we recovered the same result as above with the combinatorial approach.

2.8 Einstein model for specific heat of a solid

In 1907, Einstein introduced a simple model for the vibrational modes in a crystal. From
this, we can calculate the specific heat of a solid, which is one of the central questions
in solid state physics. Later this model was improved by Debye as we will see later.
The Einstein model is also of fundamental importance because it is the microcanoncial
treatment of a collection of harmonic oscillators. It assumes that each atom in the crystal
vibrates with a natural frequency w around its equilibrium position. Thus for N4 atoms
in three dimensions, we have a collection of N = 3N 4 harmonic oscillators, each with
two degrees of freedom. In quantum mechanics, each harmonic oscillator is quantized
and can carry an integral number of quanta fiw. Together with the cero energy we have

E :hw(gﬁ—Q)

50



where Q is the overall number of quanta. Therefore

E N
Q=0Go-7%)
These Q quanta are distributed over N states. That’s the same as distributing Q marbles

over N boxes or as placing Q marbles and N — 1 ~ N match sticks in a row:

(Q+ N)!

QE,N) = QIN!

There is no role for V in this model.
We calculate the entropy using Stirling’s formula:

S=kpQ=kp[(Q+N)(In(Q+N)—1)— Q(InQ — 1) = N(InN —1)]

=kp [anQ+N+N1nQ$N}
1 1 1 1
= kgN {(e—l— E)ln(e—l—i) —(e— E)ln(e— 2)]

with e = E/Ep and Eg = Nhw. We next calculate temperature:

—:—:——_71
T oE Egae EO n e_%

1 _2S 103S kN <e+§>

We define = fiw /kgT and invert this equation:

eP+1 Nhw eP +1 1 1
= Eziiz —_ —_—
= th(2+eﬁ—1)

% —
¢ eP—1 2 ef—1

For T — 0, E — Nhw/2, the cero energy. For T — oo, E — NkgT = 6N (kgT/2), the
classical limit for 6N 4 degrees of freedom. We also calculate the specific heat:
dE

Co= oz = Nkgp?

1
(eP/2 — ¢~ B/2)2

For T — 0, ¢, vanishes. It then rises exponentially and plateaus at 3N4kp for T — oo.
This classical limit is also known as the law of Dulong-Petit. The crossover takes place
at T = hw/kg.

It is very instructive to compare this results with the two-state system, for which we

found
1

(eP/2 4 e=P/2)2

dE
¢y = —— = Nkgp*
©Tdr o
where we now define dimensionless inverse temperature as B = €/kpT. Thus the
result is essentially the same, except for the minus sign, which however makes a huge

difference. Later we will see that this is typical for the difference between fermionic
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systems (each state can be occupied either once or not at all) and bosonic systems (each
state can be filled with arbitrarily many quanta, like the harmonic oscillator).

The theoretical curve fits the experimental data qualitatively, but if one zooms in around
T = 0, one finds that the experimental curve rises as T° rather than exponentially. The
reason for this discrepancy is that atoms do not vibrate by themselves at a fixed fre-
quency, but in groups of variable frequencies. We will consider this important fact later
in the Debye model.

E C

T T

Figure 2.9: Energy and specific heat of the Einstein model as a function of temperature.

Alternative derivation

Again we consider an alternative way to calculate Q(E) by using occupation numbers:

o o N
Q(E) = ZO Zo(s (E—thi(ni—I—;))

o Z Z dk zkE hw YN 1(7’l+ )

1’110 HNO

— [ ZZikE E E e—zkhwzl 1(ni+1)

1’110 1’![\]0

N
dk —ikhw/2 - —ikhwn
= 27_[ ((3 Z e

n=0

—ikhw /2
— %eikE ( e’ w/ >
1_eflkhw

27
B /dk N[ik £ —In(2i sin(khew/2))]

N

Note that this time the occupation number is not restricted, but runs over all possible
numbers. Therefore in the last step we have used the geometrical sum to achieve a
closed formula. It is a non-trivial question why this series converges in our case. Be-
cause the Delta-function is a distribution, in principle one has to apply the formula
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above to a test function. If this test function is sufficiently well-behaved, then one can
regularize the exponent by adding a small and real € to the exponent. Then the series
converges and one can send € to cero in the end.

The remaining integral can again be solved using the method of steepest decent with

f(k) = ikE/N — In(2i sin(khew/2))

Again the Gaussian integral can be neglected and only the first term in the Taylor ex-

pansion matters, with
1 E/N+hw/2

ko= 202 M E/N — w2

After a lengthy calculation, one then gets the same result as above.

2.9 Entropic elasticity of polymers

We consider a chain-like polymer molecule consisting of N monomers of size a in one
dimension.

Figure 2.10: A one-dimensional polymer consisting out of monomers of size a. The
sequences to the right and left are indicated by arrows. L is the effective or
projected length and Ly = Na the contour length.

Ny : #segments to right
N_: #segments to left
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L
= N_|_ - N_ - E
N, +N_=N
1 L
= NJr = E <N+ ﬂ)
1 L
N_=-|N-—-
2 (v-3)
N!
Q= ——
= NN
= S=—kp <N+ ln%—FN, an;]\]>
= S=—kg N (p+ Inpy +p_ Inp_)
Here we defined p+ = % = % (1 + LLO) with the ‘contour length’ Ly = Na in the last

step.

We have a look at two limits:

@ p.—=1,p-50= 50
There is only one possible configuration for the polymer.

1

Figure 2.11: S/ (kgN) as a function of x. For xg = 0 the function is maximal with f(xo) =
In2 =~ 0.7.

@L-0,p;>Lp -1 =S5 NksIn2
We see that the entropy is maximal for L = 0, hence the polymer coils up ([2.3).
Stretching the polymer decreases its entropy. Therefore an entropic restoring force
exists which pulls against an external stretching force.

Note that we cannot define temperature in the usual way, 1/T = 9dS/JE, because
S(N, L) does not depend on E. However, there should be a conjugate quantity to length
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L, and this should be a force F and at the same time defines temperature T:

F oS

T oL

x=L/ly, 1 05  Nkp (1 1+ x 1 1 1—x 1
= Lo L, 2tz ) trall) 2

NkB <1+X> NkBL
= - In ~—

2Lg 1—x L3
~—————
~2x
ng\f @ g kg T L
N a2
6
5l i
4 divergence i
Ze linear \

X

Figure 2.12: f(x) = In (1) as a function of x.

The entropic restoring force corresponds at small extension to a harmonic potential:

kg T L2
2 N a2

Most materials expand with temperature (eg ideal gas: pV = NkgT). For the polymer,
in contrast, increasing temperature causes a raise in restoring force and thus the system
contracts. Note that this is a purely entropic effect (our polymer has no energy). In
analogy with mechanics, k = % is called the ‘entropic spring constant’ and it increases
with T.

U=

2.10 Statistical deviation from average
For two systems in thermal contact, our equilibrium condition T} = T, followed from
the maximal entropy principle. We now investigate how sharp this maximum is. As an

instructive example, we consider two ideal gases in thermal contact:

S; = g kg N; InE; + terms independent of E; (i € {1,2})
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S5=5+65,

Maximal entropy:

0 o]
dS =0 E)SEi = 8]552
= % kg I;:]ll = % kg 2_122 corresponding to T = T
:>E_1:$E_2: NZlel (E—E) = Elz%g
We check for maximum:
2

We now consider a small deviation:

Ei=E +AE, Ey=E —AE

= S(E1+AE) = ks [Nl In <E1 (H%—lf)) N In (EZ (1_/}\55))}

3 . M N Ni (AE\? N,
~ ~k InE InE A2 AE-2 (=) =22
Lo ke (NilnEr+No InBa 4 Fr = 2 (a) 2
BE —_——
i =0 at equil.
N.
Ei= E

_ 3 [AE\? 1 1
= Q=0 exp [—4 <E> N? <N1+N2)]

Plugging in a typical number N; = 10*:

= () drops dramatically away from the maximum E;

BE () ()

g

10—10 8_600 ~ 10—260

10711 676

10—12 6’_0'06 ~1

We see that macrostates with E;(1 +107!2) and E,(1 F 10~!2) are equally likely. Fluc-
tuations in energy are of the order 1012, hence tiny.
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2.11 Foundation of the fundamental postulate

There is a long and twisted history of justifying the fundamental postulate. The main
problem here is that on a microscopic basis, dynamics is governed by Newton’s equa-
tions, which are reversible, while macroscopic systems decay irreversibly into a unique
equilibrium state. A rigorous derivation of the drive towards equilibrium from micro-
scopic principles does still not exist and several mechanisms are discussed that some-
how smooth out phase space density, such that a homogeneous distribution over the
energy shell is achieved. One has to state clearly that statistical mechanics works very
well for most physical systems of interest, but it is notoriously difficult to establish a
microscopic derivation. This is why we still have to speak of a fundamental postulate.
A very instructive approach to this question is to consider Hamiltonian dynamics. In
classical systems with N particles, each microstate is a point in 6N-dimensional ‘phase
space’ (M, ..., Tn, P1, -, Pn) = (4, P). In statistical mechanics, we consider many particle

—— e —

positions momenta
systems and therefore cannot say in which state the system is exactly located, but rather
use a statistical ensemble of states. The probability distribution is continuous and the
probability that the system is in state (7, f) is

o(q(t), p(t),t) dg dp

where p is the phase space probability density. For initial conditions (4(0), #(0)) the
system evolves according to Hamilton’s equations:

, _ _oH L OH
Pi= =5 =5,

For an isolated system at rest, energy is conserved due to the time invariance (Noether
theorem):
H = const = E

The solutions to the system of ordinary differential equations are unique and do not
intersect. Energy conservation reduces phase space to a (6N — 1)-dimensional hyper-
surface, the energy surface or energy shell.

We now define a phase space velocity

v:= (4, )
and the corresponding current
j=p7

For an arbitrary region of phase space, we have a balance equation:

Gauss theorem
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ap o .
= 5 + V- (p?) =0| continuity equation
V arbitrary

Thus the system evolves like a hydrodynamic system, with a probability fluid stream-
ing through state space. We now use Hamilton’s equation to show that

2 ,
+Z aql (i) + 5, (09)
Cop 3 9p dp. aq, 8pl
atjL (aqlq +pZ aqi apl
PH . PH
99; 9p;  9p; 94;
dp

= I = 0| Liouville’s theorem

The total derivative of the probability density vanishes. The probability fluid is ‘incom-
pressible’ and p(7(t), p(£), t) = p(7(0), F(0), 0).

Let V be the volume of some initial region Ry of phase space. At some time t after-
wards, this region can have evolved to some region R; with complicated shape, but its

volume is unchanged: V; = Vj (Figure .
p4 ~
V=V,

R,
Vo

»

q

Figure 2.13: The phase space volume stays constant, although its shape may change.

At this point, we can draw two important conclusions. First the number of occupied
microstates does not change, because phase space volume is conserved. More general,
entropy does not change, because the system evolves deterministically and thus infor-
mation content is not changed. This seems to speak against the fundamental postulate,
which requires some kind of dispersion and increase in entropy. However, you can
interpret this results also in another manner. Especially because the Hamiltonian sys-
tem does not relax into some subset of phase space, it keeps continuing to explore all
of phase space in a similar manner and this contributes to the fact that all states are
equally likely to be visited.
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Secondly, the fact that the phase space volume is conserved does not mean that its
shape does not change. In fact for many systems of interest, one finds that a well-
defined region of phase space quickly distorts into a very complex shape, especially
for chaotic systems. When viewed from a coarse-grained perspective (like in a real
world experiment with limited resolution), we will see a smooth distribution. This has
been compared with the stirring of oil and water, which keep distinct domains on the
microscale (oil and water do not mix), but appear to be uniform on a macroscopic scale.
A more rigorous way to deal with the coarse-graining issue in a classical framework
is the BBGKY-hierarchy (after Bogoliubov, Born, Green, Kirkwood, Yvon). Mixing in
phase space is possible even in completely classical systems as proven by deterministic
chaos. On the quantum level, one also could argue that completely isolated systems
never exist and that coupling to the environment, even if very weak, will eventually
lead to smoothing in state space. This aspect seems to suggest how the fundamental
postulate might arise.

In order to learn more about the equilibrium state, we next rewrite Liouville’s theorem:

dp . 9 dp
at__z'Z:[q aqzﬂglap}

__Z[E’HBP_BHBP]

op; 9q; 0q; Op;
= —{H,p} Liouville’s equation

Here we used the notation of ‘Poisson brackets” in the last step. Liouville’s equation is
also known as the collisionless Boltzmann equation because it describes the streaming
part for the probability fluid in phase space.

Let us now assume that p(7, g, t) only depends on the conserved value of energy E.

L dE
p(q.pt)=®(E), —-=0

We now get

% - ()

B oH dp OH 9p
L[5 ol
_%[aﬂa}s aHaE] @ _

= [9dpiodq; 9q;dp;| OE
{HH}=4%=0

This result is also known as Jean’s theorem. Thus in this case the state space probability
density is constant and has the same value for a given energy. We conclude that once
the microcanonical equilibrium state is reached, the system will stay there for ever.
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We next consider an observable A which depends on time only through phase space:

A(t) = A(q(t), p(t))

Z [E)A 0A

. | =19 A
= aql ql apl pl:| { }
In equilibrium the ensemble average of an observable
— [ 47 d70(@,7) A, P)
will be time-independent. In particular we expect this to apply to all state variables.
Equivalent results can be derived for quantum mechanical systems. However, in this
case we cannot use a scalar probability density, because phase space coordinates do not

commute. Instead we need to introduce a density operator.
For a given state |¥), the observable has the average (projection):

(A) = (Y[A]Y)

dA
dt

We define the density operator or density matrix:

p=1%)(¥
This then yields
(A) = (Y| AY) =} (¥| An) (n[¥)

n

= Y (n[¥) (¥| Aln) = Y (n] pA |n)

n

= tr{pA} average over quantum mechanical distribution of states

If we now turn to statistical mechanics, we superimpose a second layer of probability
over the quantum mechanical probabilities. We call the states that follow the Schrodinger
equation pure states and then consider mixed states by adding up several of the pure
states in an incoherent manner (no superposition, so probability is not tranfered from
one qm state to the other and the weights stay constant).

Using an extended definition of the density matrix:

p=2_pi [¥:) (¥

= (A) = ZPi (Yil AY:)
= ZZP:’ (Yil Afn) (n|¥3)
—ZZn ) (Yl A |n)

Z n|pA|n) = tr(pA)
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Again stationary distributions result if p is a function of the stationary ensemble in
energy representation:

H[n) = Ey|n)
0=adip = [H,p]
= 0= (m|Hp—pH[n) = (En— En) pun
= pmn =0 for E,, # E,
without degeneracy: p =Y _p(E,) |n) (]|

We now derive the quantum mechanical analogue of Liouville’s equation:

Schrodinger equation: ifi 0; |[¥) = H |¥)
adjoint Schrodinger equation: i1 9¢ (Y| = (Y| H

= o =i} pi ([¥i) (¥ +[¥5) (¥i)
=) pi (H[Y¥:) (¥ = [¥5) (¥il H)
= [H,p] commutator

oip = —% [H,p] von Neumann equation

Like Liouville’s equation, von Neumann'’s equation (also called the quantum Liouville
equation) suggests that in equilibrium, probability distributions and state variables are
constant.

In summary, the fundamental postulate cannot be proven rigorously and thus stays
a postulate. Generations of physicists and mathematicians have tried to improve on
the conceptual basis of statistical physics, e.g. trying to prove that certain model sys-
tems are ergodic, but usually this created only more riddles, e.g. in dynamical systems
theory. We close by noting again that this is an academic problem. In real life, the fun-
damental postulate has proven itself beyond doubt due to its success in explaining the
physics of many particle systems.
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3 The canonical ensemble

3.1 Boltzmann distribution

We consider a system in contact with a ‘thermal reservoir’ or ‘heat bath’. Then it is tem-
perature T rather than energy E that is fixed. A simple example would be a bottle of
beer in a large lake, which eventually will cool down to the temperature of the lake.
To qualify as a thermal reservoir, the surrounding system has to be much larger such
that its temperature does not change as energy is exchanged with the system of interest.
Together the two systems form an isolated system for which energy is fixed at E;;.

Figure 3.1: Two systems in thermal contact. System 2 is considerably larger than system
1 and serves as a ‘thermal reservoir’. Together the two systems are again a
microcanoncial ensemble.

We now consider one specific microstate i in system 1. This microstate comes with an
energy E;. Its probability to occur is

_ #favorable outcomes Qs (Etor — E;) @Sres (Erot —Ei) /K

Pi= # possible outcomes ~ Qyor(Eor) = oSwi(Eor) ks

Here we used that the composite system is microcanonical and that we have fixed the
microstate in system 1; then the number of accessible microstates is determined by
system 2 (the reservoir) only.

We next introduce the average energy of system 1 as the reference energy:

U= (E)= ZpiEi

We now Taylor-expand the entropy of the heat bath:

U — E
T

Sres(Etot - Ei) = Sres(Etot -u+u- Ei) = Sres(Etot - U) +
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Here we have used 0S/JE = 1/T. Note that higher order terms do not appear because
a reservoir has a constant temperature (first derivative constant, thus the second and
the higher order derivatives vanish). We also can use additivity of the entropy to write

Stot(Etot) == S(U) + Sres(Etot - U)

Defining the inverse temperature
1

Pt
we thus get
eﬁue_ﬁEieSrSS(Etm—U)/kB

o _ oPFo—PE;
pl es(u)/kBeSres(Etotfu)/kB € ¢

where F = U — TS and where the terms with S,.; have canceled out. We note that
pi ~ e PEi and that the prefactor e/’ has the role of a normalization factor. In order to
normalize, we use ) _; p; = 1 to write

1 BE:

pi = Ze’ Boltzmann distribution

with

7 = Ze’ﬁEi partition sum
i

We conclude that the probability for a microstate decreases exponentially with its en-
ergy. The newly defined quantity Z is the central concept of the canonical ensemble
and plays a similar role as the phase space volume () in the microcanonical ensemb]e.

Comments:

@ We note that the expansion around E;,; — U is not required to get the Boltzmann
factor e PFi. We would have obtained this result also by expanding simply around
Etot, because the derivative would also have given 1/T. The normalization is en-
sured anyway by the new quantity Z. The expansion used here becomes impor-
tant later because only in this way we get the prefactor ePF. As we will discuss
below in more detail, this leads to the important relation F = —kgT In Z connect-
ing thermodynamics (F) and statistics (Z).

@ For classical Hamiltonian systems we have

- 1 B H(GF
p(d,p) = Syan € PP

with the Hamiltonian H and the partition sum (or, better, the partition function)
is

1 g
Z:W /dqdpe ‘B (q/p)
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® From Liouville’s theorem it follows that the Boltzmann distribution is a stationary
distribution as p = p (). Like for the microcanonical distribution, it is reasonable
to associate it with equilibrium.

® The Boltzmann distribution can also be motivated by information theory. In chap-
ter 1 we showed that it maximizes entropy under the condition that:

U = (E) = const

3.2 Free energy

The Boltzmann factor e #% means that a microstate is the less likely the higher its en-
ergy. However, if we ask for the probability that the system has energy E, we have to
consider all microstates with energy E:

1 1
p(E) 7 Q(E)e e
1 _E-71s 1 BF

= —e¢ kT = —_ ¢~

Z Z
This probability is maximal, if the quantity:

F(E,V,N)=E-TS(E,V,N)
has a minimum with respect to E. This is the case when:

oF 3S
0=zz=1-T =
~—

T

that is when the system is at the temperature of the heat bath.

We conclude that not the smallest energy (like for vanishing T) or the highest entropy
(like for very high T) is achieved in equilibrium, but the smallest F, which is a combi-
nation of energy and entropy with the relative importance determined by temperature.
The smaller weight of the Boltzmann factor for higher energy is compensated by the
fact that the number of microstates usually increases with energy. For example, for the
ideal gas we have Q) ~ E3N/2 and therefore S ~ In E. Therefore F = E — TS(E) diverges
logarithmically at low E and linearly at high E, with a minimum somewhere inbetween
(note that for this argument, we have to keep T fixed and cannot replace it be E, because
this is the temperature of the heat bath given from outside).

Because in the canonical ensemble we fix T rather than E, we actually should write
F(T,V,N) using the caloric equation of state to convert E into T. This quantity is called
the ‘Helmholtz free energy” or simply the ‘free energy’. Its appearance in the canonical
ensemble provides a direct link to thermodynamics, which derives the extremum prin-
ciple for the free energy soley from macroscopic arguments. We conclude:
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In the canonical ensemble, equilibrium corresponds to the minimum
of the free energy F(T,V,N).

We can costruct F(T,V,N) from S(E, V,N) (entropy representation of the microcanon-
ical ensemble) in the following way:

9S(E,V,N)
oE

@ introduce a new variable % =
@ eliminate E in favor of T by solving for E = E(T,V, N)

® construct F(T,V,N) = E(T,V,N) — T S(E(T,V,N),V,N)

Alternatively we can start from the energy representation of the microcanonical ensem-
ble:

@ 1(s,v,N) = %
@ s=5(T,V,N)
® F(T,V,N) = E(S(T,V,N),V,N) — T S(T,V,N)

Mathematically, such procedures are known as ‘Legendre transformations’, when a func-
tion is rewritten such that it becomes a unique function of its derivative. Legendre
transforms also occur in analytical mechanics:

. . . oL
£=LGqt) — H=Hapt) =-(L—-qp) withp=—-
| S — | S — q

Lagrangian mechanics Hamiltonian mechanics

where the Legendre transform of the (negative) Lagrange function gives the Hamilto-
nian function. The free energy F is in fact the Legendre transform of energy E with the
argument changing from entropy S to temperature T, which is defined as a derivative
of E.

We now consider the total differential of F(T, p, V):

dF = dE + d(TS) = TdS — pdV + uN — TdS — SdT = —SdT — pdV + uN

This is the fundamental equation of the canonical ensemble and leads to three equations
of state:

oF
5= 73T
_ _O9F
P="3v
_ oF
H=93N
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How do we calculate F? In principle, we can start from the microcanonical ensemble
and calculate it as explained above. However, this will be quite tedious or even impos-
sible for many cases. There is a much simplier way to do it. We recall that

1

and therefore we simply have

= |F(T,V,N) = —kg T InZ(T,V,N)

Thus the free energy follows directly from the partition sum and there is no need to go
through the microcanonical ensemble.

A similar comment applies to the average energy U = (E). In principle, it follows from
the microcanoncial ensemble. However, if we work in the canonical ensemble, we can
calculate it directly from the partition sum:

(B)=LpiEi=y LE e
i i

— % (—) 9g Ze‘ﬁEi =|—dgInZ(B) = (E)

We can check consistency with the definition of the free energy:

kpT? OF
~ kT 9T =F+TS

(E) = — 95In Z(B) = p(BF) = F+ﬁg; _F

as it should.
For the variance of the energy we find:

0f = ((E—~(E))*) = (E*) = (E)®
1 1 2
== Iz — <Z a;;z)
=g @ aﬁz> =95 InZ
= —0g (E) = kg T* 97 (E)
=kp T?> ¢o(T)

——
specific heat

Thus the second moment is related to a material property. Note that this implies ¢, (T) >
0. We note that this equation connects to physical quantities that naively are unre-
lated: a measure for fluctuations on the left hand side and a material property or re-
sponse function on the right hand side. Such surprising relations constitute the big

success of thermodynamics. In the context of statistical physics, they are examples of
the fluctuation-dissipation theorem.
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We finally comment on the sharpness of the energy distribution. For the microcanonical
ensemble, we showed that in the macroscopic limit N — oo the distribution becomes
very sharp around the value E. For the canonical ensemble, the same holds true for (E).
We note that ¢, = Nkp and (E) ~ kgTN and therefore

e _ 1

- - 0—10
(E) VN
for a macroscopic system with 10?0 particles. In contrast, the single particle with N = 1
experiences very strong fluctuations.

f(E)
Q

E
2
=

<E>~N
E

Figure 3.2: The energy distribution of a canonical system. (E) scales with N while
or/ (E) is proportional to 1/+/N.

3.3 Non-interacting systems

The canonical formalism is especially convenient if the energy of the system is a sum
over the energies of N independent elements (eg atoms in a gas or solid). We denote by
€ij the j™ energy state of the i element:

Z= ZZZ e PLY 1€y
ji Iz N
N—— o—

microstate
= (Ze_ﬁelh> (Ze_ﬁsz) (Ze_ﬁeNfN>
i 2 N
N
=z1-2p... czn =] [z
i=1

N
= F= —kB T ZIHZ,' =—kgT InZ
i=1
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Thus the partition sum factorises and the free energy is additive over the elements. For
N identical elements we simply have:

Z=2zN, F=—kgTN Inz

where z is the ‘single particle partition sum’ .

Example:

@ Two-state system
We consider a two state system as discussed above. As all particles are identical,
we only have to calculate the single particle partition sum.

NePee Ne
_ —Be _ N _ _
z=1+4e = E= —dglnz i i

This is exactly the result we obtained in two complicated calculations from the

microcanonical ensemble.

Remember: ¢ = % gives the Schottky-hump.

Consider again the two limits:

@T—)oo(,[%e<<1):z—>2

1
Both states are equally likely.

Pe = =5

po = = 1
_pe Only the ground state is occupied.

pé‘: :0

@ Harmonic oscillator (Einstein model)

1
E.=hw (n+§), n=0,1,..
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Again we only need the single particle partition sum:

z= i ePEn = pm2Phw (1 +e Py el 4 )
n=0

,lﬁhw

=e 2 using the geometrical sum

1_efﬁhw
howo e P hw
— — N — P —

= E= —dglnz N { > 1_8_%(0}

Again this is the same result as the one we obtained from microcanonical calcula-
tions.

Nh
T—0(Bhw —0): E— Tw Each oscillator is in its ground state.

T — oo (Bhw —0): E — NkgT — oo Each of the two modes carries energy kgT /2.

=
[ﬂ‘ 3
= ohd
“classical limit"

-
-

.
.
.
‘\,'\
L7 -ground state limit
L
.

0.5

kT
hw

Figure 3.3: Harmonic oscillator: For T large, the energy of an harmonic oscillator (blue
curve) increases linearly with temperature as in the classical case.
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kT
hw

Figure 3.4: Harmonic oscillator: The heat capacity ¢ asymptotically approaches a con-
stant value at high temperature.

® Ideal gas

NthN/dqd e Pr/@m

1 VN 2m\ 2
- NUKSN B

= F=—kgT InZ

= —kp TN[an+§ ln(

2mkgT B In N!
h? N

[ 1% 3 2tmkgT
Stirling -
(E) = —0p InZ = g ; = g N kg T = E| caloric equation of state
We see that we get the same result as for the microcanonical ensemble.
p= —g—‘i =k TN % = ‘ pV =Nkp T‘ thermal equation of state (ideal gas law)
- E)F _ \% 3 2rtmkgT 3

Nl—

Replacing T = 3Nk and using the thermal wavelength A = ( j’ginl\é) , We recover
the result form the microcanonical ensemble:

|4 5
S—kBN {1D<W>+2}

One can easily check that F(T, V, N) also follows as Legendre transform from this
expression for S(E, V, N).
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@ Maxwell distribution

For a classical gas with H = % + V(§), we ask for the probability dW to find
some particle, eg i = 1, in the momentum interval

p<|pi| < p-+dp.

Thus we simply integrate out all other degress of freedom: py, ..., pn, 41, -, GN-

= dW = i 4 e~ BV*/(2m) p? dp
Z

Figure 3.5: Maxwell distribution: The probability density p as a function of p.

The normalization constant is

ZZ(ZﬂkaT)

NI

such that [ dW = 1. This result is valid for any type of gas (arbitrary interaction
potential V). For an ideal gas, the average energy is the average kinetic energy:

2
/PPN _3
E—N<2m>—2NkBT

as expected.

One can easily calculate that the most likely velocity is v = +/2kgT /m. For air,
we use the mass of an oxygen molecule, 32 g / N4 with the Avogadro number
N4 = 6 10% (nitrogen or a mixture of oxygen and nitrogen would give us the
same order of magnitude, because their molecular weights are so similar). With
kgT = 4 107%'], we then get Upax = 2kgT/m = 400m/s. However, the mean
free path length is only 1077 m and the mean collision time 2x1071° s, so the
molecules do not get far. One also can calculate that the coefficient of variation
0y / (v) ~ 0.67, which shows that the distribution is very broad.
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@ Barometric formula

For an ideal gas in the gravitational field of the earth we have

N p_Z

where h; is the height of particle i. To get the probability that a particle is at
height h, we arbitrarily choose one particle and integrate out all other degress of

freedom:
efmgh/(kBT)
= dW = T dh

Thus the density will decrease exponentially with distance. The length scale for
this will be (kgT)/(mg). Using the mass of oxygen molecules, 32¢/ N, with the
Avogadro number Ny = 6 10?, gravitational acceleration g = 9.8m/s?, and
kgT = 4 1072'], we get 7.5 km, in good agreement with the experimental scale.
Because of the ideal gas law, the pressure will also decay exponentially on the
same scale. Note that this model neglects the fact that temperature decreases
with height (typically one degree by 100 m).

h

Figure 3.6: Barometric formula: The probability density p as a function of . Assuming
constant T, the density decays exponentially. For T | the particles come
down, while for T 1 they go up.

3.4 Equipartition theorem

We define f to be the degrees of freedom (DOFs) that can be excited by thermal energy.
We have a look at the heat capacities for the harmonic oscillators and the ideal gas:

@ harmonic oscillator: f = 2N, each oscillator has kinetic and potential energy

1
T — o0: CU:NkB:fEkB
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@ ideal gas: f = 3N, each particles has three degrees of translation, but there is not
interaction potential

3 1
CDZENkB:fEkB

Such a result was not obtained for the two-state system. Obviously it is related to

harmonic terms in the Hamiltonian.
Consider a harmonic Hamiltonian with f = 2:

H=Ag*+Bp?

Z /dq dp e P
- () (5)
= (1)

N—=

We conclude:

For sufficiently high temperature (classical limit), each quadratic term in the

Hamiltonian contributes a factor Tz to the partition sum (‘equipartition
theorem’).

This then leads to the following terms in other quantities:

free energy : F = —kpTInz = ) kg T InT
F
entropy : S = _gT = JEC kg (InT+1)
f all extensive, scale with f
internal energy : U = —dglnz = > kg T
Lo_du _f
heat capacity : c, = T3 kg

Examples

@) monoatomic ideal gas A monoatomic ideal gas has three translational (kinetic)
degrees of freedom.

= CvngkB

The positional degrees of freedom do not have quadratic energy. However, spe-
cial wall potentials can give similar contributions. For the ideal gas, the wall only
leads to the volume term.
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@ diatomic ideal classical gas (eg H-H)

The molecule has 6 modes, but different modes have different degrees of freedom.
We consider a classical Hamiltonian in the center of mass system and look at
relative rotational motions:

_ 1 2 2 2 1 P<21> 2 pr | pw’r?
=M (px+py+p2)+21 <51n2@+p® ™t 2
translation: f;=3 rotation: f,=2 vibration: f,=2

Here I denotes moment of inertia and y the reduced mass. The total number of
degrees of freedom then is

f=ht+fr+fo=7
7

By only measuring the heat capacity c,, we can already infer some far-reaching
statements about the architecture of the molecule. Note that this measurement
does not work at room temperature, when the vibrational modes are not popu-
lated yet. At room temperature, one only measures ¢, = (5/2)Nkp.

@ Triatomic molecules

Here one has to differ between triangular and linear shaped molecules. Each have
3x3 = 9 modes, but the degrees of freedom f are different. For the triangular
shaped molecules, we have three rotational modes and three vibrations, giving
f = 3+4+3+2x3 = 12. For the linear molecule, we have only two rotational
modes but four vibrational ones, giving f = 3 +2 4 2x4 = 13.

Virial theorem

We consider a classical Hamiltonian system. Let x; = g;, p; be position or momentum.

oH 1 oH
) - = ) —BH
<xZ ax]> Z /dr <xz Bx]> ¢

=X %(e_m{) _%3

]
o 1 axl' 7}37{_ S aH
—kn T /drax]- e B = kBT(Sl]_<xlaxj>
—~—
5ij

Here we used partial integration and considered no contributions at infinity.

Specify to position and harmonic potential:

1
Vz-:imwquz
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= <qi g;/i> = {(q; (mw?q)) =2(V;)

Application to momentum and kinetic energy instead yields:

2
_ P
T1_2m
dT; pi B
- < lapi>—<p1m>—2<Tl>—k3T

Thus we obtain the same results as from the canonical ensembles. In classical mechan-
ics, we derived a virial theorem for time rather than ensemble average:

1.
(T) =5 @ VV) = (V)
where the last step only works for harmonic systems and the average denote time av-

erages.

3.5 Molecular gases

Each molecule can be thermally excited in many ways. Apart from the three transla-
tional modes, there are vibrational, rotational, electronic and nuclear ones. Often one
can assume that they are independent:

Z = Zirans * Zoiv * Zrot * Zelec * Lnuc
With respect to the N molecules in a gas we have:
Zx — ZQI

where x stands for the different mode types. Z.qs is special, because it includes the
effect of interaction potential, but we will postpone this for now and treat it later in
relation to phase transitions. For a vanishing interaction potential or dilute gas, Z4s is
the one of the ideal gas, with a factor 1/N! accounting for exchange of particle identi-
ties. Only Ziy4ns depends on volume and thus contributes to pressure. In the following
we mainly discuss diatomic molecules like molecular hydrogen H,. Important applica-
tions include plasma physics (fusion) and astrophysics (star formation from interstellar
clouds).
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Vibrational modes

Intermolecular vibrations are often described by the ‘Morse potential”:

V(r) = Eo (1 —e (”’0)>2

— Morse—potential

- - - harmonic approximation

Figure 3.7: The Morse potential (blue) and its harmonic approximation (red) as a func-
tion of the interatomic distance r.

An exact solution of the Schrodinger equation gives
1\ 7w 1\2
E, =hwo (n—|—2>—4E0 (n—|—2>

2E
_x —0, U= m reduced mass
27 U 2

wo

For hwy < Ep (small anharmonic contribution, valid for Ej large or « small) we can use
the harmonic approximation (anharmonic corrections can be calculated with perturba-

tion theory):
e Bhw /2

Zoih) = ————————
vib 1_ e*ﬁhwo

Excitation of this mode occurs at:

h
T ~ 0 ~ 6140 K for Hy
kg

Rotational modes

The standard approximation is the one of a rigid rotator. The moment of inertia for a
rotator is given as
I=u r%
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kb

Tlm’b T

Figure 3.8: The heat capacity c, as a function of temperature T. Around T = T,;;, the
capacity increases and then levels off at kp.

Bhpl -~

Tyiv1 Tyiv2 T Tyin3

Figure 3.9: For N,;;, vibrational modes, the heat capacity raises in a step-wise manner.
Here the heat capacity c, is plotted as a function of T for N,; = 3.

The rotation around the horizontal axis does not matter, because the corresponding
quantum mechanical wave function is rotationally symmetric. The eigenfunctions ob-
tained from the Schrodinger equation are the spherical harmonics Y.

h2

I+1)

with degeneracy g; =2/ + 1.

The internal rotation contributes to the heat capacity of the diatomic molecule as shown
in Figure (small bump before the plateau). For H,, the rise occurs for 85.4 K. To-
gether with the vibrational contribution, this yields a specific heat with two rising parts
as schematically shown in Figure Below 20 K, the gas condensates into a liquid.
Around 10.000 K, it starts to dissociate into atoms.
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Trot T

Figure 3.10: Rigid rotator: Sketch showing the contribution of internal rotation to the
heat capacity of a diatomic molecule. For eg Hp: T)yt = )/ (I kp) ~ 854 K.

2kp

T,> ot T‘u b T

Figure 3.11: Sketch showing the specific heat of a diluted gas of H, as a function of
temperature.

Nuclear contributions: ortho- and parahydrogen

Due to the existence of a covalent bound, the spins of the electrons are coupled to S, =
0. However, the spins of the protons can have variable coupling. The two protons are
fermions (spin-3 particles). For spin coupling S = 1 (parallel spins), there are three
possible spin states:

1
V2

For spin coupling S = 0 (anti-parallel spins), there is only one possible spin state:

I11), (I14y + [41)), |4y triplet state with degeneracy 3:‘orthohydrogen’

= ™) = [T singlet state, no degeneracy: ‘parahydrogen’
5 g & Y- parahydrog
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Under exchange of the two protons, the total wave function has to be anti-symmetric:

T(LZ) = 1I[0(7’) Ylm(®/q>) |SSZ>
=  Pp¥(1,2) = (-1 w(1,2) = —¥(1,2)

= S=1(ortho): 1=1,3,5... onlyodd ! are allowed
S=0(para): 1=0,2,4.. onlyeven! are allowed

As for low T (T < Tyot) only the ground state (I = 0) is occupied, we conclude that
only parahydrogen can exist at low temperatures.

For high temperatures (T > T,), all four spin states are equally likely and ortho- and
parahydrogen hence exist in a ratio of 3 : 1.

Importantly, the relaxation time to equilibrium is one year due to a very weak inter-
action energy. Below this time scale, the system has a memory and the specific heat
depends on the preparation history.

Restricted partition sums:

1(I+1)T,
Zortho = Z (2l + 1) e T
1=1,35,...
I(I+1)T,
me’ll = Z (2[ + 1) e +T rot
1=0,24,...

After a long time, we have z,t = 32,410 + Zpara- Figure shows schematically how
the two different contributions to ¢, and their equilibrium mixture behave as a function
of temperature.

parahydrogen
= preparation at low T

3:1 preparation at high T

orthohydrogen

T
Figure 3.12: Heat capacity as a function of temperature for ortho- and parahydrogen

(blue). The red curve indicates the equilibrium ratio as obtained at high
temperature.
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3.6 Specific heat of a solid

We consider a solid to be a collection of masses and springs (harmonic solid). We only
focus on the 3N vibrational modes and disregard electronic or nuclear modes. Transla-
tional and rotational modes obviously do not contribute in a solid.

As we discussed before, the simplest approach is the so-called ‘Einstein solid’, consist-
ing of 3N oscillators with frequency wy vibrating around their equilibrium positions.
However, this model does not predict the experimentally measured low temperature
dependence correctly (c « T%). What is obviously missing here is the fact that the atoms
do not oscillate by themselves, but collectively.

7
aar

Figure 3.13: Simple model of a solid: The regularly distributed atoms are connected by
springs forming a large coupled system.

Debye model (1912)
We first consider a one-dimensional crystal (linear chain).
qn+1 9In qIn-1

K: spring constant

Figure 3.14: Debye model in one dimension: Atoms are arranged in a linear chain and
coupled with springs. g; denotes the elongation away from equilibrium for
the i-th atom.

Each atom is deplaced by g, () from its equilibrium position x, = n a. We write down
the equation of motion:

m Gy = Fy = € (qn1 — qn) — € (qn — Gn-1)
=% (Gns1+Gn-1—2qn)

discretized second derivative

80



In the continuum limit, this gives a wave equation § — c2¢" = 0 with the wave velocity

cs = (xa?/m)1/? (velocity of sound). We stay in the discrete picture but use the fact that
we expect wave-like solutions:

Qn(t) — A ei(thrknu)

27 27
W= — frequency, k= - wave number

=  —mw?=x [eik” 4k _ 2} = —2k [1 — cos(ka)] = —4k sin’ (ku)

2
= ew = (2) an ()

The frequency is not constant, but depends on the wave number. Since the solution
is 27t-periodic, we restrict it to the interval —7r/a < k < 47 /a (first Brillouin zone).
We note that for k = 0 (center of Brillouin zone), the phase difference between two
neighbors is ¢ = 1 and they oscillate in phase. For k = 71/a (boundary of Brillouin
zone), we have a phase difference of e = —1 and neighbors oscillate against each other.
The oscillation at small frequency defines the same velocity of sound as identified above
because both cases correspond to the continuum limit:

dw
“T a&

K
= —a
k=0 m

’
4K\ 2 . ,,
- . .
m) . , |
.

dispersion relation
- - = linear approximation

IS

T &
Figure 3.15: The dispersion relation of the Debye model (blue) and its linear approxi-
mation for small values of k (red).
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We next consider a finite system size, that is N atoms and a chain length L = N a . We
choose periodic boundary conditions (Born-von Karman boundary conditions):

qn = qn+N
; 27 N
ikNa : :
=1 ki=—1, =0,%£1,..., £—
== e = j aN] ] 5

Only discrete k—values are allowed in the first Brillouin zone. As a result we have N
degrees of freedom, thus only N oscillators are possible. Their k—values are separated

by:
27
Ak = —
L

which is the density of states in k—space.
Going to a three-dimensional system, waves are now written as:
A ei(ﬁ?—kwt)

with wave vector k. In addition to the longitudinal wave discussed in one dimension,
we also have two transversal waves. The number of modes then becomes:

#mod 3=3 e di
modes=Y33=3 [ [ %
A i=x,Y,z
2 L\° 3V
p— — = -_-— N
3 ( a 27'() a3 3

Here we introduced the volume V = L? in the penultimate step.

We now transfer the summation over modes from k-space to w-space. This implies
that we now switch from Cartesian to spherical coordinates. As an approximation we
assume a linear dispersion relation:

w = ¢ |k|

We also assume that longitudinal and transversal modes have the same velocity and
and that all directions are equally probable.

d3k 3V kmax
#modes = Sl 4 kK dk
= modes 3/(Ak)3 PIoE /0 T
3V WD 2 \% 3 !
T2 3 /o dww = 272c3 wp = 3N

The maximal or Debye frequency follows as:

1
ZN 3
Wp = Cg <67T > %3.9%

1%
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where we used V = N 43. This agrees approximately with our earlier statement:

wWwp 7T

kmax - -
Cs a

In summary, the Debye model assumes the following (normalized) density of states in
w—space:
2

3% for w < wp
D((U) = (UD

0 forw > wp

Figure 3.16: The density of states D for the Debye model as a function of w.

We now know how to count modes in frequency-space:

L () =3 1) =3N /OwD dew D(w) (..)

modes

We now combine the spectrum with Einstein’s concept that each mode is a harmonic
oscillator to arrive at the partition sum:

e~ Bhw/2

z(w) = 1 ophw
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= Z=]] zw)

modes
= E=-9gInZ= ) ho <1+1>
- f B modes efiv—1 " 2
wp hw  3w?

_9E _ (—1) oE

(1) =37 = o2 38

h? ePhw (2

N kBT2 m;i:es (e/%hw _ 1)2

3H2N /“’D 3w?  ePhw 2
kT2 Jo w3 (eﬁhw_l)z

The constant contribution Ey from the rest energy drops out for the specific heat. We
change the integration variable to u = I w:

k U u 4
= CU(T):9NSB/ e 5 du
U 0 (6” — 1)
Unfortunately this integral cannot be solved analytically.
We consider two limits:
@ kT > hwp, u < 1:
u? et
= (“71)2 ~1= |c(T)=3Nkp| classicallimitfor 6N degrees of freedom
e J—

@kBT<<th,M>>12
= Uy — X

The integral becomes a constant and the only temperature dependence comes
from the factor 1/u3,.

12774 T\?

Here we defined the ‘Debye temperature’ Tp = hwp/kg. Note that if you replace
Tp by wp and then this by the formula derived for it above, then N drops out and
cp scales simply as V, as it should, because there is not spatial aspect to the model.
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BINJggg | [
x T3

Einstein model
- Debye: high T limit
Debye: low T limit

Tp T

Figure 3.17: The heat capacity as a function of temperature for two limits of the Debye
model (blue) compared with the Einstein model (red). For the Debye model
¢co(T) o T2 at low temperatures in agreement with experimental results.

Typical experimental values are:
cs = 5.000 % (eg iron)

a=2A
wp ~ % = 10" Hz
hwp 1073 Js 10 Hz

=", T0n]

Summary

@ At high T, we have the classical limit:

3N oscillators x 2 degrees of freedom each x kBTT energy

@ Atlow T, all modes with fiw < kgT are excited.

= #modesoc/d%ak3o<w3o<T3

Final comments on solid state physics

@ The excitations of the lattice can be considered as quasi-particles with energy i
(‘phonons’) in analogy to photons, which have similar statistics (‘Bose statistics’).
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- acoustic longitudinal
——acoustic transversal
— optical

1
™
a

ISHIETS

k

Figure 3.18: Dispersion relations for different waves: acoustic longitudinal (blue,
dashed), acoustic transversal (blue, solid) and optical (red). There can be
up to three bands of both acoustic and optical phonons, but often the two
transversal bands are degenerate.

The three polarities of a wave with wave vector k can be interpreted as spins
(0, £1).

@ The excitations discussed here are known as ‘acoustic’ modes (typically excited by
sound). Electronic excitations lead to ‘optical’ modes (typically excited by electro-
magnetic radiation).

® The standard way to measure the dispersion relation (or phonon spectrum) of
a crystal is neutron scattering. X-rays also work, but this is much harder. One
typically works around k = 0 in the Brillouin zone, which also satisfies the Bragg
criterion for a strong reflection. One then looks for small side peaks (Stokes and
anti-Stokes lines) that either come from acoustic phonons (Brillouin scattering) or
from optical phonons (Raman scattering).

3.7 Black body radiation

The black body is a cavity filled with electromagnetic radiation in equilibrium with a
thermal reservoir of temperature T. In the particle picture of quantum mechanics, we
deal with a gas of photons. The dispersion relation for photons is

e(k) = hw(k) = hck

with the velocity of light ¢ a 3 - 10% m/s. This relation is linear in k as for the Debye
model. In contrast to the Debye model, however, there is no cutoff in the frequency
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spectrum. Moreover there are only two possible polarizations (dictated by Maxwell
equations - in contrast to lattice vibrations there is no longitudinal mode).
Like for the Debye model, each k-mode is a quantum mechanical oscillator:

1
€ = hew (k) (n%,m + 2)

= E:Z(—:E’m:ZZe(k)nE—i—Eo
J K

While for the Debye model the ground state contribution Ej is finite, this is not the case
for photons. We disregard it as it is an unobservable constant.

= E_Z(Ak> /d eﬁek()k)l

2V h k
V
- v / du
2B c3 o -l et —1
72;1 1f0 du u3 = 62 L4 71%

4o, 2kt
= |E=—VT with Stefan-Boltzmann constant ¢ = 33
c 60hk°c?

For the heat capacity of a black body this implies:

The cy o T? scaling is the same as for the low temperature limit of the Debye model.
However, for the photon gas this result is rigorous as no linearization of the dispersion
relation is required. Furthermore it is valid for all temperatures.

How much power P (energy/time) is emitted by a black body cavity with an opening
of size A (Figure[3.19)? The energy flux J (mess_) in direction of a photon is

time-area

E  EA _ Ec
ANt (AMX)At  V

] =

Photons move in all directions, but only the component perpendicular and outward to
the opening contributes.

Ec , 1 %~
= P= VA47I/ d<I>/ (cos®) cos®

:27r -

NI—=

= |J== =0T*| Stefan-Boltzmann law

N
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Figure 3.19: A block body cavity with opening of size A.

We return to the energy integral and note that it can be written as an integral over
frequencies:

éz /Ooodw u(w)

Here we defined:

h w?
71203 phw/(ksT) — 1

u(w) = Planck’s law for black body radiation

Figures and show the spectral radiance as a function of frequency and wave-
length respectively.

Figure 3.20: The spectral radiance u as a function of w. For small or large w Planck’s law
can be approximated by the Rayleigh-Jeans or Wien limits, respectively.
Both limits were known to Max Planck when he derived his formula in
1900. For higher temperatures the spectral maximum is shifted to higher
frequencies.
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—UQ, T,
—Uu(A, T1)

Figure 3.21: The spectral radiance u as a function of wavelength A. For higher temper-
atures the spectral maximum is shifted to shorter wavelengths.

The Planck distribution has a maximum at

du

dw| 20 = PBhwn=3 (1 _ e—ﬁhw,,,)

w m

= ‘hwm =2.82 kBT‘ Wien'’s displacement law

For example, heating an iron from 1.000 to 2.000 K shifts its spectrum from red to white
due to a larger contribution in the blue range.

The Planck distribution and the Stefan-Boltzmann law are very general and usually
apply if matter and radiation are in thermodynamical equilibrium. The Planck distri-
bution and Wien’s displacement law can be used to extract the temperature of such a
system:

@ sun: T =5800K = Am in the visible und UV range

@ earth or human body: T = 300 K = A, in the infrared range; this is why we can
see people and heated houses so well with infrared cameras.

@ cosmic background radiation: T = 2,73 K = A, ~ cm (microwaves) discovered
by Penzias and Wilson 1964 (Nobel Prize in physics 1978)

The ideal photon gas depends on volume only through its dispersion relation (no par-
ticle interactions):

__9E_1E _11cE_ ]
P=73V 73V " 3cv 3¢
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kW -6 N —~11
]mlﬁ = p=10 Wzm bar
We note that the sun’s radiation pressure on earth is much smaller than the atmospheric
pressure.

Solar energy and the greenhouse effect

Our earth is heated by the sun. Because we know its temperature, radius and distance,
we can calculate how much energy should arrive here and how much it should warm
up the earth. The sun radiates an energy flux ] = ¢T* due to its temperature T =
5.800 K. We have to multiply this by 471R? with Ry = 696.000 km being the radius
of the sun to get the overall output. Because of energy conservation, at the distance
r = 1.5 108 km where the earth is located, we have to divide by 47172 to get the flux onto
the earth:

] = an(%V = 1.37 kW /m?

which is known as the solar consant.
In thermal equilibrium, the earth should emit as much as it receives:

R
]in :UTSAL(TS

)2 = Jout = 4UT§

where the factor 4 represents the fact that while the sun is so far away that it appears
to be an emitter with parallel rays to us, the earth radiates in all directions, see the
calculation above between the factor 4 difference between radiation in all directions
and in one direction only. We conclude

R
T, = TS(Z—;)UZ = 280K = 7°C

If we take into account that 30 percent of the sun’s radiation is actually reflected by the
atmosphere (albedo), the estimate gets even worse:

R
T, = TSO.71/4(2—;)1/2 = 256K = —17°C

Thus everything should be frozen and life was not possible on earth.

The explanation for the discrepancy to the observed temperature is the famous green-
house effect. Because the earth has a temperature of the order of 300 K, it emits in the
infrared according to Planck (see above). While being relatively transparent in the vis-
ible and UV range, water vapor, CO, and CHy in the atmosphere strongly absorb in
the infrared. Therefore they let radiation from the sun in but absorb radiation from
the earth (ozone O3 absorbs in the UV and therefore protects us from excessive DNA-
damage). 40% of the outgoing radiation is absorbed, so only 60% is radiated away. A
better estimate therefore is

B 0.71/4(&

1/2 __ _ o
T, = T (5012 = 290K = 17°C
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Solar Radiation Spectrum
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Figure 3.22: The effect of different atmospheric gases on the radiation coming from the
sun, which has a perfect Planck spectrum before it hits the earth (source:
wikipedia).

which agrees well with our observations.

Without any atmosphere, the earth would be around 30 degrees Celsius colder. Without
clouds, it would be colder by 10-15 degrees. Interestingly, the power radiated by the
sun was 25% weaker when life started on earth four billion years ago. While the sun
got stronger, the amount of CO; in the atmosphere decreased because life started to
generate oxygen and luckily the two effects balanced each other such that a relatively
constant temperature of 15 degrees Celsius and a pressure of 1 atm was maintained on
earth. Today, the amount of CO; increases again because we burn so much coal and
gas, thus freeing carbon stored in the earth. Other reasons for the increasing CO, levels
are the destruction of forest and increased land use. On Venus, which has a similar
size and composition as the earth, but did not develop life, the greenhouse effect went
out of control (too much CO; in the atmosphere), so the water oceans evaporated and
today life is not possible there with 470 degrees Celsius and a pressure of 90 atm. In
2016 average atmospheric CO; concentrations have surpassed 400 parts per million, a
level that has been last reached 3 million years ago, when temperatures were 2 — 3°C
warmer and sea levels 10-20 meters higher; even more recently this concentration has
in fact shown in increasing rate of change, which is very alarming.

Eruptions of volcanos release sulphur dioxide into the atmosphere that absorb sun light
and therefore cool the earth. 74.000 years ago the eruption of Toba in Indonesia pos-
sibly triggered a new ice age. Only thousands of humans survived as evidenced from
their small genetic diversity at that time. When Tambora erupted in Indonesia in 1815,
the following year was without summer in Europe and the population suffered from
hunger. In 1991, Pinatubo erupted in the Philippines and temperature went down by
half a degree for two years. In principle these effects could be used for climate engi-
neering, by spraying vapor or sulphur dioxide into the atmosphere, but this might be
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very difficult to control.

Finally some history on climate research. Joseph Fourier in 1824 published his "Remar-
ques Generales Sur Les Temperatures Du Globe Terrestre Et Des Espaces Planetaires”,
in which he concluded that the atmosphere must somehow isolate the earth. In 1859
John Tyndall found that water vapor and CO,, but not oxygen or nitrogen in the atmo-
sphere absorb and gives away heat. Climate research finally started fully in 1896 when
Svante Arrhenius (Nobel Price 1903 for Physical Chemistry) published his treatise "On
the Influence of Carbonic Acid in the Air Upon the Temperature of the Ground". He
even calculated that temperature increases logarithmically with CO, concentration in
the atmosphere, correctly predicting that a doubling leads to in increase of temperature
of a few degrees.
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4 The grandcanonical ensemble

4.1 Probability distribution

We now consider a reservoir for both energy and particle number. In this ‘grandcanonical
ensemble” the equilibrium conditions are T; = T, and yq = p2. Thus now temperature
T and chemical potential y are fixed. An example would be a open bottle lying on the
ground of a lake. Now not only heat, but also particle number can be exchanged with
the environment.

The derivation of the corresponding probability distribution is similar as for the canon-
ical ensemble. We consider one specific microstate i that then comes with an energy E;
and a particle number N;. Then its probability to occur is

. # favorable outcomes Qo5 (Eor — Ei, Njot — N;)  eSres(Brot=EirNiot=Ni) 7k
i= = =

# possible outcomes Ovot (Etot, Niot) ~ eStot(Etot,Niot) /kp

We next introduce the average energy E and the average particle number N as reference
values and Taylor-expand the entropy of the reservoir:

E—E u(N-N;)

Sres(Etot_E+E_Ei/Ntot_N+N_Ni) :Sres(Etot_E/Ntot_N)+ T - T
Here we have used 0S/0E = 1/T and 9S/dN = u/T. Note that higher order terms do
not appear for a reservoir. We also can use additivity of the entropy to write

Stot(Etot, Niot) = S(E, N) + Syes(Etot — E, Niot — N)

Together we therefore get

where
Y=E—-TS—uN

Thus the overall structure of the result is similar as for the canonical ensemble: there is
a Boltzmann-factor e PETPIN: for the weight of the microstate as a function of its energy
E; and its particle number Nj;, and there is a normalization factor ePY.

We can make this derivation shorter if we make the normalization only at the end. In
this case we do not even have to specify around which reference values we expand. We
simply write

pi o esres(Etot_Ei/Ntot_Ni)/kB o e_ﬁEi+ﬁVNi
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where now the expansion could also be around E;y, Ny for simplicity. We therefore
get

1
pi= e PE—HN) grandcanonical prob. distribution
G

where

Zc = Ze‘ﬁ (E=#Ni) | grandcanonical partition sum
i

Note that we could have derived the same result through information theory by max-
imizing Shannon entropy with the two constraints of given average energy and given
average particle number. From above we also can conclude that

Y = —kBTh’IZG

must be the relevant thermodynamic potential.
Obviously our result is closely related to the canonical result. To make this clearer, we
write i = (N, j), where j are all quantum numbers besides N:

Zc = i (Ze—/sEj> GBUN

N=0 \ j
=Y Z(T,V,N) N
N=0
Thus Z; follows by another summation from the canonical partition sum Z.

4.2 Grandcanonical potential

The probability to have a macroscopic value (E, N) is:

1

p(E,N) = =— Q(E,N) e PEE-#N)
Zg
_ L sy _ Ly
Zg Zg

Here we defined the ‘grandcanonical potential’ that also appeared above: ¥ (T,V, u) :=
E—TS— uN.

p is maximal, if ¥ is minimal. We note:
microcanonical ensemble: S maximal

canonical ensemble: F minimal

grandcanonical ensemble: Y minimal
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Y = E|[T, p] is the two-dimensional Legendre transform of energy from the extensive
variables (S, N) to the intensive variables (T, j).

Total differential:

d¥ = d(E — TS — uN)
= TdS — pdV + udN — d(TS + uN)
= —SdT — pdV — Ndu

Equations of state:

Y a¥ ¥
P N T

4.3 Fluctuations

Average and variance of the internal energy E can be calculated as before for the canon-
ical ensemble. We now calculate average and variance of the particle number N:

= Zpl Nl = ZL ZNI eflg(Einyi)
; G ;

1 1
b Ne B(Ei—uN;)

ZG/s 2y

ox = (N?) —{
1 11 2
——8 aZ
B Z <5ZG G)
1
‘B P< > ‘32 V

One can show with thermodynamic considerations (Maxwell relations):

N Nk, 0)
o |1y V2 9p|yr N
L e N ov
TI=—%% 5=
14 aPN,T

= NG 0% >0 asc?>0

Here we defined the ‘isothermal compressibility” k.
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Like for the canonical ensemble, where we found

2

>0

CU = kBTz -

again the variance is related to a material property:

N 2k B TKT KT intensive
- - - T % 2

2

ON 1
EN N
(N) Nz
Particle fluctuations are small for large systems as expected based on the law of large
numbers.

Note that calculation of the average enery is a bit more tricky now than in the canonical

ensemble because there are two terms related to 8. If we want to get only the energy
part, we have to keep the chemical potential part constant:

=

. dln ZG
9p By

A simplier solution is to do the derivative for g without constraint and then to subtract
the part which is not wanted:

(E) =

(E) = —9gInZg + j (N) = —951n Zg + gaﬂ InZc

4.4 Ideal gas

For the canonical partition sum we had:

N
A (2mmkgT)?

_ N _
Zc = N;Z(T, V,N) efrN = Ngoﬁ (eﬁﬂ)\g)

with fugacity z := eP*

NA3
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This result is identical with the one we derived from the microcanonical ensemble. The
variance then becomes:

1 1 ePry
VN 1

= N2kyT ~ p

which also follows from pV = NkgT

4.5 Molecular adsorption onto a surface

We consider a gas in contact with a solid surface (e.g. argon on graphene or molecular
nitrogen on iron, as in the Haber-Bosch synthesis). The gas molecules can be adsorbed
at N specific adsorption sites while one site can only bind one molecule. The energies
of the bound and unbound state are € and 0, respectively. € can be negative or positive.
The gas acts as a reservoir fixing T and p.
The partition sum is:

ZG = ZIC\;I

where we considered a non-interacting system with single particle partition sum:
ZG — 1 _|_ 6713(6711)

The mean number of absorbed particles per site follows as:

0+1-ePle—n) 1

() Zg e—Blu—e) 11

solid

Figure 4.1: A gas at (T, ) in contact with a solid surface. The solid contains N specific
adsorption sites each able to bind one or none gas molecule.

The mean energy per site is:

0+ e.eBlen

€)= ——=c )

This model can be easily generalized to more complicated situations, e.g. if more than
one molecule can be adsorbed.
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0.5 i

€ 1t

Figure 4.2: The mean number of absorbed particles (1) as a function of the chemical
potential . Half-occupancy occurs at u = €.

If the adsorbate is an ideal gas:

p

=kgTIn—

K B Po

= e.B.” — E

Po

p
= = —
<7’l> Poeﬁ€+l9

The number of adsorbed particles first rises linearly with pressure (or, equivalently,
with concentration) and then plateaus. This is known as the Langmuir isotherm.

4.6 Chemical reactions

The grandcanonical ensemble is also the appropriate framework to deal with chemi-
cal reactions. As an instructive example, we discuss the production of ammonia (N Hj3),
whose industrial importance cannot be underestimated, e.g. for the production of fertil-
izer or explosives. Actually the invention of the industrial process to produce ammonia
by Fritz Haber and Robert Bosch earned both of them a Nobel Prize in chemistry (in
1918 and 1931, respectively); moreover in 2007 Gerhard Ertl earned the Nobel Prize in
chemistry because he explained the underlying molecular processes, in particular the
role of iron as catalyst. Each year 180 million tons of ammonia are produced with the
help of the Haber-Bosch process, which uses pressures of 200 bar and temperatures
of 500 degrees Celsius. Today you can learn more about this history by visiting the
Bosch museum at Heidelberg, close to the villa Bosch (now used by the Klaus Tschira
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<n>

Y

Figure 4.3: The mean number of absorbed (ideal gas) particles (1) as a function of pres-
sure p.

Foundation), where Robert Bosch lived while running the chemical company BASF at
Ludwigshafen. In front of the museum you can see the high pressure pipes invented
by Robert Bosch.

The chemical reaction formula is
3H, + N, =2 NH;

and the corresponding change in Helmholtz free energy F is

oF JF JoF
ANy, + o-—AN, + 20— ANy,
N,

AF =
aI\]N2 aNNH3

While N; is taken from the air, H; is obtained from natural gas (CHy). This step leads
to a lot of COz-production (1.5 tons of CO; for one ton of ammonia); as a matter of fact
ammonia production contributes one percent to our greenhouse gas emissions.

We note that the derivates are the definitions of the chemical potentials and the As are
the stochiometric coefficients of the reaction. Thus

AF = =3pp, — UN, + 21iNH;,

We now take the chemical potential for the ideal gas, where we identify N/V with
concentration c:
u(N,V,T) = po+kgTIn(cA®)

In fact the ideal gas assumption here is not that bad because the reaction essentially has
to fight against entropy production.
At equilibrium, AF = 0 and we can pull all three terms together to get
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which is the famous law of mass action (Massenwirkungsgesetz in German), with the equi-
librium constant defined as

9 13
K, — AHZANzefAﬁFO
eq = 20
NHs
with AFy = —3uo,H, — Ho,N, + 2Ho,NH;- The Boltzmann factor favors a final state in

which the free energy is lower than in the initial state (that is AFy should be negative).
The thermal wavelengths define natural reference concentrations.

For ammonia production one gets AFy = —92 kJ/mole. Thus in principle the reac-
tion is exothermic and should work well. High pressure favors the reaction because
it has a negative volume balance. In practise, there is a high kinetic reaction barrier
(not described by statistical physics, this needs a quantum mechanical calculation, the
main problem is the high stability of N,), therefore iron catalysts are required. Note
that nature takes a similar route. Many soil-dwelling bacteria use the metalloenzyme
nitrogenase containing iron atoms to convert N, from air into ammonia.

Our result also allows us to discuss the temperature dependence. The de Broglie wave-
lengths leads to a dependance ~ T—3. The reference free energy for diatomic molecules
at room temperature (no vibrations yet, only rotations) is Fy ~ Eo — kgTIn(IT/ hz),
where [ is the moment of inertia; this applies to Hy and N,. For ammonia NH3, we
have a similar formula, Fy &~ Eq — kT In(\/87T3 1 13/ 3h3). Together this gives an
exponential temperature dependance. Overall K, for the ammonia reaction decreases
with increasing temperature. However, high temperature has to be used for the iron
catalyst to be active.
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5 Quantum fluids

5.1 Fermions versus bosons

For multi-particle systems, experiments have shown that the rules of single-particle
quantum mechanics have to be extended by one more principle (generalized Pauli prin-
ciple):

Particles with half-integer (integer) spin are called fermions (bosons). Their
total wave function (space and spin) must be antisymmetric (symmetric)
under the exchange of any pair of identical particles.

Comments

@ For electrons (spin = 1, fermions), we get the Pauli principle (antisymmetric wave
function) and the Pauli exclusion principle (no two electrons can occupy the same
state). If two electrons have opposite spins (singlett), their spin wave function
is antisymmetric ( % (I14) = [41)) ) and the spatial wave function can be sym-
metric. If two elections have the same spin (triplett), their spin wave function is
symmetric and the spatial wave function hence has to be antisymmetric:

®(1,2) =a(1)b(2) —a(2)b(1)

Since a = b for identical particles and thus ®(1,2) = 0, two electrons can not be
at the same position. This is the basis of atomic stability.

@ Fermions are the quantum mechanical analogues of classical particles (matter can
not penetrate itself). Bosons, in contrast, are the quantum mechanical analogue
of classical waves, which can be superimposed freely and thus transfer lots of in-
formation. The standard example are photons which can be freely created and
annihilated and which are the exchange particles of the electromagnetic interac-
tion.

® The fact that there are two possible kinds of particles comes from the fact that two
permutations lead back to the initial situation, so there can be a sign in the wave-
function (—1 x —1 = 1) or not (1 x 1 = 1). The relation between this property
and the spin is described by the spin-statistics theorem from relativistic quantum
field theory, thus it is a genuinely relativistic effect.
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Consequences for counting

We consider a system of two identical particles, each of which can exist in either of two
states.

classical Fermi Bose
'Boltzmann' statistics statistics
statistics

% O|O| | |00

" 5

o @ H
@ O

22-4 states 1 state 3 states

corrected quantity:
4/2! =2 states
Figure 5.1: Table of states for a system of two identical particles from a point of view of
different statistics. Each particle can be either in state one or two.

We see from Figure |5.1| that all cases differ in their outcome for the number of states.
Both ‘classical” and ‘corrected classical’ counting are incorrect. The rules of quantum
mechanics imply more than simply saying that identical particles cannot be distin-
guished. They actually mean that we have to do the calculation separately for fermions
and bosons. However, at high temperature the particles are distributed over all states,
the probability of two particles being in one state becomes very small and corrected
classical counting becomes valid. All quantum fluids become ideal gases at high tem-
perature.

Canonical ensemble

We now formalize the differences in terms of partition sums. In the canoncial ensemble,
we consider two particles that are distributed over two states with energies 0 and €
(two-state system) as shown in Figure For Fermi-Dirac statistics we have only one
state and the partition sum is

Z F = 67‘3 €

For Bose-Einstein statistics, we have three different states:

Zp=1+e Py e 2P
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For classical Maxwell-Boltzmann statistics, we have four states, where the two mixed
ones have the same energies. In addition we have the factor 2! for corrected counting;:

1+ 2e—Pe 4 o 2pe
- 2

One sees that each kind of statistics leads to a different result. However, at high temper-
atures only the mixed case is relevant and then all three statistics give the same result.

Zm

Grand canonical ensemble

Quantum fluids are best treated in the grand canonical formalism. Thus we fix T and p.
For a non-interacting system, the partition sum for a single energy state for a fermion
(only two states in regard two occupancy) is:

Zp = 1 + efﬂ(efﬂ)

The average occupation number nr becomes:

Ox1+1x e_ﬁ(e_l") e_ﬁ(e_}’)
T OMET T e 1 e flen
1
=|np = m Fermi function
1
— ,T = —
n(e=p,T) = 5

ne(e, T) (compare Figure is symmetric under inversion through the point € =
u,np = %. For T — 0, the Fermi function approaches a step function:

1 e<pu|
nP—{O ezy}—@(ﬂ—e)

Here © is the Heaviside step function. For vanishing temperature, the fermions fill up
all energy states up to the chemical potential y.
For bosons we have:

zZg = 1 _|_ efﬁ(efy) + 67'5(2672]4) =+ ...

oo " 1
:E()(e Ble m) = ——
The average occupation number is:
e Ble—1) L 0p=B(2e=2u) =~ 1 e—Ble—n)
ng = - :anlnzB:m
1 e
= |ng = B 1 Bose distribution
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1.2 4

1 nF( €, T2) -

\ —ne(eT)
Fermi edge —n(&T)
0,81 |
0<Ty<Ti <Tj
)
Iz, 0,6~ B
N
0.5 |
0,41 |
0,21 |
0 | | Il 1
-2 -1 0 1 2 3 4

Figure 5.2: The Fermi function as a function of €/ for different temperature values.
For Ty — 0 the function becomes step-like with the ‘Fermi edge” at € = .
At this point the probability for one state to be occupied is % patT =0is
called the ‘Fermi energy’.

The result differs only by a minus sign from the fermion result, but this difference has
dramatic consequences because this distribution diverges at ¢ = yu (Figure 5.3). For
T — 0, the Bose-Einstein function vanishes everywhere except for the lowest energy
state.

In summary we have found a dramatic difference between fermions and bosons at low
temperature:

= Fermions tend to fill up energy states one after the other.

= Bosons tend to condense all into the same low energy state.

We finally compare the three statistics in form of the occupation number (Figure [5.4).
If we define x := B(e — p), then Fermi, Bose and classical statistics correspond to dis-
tribution functions np = 1/(e* + 1), ng = 1/(e* — 1) and ny = 1/e*, respectively.
Obviously they all agree with each other for large x, which is the classical limit for the
following two reasons. First then we have € > kpT and thus energies are high and a
large part of state phase is explored. Second and more importantly, we then have fugac-
ity z = eP# = A3/v < 1 (using the result for the ideal gas), meaning that density is low
(specific volume is large), the wavefunctions do not overlap and there are no quantum
effects.
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np(e,T)

jz

Figure 5.3: These curves are schematic with Ty > T, and p1 < pp. They diverge as
€ — u. For a system with a finite number of particles, we therefore must
have y < e. At low temperature, all particles accumulate in the state of
lowest energy.

/ n \

Maxwell-Boltzmann

Bose-Einstein

/

Fermi-Dirac 1/2

9) g

Figure 5.4: A schematic sketch of the occupation number n for the three statistics: Bose-
Einstein (blue), Fermi-Dirac (red) and Maxwell-Boltzmann (black).

Examples of physical fluids

@ Fermi fluids
a) electrons in a metal or in a white dwarf
b) neutrons in the atomic nuclei or in neutron stars

c) helium three *He: 2 protons, 1 neutron, 2 electrons, half-integer spin)

@ Bose fluids
a) photons (black body radiation)

b) quasi-particles like phonons (lattice vibrations), polarons (polarization waves),
magnons (spin waves)
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¢) helium-four (4H e: 2 protons, 2 neutrons, 2 electrons, integer spin)
4He becomes ‘superfluid’ below the critical temperature T,; = 2.17 K.

d) BCS-theory: Two electrons can form a bosonic pair in certain materials due to
the interaction with the crystal lattice of ions. These become ‘superconducting’
below T,,;;.

e) 8 Rb-atoms are bosons. In 1995 rubidium atoms have been used to realize
a ‘Bose-Einstein condensate’ in atomic traps at very low temperatures (T,.;; ~
107 K).

5.2 Calculating with occupation numbers

Above we have presented simple arguments that counting has to be very different for
fermions versus bosons. If we now look into the differences in the formalism, we will
see that it is mainly in an innocently looking and strategically placed minus sign, but
that this minus sign has dramatic consequences. For non-interacting, non-relativistic
particles of mass m in a volume V, we only have kinetic energy

N 2
=y
H= Z 2m
i=1
From solving Schrodinger’s equation, the momentum vector has the shape
. .» 2mh
p=nhk= T(”lzﬂzf n3)

where n; € Z. In addition each particle can have a spin quantum number mg. For
spin S and without an external magnetic field, this number leads to a degeneracy gs =
2S + 1. For example, for an electron we have S = 1/2, gs = 2 and mg = £1/2. The
wavefunction for the overall system now follows as

N
¥) = N;(il)‘P'PE |P) msi)

where P are the permutations allowed for the system (symmetric for bosons, anti-
symmetric for fermions) and N is some normalization factor.

In the next and decisive step, we switch from this wavefunction picture to a picture
in which we only consider occupation numbers 7. Then the equations for particle
number and energy look very simple:

N=).) nps, E=).) npe;

poms poms

with €5 = p?/(2m). The grandcanonical partition sum follows as

Ze=Y Y e fEN = Y o Bmla s = T Y e Blo

0 {l’lﬁs},NﬁXed {1’1,‘,‘5} ﬁ,ms s
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For fermions, we have only two possible occuptation numbers and thus

Zc = H(1 + e Bler—h)

ﬁrms
For bosons, we get the geometrical sum as above

1
Ze=11 (1— e Plern)

p,ms

The essence of these manipulations is that particle number N drops out. Later we can
use yu to calculate back to a desired N. The grandcanonical potential now reads

Y = —kgTInZs = FkgT Z ln(] + efﬁ(epfl")>
poms
From here we get the average particle number N and the internal energy E by partial

derivatives. For the particle number in particular we have

1
N= Z e Blep—m) 1

ﬁrms

Thus the essential difference here is indeed a minus sign: plus for fermioins and minus
for bosons.

5.3 The ideal Fermi fluid

We consider N particles, but for simplicity work in the grand canonical ensemble. The

spatial states are characterized by the wave vector k of the wave function. The spin
of each particle can be up or down (ms = +1). Considering no additional interaction
apart from the intrinsic one due to the particles being fermions, this implies:

ZG = H ZE,mS

k,mg
_ —B(€z . —H)
Z g = 1+e "s
o 1
nE,ms -

EIB(€E,mS —‘H) _l_ 1

For the dispersion relation, we have the classical relation for a massive particle com-
bined with the de Broglie relation:

PR
kims — 2m 2m
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In the following we will use a factor 2 for the spin degrees and replace the sums by
integrals:

Vv - %4
Z ...:ZE /dp...zZﬁ /dpp247r...

k,WZS

Vo 1
zzﬁ/o de 471 m? (2(—:)%

3
o0 \%4 2m\ 2

density of states D(e)

The concepts used here are the same ones as used before for the Debye solid and the
black body radiation. While here D o /€, for the phonons and photons we had D o €2
due to the linear dispersion relation.

Fermi energy

For given particle number N, the chemical potential y has to be determined from:

o 1
N=Y g, = N/O de D(e) s
k,mg —_——

n(e)

We first consider the limit T — O:
n(e) >1-0(e—u)=0(u—e¢)

The value of y at T = 0 is called ‘Fermi energy’:

2

_Pr _ 00V
ep—zm—pt<T—0,v—N>

Yy 1-2% dp = 22 47 o

= N-=
h3 pP<pr h 3

E,ms for p<pr

Here we integrated over the ‘Fermi sphere’.

2
= |ep= (3712)% LZ =
2mv3

Typical values for the Fermi energy:

107*eV 3He
10 eV electrons in metal
€ g
F 1 MeV electrons in white dwarf

35 MeV neutrons in atomic nucleus
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Since kgTr = %, for electrons in metals at room temperature Tg we typically have
er > kpTr. We evaluate the occupancy around the Fermi-edge (compare Figure :

n(e) =05+023 fore=puFkpT

n(e) =05+045 fore = u T 3ksT

We see that the width of the step at finite T is only a few kpT. Therefore only a few of
the N electrons in the ‘Fermi sea” are thermally excited above er.

Figure 5.5: The occupation number 7 as a function of € at finite temperature (blue) and

the difference of the curve with respect to the one at T = 0 (red and red-
dashed above blue).

Specific heat

We use this result to calculate the specific heat based on the ‘Sommerfeld method’. We
consider an arbitrary function f(€) (eg f(e) = €2):

I = /Ooodef(e) n(e)

l,[ (0]
| des@+ [ defle)  ne)—0(u—e)]

-~

#0 only in small region around u
Expansion of f(e) around the Fermi edge:

fle)=fw) +f()le—pm+ ..

We introduce x = B(e — p):

109



1(x) being odd in x implies that all even terms on the Taylor expansion vanish.

+ 1= [faeser g [0 ax [0+ £ 005+ 1)

For low temperatures: Sy — co :

:/Oydef(e)—i-f/‘[gl) /_o;dxxiy(x)

22

=2 [¢7 dx x(x 2f0 dx =T

H
= [ o1+ 2 1

We now apply this result to our normalization condition:

1= /Ooo de D(e)n(e)

with D(e) « €2 (compare Figure to determine the chemical potential (T, v).

25

Figure 5.6: The average occupancy 7 (blue) as a function of € next to the density of states
D «e? (red).
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Here 1 is the result for T = 0 and € some value between y and e according to the mean
value theorem.

7 D) m® D(ep)
T T T TeE DE T 6B Dier)
1
€F

2 2
= |p=er [1—”<kBT>] forT<<Ii—F(Figure5.
B

using y — e o< T?

_1
-2

33 4

u(Tv)

Figure 5.7: The chemical potential y(T,v) decreases with increasing temperature. For
T« ;—Z it can be taken to be y = const = er.

We note that in general the chemical potential y has to go down with temperature
because for fixed particle number the joint integral with the density of states has to
stay constant, compare Figure Therefore higher order term in this expansion are
not expected to change the general picture.

We next evaluate the energy:

E_ /Oode D(e) € n(e)
N 0 N ——
f(e)oce?

€r ?
:/o de D(e)e + (u —er)eéD(€) +

[1D' (1) + D ()]

6p2
z@—i-( —€f)€ D(e)+n—2[e D'(er) + D(er)]
N H F)€F F 6p? F F r
72 D'(ep)
62 D(er)

2
= E=E+ N%D(ep) (kT)?

|

7 o |vToer|, T3

kiD(ep)T
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TLF,D

W) AT

Figure 5.8: The fermionic occupation number nr as a function of € for different temper-
atures (blue and red curves) next to the density of states D (green).

The specific heat of an electron gas at T < ¢~ is linear in temperature T.

We use D(e) = A €2 to write

= CV:NfikB

ksT of
€r

Disregarding the numerical prefactor, this result is easy to understand: a fraction
the electrons from the Fermi sea is thermally excited, each contributing around kg.
Our calculation is only valid for T < %=. At high temperature, we have to recover the

classical limit: 3
= -Nk
v = 5Nkp
Therefore the complete result schematically has to look like shown in Figure
We also comment on the role of lattice vibrations. From the Debye model we know that
lattice vibrations contribute a term « T3.

= cy=aT+bT?

One can measure a and b experimentally and thus extract the Fermi energy er and the
Debye frequency wp. With these two values, we know the most important numbers for
a given solid.
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Cy

32 constant

|
|
T, T

Figure 5.9: Two regime behaviour of the specific heat at constant volume: While for
TKTy= 6—; cy « T, cy is approximately constant for T > Tp.

Full solution

Until now we have worked in an expansion around the T = 0-case. We can also write
the full solution for arbitrary T, however we will end up with integrals that cannot be
solved but rather lead to definitions of new functions.

We start with the grandcanonical potential and use the same concepts as above:

T(T, V,‘Ll) = —kBTh’I ZG

= _kBTZV(47r)/ p?dpIn (1 —l—eﬁ(e”*))
h3 0

—2kgTV

—5f52(2)

where we have defined a new function

f: x2dx1 1 xz)—w_ a+1 2
5/2 X Il +ze —Z( 1)

ey o,
and where we have used the dimensionless momentum x defined by x?> = Bp?/2m and

fugacity z = eP¥.
Particle number can be written in a similar manner:

Cav(anm) [~ 1
N=" /0 Py <eﬁ(€?‘)+1>

2V 4 2 z 2V
A3 \F dx (exz—{—z> = ﬁf_%/z(z)

with another new function

fe) = o= [T (G ) = L

As a function of z, both functions increase monotonously from 0 with a decreasing
slope.
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One can easily check that the two formula are consistent:
1 1
p p

One can also calculate the variance as 0%, = (1/B)dN/du. For low temperature, we
would get the same results as above.

2V 2V
N=_-0,InZc = - (Bz)0:InZg = F(Zaz)fS/z(Z) = ﬁfs/z(z)

Fermi pressure

We consider the definition of pressure:

oF 0€F
p__aleN__%s 1%

n%,ms

where in the last step we have neglected any temperature-dependent change in the
occupation level (second order effect, a more rigorous treatment would again start from

2
the grandcanoncial ensemble). Since €; = % and k; «« 1, we have
V3
1 ae%,ms 2 GEImS
%17 v T 3 v
L ,_2F 2k NkTksT
P=3v 7~ 3y 6 V e

—_————
—0 for T—0 like for the ideal gas

Interestingly, this contribution to the pressure is always positive, showing that the
Fermi gas is effectively like a gas with repulsive interactions. There is also a temperature-
independent term:

€
% = /0 "de D(e)e = gep

T—0 2N (37T2)
= p — gvep - 5 mv%

The ‘Fermi pressure” in a Fermi fluid at very low temperature accounts for the incom-
pressibility of matter and essentially results from the Pauli principle. For example, it
prevents that the earth collapses under gravitation. This is also true for white dwarfs
(electrons) or neutron stars, but not for the sun. In the latter case classical ideal gas
pressure at T = 5- 107 K (temperature in the center of the sun) balances gravitational
attraction.
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5.4 The ideal Bose fluid

We now turn to Bose fluids with
n2k?
2m

and conserved particle number N.

Example:

A fluid of *He, which in contrast to *He is a boson. Both types of helium have the
same weak van der Waals interaction and the same chemistry, but one is a bosonic,
the other a fermionic fluid. We demonstrate now that the bosonic system undergoes a
‘Bose-Einstein condensation” at a critical temperature Te.

€= % has two main consequences for Bose fluids:
©, D(e) o €2 : like for Fermi fluids

@ € >0 = pu <0 :otherwise the mode with € = u would have an infinite
occupation number

u = Ois allowed as the contribution to np at € = y vanishes in a continuum framework:

1 u=0 1 p—0 2m 2 1
ng = — — — = dingxp -dp - xdp — 0
ePle—u) 1 eﬁzfn 1 Bp2 p p-dp p? p

We consider the particle number N for spin-0 bosons (degeneracy g = 1):

Vo1
N_m/m%wML4_@n < )/‘“

For fixed y, increasing T shifts np to higher values. In order to keep N constant, 4 must
decrease (as for the Fermi fluid).
For T — oo, y — —oo we recover the classical limit. Compare with the ideal gas result:

N\»—l

u=kpTInpA® = kBTln:: with py = kj—g ~ GPa, atmospheric pressure 0.1 MPa — u <0
0
We now consider the integral for N:

/d K ieﬁul/dﬁe—ﬁéﬁl
h3 Ble—u) 1 h3 =

—y (ele m)l

© Pl q vV &7

— V /dxe ﬁZm _ — —_
z; G S z;l%

1 \,—/

a3 :g%(z)
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Figure 5.10: The bosonic occupation number np as a function of € for different temper-
atures (blue and red curves) next to the density of states D (green).

14
= |N= ﬁg%(z)

Here we used the substitution x> = p?l, identified the fugacity z and the thermal wave-
length A
h

z=efl, A= —
(2rtmkgT)?2

and the generalized Riemann Zeta function

1

‘ N

a@=Y
=1

<

[
2 23

(z)=z4+—4=+—+...

d 2v2  3V3

[STe8)

For high temperatures:

/\—)O,g%(z) —0,z—= 0,y — —o0

14
= N = Ve ePt  classical result (with corrected counting)

Upon lowering temperature, z approaches 1, where
3
83 (1)=¢ <2> = 2.612

with the Riemann Zeta function {(v) = g,(1) = Y52, +.
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Figure 5.11: The generalized Riemann Zeta function g 3 plotted against fugacity z.

The maximal value y = 0 is reached when

3 N
3,_7(2) = =
Ap—§(2> 2.612 where p v
surprisingly, this happens at a finite temperature T;:
2 2
T, = 27”37{ ®"| Einstein 1924
(€)™

T. is the critical temperature for the ‘phase transition’. At this point the system changes
its state characteristics.

T. T

Figure 5.12: The chemical potential y as a function of temperature. Below T = T, u
equals zero.
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In the case of *He we estimate

1%4 ,
vzﬁz46A3,m:4u = T.,=3.13K

Experimentally one finds T, = 2.17 K for the so-called A-transition to superfluidity. The
difference comes from direct interactions which we neglected here (ideal gas of point
particles).

Below T, the chemical potential p must be identical zero and our procedure to treat
momenta and energies in a continuum approach fails. We therefore revert to a finite
system size and a discretized framework. However, we only treat the ground state as
discrete and all excited states we treat as before as continuum.

Figure 5.13: The occupation number np as a function of €. In the continuum description
the ground state does not contribute. Therefore we introduce it here as an
additional degree of freedom (black box at € = 0).

At T below T, some particles condense into the ground state for which we introduce
an extra particle number:

Np: number of atoms in the ground state, N.: number of atoms in the excited state
V_[(3\ AV _/3 T\?
= Ne=gie(3) =3 (3) =N (5) rrre
——

N T\
N=Ny+N, = 0:1—<T>
Cc

This result is plotted in Figure
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T T,

Figure 5.14: The number of atoms in ground (Np) and excited state (N,) as a function of
temperature. Above T = T, no atoms at all are in the condensed state.

At T = 0, all N particles have condensed into the ground state. For 0 < T < T, a finite
fraction is condensed. For T > T, all particles are excited.

Next we calculate the energy of the ideal Bose fluid:

E= N +Z ieﬁ”l/d* p—ze’ﬁ%l
o \.0../0 hs3 =1 P 2m
=0 since €p=0 - —_—

PZ
—}arfapethl

oQ
[N}
—~
N
~—

oQ
N1}
—~
N
~—

This result (Figure 5.16)is valid for all temperatures.
Next we calculate the specific heat for T < T.:

= §u=0z=1,AxT? ExT>

CdE 3, d_(T\:¢(3)
= cV—dT—szNdTT<TC> éé)
15 T\?¢ (8
= cV:4k3N(TC> ggg; T <T.

119



For T > T. we get

dE 15,V 3 v dz

CU:ﬁ kB/\3g5< )+ kBTA3g5( )dT

The chemical potential y is determined by

N: )\3g%(z)
3V , .\ dz
= 0= 5T)\3g%(2)+/\3g3(2)d7’r
dz 38%(Z>
i _—
aT 2Tg(z)
2
15 835(2) o &)
= "kzgN-2 — ZkgN-—- T>T,
R N C R A
5(2) 5(2)
= |y = EkBZ\]gz — ngNgz T > T,
47 g3(z) 47 51(2)

Here we used

in the last step.

High temperature limit: z — 0, g,(z) = z

15 9 3

= cy = <4 — ) kgN = kaN classical limit

T="T.: z—>1,g%(1):oo

15, 06

= —kgN

)

The specific heat has a unique cup at T = T, (Figure 5.15). A similar behaviour has

been experimentally observed for *He. The energy E and its first derivative cy are
continuous; only the second derivative has a jump.

=1925kgN
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Cy

3/2

T, T
Figure 5.15: The specific heat cy as a function of temperature has a unique cup at T =
Te.
classical limit
S

3/2F

T. T

Figure 5.16: The energy E of the ideal Bose fluid as a function of temperature. For low
temperatures (quantum regime), E « T3 while E « T for high temperatures
(classical limit).

Ultracold atoms

Bosonic atoms like 8 Rb or 2 Na can be captured in magnetic traps because they have
unpaired electrons that interact with magnetic fields. To first order, this is a harmonic
oscillator with frequency w.

3
Enynyn, = hw ( ny +mny +n; + 5
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For u = p. = €0 = %hw, Ny atoms condensed into a BEC:

N =Ny + Z Z Z B nx+ny+nz)_1

1y=0ny,=0n,=0

Here the contribution epop — ¢t = 0 vanishes from the exponential. Converting the three
sums into integrals, using the geometrical sum and performing the integrals gives

ksT)’

N:No+€(3)(hw> T<T,

The critical temperature follows from Ny — 0:

n=% ()

For iw ~ 1078 kgK and N = 4 - 10* this gives
T.~3-107K

In 1995 such a Bose-Einstein condensate was achieved for the first time (Nobel Prize
2001 for Ketterle, Cornell and Wieman). Usually they are demonstrated by the expan-
sion following shutoff of an atomic trap. In 2010 a BEC was achieved for photons (Weitz
group, Bonn).

5.5 Classical limit

As we have seen above, both for Fermi and Bose fluids the classical limit emerges as
u — —oo. Then the two grandcanonical distribution functions become the same classi-
cal Maxwell-Boltzmann distribution:

1

- Bu ,—Pe
eBle—u) 41 e

ng/g =
In this limit, all occupied states are in the tail of the distributions, which is the same for

both. The normalization condition now becomes, using € = p2/ 2m, which is valid for
both cases and therefore give the same density of states:

:g( 2m 3/2e/3“/dee 2p=Pe — g%eﬁﬂ

where degeneracy ¢ = 2 for electrons and ¢ = 1 for spin-0 particles. For the average
energy we get
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which is simply the caloric equation of state of the classical ideal gas. The boundary
to the quantum regime occurs at fugacity ePt = z ~ 1, which from the first equation
corresponds to v & A3. When the density is sufficiently high or the temperature is suf-
ficiently low that the specific volume approaches the volume defined by the thermal
wavelength, then quantum effects will dominate. Note that the classical limit corre-
sponds to the calculation with corrected counting. Without this factor N!, we would
not have achieved agreement with the full quantum calculations (and also not with the
thermodynamic result).
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6 Ising model

6.1 Definition

The Ising model is the most important model in statistical physics, both historically and
conceptually. It is one of the few analytically solvable models with interactions and a
phase transition. In 1920 it was invented by Wilhelm Lenz as an exercise in ferromag-
netism and given to his PhD student Ernst Ising, who solved the one-dimensional case
(publication Z. Phys. 31, 253-258, 1925), which has a phase transition only at T = 0
(some textbooks therefore state that it has no phase transition at all, which is true as
a statement on finite temperature). In 1933 Rudolf Peierls used scaling arguments to
show that the 2d version must have a phase transition at finite temperature. In 1944
Lars Onsager solved the two-dimensional Ising model in vanishing magnetic field by
mapping it onto a fermionic problem using a transfer matrix method (publication Phys.
Rev. 65, 117, 1944). Generations of theoretical physicists worked on the Ising model
and related models (including the Heisenberg, Potts, n-vector and XY-models), lead-
ing to the developments of concepts such as spontaneous magnetization, symmetry
breaking and universality, and methods such as perturbation theory, transfer matrix,
renormalization group (RG) theory and Monte Carlo computer simulations. The two-
dimensional Ising model with magnetic field and the three-dimensional Ising model
are still not solved today and this is one of the greatest challenges in theoretical physics
(like solving the Navier-Stokes equation). However, it has been extensively studied
with numerical methods, so that we can say that in principle, we know everything
about it. Overall the Ising model is for statistical physics what the harmonic oscillator
is for mechanics, the hydrogen atom for quantum physics and the fruit fly for biology:
the most important reference system both in terms of concepts and methods.

Figure 6.1: Ising lattice examples in two dimensions: cubic (# neighbours z = 4, left),
triangular (z = 6, center) and hexagonal (honeycomb) (z = 3, right).

The Ising model is defined on a lattice of given connectivity and dimension (e.g. 1d
Ising chain, 2d square lattice Ising model, Ising model on a Cayley tree, Ising model on
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a small network, etc), thus in principle, there are infinitely many versions of the Ising
models. Figure shows some examples in two dimensions. Usually however one
studies it on a simple cubic lattice.

The Ising model is an example for a lattice spin model. In each lattice site i, we consider a
spin S; with two possible states: S; = £1 (corresponding to |1) and ||)). Nearest neigh-
bours interact with an energy scale J. In addition there might be an external magnetic
field B giving a preference for one direction. Note that although we talk about spins
and the cartoon show vectors, we really have only a scalar degree of freedom, which is
binary; this makes it the simplest model possible, like the flip of a coin in probability
theory.

The Hamiltonian of the Ising model reads

H=-]) SiSi—Bu)_S;
{if) i

Here (ij) indicates summation over nearest neighbours and y is the magnetic moment
of a spin. In non-dimensional units we write

BH = -KY S;S;—HY.S
(i) i

where now both the coupling constant K = B] and the external field H = BBy depend
on temperature. The H used here should not be confused with the H of the magnetic
tield in the macroscopic Maxwell equations, which sometimes is used in the same sense
as we use B here. Many books also use h for the H we use here.

For | > 0 the symmetric configurations 11 and || are favorable and 1| and |1 are
unfavorable. Thus the system wants to avoid grain boundaries between regions with
up and down spins, at least at low temperature. At high temperature, grain boundaries
will proliferate because the correspond to a lot of entropy.

For B = 0 the system is invariant under S; = —S;. If B > 0, 1-spins are favored. Using
the canonical formalism the partition sum for N spins reads:

ZN(K,H)ZSZ ) D D W

1=+1S=+1  Sy=+1 {s;}

2N states

In practice one often uses periodic boundary conditions for lattice models to avoid
boundary effects, or finite size scaling to get rid of boundary effects by making the
system larger and larger.

Due to its history, usually the Ising model is treated in magnetic language. However,
today it is used in many other ways. Here are a few examples of important applications
of the Ising model:

@ ferromagnetism:
The Ising model is the scalar version of the three-dimensional ‘Heisenberg model’
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for ferromagnetic systems:

@ binary alloys and lattice gases:
Each lattice site is occupied either by an atom A or B. Nearest neighbour interac-
tions are €44, €pp and € 4p. We identify A with S; = 1 and B with S; = —1. The
Hamiltonian then is:
M=) JiSiS
(i)

with Jij = eap — % (eaa +e€pg). Thus the Ising model describes order-disorder
transitions in regard to composition.

® spin glasses:
now each bond is assigned an individual coupling constant J;; and they are drawn
from a random distribution. E.g. one can mix ferromagnetic and anti-ferromagnetic
couplings. This is an example for a structurally disordered system, on top of
which we can have a thermal order-disorder transition.

@ conformations in biomolecules:

a famous example is the helix-coil transition from biophysics. S; = 1 a hydrogen
bond in a DNA-molecules is closed; S; = —1 the bond is open. The phase tran-
sition is between a straight DNA-molecule (helix) and a coiled DNA-molecule.
Other examples are the oxygen-binding sites in hemoglobin, chemotactic recep-
tors in the receptor fields of bacteria, or the molecules building the bacterial flag-
ellum, which undergos a conformational switch if the flagellum is rotated in the
other direction (switch from run to tumble phases).

® neural networks representing the brain:
S; = lasynapseis firing, S; = —1 itis resting. The Hopfield model for neural net-
works is a dynamic version of the Ising model (the coupling constants are learned,
with or without supervision) and Boltzmann machines recognise handwriting by
using the Ising model. Neural networks have recently become very important
again due to the huge success of deep learning (layered neural networks with an
intermediate number of layers) and artificial intelligence.

® spread of opinions or diseases:
Spread of opinions, rumours or diseases in a society; these kinds of models are
used in socioeconomic physics and epidemiology. If nearest neighbour coupling
is sufficiently strong, the system gets ‘infected’. A lot of the spatial model efforts
in the context of COVID-19 are based on the Ising model.

In order to decide if the microscopic rules lead to a macroscopic change, one has to
introduce an order parameter. For a magnetic model like the Ising model, the natural
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choice is the magnetisation:
N
M(K,H) = <y Y. si>
i=1

which is a measure for the averaged spin orientation. B > 0 will lead to M > 0. If for
B = 0we find M # 0, then the system has spontaneously polarized itself (an example of
spontaneous symmetry breaking). In the following we will discuss two important results:

@ The one-dimensional Ising model shows a phase transition only at T = 0 (Fig-

ure[6.2).

@ The two-dimensional Ising model shows a phase transition at finite temperature

T, (Figure[6.3).

T

Figure 6.2: 1D Ising model: Magnetisation M as a function of temperature T. For T # 0
M vanishes and shows a jumping behaviour at T = 0.

T T

Figure 6.3: 2D Ising model: Magnetisation M as a function of temperature T. For values
T < T. M has a finite value.

If M changes in a smooth way at the transition (no jumps), we talk about a phase transi-
tion of second order or continuous phase transition. The 2d Ising model is the paradig-
matic case for such a transition at the critical temperature T¢. In the region around the
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critical point, the system has very unusual properties (large fluctuations, universality,
scale invariance, critical slowing down). The Ising model below the critical tempera-
ture has a phase transition of first order (with jump in M). The terms first and second
order phase transitions go back to Paul Ehrenfest, who suggested a classification of
phase transitions in terms of jumps in the derivatives of the chemical potentials; this
idea has been discarded, but the two terms first and second order phase transitions
have persisted.

6.2 The 1d Ising model

In one dimension the Ising model is an ‘Ising chain’ of spins (Figure [6.4). With periodic
boundary conditions this chain becomes a ring.

| 1]
P
123 .. N

Figure 6.4: 1d Ising model: Ising chain of N spins.

Without periodic boundary conditions and considering the external field to vanish,
hence H = 0, Zx becomes:

_ K(S1S2+S5253+...+Sn-1S
ZN_Z 2 26(12 253 N-15N)
Si—+1Sy=+1  Sy—+1
— E Z eK(8152+.. 45Ny 25N 1) Z eKSN-15N
Sy==*1

S;=£1  Sy_i;=+1
—4

————
=eK+4+e=K=2cosh K
= Zn-12 coshK

=(2 coshK)N*1 Z4 Niil (2 coshK)N = 7N

=2

Hence the free energy expression becomes, remembering K = fJ:

_ T
F = —kgTNIn <2c0sh kBT>

Because this is an analytical function for finite temperature, one already expects that no
phase transition takes place at finite T. We show this by considering spin correlations:
For each spin pair we introduce a different coupling constant K; :

N-1 N-1
BH =K ) SiSiy1 — — ) KiSiSina
' =

i=1 i
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1
IN {55
1
= - (5iSi+j) e~ Lic1 KiSiSin
ZN
{si}
= (Si Sit1)(Siv1 Sit2) - (Sitj-1 Sitj)
=5i S5i41Si+1 Siv2 - - - Siyj-1Siyj
\‘_/1_} \\_,1./ Hﬁ’l—/

Jk

= <Si5i+j> = S Sl+]

= dk; Ik

i+1 °°° i+j—1

Zy then can be calculated iteratively as above:

N-1
Zy = 2N T coshK;
i=1

coshKj ... sinhK; ... sinh Kj;; 1 ... coshKy_1

j
= tanh K
coshKj ... coshK; ... coshKjy 1 ... coshKy_1 H ani Ritk-1

SCUE

Vi: Ki=K = (S,S) = (tanhK)/

The resulting spin correlations are shown in Figure Despite the short-ranged inter-
action - we only consider nearest neighbour interactions - a longer ranged correlation
emerge from the statistical average, which decays exponentially with distance:

<Si5i+j> = (tanhK)j — (elntanhK>] e]lntanhK e —j/e

where we have defined the correlation length

& = —(In(tanh(K)))~?

Because tanh(K) < 1, the correlation length is positive and finite, except at K = oo
(T = 0), where it diverges (in an exponential fashion with T in 1d, as a power law in
2d). This is one of the most important signatures of a critical point: the system becomes
correlated over its whole size.

Because the system is homogeneous:

Vi: (Si) =(S)
—~ M=uN(S)
(5iSiy) 757 (51) (Sisy) = (5)°

N> T=0

M? = u®N? lim (S;S;, ;) =
HN Him (i8] { 0 T>0

129



x—+oo

Figure 6.5: tanh(x) as a function of x. For x > 0 tanh(x) > 0; tanh(x) ~ = =£1.

19 i

(tanh(z))

<Si7 SL+]>

Figure 6.6: (S, Si4;) = (tanh(x))’ as a function of j. As can be seen in Figure 6.5,
tanh(x) > 0 for x > 0. For the plot tanh(x) was taken to be 0.5. For T = 0,
this curve would not decay.

At finite T no spontaneous magnetisation occurs. At T = 0 we have a phase transition
(compare Figure[6.2). For T — 0 we have first made this limit and then the thermody-
namic limit N — oco.

In summary, the exact solution of the Ising chain at cero magnetic field shows that it
has a critical phase transition at T = 0. At finite T, spontaneous magnetization does
not occur and correlations decay exponentially with distance. In the 2d Ising model,
the critical point will be at a finite temperature.
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6.3 Transfer matrix

Next we investigate the case H # 0 using the transfer matrix method introduced by
Onsager for the 2d Ising model:

BH =—K) S;Si—H)_S;
(if) i

We now use periodic boundary conditions: Syi1 = S; (compare Figure [.7). In the
thermodynamic limit N — oo, boundaries become irrelevant.

Figure 6.7: With periodic boundary conditions the one-dimensional Ising chain be-
comes a ring.

We define a ‘transfer function” :

Tiit1 = eK5i5i+1+%H(5i+5i+1)
—BH
= e pH — TLQ T2,3 TN,l
Each transfer function has four possible values which define a symmetric ‘transfer ma-

trix’:
eK+H oK
T= oK K-H

In quantum mechanical notation:

si=+1= (o) Isi=-1=(9)

= Tiip1= (S| T|Sis1)
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= ZN = Z e_ﬁH
{8}
=Y (51| T|S2) (S2| T|S3) ... (Sn|T|S1)
{S:}
= ) (Si[TV|Sy)
S1=+1

= (1) + (1) = (1)

=AY+ Ay

We note that solving the Ising model amounts to an eigenvalue problem with A; being
the eigenvalues of T. This implies:

(N W55 ) o
<8K+H _ A) (eK—H _ /\) _ 2K _

A2 —2eKcoshHA 4+ 2K — e 2K =

= Ap=efcoshH + \/e2K cosh? H — 2sinh 2K

=K [COSh H+ \/ cosh? H — 2¢—2K ginh 2K

Thus we have arrived at an exact solution for the one dimension Ising model with
external field:

Zn =AY+ AY

In the thermodynamic limit, only the larger eigenvalue A4 is relevant:

)\2 N N—oo
Zn = AV 1+<)\1> =AY

A=l + \/62K — (2K —e2K) = K + e K =2cosh K

For H = 0 we get:

= Zy=(2coshK)N forN>1

like before from the solution by direct summation (but different boundary conditions).
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With the full solution we now can calculate any thermodynamic quantity of interest.
The thermal equation of state describes the magnetisation:

M(T,B) = % Yy (sti) e P
{8} i
=wuoglnZy = Pj\—NaH)Ll
_ uN sinlr11H
 \/cosh? H — 2¢~2K sinh 2K

MN
_T2>T1
s —h
-uN N
0 B

Figure 6.8: The magnetisation M as a function of magnetic field B plotted for different
temperatures.

We note that M(T # 0, B = 0) = 0 and no spontaneous magnetisation at finite T occurs.
For strong fields, hence
M(T #0,B — +o0) — £uN

magnetisation saturates. For T — 0 M turns into a step function (compare Figure[6.8).
Next we calculate the entropy for B = 0:

F = —NkpTIn (2 coshK)

oF .
= S= 57 = Nkg [In (2coshK) — Ktanh K]  (Figure[6.9)

Considering the low and high temperature limits:

T—o0, K—0

s "7 % NkpIn2
s T8 Nkg(K—K) =0
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NkgIn(2)

Figure 6.9: The entropy S as a function of temperature T. For high temperatures S ap-

proaches So = Nkp In2 asymptotically.

where we recovered the third law of thermodynamics.

From this we calculate the heat capacity in absence of a field:

Figure 6.10: The heat capacity cp as a function of temperature shows a similar shape as

aS K?

cg=T — = kg———=— (Figurel6.10
& T |5 P cosh? K (Fig

the one for the two state model (compare Fig. 2?).
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Finally we consider the isothermal susceptibility (needs H):

1oM| _ Buy

AM=NB|, N

B inz = g
_NHnN_ﬁll/l I‘Irl1

In the special case B = 0, xT becomes:

r = By
T (1 —tanh K)

o 1
XT T T law of Curie

In Figure Xt is plotted as a function of temperature.

divergence stronger than o< 1/T

Xt

Figure 6.11: The susceptibility xT as a function of temperature. xr diverges for T — 0,
hence for T approaching the phase transition. In general this is a typical
signature of a phase transition. For large temperatures: xt o« 1/T (law of
Curie).

We also note an interesting relation between susceptibility (a response function like
viscosity) and spin correlations (describing thermally activated ‘fluctuations’):

_ 1 oM| _ Bu 1 | KESS+HES:
XT=N 98 T_NaH{ZZ (”251>€ ’
{si} i
Bu* 1 (i% ) —pH
=P 5:5; | e
NzZ@g\E5"

ﬁ]/lz N N
=5 [ Y. ) (SiS;) | =xr| ‘fluctuation dissipation theorem’ for the Ising model
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For the one-dimensional Ising model and the limit N — oo the result becomes:

XT = L;JZN i (tanhK)j _ ﬁ]}#
N = 1 —tanhK

which is the same as above.

As —1 < (S;S;) <1 this implies x7 can only diverge when
DN (thermodynamical limit)

@ The range of the correlations must diverge, such that infinitively many terms give
a non-finite contribution. Therefore phase transitions are related to a divergence
of the “correlation length’. This implies that microscopic details become irrelevant
because the system becomes correlated on a macroscopic scale (‘critical fluctua-
tions’).

6.4 Renormalization of the Ising chain

Above we have seen that the correlation length ¢ diverges at the critical point at T = 0.
We turn this observation around and ask if we can identify a critical point by the fact
that there the correlation length has to diverge. This feature is also known as scale in-
variance: the system should look the same irrespective of on which scale we investigate
it. We therefore perform the following procedure: we coarse-grain the Ising model
step-by-step by decimating half of its spins in each step and adjusting the model and
its parameters (renormalization), as shown in Figure[6.12] We can do this infinitely many
times in the thermodynamic limits, because the number of spins stays infinite. We call
the set of all these scale transformations the renormalization group (RG), because it has
the group property of associativity (because strictly speaking there is no inverse ele-
ment, RG is actually only a semi-group and the name is a misnomer). Obviously, in
each RG-step the correlation length should decrease because we move spins closer to
each other, except at the critical point, where correlations should persist. Thus the crit-
ical point should be a fixed point under the RG-transformation. In detail, it should
be unstable or repulsive, because for all other cases, correlation should decay. These
ideas of real space renormalization goes back to Leo Kadanoff and later was refined
by Ken Wilson, who won the Nobel Prize for RG. Alternatively one can also perform
renormalization in momentum space by integrating out a momentum shell of small
wavelength modes and then follow the same arguments. This however first requires
a Fourier transform (either on the lattice or in a continuum version, like the 4)4 field
theory), so for time reasons we do not discuss this version of RG here.

The RG of the Ising chain can be performed analytically and gives very good results.
We do this by separating spins with even and odd indices and integrating out the odd

2L 5 % (Z Lo eﬁH)

h=21S,=+1  Sy==+1 \S;=%1S;==1
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Figure 6.12: Kadanoff real space renormalization: b times b spins (here b = 3) are

grouped into a block and the new block is assigned a new spin, e.g. by
the majority rule. This coarse-graining procedure should decrease correla-
tion except at the critical point.

where we assume N to be even, although this does not matter in the thermodynamic
limit. We put the Ising chain onto a ring, so that S; has nearest neighbors Sy and S,
and integrate out this spin:

Z eKS1(Sn+52)+HS: 2cosh(K(Sy + S2) + H)
Si==+1

If we now consider the remaining spins, we see that this term can have four different
outcomes, for the combination (Sy, S2) = (+1,+1), (—1,+1)/(+1, —1) (the two mixed
cases give the same result) and (—1,—1). We now guess a new Hamiltonian which
should be as close as possible to the old one, but also has to accomodate these three
possible outcomes. The following three-parameter model works:

2cosh(K(Sy + S2) 4 H) = oK Sv82+ 3 (Sw+52)

Here K’ is a renormalized coupling constant and JH is a new contribution to the mag-
netic field (the factor of 2 arises because the same contribution will also arise from the
other side, that is when summing over Sy_1 and S3, until now we only discuss S1).
Considering the three possible outcomes we get three equations:

2 cosh(2K + H) = oK +oH
2 cosh(H) = foe ¥
2 cosh(—2K + H) = goeK oM
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We rearrange each equation to

—_K
e’ = 2 cosh(2K + H) e?
0
Zo = 2 cosh(H)eX
_SH e‘K/
e :2cosh(2K—H)C—
0

By taking product and quotient of the first and third equations, one can eliminate 6 H
and K’, respectively, and solve for the other (replacing ¢y by the second equation). We
also replace (o by a new definition through (Zp)!/? = ef. We thus find:

, 1. cosh(2K+ H) cosh(2K — H)
K' = —In 5
4 cosh”(H)
1. cosh(2K + H)

/— —_— — —_—nmm
H' = H+0H = H+ g In o

1 1
g=5Info=g In(16 cosh(2K + H) cosh(2K — H) cosh?(H))

If we perform the same procedure with every odd spin, then we finally have

! . . ! . )
Zn= Y Y .Y eNstKLiSuSuatH LSy
Sy=+1S4=+1  Sy==+1

By our definition of g, it now comes with a prefactor N and therefore has the meaning
of an absolute free energy gain per spin per transformation. The second part on the
RHS is simply the partition sum for a system in which have of the spins have been
eliminated, but with renormalized parameters. We thus have

Zn(K,H) = eNeKH) 7z, (K, H')

Obviously this procedure can now be iterated infinitely many times, defining a RG-
flow of the model parameters, e.g. K, K”, etc (or Ko = K, K; = K/, K; = K”, etc) for the
coupling constant. For H = 0, we see that H' = 0, that is a cero field stays cero. The
coupling constant then flows as

K = %ln cosh(2K)

In Figure [6.13(a) we plot the function K'(K). Because this function is always smaller
than K (it starts ~ K? and asymptotically approaches K), the flow (shown by the stair
function) goes towards K = 0, which is a stable fixed point under the RG-transformation.
K = 0 corresponds to T = co and therefore corresponds to an interaction-free system.
Importantly, there is another fixed point, namely at K = co. Because this corresponds to
T = 0, it is the critical point we already know from the exact solution. This fixed point
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is repulsive as expected: in the moment we go away from T = 0, coarse-graining will
decrease correlations until they are gone. Thus the RG correctly predicts the existence
of a critical point at T = 0. In Figure [6.13b) we also show the flow with non-cero field.
We see that the RG-flow increases H, which makes sense, because at the same time
K decreases, showing again that it goes away from the strongly interacting (critical)
system at K = oo to a non-interacting situation at K = 0.

A A

@, 6

////

Figure 6.13: (a) Iteration of the RG-transformation at H = 0 decreases K towards the
stable (attractive) K = 0 (T = o0) fixed point without interactions. The
other fixed point at K = oo (T = 0) is the unstable (repulsive) critical point.
(b) For finite field, H increases under RG, again flowing away from the
critical point.

The RG-procedure also gives as a neat way to calculate the free energy. We non-
dimensionalise and normalize for a single spin:

f= ff lbnzN_g(K,H) %anN/zKH 2 ¢(K;, H;)

where the last expression is obtained by iteration. For H = 0, we have
1 1
¢ = =In2+ —Incosh(2K)
2 4
where the second term can be neglected once K gets close to 0. The remainder of the
series is like a geometrical series and converges quickly. The overall result can be com-

pared with the exact value f = In(2 cosh(K)) obtained above from the analytical solu-
tion of the Ising chain.
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Figure 6.14: (a) The 2d square lattice can be separated into two sublattice. We integrate
out Sgp which has nearest neighbors only in the other sublattice. (b) RG-flow
of the coupling constant K. This time we have a (unstable, repulsive) fixed
point at finite K. Smaller and larger K-values flow away from this fixed
point. Thus RG predicts a critical point at finite temperature, in agreement
with the exact solution by Onsager.

6.5 Renormalization of the 2d Ising model

For the 2d Ising model, many different RG-schemes have been invented. Here we de-
scribe the most simplest one. The 2d square lattice is bipartite and we divide it into two
sublattices, each with a new lattice constant that is b = /2 times larger than the old
one, as shown in Figure a). Spin Sp has four nearest neighbors S1, Sp, S3 and Sj.
Motivated by our procedure in 1d, where we were able to keep the same form of the
Hamiltonian, we would like to write

ek50(51+52+53+54) — 2COSh(K(Sl +Sy+ S5+ 54)) — e(K//Z)(5152+5253+5354+S451)
So==1

where the factor of 2 takes into account that the same contribution will come from the
spin on the other side of these bonds. Unfortunately, this is impossible, because now
there are too many possibilities for the outcomes. The only way to proceed is to consider
new types of interactions, that is to make the space of the Hamiltonian larger. We now
write

2cosh(K(S1+S2+ S35+ S4)) = goe(K’/Z)(Slsz+szsa+5354+s4sl)el<1(slss+szs4)eL(slszsas4)
where the K;j-interaction is a next nearest neighbor interaction and the L-interaction is

a four-spin interaction. Like in the 1d case, we consider all possible outcomes. There
are four cases one has to distinguish (e.g. (+,+,++), (+++-), (++,--) and (+,-,+,-)),
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justifying the four model parameters and leading to four equations:

2 cosh(4K) = gge?X e?1el
2 cosh(2K) = et
2= @oe’ZKleL

_ !
2 = oo 2K 2Kl

(6.1)
By combining these equations we find the flow equations:
, 1
K = 1 In cosh(4K)
Ky = 1ln cosh(4K)
8
L= éln cosh(4K) — %ln cosh(2K)
o = 2(cosh(2K))1/2(cosh(4K))'/® (6.2)

The problem is that we cannot iterate these equations because our starting point was
more simple. We therefore neglect the four-spin interaction and project the next nearest
neighbor interactions on the nearest neighbor interactions by assuming the case that all

spins are parallel:
K’ Z SZ'S]' + Kj Z Sl'Sj =K ZSiSj
nn nnn nn
Note that this step is not rigorous, but it reflects the fact that there will be an extra term
that will increase the value for K’, even if the projection would be more accurate. Now
we can iterate and get a full RG. Considering all spins to be parallel gives us

K=K +K = glncosh(élK)

As shown in Figure [6.14(b), this equation does give a non-trivial fixed point at finite
K. = 0.50689. Thus RG predicts a phase transition for the 2d Ising model (exact value
K. = 0.440687, see below). It also gives a good prediction for the critical exponent
v = 1.07 (exact value v = 1).

6.6 The Peierls argument

Starting around 1933, Peierls published scaling arguments why a phase transition should
occur in 2d as opposed to 1d. Here we report a few of these kinds of arguments to
demonstrate their spirit. Note that their validity also comes from the fact that thanks to
Onsager, we have an exact solution and thus can check back if they describe the core of
the problem or not.
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Simple argument for 1d

We consider an Ising chain with all spins up and then select a few neighboring spins
and flip the whole island over. This creates two domain walls (also called grain boundaries
or defects) in the chain. The change in energy is

AE =2.2]

because there are two defects, each with an energy penalty 2J. The change in entropy
corresponds to the number of ways to choose the positions of the two defects:

N(N

AS :kBlnz_l) ~ 2ksIn N

where we assume the number of lattice sites N > 1 in the thermodynamic limit. Thus
the change in free energy reads

AF = 4] — 2kgTInN < 0

for any temperature T in the thermodynamic limit. This means that it is always favor-
able to create grain boundaries due to entropic reasons and a phase transition to order
cannot occur at finite temperature.

More complex argument for 1d

We now look at an arbitrary number of domain walls, not only at one island with two
of them. We introduce the number of such domain walls M and write the free energy
in the domain wall picture:

N
F=2]M—ksTIn <M>

In the thermodynamic limit and with the Stirling formula we get

% =2Jx+kgT(xInx+ (1 —x)In(1 — x))

where x = M/ N is the domain wall density. If we minimize F for x we get

1
Xeq = 2]/ksT 11

thus at finite T there is always a finite domain wall density and correlations decay over a
finite distance. Moreover the system will not feel the effect of the boundary conditions.
Only at T = 0 we have x,; = 0, because then entropy does not matter.
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Simple argument for 2d

We now want to make the simple argument for 2d rather than for 1d. We immediately
encounter the problem that now there are two processes we have to account for: where
to place the domain walls, and which shape to assign to them. With some intuition, we
anticipate that shape fluctuations are now more important than where the islands are
located. Thus we consider one island of down spins in a sea of up spins. The change in
energy is

AE=1L-2]

where L is the contour length of the domain. A crude estimate for the number of pos-
sible shapes is 3!, assuming a random walk on a 2d cubic lattice and neglecting inter-
sections and the fact that it has to close onto itself (at each lattice site, there are three
possibilities to proceed). Thus for entropy we have

AS = kgIn3t .

Together we get
AF = L(2] —kgT1n3)

and thus AF < O only for T > T, = 2]J/(In3kg) even in the thermodynamic limit
L — co. Thus this simple argument predicts that in 2d a phase transition can take place
at finite T, and the reason is a feature that is only present in two and higher dimensions,
namely shape fluctuations of the domain walls.

More complex argument for 2d

Another way to identify a phase transition is to investigate the effects of boundaries.
We consider a quadratic field of spins and fix all the ones at the boundary to point up.
We then consider the spin in the middle and ask if it keeps the up-preference of the
boundary in the TD-limit (p; > 1/2 ?). One can show that for sufficiently low but
finite T, indeed this happens. This means that correlations do not decay completely
and that spontaneous magnetisation can emerge, indicating a phase transition.

We consider the quantity m = p, — p_ = 2p, — 1, which will be finite if spontaneous
magnetization exists and vanish otherwise. We can write

1 N 1 _ 1 _
m:ZZe ﬁH—EZe ﬁH:ZZe (1 -%)
>, > T,

The first and second terms are sums over all configurations with a positive and nega-
tive central spin, respectively. The basic idea of the newly defined quantity X is that
each configuration with a positive central spin can be turned into one with a negative
central spin by flipping all spins in the surrounding positive domain. Importantly, the
difference in energy is simply 2], where [ is the length of the domain wall surrounding
this domain. Therefore one can write

Y= Ze*ZIﬂl = ig(l)e’zjﬁl
1=4

143



where the sum is now over all configurations which have been obtained by flipping. In
the second step we have rewritten the sum in terms of the length of the boundary. Here
g(1) is the number of domains with length I. We note that the minimum [ is 4 (one spin
flipped) and that one only will have even values (I = 4,6,...), because adding spins
one by one to the domain increases [ by 2.

In order to prove the polarization, we have to show that X can be smaller than 1. We do
this by establishing an upper bound for g(I):

Lo I S BN
g) < ()43 057 =548

The first term is the maximal area corresponding to the contour length /. The second
term is the number of possible paths starting from each point within this area: 4 for
the first step and 3 for each additional step (on a 2d simple cubic lattice). The last term
corrects for the fact that a path can go in two directions and can start at any point along
the contour of a boundary. We now transfer this into an upper bound for X:

= Ll = Ly pypen - W2

=< ,g 24Y T ; n:2(2”)w 12(1 — w?)?
where w = 3¢=28]. We thus obtain & < 1 for w < w, = 0.87. This in turn translates into
a critical temperature
_ Y
a k B 111(3 / wc)
The exact result for the 2d Ising model is T, = 2.269] /kp (see below). Thus the Peierls
argument does not only prove the transition, but even gives a reasonable first estimate
for its value. Note that here we have established only an upper bond for >.. This does
not mean that > will be different from 1 above the critical temperature, we only showed
that it will certainly become smaller than this value at sufficiently low temperature. Our
argument is obviously very crude because we neglect interactions between boundary
loops, which will strongly bring down the number of possible paths.

T. =1.6]/kgp

6.7 The 2d Ising model

Several methods of solution have been reported since Onsager’s 1944 proof based on
the mapping to a quantum mechanical problem using transfer matrices (by graphical
solution summing over graphs, Grassmann algebra etc.). Moreover Onsager’s own
solution has been somehow simplified, but this does not mean that the new proof is
much simplier. The main idea is that one writes

,BH =-K Z Sr,c5r+1,c —K 2 Sr,cSr,c+1
r,c r,c

which means that one differs between interactions in columns ¢ and interactions in
rows r. The first can be treated like Ising chains, and the second give non-trivial cou-
plings in the transfer matrix. Using a Jordan-Wigner transformation from Pauli spins
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Figure 6.15: cp as a function of temperature with a divergence at T = T..

to fermionic creation / destruction operators gives a fermionic problem (this was to be
expected because we deal with spins S; = +1). A second (canonical) transformation
leads to Fourier series, which in the thermodynamic limit lead to integrals. Then the
exact solution for the free energy can be written as:

—_BF 1 1 7 gm

—PE_1L In(2sinh(2K)) + — / / dg d¢ In [2 cosh(2K) coth(2K) + 2 cos g + 2 cos ¢]
N 2 an?2 | = Jo

This expression can be written in many different ways (including one with one integral

only), but there is no way to solve it exactly. However, many important conclusions

follow without the need to have an explicit solution. A phase transition occurs when

sinh2K, =1

= |K. = %111(1 +/2) & 0.4407

= |T. =2]/In(1+V2) ~2.269] /kg

We define the ‘reduced temperature’:

T-T.
T

and ‘critical exponents’ for the divergences (for B = 0) around T:

(—e)™ T<T.
Cp =
e T>T,
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M — (—e)f T<T.
0 T>T,

From the exact solution one finds:

@ . g has a logarithmic divergence (Figure .

= a =&’ = 0 motivated by lim,_9 %(x“" —1)=—Inx

1
@ M = (1—sinh*2K)"® (Figure|6.16
g

= p=32
This result was announced by Onsager in 1948 at a conference, but never pub-
lished by himself.

Figure 6.16: M as a function of temperature.

From the result for the magnetisation (which is the order parameter of the phase transi-
tion) one can construct the phase diagram. Figure (left) shows the phase diagram
in the T-M-plane. Values for the magnetisation in the grey area (two-phase region) can-
not be realized in one system, because a self-polarized system jumps to the upper or
lower values of M. However, such a magnetisation can be realized by two systems, so
the system has to split into two. For example, M = 0 can be realized by two equally
large systems with up and down magnetisation, respectively. Using the lever rule, each
desired value of M can be realized. Figure (right) shows the phase diagram in the
T-B-plane. Now the two-phase region reduce to a line because any small external field
will immediately bias the system to up or down. Only for B = 0 phase coexistence can
occur.
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two-phase region
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Figure 6.17: Left: Phase diagram with excluded ‘two-phase region” where the system
splits into two parts. Right: The two-phase region becomes a line in the
B(T) diagram.

6.8 Perturbation theory

In order to understand the mechanisms underlying this phase transition, we now con-
sider the ‘mean field theory’ for the Ising model. This theory approximates a system of
interacting particles by a system of non-interacting particles. It can be made rigorous
by the ‘Gibbs-Bogoliubov-Feynman inequality” and as such is a ‘perturbation theory’ (simi-
lar to the ‘Hartree-Fock approximation” in quantum mechanics). In general, it is important
to have as many exactly solvable models in Statistical Physics as possible, even if they
might be physically not so realistic because they are built around some mathematical
trick to solve them. Nevertheless they can be very useful as starting points for pertur-
bative analyses.

We start from a model Hamiltonian H for which an exact solution is known:

H(A) = Ho + AH:
@ H(A =0)="Hy reference case
@ H(A=1)=H case of interest
® = H - Ho
= —BF(A) = ane’ﬁEf(A) =In (tr {e’ﬁH(A) })
j

where }; = tr is the sum over all states.

F(0) = F
F(1) = F result of interest

gt {’Hle—ﬁ(ﬂo-*-?\?'ll)}

T ARt {e P}

= (H1) (V)
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a2z tr {e~ PHo+A7) }

J2F tr {%%e_ﬁ(%”‘%])} tr {”Hw‘ﬁ(HO*)‘Hl)} ?
- B tr {e*ﬁ(HoJr/\Hl)}

= —p ((H}) = (H)*) = =B ((Ha — (H2))*) <0

o

Figure 6.18: Sketch visualising the Bogoliubov inequality: F(A) (solid line) < F(0) +
A4E(0) (dashed line).

dF
< i
= FA)<FO)+A g5 .

A=1
=

F <F,=F+ (Hi1),| Bogoliubov inequality

A visualisation of the Bogoliubov inequality is sketched in Figure Note that the
real F is everywhere concave, not only at A = 0, so we can use A = 1 without problems.
In order to optimize the approximation one minimizes the upper bound with respect to
the free model parameters. The modern master of this type of perturbation theory was
Richard Feynman.

6.9 Mean field theory for the Ising model

We consider no external field:

H=—])_SiS
(i)

However, we note that a spontaneous magnetization looks like there was an effective
magnetic field. We therefore choose as our unperturbed reference Hamiltonian

Ho = —BZS,-
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where we set y = 1 for convenience and have introduced an effective magnetic field B.
For H = Ho we know the free energy expression:

Fy = —NkgTln (eﬁB + eﬁB)
N—_——
=2cosh BB

The Bogoliubov inequality then states

F§F0+<7'l—7'[0>0
= —NkpT1In (2cosh(BB)) —J ) (SiSj), +BY_ (Si)g = Fu
(i) i

N——

N(z/2)(5)2 N(S)o

Here z is the number of nearest neighbours and we have to correct with a factor of 2 so
that we count each bond only once (compare Figure[6.1).

ePB — =P8

We now fix B such that the upper bound F, becomes minimal:

1 dF, d (S
0=F75 = (5o —Jz(S) §B>°+<5>0+B dB

= |B =]z (S), = Jztanh BB

Note that a factor of 2 has canceled here. We note that our central result is a self-
consistent relation for the effective field B. We could have obtained this result directly
from a mean field reasoning, but it is more rigorous to derive it from the Bogoliubov
inequality.

We define x = BB and have a look at the intersection of f(x) = tanh(x) and g(x) = £;
(Figure[6.19). We note:

@ krz<1 = only intersection at x = 0

@ Kz>1 = also two interactions at finite x #0

1
= Ki=- = TC:ﬁ
z kB

For the two-dimensional Ising model with cubic arrangement:

1
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Figure 6.19: M(x) = tanh(x) (blue) as a function of x. For Kz < 1 there is only one
intersection with g(x) = £ (red) at x = 0. For Kz > 1 there is also an

intersection with g(x) = £ (green) at finite x.

Compare exact solution: K. = 0.4407. Obviously the mean field theory is just a crude
approach because it predicts a phase transition in any dimension d. It becomes exact
ford — oo.

How does magnetisation behave below T.? Assuming a small magnetisation m = (S)
just below T., we can perform a Taylor expansion:

m = tanh BB ~ BB — % (BB)?

where BB = zKm. Therefore one power of m cancels and we have

PN S VNG Bl DR (- g )
(zK)3 %)3 (%>3

As above, m vanishes at T, = zJ/kp and we can write

-5 (3) (5-) () (5

Taking the positive square root finally gives

— \@(T> <TC—T>1/2 N \@<TC—T>1/Z

T. T. T.

to lowest order in the expansion (note that T = T, — (T, — T)). We see that our approx-
imative calculation yields a critical exponent 8 = 3 (compare exact solution = ).
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6.10 Monte Carlo computer simulations of the Ising model

Exact enumerations are not feasible for large systems. Consider that for a 50 x 50 2d
Ising system we would have already 22°% = 1073 states. Therefore it is better to use ‘im-
portance sampling’. Here only the relevant configurations are sampled. For the canonical
ensemble this means that we want to sample according to the Boltzmann distribution

1
pi = Ze_ﬁE"
We now look for a procedure which effectively generates this distribution.
The standard procedure for this purpose is a ‘Monte Carlo simulations” (the name results
from the use of random numbers, which are also at the heart of gambling at Monte

Carlo). A standard tool is the ‘Metropolis algorithm’. This algorithm generates a series of
configurations ("Markov chain’, that is a memory-less process) such that:

1. Any configuration can be reached in principle.

2. Averaging over all configurations in the Markov chain amount to doing the aver-
age with exact enumeration.

For the Ising model, the simplest procedure is to flip single spin at random. We compare
two such configurations i and j with:

& — efﬁ(Eiij)
P
We define p;_,; to be the ‘transition probability’ for one spin to go from state i to j.

= ZPH]‘ =1
j

We now require that locally we have detailed balance (follows from time reversal invari-
ance):

Pj—i pi
= pi= (Z PH;‘) pi = ij%ipj
j ]

We note that p; is an eigenvector of the transition probability matrix and thus corre-
sponds to a steady state. Thus a rule that obeys detailed balance should bring us to a
steady state distribution {p;}.

The simplest implementation of this is the Metropolis algorithm:

Pimj _ Pi _ ,~B(E—E)

@ Picka spin i by random.

@ Calculate the energy change AE upon flipping the spin.
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® IfAE < 0, accept the spin flip.

@ 1fAE > 0, accept the flip with probability e PAE.

This is the simplest version because on the one hand it implements the condition on
the ratio of the transition probabilities resulting from detailed balance and on the other
hand, it uses the remaining freedom by simply setting the transition probability for one
direction to 1. By going downbhill, the algorithm samples regions of high importance.
By hopping over barriers (compare [6.20), it allows to escape from metastable states.
For optimization challenges like the traveling salesman problem, one often decreases
temperature (simulated annealing) to slowly get towards the ground state (that is the
optimal solution). In the canonical ensemble, of course, temperature has to be kept
constant.

E

Figure 6.20: Sketch visualising the Metropolis algorithm and how it recovers from local
minima.

One can come up with more complicated MC-moves than simply flipping spins. In
MC-simulations of the Ising model, it is very common to flip whole clusters (e.g. the
Swendsen-Wang algorithm) or to numerically implement concepts of RG. With schemes
like these, one can get very good values, e.g. K. = 0.2216544 for the critical coupling
constant of the 3d Ising model (that is T, around 4.5), which is known to be correct to all
given digits due to a detailed analysis of its uncertainty. In particular, this allows one to
conclude that the analytical suggestion K. = tanh ™' ((1/5 — 2) cos(71/8)) = 0.2216586
by Rosengreen 1986 cannot be correct, despite being so close (for a discussion on MC-
simulations of the 3d Ising model, check the work by Martin Hasenbusch, e.g. his paper
in International Journal of Modern Physics C, Vol. 12, No. 7 (2001) 911-1009). For more
details on Monte Carlo simulations, check the book Monte Carlo simulation in statistical
physics by Kurt Binder and Dieter Heermann (6th edition Springer 2019).
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7 Classical fluids

7.1 Virial expansion

We consider the Hamiltonian of an ideal gas with N particles:
N 2
—y P
"= ; 2m

The canonical partition sum in this case reads:

N N

1 (1 L g _

Zia = 3 ﬁ/dpe P/ (2m) /dq

——

—1/A3 —v
1 VN
~ NIAN
with the thermal wavelength A = —/—. Based on the partition sum we can calcu-
(27tmkpT) 2

late the free energy:

= Fy;=—-kgTInZy
_9F4|  NkgT

= P = = pkpT

The ideal gas is an appropriate description for diluted gases (small density p). At higher
densities, interactions become important.

We consider a pairwise additive and isotropic interaction potential U as the simplest
case:

Here j < i means a summation over all interaction pairs (or bonds) between different
particles; this is similar to the situation with the Ising model, but because the interaction
potential can be long-ranged, there is no restriction to nearest neighbors here. In the
potential, there is no dependence on

1. momenta (only positions)
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2. relative orientations

of the particles. An example for which the second assumption does not hold are liquid

crystals (Figure [7.1).

<o~ | 7,7
AN YA ﬂﬂ

isotropic orientational order

Figure 7.1: Liquid crystals: For increased density orientational, but not positional order
is established. This is the ‘isotropic-nematic transition” of liquid crystals that
has been calculated by Lars Onsager in 1949. The full phase diagram for
hard spherocylinders also includes a smetic phase (in addition to the ori-
entational order, there is positional ordering in one dimension) and a solid
phase (here positional order is established in all three dimensions). Because
in hard systems there is no attractive energy, these effects are all driven by
entropy: by becoming globally ordered, the system generates more entropy
for the single particles (larger configurational phase space volume).

An example for an isotropic potential is the ‘Lennard-Jones potential” introduced by John

Lennard-Jones in 1924: 1 6
ue) =4 |(5)" = (7))

The potential consists of two elements:

@ a universal attraction between neutral atoms and molecules (“van der Waals inter-
action’) proportional to 1/7°

@ stability is provided by short-ranged ‘Born repulsion’ (< 1/712).

For computer simulations one typically shifts and truncates the potential to achieve a
finite interaction range (this also allows the use of neighbor lists). These simulations
can be done based on ‘Monte Carlo” (MC) or ‘Molecular Dynamics’ (MD) procedures; the
resulting phase diagrams will be the same. Figure shows a phase diagram which
is typical for a simple one-component system (as for example described by the Lenard-
Jones potential; experimentally a good example would be CO;).

We now return to the analytical description:

L (1 s mom) yn . L [ Nz pr U
A GIEL Vg [ et

=Zi4 =Zint
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Figure 7.2: The Lennard-Jones potential U as a function of inter-particle distance r.

Te T

Figure 7.3: A generic phase diagram typical for a simple one-component system. T
indicates the temperature of the ‘critical point’ where phase boundaries cease
to exist.

= F= —kBTan = F;+ Fyu
JoF

p:_WT,N:Pid‘i‘Pint

The interaction part does not factorise into single particle properties. Hence one needs
approximations. Because we understand the dilute case, we now introduce the “virial
expansion’, which is an expansion in low density around the ideal gas as a reference
system. We note that corrections to the ideal case pressure have to be of order p* or
higher, because they arise if two particles or more collide.

= pim =kgTY_Bi(T)p' = kgTB(T)p* + O(p)
=2

Here the B;(T) are termed ‘virial coefficients’. In lowest order of the correction we thus
have

= F = NkgT [In (0A%) — 1+ Byp]
p = pkpT [1 + Bap]
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7.2 Second virial coefficient

In the following we use the grand canonical formalism to calculate By(T) from U(r):

N
Zg(T,V,u) =Y Z(T,V,N ePr
Gl ) ) ( ) ( & )

fugacity z

*—4N
In the high temperature limit z < 1 we expand this expression in z:
= Zg=Zo+7Z1z+ ZzZ2 +0 (23)

%4
Zozl,leﬁ

Y [an [ eputi-nh — VAT [ 4,2 —pue)
ZQ—W/drl/drzeﬁ(” 2 —W/drreﬁ r

Next we use the Euler relation for the grand canonical potential:

Y = —kBTll’lZG = —pV

= % =InZg *'n (Zo+ Z1z + 22" +0 (23))
B
2
R iz (2o %)ZZ +0(2)

Were we used the approximation In (1 + x) ~ x — %2 for x < 1.

Obviously the virial expansion is similar to the expansion in fugacity z:

pv 2 3
keT V [p+B2p®+ 0 (p%)]
To make a comparison of coefficients we need the relation between z and p.

Inz

(N) o = H=g

P = v
= dy = Bz0;
1

~ Ziz+ (22, — Z3) 22+ 0 (2°)

We note that the first order
IR — = pAB
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in our approximation reproduces our well known ideal gas result (p = pkpT).

We need the next higher order to calculate B:

(N) _ 22, - 23\
2 =z+ 7 Z
N———

=C =a

14+ +/Tt4ac _ —1+1+ 3(4ac) — § (4ac)’

2a = 2a
=¢(1—ac)
N[, N7
Zq Zq Zq

Here we used v/1+x ~ 1+ 1x — §x2 for x < 1in the first step.

IZJ; =V [p+Bp? +0 (p°)] = (N) [1+ Bp+ 0O (p?)]

2

zanG:Z12+<Z —Zz>z +0(2%)

5[ <zz2z—12%)} (Z _z;> <§%>2+O(p3)
= (N) [1+ Z> < 27y — 72+ 75 — ;z%ﬂ +0 (p?)
oo (=-4) ]

We now find our final result for B,(T), which relates the microscopic potential to its
macroscopic effect (change in pressure compared to ideal gas):

= Bz(T):—V@;—):—/dr U0 1)

= |By(T) = —Zn/rz dr (e_ﬁu(r) - 1)

Note that the integrand (which is known as the Mayer f-function) has very good prop-
erties for a perturbation analysis: it is close to —1 in repulsive hard core part and then
decays to 0 with the attractive interation. This observation is the starting point for
Ursell’s cluster expansion leading to the higher virial coefficients (in a graphical man-
ner, similar to an expansion in Feynman diagrams). However, for our purpose it is
sufficient to discuss the second virial coefficient, because it already leads to a phase
transition.
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Examples

@ hard spheres
Spheres of radius d/2 which cannot penetrate each other. This yields an excluded
region of radius d (Figure[7.4).

4, 2t 5 1
= By(T) = —271/0 (1) dr = 5 = Vet = WViere > 0

Due to B, being positive, a finite, excluded volume increases the pressure. B, does
not depend on temperature, because there is no finite interaction energy.

Ua

r

Figure 7.4: Potential for the hard spheres with excluded region r < 4.

@ attractive square well
We consider a potential well of depth € between d and d + ¢ (Figure[7.5).

U

A

-~V

Figure 7.5: Square well potential with range 6 and depth e.

d+6 d<d, ekl

= By(T) = —27‘[/ 72 dr (eﬁe—l) ~  —27md%5Be <0 fore < kgT
d
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B, (T) vanishes at high temperature. The attraction of the particles decreases the
pressure. This effect increases with increasing interaction energy € and range é.

® Hard core repulsion and attraction
As a course approximation to particle interactions with repulsive core and attrac-
tive well, we combine a hard hard sphere with an attractive well (Figure7.6):

= By(T) = %”d?’ — 2 d*5Be = b — kBLT

with constants a,b > 0.

U

A

=Y

Figure 7.6: Combination of the potentials for the hard spheres and the square well. The
resulting form is similar to the Lennard-Jones potential.

A
B,

—Vv

B,(T) vanishes at
‘Boyle temperature’

Figure 7.7: B, as a function of temperature. It vanishes at the ‘Boyle temperature’.

© Lennard-Jones potential
This case cannot be solved analytically, but one can come up with a helpful ap-
proximation. We first non-dimensionalize the equation for B,(T) by measuring r
in units of o and T in units of € /kg. Next we note that one can rewrite the integral
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by partial integration, because it is a product of the Mayer f-function f(r) and a
derivative ¢’(r) = r? (thatis g(r) = r*/3):

By(T) = —Znaﬁ/dr (%) <e_%[r112_7{"] - 1> = —27'((73/dr g(r)f(r)

We note that fg = 0 at the two boundaries and therefore

(1) =270 [arg( ) = S5 [arst (15 L]t d

Until here the treatment is exact. In order to proceed, we now expand e*/ (T*) for

small arguments and use the definitions of the Gamma-functions, which we then
evaluate numerically. The result is a power series

By(T) =

27 173 2.56
3 T1/4  T3/4

The resulting functional form is similar to the one for hard spheres with attraction:
a divergence to negative values at T = 0 and a cero crossing to positive values
at finite . However, at very large T, B>(T) for the Lennard-Jones potential goes
back to cero, because this potential is not infinitely hard. Such a decrease indeed
can be observed experimentally for atomic and molecular systems at very high
temperature.

We conclude that cases 3 and 4 above gave very similar results. For simplicity, we con-
tinue our discussion with case 3, which is sufficient to demonstrate that the combination
of repulsion at short distances and attraction at larger distances leads to a phase transi-
tion. To see this, we again study pressure and use the simple result for the combination
of hard spheres repulsion with the attractive square well:

pV = NkgT <1 + BZ(T)Z‘\/]>

NY NP NKT N2,
% VTN v

= NkgT (1—|—b

Introducing the specific volume v = % = % this yields

kgT
p= ﬁ — % van der Waals equation of state

The excluded volume (b) reduces the accessible volume for the particles while an at-
tractive interaction (a/v?) reduces pressure. For T < T, = 8a/(27bkg), p(v) will have a
minimum and maximum (see Figure[7.§).

In the region between the minimum and maximum we have % > 0. This implies that a
local fluctuation to higher density (smaller v) causes a decrease in pressure, which leads
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Figure 7.8: Pressure isotherm for a van der Waals gas below the critical temperature. In
the region between v,,;, and v,;4 the system is unstable.

to a further increase in density (decrease in internal pressure is equivalent to increase
in external pressure, so the fluid is compressed more). Likewise a fluctuation to lower
density (larger v) leads to an increase in pressure, which leads to a further decrease
in density (larger internal pressure is equivalent to decrease in external pressure, so
the fluid expands). Thus we see that in this region, the fluid is instable to density
fluctuations. The system can avoid this instability by jumping over it with a phase
transition between a liquid and a gas. In the region of the phase transition, two different
phases coexist. This can be understood even better by considering the free energy of
the system, which becomes concave in the instable region. This means that a linear
superposition of the two states obtained by a common tangent construction will have
lower free energy than the system predicted by the instable free energy. We now discuss
how one can calculate the region of the phase transition.

7.3 Maxwell construction

The details of the phase transition follow from the ‘Maxwell construction’. We consider
the Gibbs free energy as we control temperature T and pressure p:

G=E-TS+pV =uN
+p I

=F
S =+
=5 P
~~  =V/N

For two coexisting phases L and G in equilibrium the intensive parameters T, p and u
have to be the same:

u(T,p) = uc(T, p)
= fc—fL=rpt(vL—0vg)

Here p; is the transition pressure.
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superheated liquid

undercooled gas

Y

i |
T T T
instable

V|_ VG V

Figure 7.9: Van der Waals isotherm with Maxwell construction based on the equality of
areas 1 and 2.

The left hand side can be calculated by integration along the isotherm:

afTv)

fo—fi=[ " dv - [ avp(ro)

uL,
= pT(vL—vG):/ dov p(T,V)
G

Geometrically this means that in Figure [7.9|the dotted area has to equal the one below
the solid line. Hence p; can be determined based on the equality of areas 1 and 2.

We therefore have arrived at the following picture:

If several phases can exist at constant (T,p), the one with the lowest chemical poten-
tial y is stable (lowest G/ N). At the transition point, the chemical potentials are equal.
However, their slopes can have jumps (compare Figure[7.10).

In order to bring the fluid from liquid to gas, we need the ‘heat of evaporation” or ‘latent
heat” Q:
Tiy Tt
Q= TdS = dH = Hc — H,,
T;- .

where we used dH = TdS + Vdp and p = p; = const.

H E+ PV vdW eq a
= h= N- N e(T) 4
kinetic energy contr.
_Q_
1=5= heg —hp = or Z)Ger(vG vL)Nv +pvg  (vg > L)

0 . . . . .
o 18 thg energy required to overcome attraction while pvg is the energy required for
expansion.

G =puN, dG = —SdT + Vdp + udN

162



\/
\/

pr pr P
Figure 7.10: Left: The chemical potential y as a function of pressure for phases G and L.
At the transition point yc = ur, but the slopes have jumps.

Right: The specific volume v = g—;; pasa function of pressure has a jump
at the transition pressure p;.
H(T.p)s
f >T >
T T T

Figure 7.11: Left: The chemical potential i as a function of temperature for phases G
and L. At the transition point yg = yr, but the slopes have jumps.
Right: The entropy as a function of temperature jumps at the transition

point.
d 1 0G 1
- Bl - -5
oT|,y NOT|,y N
We conclude that both v = gz . and s = — g—# ‘p jump at the transition (compare Fig-

ures and respectively). Therefore this phase transition is called to be of ‘first
order” or ‘discontinuous’. Both jumps disappear at the critical point, where the isotherm
becomes horizontal at the transition. From

9?
r 90%r

o9
v
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one calculates the critical values:

8a

a
v, = 3b, Tc:m, Pc:ﬁ

for water: p. =217 atm, T, =647 K

Pclc _ 3 = 0.375 independent of a and b
kT, 8

Experimental values are similar, but slightly smaller (around 0.3).

=

If p, vand T are expressed in terms of their critical values:

- p L~ v = T
= —, 0 = —, T = —
P Pc Oc T

the van der Waals equation becomes

(;7+§2> (35—1) = 8T

4

spinodal

p in units of p

_1 1 1 L
-0.4 -0.2 0 0.2 0.4 0.6 0.8 1 12 1.4
log(v) (v in units of vc)

Figure 7.12: Van der Waals isotherms for different temperatures. The ‘spinodal’ is the
boundary between metastable and unstable states. The ‘binodal” separates
metastable and absolutely stable states. The latter curve was calculated
numerically based on Maxwell’s construction for different temperatures.

Figure shows van der Waals isotherms for different temperatures with respect to
TC-
This reduced equation leads to the ‘law of corresponding states”: Two fluids with the same
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( p,o, T) are in equivalent states. Indeed experimental curves show surprisingly good

data collapse. Even more surprisingly, their behaviour becomes almost identical at the
critical point - large fluctuations render microscopic details irrelevant.

7.4 Fluid-solid phase transition

The “van der Waals” equation of states predicts the fluid-fluid phase transition caused
by attractive interactions. The fluid-solid phase transition can be predicted by a simple
entropic argument. Recall the van der Waals theory for a hard sphere fluid:

NA3
S (S
L, 9P| _ NigT

rn V—Nb

oV
b=4V, = V—Nb=V(l-pb)=aV

witha =1—p/pp and po = 1/b. aV is the free volume in the fluid.
Based on Figure and L = V1/3 we define the free volume of a solid as:

KV ~ (v%—d)3: [1— (;;)é

The free volume vanishes at close packing.

3
v

Figure 7.13: Unit cell with hard spheres of diameter d. The grey shaded region indicates
the free volume.

~ F-F= NkBTln%
1

Hence the phase with larger « is favored. For that reason the fluid F and the solid S
are stable at low and high densities, respectively. Figure shows how the Maxwell
construction looks like in this case.

We now can understand the complete phase diagram of a simple one-component fluid:
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N

Maxwell
construction

p

Figure 7.14: Free energy for liquid (F) and solid phase(S) as a function of density p. The
tangent represents the Maxwell construction.

Ta T a
F S F S
=N A
f \ T f
p p
C) d)
p A p A
S
L F
G
} } > } } »
T, T, T T, T, T

Figure 7.15: Combining the two transitions in (a), one gets the complete phase diagram
in (b). In (c) we swap T and p axes. By replacing p by p, we get the final
phase diagram in (d). Two-phase coexistence regions become lines in this
representation.
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7.5 Distribution functions

In contrast to thermodynamics, statistical physics not only predict phase behaviour,
but also structure. The central quantity in both theory and experiments is the ‘radial
distribution function’.

We first define the distribution function for absolute position:

e BLicj Ulri)
a [d ...drgy e PLici Ulry)

By defining W := }_,_; U(r;;), the probability that any particle is at position 7 can be
written as:

N

=), (0

k=1

fdrl dry (Zk 10 (% — rk)> e PW
[ dA..dry e PV

dss...drfy e PW(Er2e i)
[df...dr e PV

ideal gas N
—— V -
W=0

ny (X)
The probability that some particle is at ¥; and another at x5 is:

my (¥, %) = ) (6 (%1 —71) 0 (%2 = 7))

iZ
= N(N-1) [ drs...dry e PWE )
f dfid?’_];] e—BW
1 _ 1 o
ny (%1, %2) ideal gas N(N — 1) N e

N — V2
W=0

For the pairwise additive potential everything follows from 11 and n,. Eg the averaged
interaction energy:

W) =3 (U(rij))

i<j

fz/dxldxz (F1— %) 6 (5 —7) 6 (B—7)
i#]

=§/dx1 A% U (% — %) na (%1, %)
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In a homogeneous system:
ny (%1, %) = np (|31 — %2)
We define the ‘radial distribution function’ g by:

ny (| — %)) = p?g (|51 — 23|)

2
= W) =5 [@ruese)

pg(r)4mtr? dr is the average number of particles in a spherical shell of width dr at a
distance r from any particle.
While for the ideal gas ¢ = 1, g(r) has damped oscillations for a real gas (compare

Figure|7.16).

g(r) +

\

r

Figure 7.16: The correlation function g for a real gas as a function of distance r. The
oscillations damp away with distance.

The pair correlation function g(r) can be measured in scattering experiments (x-rays,
neutrons, electrons, light):

-

incoming wave fluid outgoing wave

Figure 7.17: Schematic sketch of a scattering experiment. If k denotes the wave vector of
the incoming wave and k’ for the outgoing wave, the wave-fluid interaction
results in a momentum transfer ¢ = k' — k with |k’| = |k|.

Interaction between probe at 7 and particles at {7;}:

N
Y U(F—r)
i=1
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Fermi’s golden rule for the transition rate I states:

1) (F] L u - ) [f)
 £d)

S (7)
S~~~ —~—

‘form factor’ ‘structure factor’

The ‘form factor” describes the interaction between probe and particles and depends on
the experiment.
£(@) =u@P

U@ = / d7 U (7) e~

The “structure factor” represents the internal structure and is independent of the type of
probe.

S =y <Zef‘7<”f> > =1+ [ dF (g(r) - 1)eT

N\~
i#]

We note that S (g) is essentially the Fourier transform of g(r) (qualitative shape similar

to g(7) - compare Figure|7.16).
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8 Thermodynamics

8.1 Axiomatic structure

Thermodynamics has evolved in the 19th century as the science of heat transfer. It gives
the same results as statistical physics in the limit of large system size. In contrast to sta-
tistical physics, it is a phenomenological theory and does not have a microscopic basis.
One can consider this either as strength or weakness, depending on the viewpoint.
Traditionally, it is explained starting from the four laws of thermodynamics. Here we
choose the axiomatic viewpoint following the presentation by Callen.

The following four axioms together completely determine the formal structure of clas-
sical thermodynamics:

©, Simple isolated systems in equilibrium are characterised by the state variables
(E,V,N).

@ For each equilibrium state an entropy function S(E, V, N) exists. After removal of
an internal constraint, the system obtains the state of maximal entropy.

® Entropy is additive over subsystems and increases monotonously with E.

© Entropy vanishes at dE/9S = 0 (Nernst postulate for T = 0).

Thus a thermodynamic system is located on the ‘entropy manifold” in a four dimensional
state space (E,V, N, S). This is similar to a classical system being located on a ‘energy
manifold” in 6N dimensional phase space (7,7). Quasi-static processes only involve
equilibrium states. They can proceed only up or sidewards on the entropy manifold.
The total differential of the entropy function is:

dS
dE+ ==
V,N aV

9S
dV + —
E,N aN

aS
ds = 5F dN

V,E

_1 p Z
=T dE + T dv T dN
Because S is an increasing function of E, one can always solve for E = E(S,V, N):

dE=TdS— pdV + pdN
"~ \\/-/

heat mechanical work  chemical energy

The three terms represent different ways to transfer energy.
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T

Figure 8.1: Entropy manifold with a quasi-static process from A to B. X stands for vol-
ume V or particle number N. Quasi-static processes only involve equilib-
rium states. Moving “up” on the manifold indicates ‘irreversible’ processes
while ‘reversible’” processes can be regarded as moving sidewards.

Both S(E,V,N) and E(S, V, N) are fundamental equations which contain the complete
thermodynamical information. Their partial derivatives can be interpreted as “thermo-

dynamical forces” in analogy to the mechanical forces F = —VV:
T = Z)E(Sa,;/,N) temperature as driving force for entropy (heat) exchange
V.N
=— E)E(SE;‘X//,N) oy pressure as driving force for volume exchange
U= BE(Sa,Z\‘;,N) o chemical potential as driving force for particle exchange

Each of these three equations of state contains only incomplete thermodynamical infor-
mation. Knowledge of all three means that we know the tangential plane at every point
and so can reconstruct the fundamental equation E = E(S,V, N).

8.2 Variational principles

We next consider a composite system with two subsystems. The thermodynamical state
space is now spanned by
(Ell Vl/ Nl/ EZ/ VZ/ NZ/ S)

In Figure[8.2lwe schematically sketch the subsystem represented by S, E = E; + E; and
one extensive variable of one of the two subsystems, eg X = V;.
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Figure 8.2: The equilibrium state A as a point of maximum S for constant E = E.

Due to the maximal entropy principle, the equilibrium state is in fact at A.

= The equilibrium value of any unconstrained internal parameter X; is such as
to maximize the entropy S for a given value of the total energy E.
Note that the final state might be reached by a non-equilibrium process, but to identify

the equilibrium state, one minimizes over the manifold of possible equilibrium states.
We next note that the equilibrium state A can also be identified from a minimal energy

principle:

= The equilibrium value of any unconstrained internal parameter X; is such as

to minimize the energy E for a given value of the entropy S.

This is sketched in Figure

Proof:

If the energy was not minimal, we could withdraw some energy as work —pdV and
return it as heat TdS. Then the system would be restored to its initial energy but with
increased entropy. This is a contradiction to the maximal entropy principle.

Example:

We consider the heat flow between two systems of fixed volumes and particle numbers.
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Figure 8.3: The equilibrium state A as a point of minimum E for constant S = 5.

@® maximal entropy principle:

1 1 1 1 |
— P— —_—— — - —_—
dS—fl dE1+ szz— ( ) 2) dE1 0=T1="1

Before the equilibrium is reached: dS >0 = maximum of S.
@ minimal energy principle:
dE = T; dS1 + T, dS; = (Tl—Tz)dsléo = T1="1
Before the equilibrium is reached: dE < 0 = minimum of E.

We again consider the two subsystems with an internal constraint X;. We now connect
them to a heat reservoir with temperature T;.
The minimal energy principle implies:

d(E+E)=d(Ei+E+E)=0
Terms related to heat exchange with the reservoir:
T1dSq + T>dS, + T,dS, = (T1 — Tr) dS, + (Tz — Tr) dS, =0

= Ty =T, =T, =T equilibrium condition independent of internal constraint
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0=d(E +E)=TdS, +dE = —TdS +dE
—d(E—TS) =dF

Hence the free energy F has an extremum at equilibrium. Since T is a constant and
since S, does not have a second derivative,

d*(E, +E) >0

implies d?F > 0 and thus F is minimal. The equilibrium value of any unconstrained

internal parameter X; in contact with a heat reservoir minimizes the free energy F over
all states with T = T,.

8.3 Euler and Gibbs-Duhem relations

Energy is extensive and therefore has to be a homogeneous function of order one:

E(AS,AV,AN) = A E(S,V,N)

9E 3(AS)  9E AAV)  9E 3(AN)
TaAS) A Ta(awv) ar TaN) A

’E =TS —pV + yN‘ Euler relation

A=1
=
= dE =TdS+ SdT — pdV — Vdp + udN + Ndu
= SdT - Vdp+ Ndu =0

= ’dy = —sdT + vdp‘ Gibbs-Duhem relation

= E(S,V,N)

The three intensive variables (T, p, u) are not independent. There are only two ther-
modynamic degrees of freedom. If one knows the equations of state s = s(T, p) and
v = v(T, p), one can integrate the Gibbs-Duhem relation to get y = (T, p).
If one knows the fundamental equation, the Gibbs-Duhem relation can be directly cal-
culated in the integrated form:

E=E(S,V,N)

oF SV
= p= X pi(S,V,N) = pi(ﬁ/ﬁ/l) = pi(s,v)

Elimination of (s, v) from these three equations of state gives the Gibbs-Duhem relation
between (T, p, ).

The same arguments can be made in the entropy representation. The Euler-relation
becomes

1., p, M
S=zE+ V-2

and the Gibbs-Duhem relation then reads:

0= d(%)E +a2y - akyn
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Example: fundamental equation for ideal gas

We now use these results to discuss the ideal gas. In thermodynamics one starts with
the phenomenological observations, so we take the two well-documented gas laws

pV = nRT = NkgT, E = %nRT = gNkBT

Because E appears here, we choose the entropy representation and rewrite these equa-

tions as
p_ ks 1 _ 3ks

T o' T 2
We next integrate the Gibbs-Duhem relation

By _oacl py_ —3ks ~kp.,  3kde kpdv
d(T)—ed(T)+Ud(T) e( 5e2 )de+v(—v2 Ydv = o .

to give

[ 4 3kp, e v

=(5)y——In— —kgln—

T~ (ph— 5 I —kslnoo
Inserting this result into the Euler relation gives

= E 3/2 Z & 5/2
S=Sy+kgNIn (EO) (VO)(N)
with -~
_ OkpIN —H

Note that we get the same result as from the microcanonical or canoncial ensemble,
except that we have a constant of integration that we cannot determine in thermody-
namics. Here we see the essential difference to statistical physics: we cannot give a
microscopic expression, but nevertheless we can get full thermodynamic information
from a few experimental observations because the formal structure gives very strong
constraints on the fundamental equation. We also note that in this specific and very
fortunate case, we are able to integrate term-by-term, which usually is not the case. We
finally note that we could have obtained the same result much easier by simply inte-
grating the differential ds = (1/T)de + (p/T)dv, but here we wanted to demonstrate
the use of the Gibbs-Duhem equation.

Similar procedures can be used to obtain the fundamental equations for e.g. the van
der Waals gas, the photon gas, the rubber band, etc.
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8.4 Thermodynamic potentials and Legendre
transformations

We reconsider the situation that the temperature T is fixed by a reservoir. Now the
relevant quantity is free energy F.

S(E) = S1(E1) + S2(E — Eq)

aS
= S1(E1) + S2(E) — ﬁ E:
E
= const + <51(E1) - ;E1>
1

As S is maximal at equilibrium, free energy F = E; — TS1(E;) is minimal.

Equilibrium is a compromise between order (E) and disorder (S). The larger T, the more
disorder takes over. Free energy F is the relevant ‘thermodynamic potential” for the choice
(T,V,N) as state variables.

In general one expects 2> = 8 thermodynamic potentials, one for each choice of state
variables:

state variables thermodynamic potential

S,V,N E internal energy

T,V,N F=E-TS Helmholtz free energy
T,p,N G=F+pV Gibbs free energy

S,pv,N H=E+pV enthalpy

T,V,u Y =F—-uN grand canonical potential
S,V,u Aq

S:pH A

Tpp As

E, E G,Hand Y are physically relevant. Each is minimal for the given variables (deriva-
tion as before). Obviously this range of potentials gives raise to many Maxwell re-
lations. Note that S is not a thermodynamic potential. Although it also comes with
a fundamental equation, it does not obey a minimization principle (rather it obeys a
maximization principle).

Different thermodynamic potentials are related to each other by Legendre transforma-
tions. We now discuss this concept for the one-dimensional case. Consider a monotonous
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Figure 8.4: y as a function of x with tangent at x = x

function y = f(x) with a unique inverse x = f~1(y). We want to rewrite y(x) as a func-
tion of its derivative p = f'(x) = g(x).

= x=g(p)=x(p)
= y(p) =y&(p) =£fg ' (p)=(fog H(p)

However this procedure is not unique:
Curves shifted in x-direction have the same result y(p).

X

Figure 8.5: Several curves y;(x) shifted along the x-axis are shown with illustrative tan-
gents.

The underlying reason is that we work with an ODE of first order:

y(x) = (fog™) /(x)),

which leaves a constant of integration undetermined.
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To solve this problem, we describe the curve y(x) as enveloped by the family of its
tangents.

Figure 8.6: y(x) can be described as enveloped by the family of its tangents.

Each tangent is characterised by the slope p = f’(x) and the intercept:

is a unique function of y(x).

Back transform:
dy=pdx = dY=dy—pdx—xdp=—xdp

v G o Y =YW )

We note that applying the Legendre transformation twice brings us back to the original
function.

Example:

y=(x—x)? = p=2(x—-x) = x=r+x
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= y= (g)2does not depend on x
2 2
= Y=y—px= (Z) —p (g+xo> = —% — pxodepends on xg
_dY _ p _
— _%__E—xo = p—2(x xo)
_ —))2
= yz‘I’—i—pxzW—Z(x—xo)xo+2(x—xo)x

=—(x— xo)2 +2(x — x0)2 = (x— xO)z

The Legendre transform of y(x) in regard to p = y/(x) is denoted by y [p].

We now see that the free energy F is actually the Legendre transform E [T] of energy E
from entropy S to temperature T (alternatively it can be derived from BF = S []).

E=E(S,V,N)

T(S,V,N)=>— = S=5(T,V,N)

F(T,V,N) = E[T] = E(S(T,V,N),V,N) — T S(T,V,N)

oF JdE 09S dS
= ot~ a5 ar O Tar=°
T

OF 9E 95 9E .95 O9E _
oV 95 oav "av  ov _ov P
T
OF 9E 95 W oE 05 OE _
ON 95 oN "oN 'oN oN M
T
= |dF = —-SdT—pdV+udN

8.5 Maxwell relations

In the last section we introduced 8 thermodynamic potentials. Each generates 3-2/2 =

3 separate pairs of mixed second derivatives, giving rise to 24 Maxwell relations like
this one:

PE dp PE AT

9SOV~ 0S|,y OVOS  aV|gy

It is a unique strength of thermodynamics to generate such surprising relations between
seemingly unrelated physical quantities. In order to memorize these relations, the ‘ther-

modynamical square” or ‘Konig-Born diagram’ (compare Figure has been introduced.
We keep N fixed and consider the four most important potentials.
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Vv F T
E G
S H P

Figure 8.7: The natural variables flank the potentials while the arrows indicate signs.

dE = TdS — pdV
dF = —pdV — SdT
dG = —SdT + Vdp
dH = Vdp + TdS

From two neighboring corners a Maxwell relation can be read off (derived from the

edge in between, ie H):

\ T
S H p S H P
Figure 8.8: Identifying Maxwell relations using the thermodynamical square exempli-
fied for the enthalpy H.

ov| _or
S |, TP
’H  0*°H
9Sdp  dpadS

Three other Maxwell relations follow by rotation of the scheme.
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Response functions

Derivatives like 2Z| can be measured in experiments and are called ‘response functions’.
ap S

Theorem:

There exist only three independent response functions. All others can be expressed
through them.

Proof:

We reduce the derivatives using the thermodynamical square, the mathematical rela-
tions between partial derivatives (see last section of this chapter) and the Gibbs-Duhem
relation for the chemical potential.

Standard choice:

For constant particle number, we define the following quantities:

1 oV . .
0= oaT ) coefficient of thermal expansion
1
k7= ?9‘; ) isothermal compressibility
Cp = ol _p 95 specific heat at constant pressure
pTar|, " et P P

This essentially corresponds to a transformation to the Gibbs representation (g = $):

r’g 4
oT? T
azg
aTop "
0°¢
—F = —0UK
ap? T

Example

Relation between c, and cy (N = const)

heat capacity at constant pressure: ¢, = o _ T o5
. p — T — —

T, aT |,

heat capacity at constant volume: cy = (CII% . =T g—; )
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ds = a—s dT—|—a—S dv
aT |, N WV rn
—— ——r
= _o
T _T‘V
cydT ~ dp oV oV
= T+ —
r torl, |or), T apl,
35 ap| v
——
=Vu
|
o 9Ty
JaT v al‘ o KT
ap T

o2 o?
= |cp=cy+TV —|>cy asxr>0, — >0
p
KT KT

For an ideal gas this yields:

CvzjivziNkB
ao LoVl 1
%4 an T
gp= L V| _1
Vi aplr p

= Cp=cyv+ T2 :Cv—f—NkB:gNkB

8.6 Process-dependance of work and heat

Recall the total differential for energy:

dE=TdS—pdV+udN

It is instructive to compare with mechanics:



mechanics thermodynamics

C, > B C, - B

T T ! T

C, C,4

p S

Figure 8.9: Mechanics: The contributions of the integrals [ g—ﬁdp and [ %—qu are the
same for the different paths C; and C, going from A to B. The change in
kinetic and potential energy is path-independent.

Thermodynamics: The contributions of the integrals [ 9£dS and [ ¢EdV
can differ for the different paths C; and C,. The choice of path can determine
how heat and work are distributed.

We see that each term by itself is a total differential. This is not true in thermodynamics
because T = (S,V,N) # T(S).

Note that in both cases E(B) is a state function whose value is independent of how one
gets from A to B. In this sense the system is conservative. However, the way in which
energy is divided between heat and mechanical work is not universal and in this sense
the system is not conservative.

Despite the path-dependent weights of the different energy forms, the partial deriva-
tives are not arbitrary because they must belong to a fundamental equation. Therefore
we must have eg

PE T _E ap
Vs WV |sn SV 35|y n
~—— —————r
change in T during adiabatic expansion change in p during isochoric heating

This expression relates quantities which at first seem unrelated. We will later meet the
whole set of these ‘Maxwell relations’. It is the particular strength of thermodynamics to
provide these surprising relations which all have been experimentally verified.

If we neglect changes in particle number, we have

dE=TdS—  pdV
heat

mechanical work

We have seen before that the two quantities depend on the path taken from state A to
B. We therefore write:

’ dE =dQ +dW ‘ first law of thermodynamics (energy conservation)

Here d indicates ‘incomplete differentials’.
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sign convention: dW > 0 If the work increases the energy of the system.

dQ > 0 Heat flows into the system and increases its energy.

Very often one discusses expansion of gases. Then the mechanical work is dW =
—pdV < 0, i.e. the system does work and looses energy, because p is positive and
dVv < 0.

James Joule was the first to realize that one can always measure dQ and dW for given
states A and B:

@ First make an adiabatic (isentropic) experiment (thermally isolating walls). This
implies:
dQ=0 = dE=dWw

If A — B does not work because AS < 0, use B — A with AS > 0.
Because dW can be measured by mechanical means, one gets AE 4p in this way.
Joule invented many devices to do exactly this.

@ Now make an experiment of interest with heat exchange (diathermal walls) con-
necting the same two states and measuring W4p (now with another result).

=  Qap=AEsp—Wgyp

As AE 4p is known due to our first step, we now can calculate Q 4p.

The essential point here is that E is a state function, while Q and W are not.

Pond analogy

Consider a farmer who wants to know how much water is in his pond. There are two
ways its amount can change:

in- and outflow through a stream, and increase/ decrease by rain/ evaporation.

How can he control the relative importance of these two channels?

The solution is simple: First he covers the pond by a tarpaulin. He then can calibrate
the water height by using flow meters in the stream. Finally removing the tarpaulin, he
now can calculate back how much water results from rain/ evaporation.

Expansion of an ideal gas

We now discuss the expansion of an ideal gas as an example for the process-dependance
of thermodynamic processes. We go from state A to B as shown in Figure .

Fundamental equation:
£
S =So+ksN In [ L5
N

5
2
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rain evaporation

stream
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Figure 8.10: The amount of water in the pond depends on rain, evaporation and in- and
outflow due to a stream.

/adiabatic (isentropic)

: -S|

C

heating at constant p (isobar) cooling at constant V (isochor)

\Y

Figure 8.11: Three different paths from A to B. In each case the system cools.

For an adiabatic process (S=const) at N=const we therefore have

1% E% = const

E= gNkBT = ng = V°p® = const

VB VB VA 3
N AEAB:/CTW:—/ pdV:—pA/ <) qv
Va ve \V

3 5 _2 _2
= >pavVj <VB 3 —VA3) <0
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The gas is doing work and looses energy.

We now calculate work and heat for the paths through D and C.

WADB = —/pdV: —Pa (VB—VA) <AEAB <0
The system is doing even more work.

Qapg = AEap —Wapp >0
Heat flows into the system to compensate for this extra work.
Wacs = —/pdV: —PB (VB—VA> > AE g <0

The system is doing work, but less compared with the two other paths.

Qac = AEsp — Wacp <0

Heat flows from the system, lowering its energy.

isothermal pV = const

/

adiabatic p*V? = const

Figure 8.12: The adiabatic curve is stepper than the isothermal one. A combination can
be used to get from A to D in Figure[8.11]

Note that we did not need to calculate AEop or AE 5c. Indeed this is more complicated
and requires the construction shown in Figure by combining an adiabatic with an
isothermal process, one can go from A to D.

8.7 Reversible and irreversible processes

Both statistical physics and classical thermodynamics state

second law of thermodynamics

AS =0 reversible process: can go both ways

AS > 0 irreversible process: other way cannot occur spontaneously
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Examples

@ adiabatic expansion of an ideal gas

Figure 8.13: The ideal gas expands while the piston is moved out.

The piston is moved out with different velocities and the complete system is ther-
mally isolated. Therefore there is no heat flux, dQ = 0. We consider the extreme
cases concerning the piston’s velocity:

©, very fast: expansion into vacuum

@ very slow: quasi-static, pressure is always equilibrium pressure p = NkgT/V

3
S = Sy + kzN1In (VE2>
N

5
2

Fundamental equation:

expansion into vacuum (case @):

dE=dW =0
9S 1
dS—WdV—kBNVdV>O

We see that no work is being done and that the process is irreversible. The entropy
has to go up because now many more microstates become available.

quasi-static (case @):

dE =dW = —pdV

NkgT 2E
aS 2S 1 3 1
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The gas looses energy because it does work (and hence also becomes colder). The
process is reversible, because the entropy increase due to the volume increase is
exactly balanced by the loss of entropy due to the decrease in energy.

This situation is easy to analyze because we consider an isolated system for which
we know everything. The situation is more complex if we couple it to the envi-
ronment. Consider for example isothermal quasi-static expansion, so we couple
the piston to a heat bath. Then it does the same work as above. However, because
now T is constant, E is also constant and heat has to flow in such thatdQ = —dW.
The entropy of the piston goes up, but the reservoir loses exactly the same amount
of entropy due to the heat flow and the overall entropy is constant. Therefore
isothermal quasi-static expansion is also reversible.

warm bottle B in cold lake L
We assume that the heat capacities of bottle (cg) and lake (c;) are constant.
Fundamental equation:

S=S(E,V,N) = Sy+c In=

Eo
1 dS 1
f_ﬁ_cf = E=cT
N
4T

We now bring the two systems in thermal contact. The bottle will be cooled from
T, to Tj. It will give away heat

Qp=AEp=cp(Ty—Ta) <0
while no work is done due to the volume being constant.
AE =AEp+AE, =Qp+ Q1L =0
Qul _ Qs _ B

= AT, ="~ =
L CcL CL

As cp < cr the temperature change of the lake can be neglected.

ATB%()

Changes in entropy:

b — —
AS; = / dQu _Qu_ —Qp _ cBu >0 lake gains entropy
a

T T, T, Ty
b d To cp AT T

ASg :/ % :/ ' CBT =cp In (Tb) < 0 bottle looses entropy
a a a
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—z-1
—In(z)

0 0.2 0.4 0.6 0.8 1 12 14 1.6 18 2

Figure 8.14: f(z) = z — 1 and g(z) = In(z) as a function of z.

The overall change in entropy thus is (defining z := T, /T, > 1):

AS =AS; +ASg=cp (z—1—Inz)
Our result is in agreement with the second law of thermodynamics:

Inz<z—-1 = z—-1-Inz>0 = AS>0

The equal sign is valid for z = 1 (T, = T}). Otherwise AS > 0 and the process
is irreversible as heat flows from the warmer to the cooler system. Note that the
same conclusion holds if we place a cold bottle in a warm lake (z < 0).

8.8 Thermodynamic engines

We again consider heat flow from a warm to a cold body.
We assume constant heat capacities. The change in energy of the complete system then

can be expressed as:
Ty Ty |
AE = c1dT1+/ dTy = 0
Tyo Ty
T T
N szcl 10 + 2120
c1+

The change in entropy is:

AS — /Tf c1dTh +/Tf cdTs

Tio T; Ty T
Ty Ty
= 1 1
c1 In Tio +c2 In Too
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Assuming equal heat capacities: c; = c2 = ¢

_ Tho + Too
2

T
AS = 2¢ In <f>
vV T10T20

Ti0 + Too >
=2c In ( >0
2 v/Ti0T>o

The change in entropy is always positive as the arithmetic mean is always larger than
or equal to the geometrical mean.

= Tf

T + Tho

>/ TiT
5 =z 10120

We can see this as follows:

2
(a—b)zzo = a’>+2ab+b*> > 4ab = (a—zb)zab

The process would be reversible for

Ty = VTioT2o

However, this would lead to an energy

Tyo+ T
E =2c\/TioToo < 2¢ y

The energy difference
_ T1o + T2o
E=2c |———— — VTl

had to be spent as work. This can be accomplished by a thermodynamic engine (Wirmekraft-
maschine’).

How much work can one get out of the system?

We consider a final temperature Ty:

VTioT < Tf < w

This range for the final temperature is bounded by the reversible case from below (a
smaller value would correspond to negative entropy change) and the completely spon-
taneous process without any work being done from above (a larger value would cor-
respond to influx of work into the system, corresponding to a heat pump but not to a
heat engine).
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W
T
(W)

N

Figure 8.15: Scheme of a power plant: 1) furnace (coal, oil ...), 2.) environment (cooling
tower), M) turbine, W) power line

Q1 =c (Tio—Ts) heat taken up by M
Q2 =c (Ty —Ty) heat given away by M
W = Q; — Q2 work done by the system

The lower Tr the more work we can get out of our machine. Work is produced by "slow-
ing down’ the heat exchange.

We consider the two extreme cases:

@ Tf = % (Tl() + Tzo)
no work, maximal entropy production (compare gas expansion to vacuum)

@ Tr = VTioTao
maximal work, reversible process (compare gas expansion under quasi-static pres-
sure changes)

We note that producing entropy is a waste of work.

We define a thermodynamic efficiency (‘Wirkungsgrad’):

W_, &
Q1 Q1
For case 1 we get:
Q2
1-===0
T

Q2 = 0would describe a perpetuum mobile of the second kind which cannot exist. This
is due to a negative entropy change for the furnace system which violates the second
law of thermodynamics:
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As it always takes two to tango: Heat flow away from system 1 requires heat uptake by
a second system to ensure dS > 0.

dQ:  dQ:
= - — >
= dSs T, + T, 2 0
= dQ; >dQ; % lower bound for Q,
1
Q2 T
7] 1 Ql — ]‘ T1 Uldeal

No thermodynamic engine can be more efficient than 7;4,,;.

Maxwell demon

The following thought experiment has been suggested for a perpetuum mobile of the
second kind and goes back to Maxwell (1867).

A device (‘Maxwell demon’) (see [8.16]) opens a little trapdoor each time a gas molecule
comes from the right (‘ratchet mechanism’) . Then pressure raises on the left, which can
be used to extract work. This also cools the system, which is compensated by heat flux
from the environment. In this way, the device can produce work out of heat, seemingly
violating the second law.

This and many other similar setups have been analyzed by many researchers. Feynman
argued that it cannot work because the device itself will fluctuate (“trembling demon’).
Landauer built his argumentation on the need for storing information, thereby raising
entropy.

When analyzing the thermodynamic engine, we assumed that M does not store heat or
work. This is certainly true for a machine working in a cyclic manner.

How can one construct such a thermodynamic engine in practice?

Carnot cycle

The Carnot cycle[8.17) uses an ideal gas and four steps.

@ The gas is in contact with a hot reservoir and isothermally expanded. Entropy
increases while energy is constant. Heat is taken up and work is delivered.

@ The gas is adiabatically expanded. Entropy is constant, more work is delivered.
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T isothermal
T l adiabatic l
adiabatic
D C D isothermal C
> S >

Figure 8.17: Carnot cycle

® The gas is contacted with a cold reservoir and isothermally contracted. Work is
consumed by the system, entropy decreases and heat is given to the reservoir.

@ The gas is adiabatically contracted. Entropy is constant, more work is consumed.

The grey area in the S-T-diagram is the heat delivered to the outside. The grey area in
the V-p-diagram is the work delivered. The thermodynamic efficiency can be shown to

be:
1% T,

= =1—- = =1
n QAB Tl Nideal

Because the Carnot cycle is reversible, it can also be used in the other direction. Then
we use work to transfer heat from the cold to the hot reservoir (‘heat pump’ or ‘refrigera-
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tor’).

For a power plant we typically have:

T; =540°C =813 K
T, =40°C=313K
= Nideal = 62%
In practice one can reach around 45% which corresponds to 5 kWh output energy from

11 of oil.
Heat production is unavoidable but can be used for heating ("Wirmekraftkopplung’).

8.9 Chemical reactions

Chemical reactions are the basis of (bio)chemistry and the law of mass action is at the
heart of any chemical reaction. Here we show how this important law emerges from
thermodynamics. As a specific example, we consider the decomposition of water:

1
H,O = H, + EOZ

Often such reactions occur in the gas phase at constant temperature T and constant
pressure p. Therefore the relevant TD-potential is the Gibbs free energy G(T, p, N;) =
E—-TS+ pV. Theindex 1 < i < ris used to number the r different components of
the reaction mixture. The internal energy E = TS — pV + }_u;N;. After the Legendre
transform we therefore have the fundamental equation

dG = —SdT + Vdp + ) _ uidN;

At equilibrium, dG = 0 = Y u;dN; at constant T and p. From our example reaction
above we see that the mole numbers change only in fixed proportions, namely —1 :
+1: 4+1/2 for water, hydrogen and oxygen in this special case. In general we write

0= ZViAi

where the v; are the stoichiometric coefficients and the A; are the symbols for the chem-
ical components. In the example, v; = (—1,+1,+1/2). We now note that

dN;

Vi

= const = dN

and therefore the requirement dG = 0 becomes

Y wivi =0

The essential aspect here is that we have effectively only one reaction coordinate over
which we can minimize G. Our result is completely general and allows to determine the
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mole numbers at equilibrium given the initial mole numbers, the relations u;(T, p, N;),
T and p.

We now apply this result to a mixture of ideal gases. Before we do this, however, we
make some general comments on these systems. Because the different species do not
interact, for each of them we have for the internal energy

E; = gNikBT = E= ZEi = %(ZNZ)]{BT = %NkBT
where for simplicity we have used the factor 3/2 for a monoatomic ideal gas. We con-
clude that the internal energy is the same as the one for an ideal gas of N molecules.
We next turn to entropy which for one species can be written as

2V Ny

Tg VQN
T V Ng N
iS:ESiZZNZ‘SZ‘Q-f—(EN kgln +2Nk3 — 0
Vo N N

3 V N
—ZN510+ Nk31n< >+Nk31 (V Z\?)—NkBinlnxi

where x; = N;/ N is the mole fraction of species i. The last term is the entropy of mixing.
If a collection of separate gases each at the same temperature T and the same density
p = N/V (or, equivalently, at the same pressue P) is allowed to mix, then it will gain
entropy because the mole fractions obey 0 < x; < 1 and therefore the entropy gain will
be positive.

We are now ready to discuss the chemical reactions again. From the discussion of mix-
tures, we understand that the chemical potentials are simply the ones of the separate

gases:
N;A3
Wi = kBTln < v >

1/2

Si = Nisio + Nikp In

where the thermal wavelength A ~ T~

NA3 N
ui = kgTln ( % N> = kgT [¢:i(T) +Inp + Inx;]

using the ideal gas law. Here ¢;(T) is a function of T only. We insert these relations into
the general result ) p;v; = 0:

Y vilnxi=—()_vi)Inp =) _vigi(T)
We define the last term as In K(T) where K(T) is called the equilibrium constant. After
exponentiation we then have

[1x = p ©9K(T)| = K(p,T)

This is the famous law of mass action. One the right we have a product of mole fractions
and on the right we have a constant that depends on T and p. If one wants to suppress
the pressure-dependance, one can write K(T, p) for the complete right hand side.

. We rewrite this equation as
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Example

We now discuss the dissociation of water from above as an instructive example for the
kind of calculations done with the law of mass action. As initial conditions we take 2
moles of water. We take p = 1MPa and T = 2000K. Then the equilibrium constant
K(T) = 0.088Pa'/2. The law of mass action now reads

1/2
XHszz _ p—l/ZK(T)
XH,0

To solve this scalar equation, we have to introduce a reaction coordinate AN. Then
Np,0 =2 — AN, Ny, = AN, Np, = AN/2

and thus
Yo = 2—- AN N AN Yo, = AN/2
2 24+AN/2"7% 24 AN/2"7* 24AN/2
If we insert this into the law of mass action, we get a polynomial equation that we
cannot solve easily:

(AN)3/2
V2(2 — AN)(2 + AN /2)1/2

=p ' 2K(T)

A numerical solution however is easy to get:
xH,0 = 0.996, xy, = 0.003, xp, = 0.001

Thus the reaction is very much on the side of the water. Decreasing pressure pushes it
slightly away from there, but not much. In fact this reaction has AGy = +237k]/mol
and therefore does not occur spontaneously.

Mass action kinetics

In (bio)chemistry, one often wants to understand also the time-dependance of the chem-
ical reaction. If the reaction is determined mainly by collisions, then this is easy. Con-
sider the bimolecular reaction

A+B=C

with a forward rate constant k. (also called on-rate or association rate) and a backward
rate constant k_ (also called off-rate or dissociation rate). Assuming a homogeneous
mixture (no spatial effects), we write the ordinary differential equation

dA .

— =k_C—kiAB

dt *
The gain term results from a simple "radioactive" decay and the loss term results from a
collision between one A- and one B-molecule. At equilibrium, dA/dt = 0 and therefore

ng o ki 1

pu— :K —_ —
AgBey k- T Kp

196



where we have defined the association constant K4 and its inverse, the dissociation
constant Kp. Obviously we have recovered the law of mass action and K4 = K(T, p)
(except for the different dimensions, here we use concentrations and above we used
mole fractions for the left hand side). Note that the dimensions of k_ and k, are 1/s
and 1/ (smol), respectively, such that the dimension of Kp is mol.

We next note that A + C = const = Ag and therefore we have

(AO - Ceq>Beq

Kp =
D Cor

= Ceq = Ap
Interestingly, this law has the same form as the Langmuir isotherm discussed with the
grandcanonical ensemble (number of adsorbed particles as a function of pressure). We
conclude that we reach half binding (Coy = Ag/2) if B,; = Kp. Therefore Kp is a
measure for how strong the two partners react: the smaller Kp, the weaker dissociation
compared to association and the less B, is required to achieve the same amount of
binding (high affinity).

It is important to note that thermodynamics (the law of mass action) only makes a
equilibrium statement and that mass action kinetics is only valid if the reaction is de-
termined mainly be collisions. In fact this argument might not work at all if the reaction
in addition has to cross some transition state barrier which slows down the time for re-
action. The law of mass action connecting the initial and final states would still be valid,
but the time for this process to occur might be very large. In such cases, one typically
looks for catalysts to speed up the reaction (e.g. iron in the case of the famous Haber-
Bosch-synthesis of ammonia, which in addition uses very high pressure; living systems
have evolved enzymes for this purpose).

A small value of Kp also means that there is a large gain in Gibbs free energy G during
the course of the reaction. For one mole of ideal gas, we have

Gi = Gio(T,P) + RTlnxi
= AG =) ;G = AGo+ RTIn (] [x;") = AGo+ RTInK

At equilibrium, AG = 0 and therefore
AGy = RTInKp ,Kp = eACGo/RT

The more negative AGy, the smaller Kp and the stronger the reaction is driven to the
right.

Living systems have singled out a few central biochemical reactions that have a very
high gain in Gibbs free energy and therefore those are used to drive other reactions.
The two most important examples are:

@ oxidation of food (glucose): CoH1206 + 602 = 6CO2 +6H,0 has AGy = —2890k] /mol.
This is the gradient which essentially drives our metabolism. If you use divide by
Avogadro’s number and the usual value for k3T, you see that this free energy gain
is around 1000 kgT per molecule, which is huge and only possible because gly-
cose is a complicated molecule with many bonds. In fact metabolism uses many
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enzymes to completely digest glycose (part of this is the famous Krebs cycle) and
to get as much free energy out of it as possible.

@ ATP-hydrolysis: ATP = ADP + P; has AGy = —35k]/mol. Per molecule, this is
around 10 kg T, which is a large amount for such a small molecule in which basi-
cally only one bond is cleaved. As this was not enough, nature makes sure that
this reaction is very favorable by additionally keeping the relevant concentrations
out of equilibrium: with ATP = P; = mM and ADP = 10uM, we have

ADP P;

—60k] /mol

thus the reaction becomes even more favorable (here 1M is used as reference con-
centration). ATP-hydrolysis drives many processes in our cells, including the
movement of our muscle.
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9 Non-equilibrium statistical physics

We consider the simplest case for a microscopic dynamics: a spherical particle in aque-
ous solution (compare Fig.[9.T). Collisions with the water molecules keep it in continu-
ous motion. Obviously this is an effect of finite temperature. How can we describe this
‘Brownian motion’?

Figure 9.1: A spherical particle of radius R in a fluid with viscosity 7 and temperature
T is performing a ‘Brownian random walk’.

For simplicity we work in one dimension. Newton’s second law yields a differential
equation:

mi =mov= —(v
N~ N~
inertial force friction force

where ¢ is the friction coefficient. The solution to the equation describes an exponential
decay:

. m
o(t) =vg et withty = 7
and hence over time the particle comes to rest, which is not what we observe.
By adding a random force continuously kicking the particle we arrive at the ‘Langevin
equation”:
mo = —¢v+on(t)

o is the amplitude of the thermal noise and 7 describes Gaussian white noise which
obeys:
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The formal solution is given by:

t
o(t) = e/t (vo —i—/o ds es/toiiy(s))
= (v(t)) = voe P
{v(t)o(t')) = vfe” 3 + ~ / ds/ ds’ o 25 (s —s')

= [, ds 2e%/f0 =t (e*/f0-1)

_ =t 0'2 0'2 /
S (g B Lo

The random kicks from the environment keep the particle in motion.

Equipartition theorem:
1
—m(v*) = EkBT

= |0? =¢kT| fluctuation-dissipation theorem

The noise amplitude ¢ (fluctuations) is related to the friction coefficient (dissipation)
through temperature. The higher T, the stronger the noise.

For t > ty, we can neglect inertia:
= Gu=on(t) =¢x
1 gt
= x(t) = x0+€/ dt'on(t")
0

<(x(t) —x0)2> - gz/ot dr' /Ot dt" 2025 (¢ — ")

1
— ?20215 LoDt

Here we identified the diffusion constant D from the one dimensional random walk.

2
o kgT . ) .
= — B2 Einstein relation
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If we use for the friction coefficient Stoke’s law from hydrodynamics, ¢ = 67ryR with
viscosity 7 we get:

" keT
~ 6mR

Stokes-Einstein relation

The Langevin equation is a ‘stochastic differential equation” and requires ‘stochastic calcu-
lus’. Alternatively one can derive an equation for the probability p (x, t) to be at position
x at time t starting from the Langevin equation:

&% = F(x) + on(t)

> Pt) = =30 (Fp(x, 1) + Dp(, 1

diffusion

drift

This is the Fokker-Planck or Smoluchovski equation. It can be written as a continuity
equation

p+9:J =0
with probability current
1
J= EF p— Dop
In the case of detailed balance:
=0
1
Oxp F
= =0dy Inp=—
p P~

Here we used the definition F = —V’ of the potential in the second and the Einstein
relation in the last step.

We note that the Boltzmann distribution arises as stationary solution of the Fokker-
Planck equation.
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10 Appendix: some useful relations
between partial derivatives

We consider a function f(x,y,z) of three variables, which is a typical situation in sta-
tistical physics and thermodynamics. We write its total differential and then keep it
constant:

of of of !
df = ==| dx+=| dy+==| dz=0
ox vz Wy, 0z oy
Now in addition we keep z constant and divide by dx to get
)
o | |
dox ” ay vz dx £z
We rearrange to get
of
al ox Yz
ox|,, o
& W |y

We repeat the same procedure, but now we divide not by dx, but by dy to get

o= . e
X Yz Y fz Y X,z
thus

af

ox| Wy,
AWyl,,
frz 3

) Yz

Comparing the two boxed results, we conclude

-1
_ (%
fz \ 9%z

Repeating the first procedure from above, we find two more analogous relations to the
tirst boxed relation:

ax
dy

af
oz _ My
)
ox |y, %
X,y
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of
9z| Wl
P
ayf,x %

Xy
Combining these three equations and using the relation with the inverse gives

ax
Iy

0z

i ox

dy

— -1
2 0z

fy

f

All the relations given here find frequent applications in statistical physics and thermo-
dynamics.
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