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Abstract

This article shows how the fracture energy of concrete, as well as other fracture parameters such as the effective length of the fracture

process zone, critical crack-tip opening displacement and the fracture toughness, can be approximately predicted from the standard

compression strength, maximum aggregate size, water–cement ratio, and aggregate type (river or crushed). A database, consisting of 238

test data, is extracted from the literature and tabulated, and approximate mean prediction formulae calibrated by this very large data set are

developed. A distinction is made between (a) the fracture energy, Gf, corresponding to the area under the initial tangent of the softening

stress–separation curve of cohesive crack model, which governs the maximum loads of structures and is obtained by the size effect method

(SEM) or related methods (Jenq–Shah two-parameter method and Karihaloo’s effective crack model, ECM) and (b) the fracture energy, GF,

corresponding to the area under the complete stress–separation curve, which governs large postpeak deflections of structures and is

obtained by the work-of-fracture method (WFM) proposed for concrete by Hillerborg. The coefficients of variation of the errors in the

prediction formulae compared to the test data are calculated; they are 17.8% for Gf and 29.9% for GF, the latter being 1.67 times higher than

the former. Although the errors of the prediction formulae taking into account the differences among different concretes doubtless contribute

significantly to the high values of these coefficients of variation, there is no reason for a bias of the statistics in favor of Gf or GF. Thus, the

statistics indicate that the fracture energy based on the measurements in the maximum load region is much less uncertain than that based on

the measurement of the tail of the postpeak load–deflection curve. While both Gf and GF are needed for accurate structural analysis, it

follows that if the testing standard should measure, for the sake of simplicity, only one of these two fracture energies, then Gf is preferable.

D 2002 Elsevier Science Ltd. All rights reserved.
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1. Problem faced and its history

After a quarter century of intense research, it has now

become clear that the use of fracture mechanics can yield

safer and more efficient design against all kinds of brittle

failures of concrete structures. This conclusion is now

supported by extensive analytical studies and numerous

scaled-down laboratory tests, as well as a few full-scale

field tests. The importance of adopting fracture mechanics is

underscored by recent studies of some well-known struc-

tural catastrophes. A few examples deserve to be noted:

1. The toppling of the Hanshin Viaduct in Kobe during

the Hyogo-Ken Nambu earthquake in 1995 was

caused primarily by softening fracture at the com-

pression side due to bending of massive columns.

Although the primary cause of collapse was insuf-

ficient confining reinforcement, the size effect was

a major contributing factor, causing the nominal

strength in compression fracture of the columns

subjected to bending to be about 38% less than the

standard compression strength determined on the

basis of standard size test cylinders. Similar observa-

tions can be made about various bridge columns that

failed in the Northridge earthquake in Los Angeles

in 1994.

2. The failure of the Cypress Viaduct in Oakland, CA,

during the 1989 Loma Prieta earthquake. Although the

primary cause of failure was again insufficient con-

fining reinforcement, the size effect must have reduced
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the nominal strength of concrete failing in compres-

sion to 30% less than the value assumed in design.

3. The failure of the Malpasset Arch Dam in the French

Maritime Alps in 1959. Although the main cause was

excessive movement of rock in left abutment, the size

effect on bending fracture of plain concrete caused the

maximum tolerable movement to be about 55% less

than the prediction on the basis of laboratory strength

tests. A similar observation can be made about the

failure of San Francis dam near Los Angeles in 1928.

4. The failure of Schoharie Creek Bridge on New York

Thruway, which was caused by fracture of a foundation

plinth during a flood in 1987. Although the main cause

was an unexpected scouring of the river bottom, the

size effect on bending fracture of plain concrete caused

the nominal tensile strength of the unreinforced plinth

to be about 46% less than the tensile strength deter-

mined in standard laboratory tests.

5. The sudden explosive failure of Sleipner A oil plat-

form in 1991 during submergence test in a Norwe-

gian fjord—a disaster with no loss of life, but a cost

of about US$300 million, which was caused by

diagonal shear failure of a very thick tri-cell wall.

Although the layout of the reinforcement was incor-

rect and the elastic finite element analysis had an

error of about 40%, it has been estimated that the size

effect decreased the nominal shear strength by

about 34%.

Although fracture mechanics was originated by Griffith

already in 1921, for half a century, it was considered

inapplicable to concrete. This is not surprising because a

very different fracture mechanics theory is needed for

concrete than for homogeneous structural materials such

as fatigued steel or ceramics. The study of fracture mechan-

ics of concrete originated in 1961 with Kaplan [53]. Kesler

et al. [57] concluded in 1971 that the classical linear elastic

fracture mechanics (LEFM), with only one fracture para-

meter, the fracture energy Gf (or the fracture toughness Kc),

was inapplicable to concrete. At least two fracture param-

eters are required. This transpired in 1976 from the studies

of smeared-cracking finite element models [6] and notched

fracture tests [46] (also Ref. [43]), and was recognized in the

development of the crack band model [6,21], in which the

fracture properties are characterized by the average slope of

the postpeak strain softening tied to a certain characteristic

width of the crack band front (which together imply a

certain fixed value of fracture energy Gf).

A major step was made by Hillerborg et al. [46] who

introduced to concrete the cohesive (or fictitious) crack

model, in which the initial slope of the softening stress–

separation curve or the area under the curve, together with the

tensile strength, implies two independent basic fracture

parameters of the material. Two parameters were subse-

quently used in Karihaloo and Nallathambi’s [54–56,67]

effective crack model (ECM) and in Jenq and Shah’s ‘‘two-

parameter model’’ (TPM) [51]

Practically, the most important attribute of fracture

mechanics of concrete is the size effect. Although in the

solid mechanics and structural design communities it was

widely believed until the mid-1980s that all the size effects

were of statistical origin, and should therefore be relegated

to statisticians, Leicester in 1969 [58] suggested the idea

that the size effect in concrete may originate from fracture

mechanics. Walsh in 1972 [89] demonstrated experiment-

ally that similar notched concrete specimens with similar

large cracks or notches exhibited a strong size effect that

was transitional between the case of no size effect for small

sizes and the case of LEFM size effect for large sizes.

The source of the size effect was recognized to be the

softening damage of the material in a large fracture process

zone. Failures caused by fracture were numerically simu-

lated with the crack band model [6,21], and were described

in 1984 [7] by a simple size effect formula, justified by

asymptotic arguments. Subsequently it was shown that the

knowledge of the size effect law implies the fracture

characteristics. If the classical size effect law [7] is fit to

the maximum load data (which is adequate for a size range

only up to about 1:30), two fracture characteristics can be

determined—the fracture energy and the effective length of

the fracture process zone [22]. The latter was later shown to

be related to the critical crack-tip opening displacement used

in TPM [16]. Asymptotic analysis further showed that the

fracture model based on the size effect law and the Jenq–

Shah’s TPM give about the same size effect and, therefore,

are approximately equivalent [9,23,70]. Likewise, ECM was

shown to be approximately equivalent to TPM, and thus to

the size effect model. The reason that these three models

yield similar results is that all the measurements are con-

ducted at or near the maximum load.

The fracture energy normally associated with the cohesive

crack model, GF, is different from Gf. It is determined as the

area under the entire measured load–deflection curve,

divided by the ligament area. The GF values obtained by

this method, called the work-of-fracture method (WFM), are

quite sensitive to the specimen size and shape, although this

might perhaps be avoided by very careful evaluation of the

tail of the load–displacement curve and of all the energy

dissipation sources in the test (see Guinea et al. [40]). On the

other hand, fracture energy Gf determined by the size effect

method (SEM) is, by definition, independent of the structure

size as well as geometry [22,23]. Significant changes in the

testing size range will nevertheless affect theGf value obtain-

ed (this could in principle be avoided by using the broad-

range size effect law, with a series of fracture energies [13].

While GF corresponds to the area under the complete

softening stress–separation curve of the cohesive crack

model, the fracture energy of the size effect model denoted

as Gf, corresponds to the area under the initial tangent of the

stress–separation curve (Fig. 1). Planas and Elices [74]

estimated GF/Gf� 2.0–2.5 (see also Ref. [23]). It was also

realized that these two fracture energy definitions are

appropriate for different objectives—Gf is suitable and
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entirely sufficient for predicting the maximum loads of

structures (as well as the load–deflection curves up to the

peak), while GF is suitable and necessary for calculating the

energy dissipation in total failure of structures and for

determining the tail of the postpeak softening load–dis-

placement diagram of a structure [14].

Since the test results from different laboratories, based on

different fracture specimens and different methods, exhibit

very large scatter, it has widely been considered futile to

attempt predicting the fracture energy of concrete and other

fracture characteristics from the mix parameters and the

strength, bypassing the tests of notched fracture specimens.

Several previous attempts to set up such formulae, admit-

tedly rather crude, have nevertheless been made, as

described in Appendix B. However, these older formulae

have been based on a much more limited set of test data than

those that can today be collected from the literature.

The database acquired in concrete fracture testing world-

wide has by now become enormous. Thus, the time seems

ripe for the goal of this study—evaluate all these data

statistically in order to determine whether an improved

formula for fracture energy could be formulated, and

whether an additional formula (apparently not yet attemp-

ted) to predict the second parameter of quasibrittle fracture,

such as the fracture process zone size, could be developed.

While it is clear that estimation of fracture parameters from

nonfracture tests can never replace fracture testing of

notched specimens, an improved formula with a known

standard deviation can nevertheless serve a useful purpose

for preliminary design and for approximate analysis of

structures with not too high fracture sensitivity.

2. Choice of prediction formulae

The fracture energy Gf (or GF) and the effective length of

fracture process zone, cf, may be expected to be related to

the basic simple characteristics of concrete by equations of

the type:

where f and y are certain functions, da is the maximum

aggregate size, w/c is the water–cement ratio (by weight),

E is the Young’s modulus, r is the unit weight of concrete,

and fc
0 is the mean value of standard 28-day cylindrical

compression strength, based on cylinders 6 in. (15 cm) in

diameter and 12 in. (30 cm) in length (for some of the tests

included in the statistical evaluation discussed later, the

cubic compression strength was reported; its value was

converted to the cylindrical strength using the standard

approximate formula).

The parameters in Eq. (1) may be grouped into the

following dimensionless parameters (Eq. (2)):

rda=f 0c ; E=f 0c ; EGf=f
0
c
2da; f 0c=rda; GF=Eda;

GF=f
0
cda; GF=rd2a ; cf=da; cfr=f 0c ; cf r=E: ð2Þ

According to Buckingham’s theorem of dimensional

analysis, any physical phenomenon must, in theory, be

reducible to an equation in terms of dimensionless

parameters whose number is equal to the total number of

parameters, which is six in each of these equations, minus

the number of parameters with independent dimensions,

which is two (length and stress). Thus, only four of the

aforementioned dimensionless ratios are, in theory, allowed

to appear in the prediction equations for Gf and cf. A

number of simple relations of this kind have been

formulated and compared to the existing test data. However,

clear statistical trends could not be detected.

It must, therefore, be concluded that the six parameters

listed in functions f and y are insufficient to characterize

the relationship fully. This means that the Buckingham

theorem cannot be applied and some of the parameters

may thus have physical dimensions. As we will see, aside

from three dimensionless parameters a1, a2, and a3, we will

need two additional parameters with physical dimensions.

We will also drop parameter E, because it is strongly related

to fc
0, which in turn is strongly related to w/c. Further, we

will drop parameter r—not because it would be insignificant

but because the vast majority of the existing data pertains to

normal-weight concretes. Thus, we will seek Gf and cf as

empirical functions of fc
0, da, and w/c, to which we will add

parameter a0 depending on the type of aggregate—crushed

or river aggregate (see Appendix A).

It might seem that the tensile strength ft
0, the modulus of

rupture fr, or the Brazilian split-cylinder strength fsc would

be better parameters than fc
0. However, measurement of the

direct tensile strength is difficult and more sensitive to

statistical size effect than fc
0, while the modulus of rupture

is subject to a strong deterministic and statistical size effects

[19]. As for fsc, one might suspect it to be unduly influenced

by large compressive stress parallel to the splitting plane and

by frictional plastic deformation near the contact with the

loading strips, although this has not been proven. Besides, a

greater obstacle is that only very few of the reports on

fracture tests in the literature give information on the values

Fig. 1. Softening stress–separation curve of cohesive crack model and areas

representing Gf and GF.

fðGf ; f
0
c ; da;w=c;E; rÞ ¼ 0 and

yðcf ; f 0c ; da;w=c;E; rÞ ¼ 0 ð1Þ
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of these parameters, rendering a systematic calibration of a

formula with these parameters impossible. Similarly, many

of the fracture data unfortunately miss the measurement of

E, which is another reason for omitting that parameter.

In the case of cf, the main influencing parameters might

of course be different than in the case of Gf. Other

parameters such as the air content, aggregate–sand ratio,

grain size distribution, porosity, relative strength and stiff-

ness of the aggregates, etc., might seem more appropriate to

predict cf. Nevertheless, these parameters could not be

considered, not only for cf but also for Gf, due to lack of

information in the published reports on the tests.

The formula should preferably be such that, among the

chosen parameters, as many as possible should be identifiable

from the test data by linear regression. The simplest relation-

ship of this type would beGf�a1fc
0+a2da +a3(w/c) +a4, in

which ai (i = 1, 2, . . .) are the parameters of the prediction

formula. However, this form is unsuitable because an exten-

sion of the range could give negative values of Gf.

Therefore, it is preferable to seek a linear formula in

logarithmic coordinates, having the general form log

Gf�a1 log fc
0 +a2 log da +a3 log (w/c) + log a4 or Gf�a4

fc
0a1da

a2(w/c)a3, which is also identifiable by linear regres-

sion. One advantage is that such a formula automatically

precludes negative values of Gf. Further refinements,

though, are needed. When da! 0, which is the case of pure

hardened cement paste, the formula should give Gf > 0.

Therefore, da is replaced by 1 + da/a5. Thus, we are led to

the following prediction formula:

Gf ¼ a0

f 0c
a4

� �a1

1þ da

a5

� �a2 w

c

� �a3

: ð3Þ

Parametersa4,a5, anda0 are introduced here so as to have the

dimensions of stress (MPa), length (mm), and fracture energy

(N/m or J/m2), respectively. Parameter a0 is also used to

distinguish between crushed and river aggregates. Parameter

a3 is expected to be negative because a decrease of w/c

increases strength. As for GF, a similar formula is assumed.

By analogous arguments, a similar formula is also

assumed for the effective length of the fracture process zone.

Parameters a0 and a4 in Eq. (3) could of course be

combined into a single parameter, assuming different values

for different aggregate types. It is solely for convenience of

dimensions to keep these two parameters separate. Parame-

ters a0, a1, a2, a3, and a4 are obtainable by linear regression

of logGf, but inevitably parametera5 is involved nonlinearly.

The objective function (merit function) to be minimized

by fitting the test data is chosen as

c2 ¼
XN
i¼1

Gtest
f i

� Gf i

h i2
¼ min ð4Þ

in which subscript i labels the individual data values

measured in tests in various laboratories by various

investigators.

As an alternative, the objective functionsc2 ¼
P

i½ðGtest
f =

Gf Þi � 1
2 and c2 ¼
P

i½logðGtest
f =Gf Þi


2
were also consid-

ered. These functions give greater weights to smaller Gfi

than does Eq. (4). Similar objective functions were assumed

for GF and cf. However, the results obtained with these

alternative objective functions were worse than those

obtained with Eq. (4).

Compared toGf, the values of cf are much more uncertain.

Since the objective function in the form of Eq. (4) is logically

associated with the assumption of a normal distribution, the

fact that the standard deviation of cf is particularly large

would mean that negative values of cf would have a non-

negligible probability if a normal distribution of cf were

assumed. This is documented in Fig. 2, which shows the

normal distributions calibrated in the sequel by the available

data sets for fracture energy (Gf) (see Sets I, II, and III

defined later) and the data set for effective length of the

critical crack extension (cf). Indeed, the values of the

distribution on the negative side are seen to be negligible

for Gf, but not for cf. Therefore, we better assume cf to follow

a lognormal distribution and introduce formula (5):

logcf ¼ g0
f 0c
g4

� �g1

1þ da

g5

� �g2 w

c

� �g3
: ð5Þ

Similar to parameter ai, parameters g0, g1, g2, g3, and g4 are

obtainable by linear regression, while parameter g5 is

involved nonlinearly. For cf, we take the objective function:

c2 ¼
XN
i¼1

logðctestf i Þ � logðcf iÞ
	 
2¼ min; ð6Þ

which is logically associated with the assumption of a

lognormal distribution of cf (the ‘‘log’’ here is considered as

the decadic logarithm).

As will be seen, the coefficient of variation of cf can be

very large. But that does not cause the prediction of cf to be

useless because what matters in practical calculations is

mainly the order of magnitude of cf, and not so much the

precise value. This corresponds to the fact that the size effect

plot descends with an increasing slope in the logarithmic

scale but with a rapidly diminishing slope in the linear scale.

Linear regression for parameters a1, a2, a3, a4, and a0

may seem to imply the objective function to be the sum of

squared differences in the logarithms. But this turns out not

to be the best assumption, as already mentioned. For this

reason, and because parameter a5 cannot be identified by

linear regression, the objective functions (4) and (6) are used

in nonlinear optimization of all the available test data. The

standard library subroutine for the Levenberg–Marquardt

optimization algorithm has been employed for this purpose.

3. Statistical analysis of fracture test data

The prediction formulae need to be evaluated by statist-

ical comparison to essentially all the relevant test data that
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exist [1–93] and statistics of their errors determined. One

problem with the database existing in the literature is that

different investigators used different methods to determine

the fracture parameters (the fact that specimens of different

sizes and shapes were used is ignored because the results of

a good testing procedure, presumably, should not depend on

these factors, and if they do there is anyway insufficient

information for compensating).

The older tests (from 1961 until about 1980) were

intended for evaluation by the LEFM, which is inadequate,

and therefore the results of these tests could not be used.

The following four methods, representing the main testing

methods, will be considered:

1. The WFM, which was proposed for concrete by

Hillerborg [44,45].

2. The SEM [24,79], based on size effect law [7].

3. The Jenq–Shah method based on their TPM [50,78].

4. Karihaloo and Nallathambi’s [54–56,66] ECM

(which is not a general model but is formulated only

for notched beam specimens).

Because, as already mentioned, SEM, TPM, and ECM give

essentially equivalent results, and because the fracture

parameters of SEM can be easily transformed to the fracture

parameters of TPM and vice versa [16,23], all the test data

obtained by these three methods are grouped into the first

set, which comprises 77 data (Set I). The fracture toughness

(Kc) measured by TPM or ECM has been transformed to

SEM fracture energy (Gf) (Fig. 1) according to the well-

known relation:

Gf ¼ K2
c =E

0: ð7Þ

Because the critical crack-tip opening displacement

dCTOD=(32Gfcf/E
0p)1/2 (see Eq. (13)) [16,9], in which, for

plane strain, E0 =E/(1� n2), n= Poisson ratio. The measured

dCTOD values obtained by TPM were transformed to the

SEM parameter cf by relation (8):

cf ¼
pE0

32Gf

d2CTOD: ð8Þ

As recently established, SEM, as well as TPM and ECM,

gives the fracture energy value representing the area under

the initial tangent of the softening stress–separation

diagram of the cohesive crack model (or the area under

the analogous stress–strain diagram of the crack band

model multiplied by the crack bandwidth) (see Fig. 1). The

statistical analysis is first conducted using only the data

from SEM, TPM, and ECM. The value of E0 needed for

these calculations was reported by only a few experiment-

ers. In the other cases, this value was estimated from the

Fig. 2. Normal distributions resulting from fitting of the test data acquired, for fracture energy, from: (a) SEM, TPM, and ECM (Set I); (b) work-of-fracture

(Set II); and (c) SEM, TPM, ECM, and work-of-fracture combined (Set III); and for critical effective crack extension cf, from (d) SEM and TPM.
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reported compressive strength ( fc
0) using the approximate

ACI equation. Since this equation uses the cylindrical

strength and some experimenters reported the cubical

strength, the well-known approximate relation between the

cylindrical and cubical strengths had to be used in these

cases. The Poisson ratio, which slightly affects E0, was taken

as 0.18 unless reported. The approximation errors of these

equations contribute to the coefficient of variation of the

errors of Gf measured by these methods.

At first thought, one might wonder whether the param-

eters of TPM (Jenq–Shah) and ECM are properly consid-

ered if the fitting is done in terms of Gf and cf. However, as

long as the relations (7) and (8) are accepted, fitting the

values of Kc
2 in terms of the parameters of TPM and ECM

must give the same results. If the fitted variable is Kc (which

is a parameter of TPM), rather than Kc
2, the results would

differ because a different weighting of the data is implied,

but they will not differ by much.

The fracture energy GF determined by WFM corre-

sponds to the area under the entire stress–separation curve,

including its long tail [31] (Fig. 1). This area is much larger

than Gf (see the explanation in Appendix C). Therefore,

the test results obtained by WFM have been considered in

the second statistical analysis as a separate set (Set II), in

which GF was transformed into Gf according to the rela-

tionship [75]:

Gf � 0:4GF: ð9Þ

This is, admittedly, only a crude estimate. In reality, the ratio

Gf/GF of course depends on the shape of the softening curve

[23] and is influenced by the dependence of the measured

GF values on the size and shape of the specimen, reported

by many experimenters. However, no formulae and no clear

trends for such influences are known, and so the constancy

of the ratio GF/Gf is an inevitable simplifying hypothesis.

An important point to note is that the assumption of a fixed

ratio in Eq. (9) does not bias the scatter statistics in favor of

one or another method. If one would do the symmetrical

opposite—convert all the data on Gf to data on GF and then

fit the aggregate of all data in terms of GF, the resulting

coefficient of variation would be exactly the same. Similar

comments can be made in regard to replacing cf by d2CTOD
as the variable used in data fitting.

The third statistical analysis deals with all the data from

SEM, TPM, ECM, and WFM combined into one set

(Set III), with GF being transformed to Gf according to

Eq. (9). Since 77 usable data have been found in the

literature for Set I and 161 data for Set II, one has a total

of 238 data for Set III. Since the GF measurement as well as

the relationship in Eq. (9) is rather uncertain, such a

combined set must be expected to exhibit a large scatter,

which proved to be the case.

In preliminary optimizations of the overall fit of Set III,

the ratio Gf/GF was considered as an additional unknown.

The statistical studies reported here were run for different

assumed values of this ratio and the standard deviations of

errors compared. It was found that indeed the value 0.4

proposed in [75] and used in Eq. (9) is approximately the

optimum value.

The dependence of parameter a0 on the type of aggregate

(crushed or river aggregate) has been determined by consid-

ering a sequence of values a0 = 1, 1.01, 1.02, . . . 1.50 N/m.

The values that provided the best statistics were identified as:

� for river aggregates: a0 = 1 N/m;
� for crushed aggregates:

Set I: a0 = 1.44 N/m,

Set II: a0 = 1.12 N/m,

Set III: a0 = 1.11 N/m.

The shape of the aggregate, unfortunately, is not reported for

many of the data in the literature. When it is not, the

aggregates have been automatically assumed to be smooth

river aggregates, for which, by choice, a0 = 1 N/m.

For the remaining parameters, the following optimal

values have been identified by Levenberg–Marquardt

optimization algorithm:

� Set I: a1 = 0.46, a2 = 0.22, a3 =� 0.30, a4 = 0.051,

a5 = 11.27.
� Set II: a 1 = 0.40,a2 = 0.43, a3 = � 0.18,a4 = 0.058,

a5 = 1.94.
� Set III:a1 = 0.43,a2 = 0.47, a3 =� 0.20,a4 = 0.062,

a5 = 3.95.

After obtaining the optimal values of all the parameters,

the values of the predicted fracture energies (Gf
pred) were

computed for each data set from Eq. (3) and were compared

to the corresponding values Gf
test measured in the test. Then

the diagram of Gf
test versus Gf

pred could be plotted. Such

diagrams are shown for Sets I, II, and III in Fig. 3.

Furthermore, the diagrams of Gf
test/Gf

pred versus Gf
pred

are shown in Fig. 3, showing that the scatter in Sets II

and III is more significant. In order to facilitate compar-

isons, all the statistical plots for GF presented here are

plotted in terms of the scaled values Gf = 0.4GF. This is

possible since the scaling by the factor 0.4 has no effect on

the coefficient of variation.

Although the Levenberg–Marquardt algorithm supplies

statistical characteristics, it is preferable, and clearer for the

user, to determine the statistical characteristics on the basis

of the plots in Fig. 3. To this end, a linear regression is

performed in the plot of Gf
test versus Gf

pred (Fig. 3), and the

coefficient of correlation r between Gf
test and Gf

pred is

calculated. Also calculated is the coefficient of variation

wG of the ratio Gf
test/Gf

pred, which indicates the relative

variation of the measured fracture energy with respect to the

predicted means Gf
pred. Calculations of this type can be

repeated many times until the parameter values that give

either the lowest coefficient of variation of the ratio Gf
test/

Gf
pred or the highest correlation coefficient r are obtained.
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A similar procedure can be followed for cf
pred. The plot

of cf
test versus predicted cf

pred and cf
test/cf

pred versus pre-

dicted cf
pred are shown in Fig. 4a, and the plot of log cf

test

versus the predicted log cf
pred is shown in Fig. 4b. In

practical applications, the lognormal distribution should be

assumed for cf; it is fully characterized by the value of the

standard deviation in the plot in Fig. 4b. The coefficient of

correlation r between cf
test and cf

pred, as well as the coef-

ficient of variation wC of the ratio cf
test/cf

pred, are also

computed and shown on Fig. 4a.

Figs. 3, 5, and 6) show the diagrams of Gf
test versus

Gf
pred and the regression line, which should ideally be a

line of slope 1 passing through the origin. However, since

the objective function used to optimize the parameters was

different from the sum of squared deviation in these plots,

the regression line is slightly different. The plots of Gf
test

and of Gf
test/Gf

pred versus Gf
pred also show the approximate

5% and 95% confidence limits of the vertical deviations of

the data points from the line of slope 1. The approximate

5% and 95% confidence limits for the vertical deviations

from a horizontal line of ordinate 1 are marked in the

diagrams of Gf
test/Gf

pred versus Gf
pred. These confidence

limits have been estimated on the basis of the normal

(Gaussian) distribution, by passing lines parallel to the

regression line at vertical distances ± 2syjx from that line,

syjx being the standard error of the estimate of Gf
test or of

Gf
test/Gf

pred.

Note that the coefficients of variation of the vertical

deviations about the regression line (given in the figures)

are slightly different from those about the line of slope 1

(the line of perfect prediction). The former characterizes

best the statistical scatter while the latter characterizes best

the quality of prediction. The values of the correlation

coefficient r corresponding to the regressions in these plots

are also given in the figures.

Because the statistical scatter of the deviations from the

proposed formulae is quite high, it ought to be taken into

account in design.

4. Discussion of statistics and comparison of fracture

parameters measured by different methods

Interesting is the comparison of the statistics between

Set I (for Gf) and Set II (for GF). As seen from Fig. 3, the

test results for GF with the WFM exhibit a far larger

scatter and a weaker correlation— the coefficient of vari-

ation of predictions of the ratio Gf
test/Gf

pred is wGf = 29.9%,

Fig. 3. Plots of measured versus predicted values of Gf or 0.4GF, obtained for (a) SEM, TPM, and ECM (Set I, 77 data); (b) work-of-fracture (Set II, 161 data);

(c) SEM, TPM, ECM, and work-of-fracture combined (Set III, 238 data). Note: syjx: standard deviation of vertical differences of data from line of slope 1; syj1:

standard deviation of the differences of Gf
test/Gf

pred from 1.
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while that of the ratio GF
test/GF

pred is wGF = 17.8%, which

is 1.67 times smaller (and the correlation coefficient is

61.4% compared to 84.7%).

Compared to the Set II results, another more favorable

feature of the Set I results is that the linear regression of the

plot of the tested versus predicted values gives for Set I a

regression line that passes closer to the origin, and has a

slope closer to 1.0.

The coefficients of variation wG
0 about the regression

line and wG
00 about the line of slope 1 are also computed

and written in Fig. 3. Their values reinforce the obser-

vation that the results obtained with the WFM exhibit a

much higher scatter. Here, wG
0 is computed as the ratio of

the standard error of the estimate about the regression line

over the centroid of test data ordinates, while wG
00 is

computed as the ratio of the standard error of the vertical

deviations from the line of slope 1 to the centroid of the

data ordinates.

The larger uncertainty of predicting GF with the WFM

can conceivably have two explanations: (1) The method,

both the concept and the measurement, may have a higher

degree of uncertainty, or (2) the prediction of the mean of

GF can be more uncertain than the prediction of the mean

of Gf.

At this point, it is not clear which explanation is true. It

seems nevertheless likely that the first explanation is valid at

least to some extent. The reason is that the initial tangent of

the softening stress–separation curve, which defines Gf, can

be identified from measurements with less uncertainty than

the tail of this curve, which has no effect on Gf but a large

effect on GF. Experience from testing suggests that the tail is

highly uncertain, difficult to measure, and more strongly

influenced by the specimen shape [80], size [61], and the

test setup. Nevertheless, further research is needed to decide

this question unambiguously.

The large errors in GF prediction could perhaps be

reduced by including some empirical factors accounting

for the effects of size and shape on the GF, as revealed by

some experiments. But doing that would be tantamount to

admitting that GF is not a material parameter, and thus not

generally usable.

Another question that arises is the sensitivity of Gf or cf
to the various influencing parameters in the prediction

formulae, particularly to fc
0, da, and w/c. To check the

sensitivity, the coefficients of correlation between each

parameter and Gf
test were calculated for Sets I and II, and

the same for cf. For Set I, the coefficient of correlation was

found to be 56.5% for fc
0, 20% for da, and � 37.1% for w/c.

Fig. 4. Plots of measured versus predicted values of cf (left, a) and log (cf) (right, b) (for SEM and TPM).
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So the strongest correlation exists for the compression

strength, a smaller one for the water–cement ratio, and a

still smaller one for the maximum aggregate size. For Set II,

these correlation coefficients were 43.9%, 49.7%, and

� 1.4%, respectively. In the case of cf, the correlation

coefficients were � 10.7%, 73.2%, and 37.7%, respectively.

So there is a very strong correlation between the maximum

aggregate size and cf, while the correlation between the

compressive strength and cf is very weak.

It must be understood, however, that these numbers

would characterize the sensitivity fully only if fc
0, da, and

w/c were independent. In reality, fc
0 and w/c are known to be

strongly correlated. If parameter fc
0 were dropped, then its

place would be taken by w/c, and the correlations would

become much stronger. Such information on the sensitivity

of various parameters may allow a further simplification of

the formula with only a relatively small increase of the

coefficients of variation or the errors.

The effect of omitting either da or w/c from the

prediction formula derived using the data obtained from

SEM and other equivalent methods is seen on Fig. 5. This

effect is not strong, but not negligible either. Fig. 6, on the

left, compares the 161 test data with the prediction formula

recommended in the CEB-FIP model code [29] to the

formula calibrated with Set II (Fig. 6b). The formula

proposed by the CEB-FIP model code takes into account

the compressive strength and the maximum aggregate size

only, whereas the formula developed in the present work

also takes into account the water–cement ratio. The scatter

and the coefficient of variation are higher in Fig. 6a

(wG = 33.3%), although the effect of the water–cement

ratio is not very significant (causing a reduction in the

coefficient of variation by 3.4% only). Nevertheless, since

the formulae are already very simple, no further simpli-

fication, always accompanied by at least some loss of

accuracy, is made.

To make verification of the present results possible, and

to facilitate further statistical studies, Table 1 presents a list

of all the test data used in the present study. This table

includes essentially all the test data that currently exist in the

literature. A list defining the notations used in Table 1 is

found in Table 2.

It might be objected that the present study mixes the

results from many different concretes. This of course

increases the coefficients of variation of the errors of

prediction because the present formulae, taking into account

different compositions and strengths, are only crude empir-

ical approximations. But what would be the alternative?

Fig. 5. Plots of measured versus predicted value of Gf (for Set I) showing the effect of omitting either da (plot b) or w/c (plot c) from the set of parameters (case

a is the plot with all the parameters, same as Fig. 3, shown for comparison).
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Some might prefer the alternative of using in statistical

evaluation the data for only one and the same concrete. But

then, the available data basis would be far smaller. One can

hardly expect that a data set equal to that used here could be

accumulated for one and the same concrete. Even if it were,

if would give statistical information valid only for that

concrete, and it would be hard to infer the statistical

characteristics for other concretes.

Could the mixing of data from different concretes have

introduced a statistical bias in favor of Gf or GF? It could

not. It must have significantly increased the coefficients of

variation, but about equally for both.

If the coefficients of variation of the present prediction

formulae seem too high, it should be noted that the errors of

the best prediction formulae for creep and shrinkage of

concrete have even higher coefficients of variation (which

are 24% for basic creep, 23% for drying creep, and 34% for

shrinkage). However, since the consequences of errors in

fracture parameters affect failure predictions, while errors in

creep and shrinkage do not (creep buckling excepted), the

present formulae should be used for nothing more than (1)

preliminary design estimates or (2) safety evaluations of

structures of low fracture sensitivity.

5. Proposed formulae for mean Gf, cf, GF, and dCTOD

(Eqs. (10), (11), and (12), respectively)

Gf ¼ a0

f 0c
0:051

� �0:46

1þ da

11:27

� �0:22
w

c

� ��0:30
;

wGf
¼ 17:8% ð10Þ

cf ¼ exp g0
f 0c

0:022

� ��0:019

1þ da

15:05

� �0:72
w

c

� �0:2
" #

;

wcf ¼ 47:6% ð11Þ

Gf ¼ 2:5a0

f 0c
0:051

� �0:46

1þ da

11:27

� �0:22
w

c

� ��0:30
;

wGF
¼ 29:9% ð12Þ

where a0 = g0 = 1 for rounded aggregates, while a0 = 1.44

and g0 = 1.12 for crushed or angular aggregates; wGf and

Fig. 6. Plots of measured versus predicted values of Gf or GF: (a) CEB-FIP Model Code formulation for Gf (work-of-fracture) (Eq. (15)). (b) Proposed model

calibrated with work-of-fracture data.
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Table 1

References

Test

type

Test

age

fc
0

(MPa)

Ft
0

(MPa)

E

(GPa) w/c

Aggregate

type

da
(mm)

Kc

(MPa m1/2)

dCTODc
(mm)

GF

(N/m)

Gf

(N/m)

cf
(mm)

[1] TPB 29 32.5 0.53 19 1.413

TPB 34.3 33.2 0.53 19 1.759

TPB 26.3 32 0.53 19 1.232

[2] CNR 28 0.37 0.56 101

CNR 28 0.37 0.558 72

[3] CC 52.5 0.5 LI 10 0.61

CC 52.5 0.5 LI 10 0.68

CC 52.5 0.5 LI 10 0.74

[4] CC 28 51.5 0.5 LI 10 0.543

CC 28 51.5 0.5 LI 10 0.458

CC 28 51.5 0.5 LI 10 0.467

CC 28 51.5 0.5 LI 10 0.462

CC 28 51.5 0.5 LI 10 0.526

CC 28 51.5 0.5 LI 10 0.532

CC 28 51.5 0.5 LI 10 0.52

CC 28 51.5 0.5 LI 10 0.452

CC 28 51.5 0.5 LI 10 0.514

CC 28 51.5 0.5 LI 10 0.54

CC 28 51.5 0.5 LI 10 0.52

CC 28 51.5 0.5 LI 10 0.514

CC 28 51.5 0.5 LI 10 0.525

CC 28 51.5 0.5 LI 10 0.57

CC 28 51.5 0.5 LI 10 0.56

CC 28 51.5 0.5 LI 10 0.583

CC 28 51.5 0.5 LI 10 0.547

[5] TPB 36.8 0.53 CM 3.15 0.8935 0.0042

[22] TPB 28 34.1 2.91 27.7 0.6 CL 12.7 40.1

NT 28 29.1 2.69 25.5 0.6 CL 12.7 36.8

EC 28 37.4 3.05 29 0.6 CL 12.7 40.8

TPB 28 48.4 3.47 32.9 0.5 SRS 4.83 22.6

NT 28 46.4 3.39 32.2 0.5 SRS 4.83 20.7

EC 28 48.1 3.45 32.8 0.5 SRS 4.83 23.1

[25] FPB 12.6 2.16 18.6 0.5 9.52 36.3

FPB 16.3 2.45 21.6 0.6 19.1 49

[26] TPB 60.7 33.5 0.44 6 1.141 0.0145

TPB 45.5 31 0.52 12.7 1.475 0.022

TPB 43.4 31 0.52 12.7 1.53 0.0169

[27] TPB 28 33.9 2.92 22.3 0.3 CBA 12.7 0.91 37.2 25.4

TPB 28 30.1 3.16 19.7 0.3 SA 12.7 0.82 34.4 10.4

[28] TPB 56 67.2 4.18 26.3 0.43 CSS 12.7 68.3

TPB 56 50.7 3.58 22.9 0.43 NRS – 22.5

TPB 56 75.2 3.2 19.8 0.43 – – 3.48

TPB 56 54.4 1.39 15.2 0.43 – – 3.4

[30,73] TPB 36.2 24 0.58 20 1.031

TPB 38.3 34.1 0.58 16 1.12

[32] TPB 49.5 3.55 28.4 0.48 58

TPB 45.9 3.11 38.4 0.48 RGRA 10 74

TPB 46.6 3.15 38.7 0.48 RGRA 12.5 91

TPB 43.5 2.62 39.8 0.48 RGRA 20 84

TPB 47.4 3.11 38.6 0.48 RGRA 12.5 93

TPB 44.3 2.91 36.6 0.48 RGRA 20 74

TPB 48.8 3.48 38.3 0.48 CGRA 10 100

TPB 52.4 3.46 38.8 0.48 CGRA 12.5 116

TPB 46.6 2.98 39.6 0.48 CGRA 20 141

TPB 53.5 3.59 38.9 0.48 CGRA 12.5 106

TPB 48.9 3.23 38.6 0.48 CGRA 20 119

[33] 24.8 3.1 20.7 0.7 20 131

23.7 3.03 20.7 0.7 20 112

4.76 15.2 1.19 31.9

[34] TPB 55.5 29.8 0.48 10 1.023

[35] TPB 14 85 37.6 0.35 GRA 9.5 0.949 24 2.6

TPB 14 32.5 27 0.6 GRA 13 0.759 21.4 6.6

(continued on next page)
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Table 1 (continued )

References

Test

type

Test

age

fc
0

(MPa)

Ft
0

(MPa)

E

(GPa) w/c

Aggregate

type

da
(mm)

Kc

(MPa m1/2)

dCTODc
(mm)

GF

(N/m)

Gf

(N/m)

cf
(mm)

[36] TPB 4 64.3 32.7 0.3 CB 12 2.135 139 92

TPB 10 67.5 35.5 0.3 CB 12 2.147 130 80

TPB 31 60.6 36.8 0.3 CB 12 1.758 84.1 38

TPB 231 68.1 38.3 0.3 CB 12 1.591 66 18

[37] TPB 79.3 7 39.1 0.3 – 75

TPB 107 6.2 58.2 0.28 BA 205

TPB 63.5 4.9 38.2 0.3 LI 180

TPB 86.6 5.1 41.4 0.3 GR 195

TPB 78.7 4.3 40.8 0.3 GR 185

TPB 70.8 4.1 40 0.4 GR 175

TPB 22.7 2.3 28.8 0.75 GR 135

TPB 68.2 4.7 56.2 0.3 GRA 150

TPB 72.2 5.2 48.3 0.3 GRA 170

TPB 77.6 5.4 48.4 0.3 CGRA 180

[38] TPB 21(+) 6.52 0.5 FGG 1 0.17

TPB 21(+) 6.27 0.5 FGG 1 0.187

TPB 21(+) 4.98 0.5 FGG 16 0.165

TPB 21(+) 5.6 0.5 FGG 9.5 0.199

TPB 21(+) 3.9 0.5 EC 16 0.87

[42] TPB 129 10.3 51 0.3 DB 16 191

TPB 120 9 39 0.3 GN 16 146

TPB 114 9 42 0.3 GF 16 163

TPB 121 8 41 0.3 GM 16 164

TPB 126 9.5 41 0.3 QS 16 170

TPB 124 41 0.3 Q 16 147

TPB 84 8 44 0.4 DB 16 199

TPB 86 6.1 34 0.4 GN 16 144

TPB 82 7.7 37 0.4 GF 16 163

TPB 93 7.6 36 0.4 GM 16 170

TPB 93 7.2 36 0.4 QS 16 201

TPB 90 36 0.4 Q 16 129

TPB 55 5.4 38 0.55 DB 16 133

TPB 55 7 29 0.55 GN 16 128

TPB 58 6.3 33 0.55 GF 16 193

TPB 57 7 32 0.55 GM 16 130

TPB 57 6.4 31 0.55 QS 16 152

TPB 56 32 0.55 Q 16 128

TPB 126 10.5 49 0.3 DB 16 161

TPB 131 10.6 40 0.3 GN 16 139

TPB 121 10.8 42 0.3 GF 16 192

TPB 129 10.8 42 0.3 GM 16 174

TPB 135 10.2 42 0.3 QS 16 160

TPB 128 42 0.3 Q 16 176

TPB 104 7.8 45 0.4 DB 16 161

TPB 104 7.2 33 0.4 GN 16 154

TPB 102 7.9 38 0.4 GF 16 144

TPB 96 7.9 37 0.4 GM 16 145

TPB 104 8.1 35 0.4 QS 16 154

TPB 101 38 0.4 Q 16 163

[43] FT 7 0.4 QS 3 0.237

FT 7 0.4 QS 3 0.111

FT 7 0.4 GQS 3 0

[45] reported test data from labs

BAM TPB 38 16 93

TPB 37 16 113

ENEL TPB 28 0.48 20 94

TPB 28 0.48 20 88

TPB 28 0.47 10 65

TPB 28 0.47 10 69

TPB 28 0.47 10 70

(continued on next page)
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Table 1 (continued )

References

Test

type

Test

age

fc
0

(MPa)

Ft
0

(MPa)

E

(GPa) w/c

Aggregate

type

da
(mm)

Kc

(MPa m1/2)

dCTODc
(mm)

GF

(N/m)

Gf

(N/m)

cf
(mm)

EPFL TPB 7 0.58 30 87

TPB 7 0.58 30 110

TPB 28 0.58 30 150

TPB 3 0.45 30 170

TPB 7 0.45 30 210

TPB 28 0.45 30 250

TPB 28 0.45 30 320

TPB 28 0.45 30 270

TPB 28 0.45 30 270

ETH TPB 28 0.5 16 141

ISM. TPB 700 25 187

TPB 700 25 192

TPB 700 25 147

TPB 700 25 223

TPB 700 25 324

TPB 700 25 310

TPB 700 120 373

TPB 700 120 467

TPB 700 120 442

TPB 700 120 448

MPA TPB 7 0.4 16 175

TPB 28 0.4 16 161

TU TPB 28 0.6 25 92

UP TPB 28 0.58 20 124

UBC TPB 36 0.38 13 82

TPB 36 0.38 13 83

TPB 36 0.38 13 115

BAM TPB 100 3.02 33.5 0.59 16 179

TPB 100 3.02 33.5 0.59 16 173

TPB 100 3.02 33.5 0.59 16 184

Bol. TPB 100 2.1 24.6 0.5 13 113

TPB 100 2.1 24.6 0.5 13 133

TPB 100 2.1 24.6 0.5 13 113

TPB 100 2.1 24.6 0.5 13 156

TPB 100 2.1 24.6 0.5 13 176

TPB 100 2.1 24.6 0.5 13 170

TPB 100 2.1 24.6 0.5 13 174

TPB 100 2.1 24.6 0.5 13 202

TPB 100 2.1 24.6 0.5 13 164

TPB 100 2.1 24.6 0.5 13 170

TPB 100 2.1 24.6 0.5 13 178

TPB 100 2.1 24.6 0.5 13 170

EPFL TPB 7 3.14 29.6 0.45 30 112

TPB 7 2.43 24.7 0.58 30 81

TPB 7 3.32 22.4 0.5 8 85

TPB 7 3.04 20.4 0.5 3 62

TPB 7 3.55 24.4 0.4 3 79

TPB 7 4.1 26.5 0.4 8 78

TPB 34 3.81 29.1 0.58 30 105

TPB 33 4.27 32.7 0.48 30 120

TPB 30 4.41 35.1 0.4 30 146

La Pl. TPB 30 2.96 33.9 0.48 9.5 99

TPB 30 2.34 31 0.58 9.5 109

TPB 30 1.93 29.9 0.68 9.5 101

TPB 30 3.79 42.2 0.48 19 188

TPB 30 2.45 39.9 0.58 19 200

TPB 30 2.27 35.7 0.68 19 193

MPA TPB 16 3.37 36.7 0.4 16 152

TPB 32 2.34 30.4 0.48 32 168

(continued on next page)

Z.P. Bažant, E. Becq-Giraudon / Cement and Concrete Research 32 (2002) 529–556 541



Table 1 (continued )

References

Test

type

Test

age

fc
0

(MPa)

Ft
0

(MPa)

E

(GPa) w/c

Aggregate

type

da
(mm)

Kc

(MPa m1/2)

dCTODc
(mm)

GF

(N/m)

Gf

(N/m)

cf
(mm)

TH TPB 8 2.9 30 0.5 8 113

TPB 8 4 40 0.34 8 143

TPB 1 4.19 25 0.35 1 94

TPB 3 6.26 25 0.35 3 127

TPB 6 6.08 25 0.35 6 155

TU TPB 25 4.03 26.3 0.4 25 112

BAM TPB 28 0.63 16 91

TPB 28 0.63 16 98

TPB 28 0.63 16 118

TPB 28 0.45 16 114

TPB 28 0.45 16 112

TPB 28 0.45 16 114

TPB 28 0.42 16 113

TPB 28 0.42 16 144

TPB 28 0.42 16 135

ENEL TPB 28 0.47 10 65

TPB 28 0.47 10 58

TPB 28 0.47 10 66

TPB 28 0.47 10 70

TPB 28 0.48 20 90

TPB 28 0.48 20 86

TPB 28 0.48 20 89

TPB 28 0.48 20 99

EPFL TPB 34 0.58 30 100

TPB 34 0.58 30 121

TPB 34 0.58 30 163

TPB 31 0.4 30 130

TPB 31 0.4 30 167

TPB 31 0.4 30 234

Italc. TPB 30 0.48 20 77

TPB 30 0.48 20 105

TPB 30 0.48 20 94

TPB 30 0.35 20 102

TPB 30 0.35 20 160

TPB 30 0.35 20 150

TPB 30 0.33 20 174

TPB 30 0.33 20 218

TPB 30 0.33 20 221

La Pl. TPB 30 0.48 9.5 113

TPB 30 0.47 9.5 151

TPB 30 0.58 9.5 101

TPB 30 0.58 9.5 149

TPB 30 0.68 9.5 95

TPB 30 0.68 9.5 111

LTH TPB 28 0.4 8 112

TPB 28 0.4 8 143

TPB 28 0.4 8 165

TPB 28 0.8 8 122

TPB 28 0.8 8 113

TPB 28 0.8 8 123

TPB 28 0.4 12 91

TPB 28 0.4 12 139

TPB 28 0.4 12 147

TPB 28 0.8 12 64

TPB 28 0.8 12 74

TPB 28 0.8 12 74

MPA TPB 28 0.54 32 142

TPB 28 0.54 32 142

TPB 28 0.54 32 170

TPB 40 0.54 32 137

TPB 28 0.54 2 53

(continued on next page)
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Table 1 (continued )

References

Test

type

Test

age

fc
0

(MPa)

Ft
0

(MPa)

E

(GPa) w/c

Aggregate

type

da
(mm)

Kc

(MPa m1/2)

dCTODc
(mm)

GF

(N/m)

Gf

(N/m)

cf
(mm)

TPB 28 0.54 2 49

TPB 28 0.54 2 44

UP TPB 28 0.58 20 123

TPB 28 0.58 20 132

TPB 28 0.58 20 140

[46] 2.76 22.8 3.99 17.5

[47] TPB 28 31 2.7 32.3 0.54 RhR 32 142

TPB 40 31 2.7 32.3 0.54 RhR 32 170

TPB 28 35 3 25.7 0.54 RhR 2 53

TPB 28 35 3 25.7 0.54 RhR 2 49.3

TPB 40 35 3 25.7 0.54 RhR 2 37.6

[48] TPB 28 (min) 93 3.8 32 0.4 CA 8 1.123 140

TPB 28 (min) 28 2.4 31 0.8 CA 8 0.743 119

TPB 28 (min) 68 3.6 39 0.4 NA 12 1.103 126

TPB 28 (min) 21 2.33 26 0.8 NA 12 0.57 71

[49] TPB 16 (min) 21.8 0.78 12.7 0.865

TPB 49 (min) 24.7 0.78 12.7 1.025

FPB 31 (min) 24.4 0.78 12.7 0.777

FPB 59 (min) 27.9 0.78 12.7 0.854

TPB 44 (min) 51.6 0.5 12.7 0.991

TPB 56 (min) 52.9 0.5 12.7 1.541

FPB 70 (min) 56 0.5 12.7 0.901

FPB 96 (min) 55 0.5 12.7 1.182

[50,51] TPB 90 25.2 2.57 33.6 0.65 19.1 1.09 0.016 35.4

TPB 90 27.2 3.14 25.4 0.65 4.76 0.732 0.0092 21.1

TPB 90 39.4 4.29 32.5 0.45 4.76 0.958 0.0097 28.3

TPB 54.8 4.41 37.3 0.25 4.76 1.059 0.01 30.1

TPB 0.45 0

[52] TPB 110 56.6 0.22 8 2.13 0.0338

[53] FPB 27.9 0.5 – 14.3

TPB 27.9 0.5 – 16.2

FPB 27.9 0.5 – 19.9

TPB 27.9 0.5 – 25.8

FPB 37.7 0.5 CL 19.1 14.5

TPB 37.7 0.5 CL 19.1 17.8

FPB 37.7 0.5 CL 19.1 25.3

TPB 37.7 0.5 CL 19.1 30.9

FPB 2.07 28.9 0.6 QG 19.1 10.7

TPB 2.07 28.9 0.6 QG 19.1 11.4

FPB 2.07 28.9 0.6 QG 19.1 16.6

TPB 2.07 28.9 0.6 QG 19.1 18.7

[55,56] TPB 28 26.8 2.58 24.6 0.77 CB 20 0.992 0.0332

TPB 28 39 3.11 33.8 0.64 CB 20 1.265 0.0263

TPB 28 49.4 3.5 34.7 0.5 CB 20 1.376 0.0261

TPB 28 67.5 4.09 37.2 0.36 CB 20 1.502 0.0242

TPB 28 78.2 4.41 40.3 0.2 CB 20 1.881 0.0262

[59,60] TPB 27 29 3.1 21.7 0.6 GRA 10 72.3

TPB 27 29 3.1 21.7 0.6 GRA 10 79.7

TPB 27 29 3.1 21.7 0.6 GRA 10 85.6

TPB 28 29 3.1 21.7 0.6 GRA 10 70.5

TPB 28 29 3.1 21.7 0.6 GRA 10 75.7

TPB 28 29 3.1 21.7 0.6 GRA 10 72.4

TPB 29 29 3.1 21.7 0.6 GRA 10 83.4

TPB 29 29 3.1 21.7 0.6 GRA 10 75.3

TPB 29 29 3.1 21.7 0.6 GRA 10 68.1

TPB 32 29 3.1 21.7 0.6 GRA 10 68.6

TPB 32 29 3.1 21.7 0.6 GRA 10 84.1

TPB 32 29 3.1 21.7 0.6 GRA 10 79.8

TPB 28 58.9 4.2 24.5 0.4 GRA 10 80.8

TPB 29 58.9 4.2 24.5 0.4 GRA 10 85.3

TPB 32 58.9 4.2 24.5 0.4 GRA 10 69
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References

Test

type

Test

age

fc
0

(MPa)

Ft
0

(MPa)

E

(GPa) w/c

Aggregate

type

da
(mm)

Kc

(MPa m1/2)

dCTODc
(mm)

GF

(N/m)

Gf

(N/m)

cf
(mm)

TPB 33 58.9 4.2 24.5 0.4 GRA 10 74.2

TPB 28 58.9 4.2 24.5 0.4 GRA 10 58.9

TPB 29 58.9 4.2 24.5 0.4 GRA 10 76.9

TPB 32 58.9 4.2 24.5 0.4 GRA 10 60.8

TPB 33 58.9 4.2 24.5 0.4 GRA 10 62.7

TPB 28 58.9 4.2 24.5 0.4 GRA 10 44.9

TPB 29 58.9 4.2 24.5 0.4 GRA 10 43.8

TPB 32 58.9 4.2 24.5 0.4 GRA 10 62.5

TPB 33 58.9 4.2 24.5 0.4 GRA 10 43.6

TPB 28 33.1 3.5 19.7 0.55 GRA 10 76.6

TPB 29 33.1 3.5 19.7 0.55 GRA 10 81.9

TPB 30 33.1 3.5 19.7 0.55 GRA 10 71.6

TPB 32 33.1 3.5 19.7 0.55 GRA 10 59.2

TPB 28 33.1 3.5 19.7 0.55 GRA 10 84.7

TPB 29 33.1 3.5 19.7 0.55 GRA 10 89.5

TPB 30 33.1 3.5 19.7 0.55 GRA 10 90.7

TPB 32 33.1 3.5 19.7 0.55 GRA 10 92.2

[61] TPB 38 48.5 0.38 13 0.42 80.6

TPB 38 48.5 0.38 13 0.41 82.6

TPB 38 48.5 0.38 13 0.61 115

[62] FPB 68 7.32 43.2 0.36 PG 9.53 0.875

[63] TPB 21 46.6 0.48 OS 0.469

TPB 34 56.1 0.45 GRA 9.5 0.757

[64] TPB 0.4

TPB 3 0.5 0.135

TPB 7 0.5 0.151

TPB 0.7

TPB 0.4 GLA 12.7

TPB 7 0.5 GLA 12.7 0.226

TPB 14 0.5 GLA 12.7 0.241

TPB 28 0.5 GLA 12.7 0.256

TPB 0.6 GLA 12.7

[65] TPB 44.3 26.3 0.5 RRG 2 58.4 38.1

TPB 42.1 29.5 0.5 RRG 5 63.3 33.3

TPB 39.9 31.3 0.5 RRG 10 63.2 28.4

TPB 39.9 31.3 0.5 RRG 10 72.3 33.1

TPB 39.9 31.3 0.5 RRG 10 77 33.5

TPB 39.9 31.3 0.5 RRG 10 95.5 35.8

TPB 44.3 26.3 0.5 RRG 2 55.2 36.4

TPB 42.1 29.5 0.5 RRG 5 54.7 34.8

TPB 39.9 31.3 0.5 RRG 10 64.6 34.3

TPB 39.9 31.3 0.5 RRG 14 58.6 32.8

TPB 39.9 31.3 0.5 RRG 14 64.4 32.4

TPB 39.9 31.3 0.5 RRG 14 80 34.5

TPB 39.9 31.3 0.5 RRG 14 97.2 36.9

TPB 44.3 26.3 0.5 RRG 2 61.3 38.7

TPB 42.1 29.5 0.5 RRG 5 61.4 35.4

TPB 39.9 31.3 0.5 RRG 10 65.8 32.8

TPB 39.9 31.3 0.5 RRG 14 73.7 35.7

TPB 37.6 33 0.5 RRG 20 64.4 26.9

TPB 37.6 33 0.5 RRG 20 83.5 28.8

TPB 37.6 33 0.5 RRG 20 93.9 30.5

TPB 37.6 33 0.5 RRG 20 106 32.7

TPB 38.5 34.4 0.5 RRG 20 78 29.9

TPB 34.2 32.6 0.55 RRG 20 69.9 28.8

TPB 28 28.5 0.6 RRG 20 56.7 27.6

TPB 23.8 24 0.65 RRG 20 47.2 23.4

TPB 41.3 33.2 0.5 CRG 20 101 43

TPB 35.8 28.2 0.55 CRG 20 88.3 41

TPB 30.2 23.6 0.6 CRG 20 75.8 39

TPB 24.9 21 0.65 CRG 20 59.2 28.3
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References
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type

Test

age
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0
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0
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da
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dCTODc
(mm)

GF

(N/m)

Gf

(N/m)

cf
(mm)

TPB 38.5 34.4 0.5 RRG 20 69.5 28

TPB 38.5 34.4 0.5 RRG 20 77.1 35.1

TPB 38.5 34.4 0.5 RRG 20 84.6 34

TPB 38.5 34.4 0.5 RRG 20 78.6 35.5

TPB 38.5 34.4 0.5 RRG 20 96.2 39.2

TPB 38.5 34.4 0.5 RRG 20 103 40.4

TPB 38.5 34.4 0.5 RRG 20 111 41

[68] plates 28 4.11 0.6 CL 19.1 0.749

plates 28 4.11 0.6 CL 19.1 0.63

plates 28 4.11 0.6 CL 19.1 0.573

plates 33 4.43 0.6 CL 19.1 0.937

plates 33 4.43 0.6 CL 19.1 0.857

plates 33 4.43 0.6 CL 19.1 0.698

plates 33 4.43 0.6 CL 19.1 0.649

plates 33 4.43 0.6 CL 19.1 0.643

plates 40 4.12 0.6 CL 19.1 1.423

plates 40 4.12 0.6 CL 19.1 1.19

plates 40 4.12 0.6 CL 19.1 1.019

plates 40 4.12 0.6 CL 19.1 0.853

plates 40 4.12 0.6 CL 19.1 0.818

plates 40 4.12 0.6 CL 19.1 0.686

plates 40 4.12 0.6 CL 19.1 0.687

plates 40 4.12 0.6 CL 19.1 0.569

plates 48 0.6 CL 19.1

plates 3 3.17 0.6 CL 9.53 0.461

plates 3 3.17 0.6 CL 9.53 0.497

plates 3 3.17 0.6 CL 9.53 0.508

plates 3 3.17 0.6 CL 9.53 0.542

plates 5 51 2.9 0.6 Q 9.53 0.418

plates 5 51 2.9 0.6 Q 9.53 0.459

plates 5 51 2.9 0.6 Q 9.53 0.494

plates 5 51 2.9 0.6 Q 9.53 0.508

plates 4 46.3 3.81 0.6 CL 19.1 0.505

plates 4 46.3 3.81 0.6 CL 19.1 0.538

plates 4 46.3 3.81 0.6 CL 19.1 0.582

plates 4 46.3 3.81 0.6 CL 19.1 0.559

[69] NC 35 37.9 30.8 0.5 RGRA 9.5 1.237

TPB 35 37.9 30.8 0.5 RGRA 9.5 0.624

NC 35 39.2 31.8 0.5 RGRA 9.5 0.561

TPB 35 39.2 31.8 0.5 RGRA 9.5 0.665

[72] TPB 7 0.6 CQ 8 94.1

TPB 7 0.6 CQ 8 110

TPB 28 30 0.6 CQ 8 101

TPB 28 30 0.6 CQ 8 125

DTT 7 0.6 CQ 8 87.5

DTT 7 0.6 CQ 8 96.2

DTT 28 30 0.6 CQ 8 100

DTT 28 30 0.6 CQ 8 106

TPB 28 53.6 3.8 41.9 0.5 CQ 12 104

TPB 28 43.9 3.45 41.3 0.5 GRA 12 104

TPB 28 59.8 4.55 30 0.5 CL 12 60

TPB 28 19.8 2.2 18.1 0.5 EC 12 38.8

TPB 28 85.9 4.5 48.1 0.3 CQ 12 115

TPB 28 74 4.3 44.4 0.4 CQ 12 119

TPB 28 29.8 2.45 36.3 0.7 CQ 12 81.3

TPB 28 55.9 3.8 43.8 0.5 CQ 12 123

TPB 28 54.4 3.8 41.3 0.5 CQ 12 105

TPB 28 52.7 4 43.1 0.5 CQ 8 101

TPB 28 55.3 3.4 41.9 0.5 CQ 16 111

TPB 2 26.1 1.85 31.3 0.5 CQ 12 82.5
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TPB 7 42.4 3 38.8 0.5 CQ 12 96.3

TPB 91 63 4.25 44.4 0.5 CQ 12 114

[76] TPB 55.8 36.8 0.5 19 1.165 0.0217

TPB 53.1 38.4 0.5 19 1.054 0.0153

TPB 54.4 39.3 0.5 19 1.314 0.0249

TPB 53.1 38.4 0.5 19 1.176 0.0316

TPB 54.4 39.3 0.5 19 1.206 0.0312

[80] CyWS 45 51 3.7 36.6 0.47 SCG 20 68.7

CyWS 150 55 4.5 36 0.48 SCG 12.5 68

CyWS 31 60 4.7 34.2 0.53 SCG 6.3 59.8

CyWS 48 44 3.8 32.5 0.53 SCG 6.3 48.8

CuWS 45 51 3.7 36.6 0.47 SCG 20 87.5

CuWS 150 55 4.5 36 0.48 SCG 12.5 75.9

CuWS 31 60 4.7 34.2 0.53 SCG 6.3 72.7

CuWS 48 44 3.8 32.5 0.53 SCG 6.3 54.9

TDCB 45 51 3.7 36.6 0.47 SCG 20 150

TDCB 150 55 4.5 36 0.48 SCG 12.5 141

TDCB 48 44 3.8 32.5 0.53 SCG 6.3 136

[81] TPB 0.5 GF 9.5 27.5

TPB 0.5 GF 9.5 39.1

TPB 0.5 GF 9.5 53.9

[82] TPB 1 34.5 25.2 0.4 PG 9 0.72 0.0076 20.6 6.94

TPB 3 39.3 25.1 0.4 PG 9 0.826 0.0132 27.2 15.8

TPB 7 37.2 34 0.4 PG 9 1.021 0.0136 30.7 20.1

TPB 14 51.8 39.3 0.4 PG 9 1.208 0.0122 37.1 15.5

TPB 28 55.3 37.4 0.4 PG 9 1.184 0.0143 37.5 20.1

TPB 1 45 26.1 0.29 PG 9 0.978 0.0091 36.7 5.77

TPB 3 57.3 36.6 0.29 PG 9 1.168 0.0107 37.3 11

TPB 7 58.7 37.3 0.29 PG 9 1.175 0.0123 37 15

TPB 14 66.3 36.8 0.29 PG 9 1.346 0.0094 49.3 6.47

TPB 28 87.2 35.7 0.29 PG 9 1.491 0.0116 62.3 7.56

[83] DCB 28 41.3 2.5 41 0.48 GRA 12 1.6

[84,85] TPB 73.3 40.5 0.33 BA 4.76 0.868 18.6

TPB 72 40.1 0.33 GREY 4.76 0.878 19.2

TPB 71.1 39.9 0.53 2.36 0.698 12.2

[86] TPB 28 33.6 27.4 0.52 CL 9.5 0.933 31.8 16.4

EC 28 33.6 27.4 0.52 CL 9.5 1.18 50.1 21

ST 28 31.4 26.5 0.52 CL 12.7 0.841 26.7 12.5

EC 28 31.4 26.5 0.52 CL 12.7 0.908 31.1 15.9

OSB 28 31.4 26.5 0.52 CL 12.7 0.956 34.5 5.6

TPB 28 34.5 27.8 0.52 CL 12.7 1.27 58 22.3

EC 28 0.5 CL 16 0.852 28.1 14.6

[87] TPB 34.5 27.8 0.5 3 0.84 0.0088 25.4

TPB 34.5 27.8 0.5 3 0.882 0.008 28

TPB 34.5 27.8 0.5 3 0.865 0.0047 26.9

[88] TPB 34–42 48.2 4.46 39.7 0.56 CL 10 67.7

TPB 35–43 82.7 6.25 47.2 0.45 CL 10 57.6

TPB 38–44 117 7.69 47.8 0.24 CL 10 53.8

CCS 34–42 48.2 4.46 39.7 0.56 CL 10 58.1

CCS 35–43 82.7 6.25 47.2 0.45 CL 10 46.6

CCS 38–44 117 7.69 47.8 0.24 CL 10 48

CTS 34_42 48.2 4.46 39.7 0.56 CL 10 60.8

CTS 35_43 82.7 6.25 47.2 0.45 CL 10 68.9

CTS 38_44 117 7.69 47.8 0.24 CL –10 53.7

[89] TPB 23.1 5.42 CS 12.5 0.836

TPB 35.4 5.57 CS 12.5 0.951

TPB 14.3 3.91 CS 12.5 0.591

TPB 15.7 3.9 CS 12.5 0.535

TPB 46.8 7.1 CS 12.5 1.072

TPB 32.8 6.15 CS 12.5 0.936

[90] 67.1 5.1 20.7 0.3 6.35 149
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[91] DTB 0.5 161

DTB 0.5 117

DTB 0.5 97.7

[92] TPB 2 3.4 23 0.5 RRG 12.7 80.6

TPB 5 3.25 22 0.5 RRG 12.7 101

TPB 7 3.7 27 0.5 RRG 12.7 89.8

TPB 10 4 30 0.5 RRG 12.7 107

TPB 14 3.4 28.5 0.5 RRG 12.7 111

TPB 21 4 29.5 0.5 RRG 12.7 96.4

TPB 28 4.5 27 0.5 RRG 12.7 113

[93] TPB 1.22 7.77 0.5 AG 9.5 36.8

TPB 2.04 20.7 0.5 AG 9.5 61.3

TPB 4.03 31.9 0.5 AG 9.5 85.8

TPB 7.25 36.6 0.5 AG 9.5 89.4

TPB 22 42 0.5 AG 9.5 98.1

TPB 36 44.6 0.5 AG 9.5 103

TPB 1 3.01 0.5 AG 9.5 29.8

TPB 2 20.7 0.5 AG 9.5 61.3

TPB 4.1 31.9 0.5 AG 9.5 84.1

TPB 10 40.1 0.5 AG 9.5 92.9

TPB 22 42 0.5 AG 9.5 92.9

TPB 38 44.6 0.5 AG 9.5 98.1

TPB 1.1 3.01 0.5 AG 9.5 35

TPB 2.1 20.7 0.5 AG 9.5 57.8

TPB 4 31.9 0.5 AG 9.5 82.3

TPB 9 39.3 0.5 AG 9.5 89.4

TPB 18 42 0.5 AG 9.5 94.6

TPB 36 44.6 0.5 AG 9.5 99.9

TPB 0.5 4.98 0.5 AG 9.5 35

TPB 1.3 18.8 0.5 AG 9.5 64.8

TPB 3.06 25.9 0.5 AG 9.5 87.6

TPB 7.16 36.3 0.5 AG 9.5 92.9

TPB 14 38.3 0.5 AG 9.5 98.1

TPB 28 41.8 0.5 AG 9.5 102

TPB 0.56 4.98 0.5 AG 9.5 38.5

TPB 1.21 18.8 0.5 AG 9.5 59.6

TPB 2.95 25.9 0.5 AG 9.5 84.1

TPB 7.16 36.3 0.5 AG 9.5 91.1

TPB 14 38.3 0.5 AG 9.5 94.6

TPB 28 41.8 0.5 AG 9.5 92.9

TPB 0.65 4.98 0.5 AG 9.5 38.5

TPB 1 18.8 0.5 AG 9.5 66.6

TPB 3 25.9 0.5 AG 9.5 78.8

TPB 7 36.3 0.5 AG 9.5 89.4

TPB 14 38.3 0.5 AG 9.5 94.6

TPB 28 41.8 0.5 AG 9.5 99.9

TPB 0.35 12 0.5 AG 9.5 38.5

TPB 0.56 16.6 0.5 AG 9.5 66.6

TPB 1.07 25.6 0.5 AG 9.5 80.6

TPB 4.03 30.9 0.5 AG 9.5 92.9

TPB 9.5 35.1 0.5 AG 9.5 98.1

TPB 20 37.5 0.5 AG 9.5 99.9

TPB 0.25 12 0.5 AG 9.5 31.5

TPB 1.55 25.6 0.5 AG 9.5 87.6

TPB 4.26 30.9 0.5 AG 9.5 89.4

TPB 9.05 35.1 0.5 AG 9.5 94.6

TPB 20.2 37.5 0.5 AG 9.5 102

TPB 0.29 12 0.5 AG 9.5 38.5

TPB 0.51 16.6 0.5 AG 9.5 64.8

TPB 1.03 25.6 0.5 AG 9.5 80.6

TPB 4.28 30.9 0.5 AG 9.5 87.6
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wGF are the coefficients of variation of the ratios Gf
test/Gf

and GF
test/GF, for which a normal distribution may be

assumed, and wcf is the coefficient of variation of cf
test/cf, for

which a lognormal distribution should be assumed (wcf is

approximately equal to the standard deviation of ln cf). The

mean critical crack-tip opening displacement is then

predicted as

dCTOD ¼
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
32

p
Gfcf

E0

r
: ð13Þ

It cannot be overemphasized that these simple formulae

are intended only for preliminary design and for the

analysis of structures with a low fracture sensitivity. Impor-

tant and sensitive structures, though, should always be

checked by finite element analysis based on fracture tests

of notched specimens.

6. Comparison of statistical distributions of errors

Fig. 2 shows the probability density distributions of Gf

and cf for Sets I, II, and III, under the initial assumption that

these data sets follow the normal distribution. To decide

which distribution is best, it is better to consider the

cumulative probability distributions and plot them on the

so-called probability papers, i.e., papers that have the scales

Table 1 (continued )

References
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E
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(mm)

TPB 9 35.1 0.5 AG 9.5 94.6

TPB 23 38.2 0.5 AG 9.5 98.1

[94] TPB 0.5 1.65 0.53 SRG 19.1 0.157 0.9

TPB 1 4.9 0.53 SRG 19.1 0.556 4

TPB 7 14.3 0.53 SRG 19.1 0.636 5.3

TPB 21 21.2 0.53 SRG 19.1 0.844 10.7

TPB 28 21.4 0.53 SRG 19.1 0.928 16.3

TPB 1 0.53 SRG 19.1 0.757 35.8

TPB 1 0.51 SRG 38.1 0.761 38.4

TPB 1 0.41 SRG 38.1 1.08 85.1

TPB 1 0.6 SRG* 19.1 0.67 9.1

TPB 1 0.6 SRG* 19.1 0.806 49.5

TPB 1 0.42 CL 19.1 1.56 121

TPB 1 0.44 CL 38.1 1.84 229

TPB 1 0.46 CL 38.1 1.03 90.7

TPB 1 0.46 DM 38.1 0.95 56.4

TPB 1 0.39 SRG 25.4 0.788 50.3

TPB 1 0.39 SRG 38.1 0.755 14.2

TPB 1 0.39 CL 0.909 33.3

Table 2

Notations in Table 1

Test type

CC compact compression DTB double torsion beam NT edge-notched tension

CNR bent circumference notched round bar DTT direct tension OSB one-size beam

CT compact tension EC eccentric compression Plates notched plates

CuWS cubical wedge splitting FPB four-point bend ST split-tension

CyWS cylindrical wedge splitting FT flexural tension TDCB tapered double-cantilever beam

DCB double cantilever beam NC notched cylinder TPB three-point bend

Aggregate type

AG angular granite EC expanded clay PG pea gravel

BA basalt FGG fine-grained gabbro Q quartzite

CA crushed aggregate GF fine-grained granite QG quartzite gravel

CB crushed basalt GLA glacial deposit gravel QS quartz sand

CBA cold-bonded aggregate GM medium grained granite RGRA river gravel

CGRA crushed gravel GN gneiss RhR Rhine river sand and gravel

CL crushed limestone GQS greased quartz sand RRG rounded river gravel

CM crushed marble GR granite SA sintered gravel

CQ crushed quartzite GRA gravel SCG siliceous–calcareous gravel

CRG crushed river gravel GREY greywacke SRG siliceous river gravel

CS crushed stone LI limestone SRG* mixed SRG and CSS

CSS crushed sand stone NA natural aggregate SRS siliceous river sand

DB diabase NRS natural river sand

DM dolomite OS Ottawa sand
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transformed in a manner that makes the assumed distri-

bution a straight line. If the data scatter were captured by

the distribution perfectly, all the data would fall on the

straight line. Thus, the correct distribution is that for which

the data plot in the probability paper comes the closest to a

straight line.

Aside from the normal (Gaussian) distribution, other

well-known probability distributions were checked for

each set using the appropriate probability papers, including

the Weibull (min), lognormal, and Gumbel (max) distri-

butions. The plots of the cumulative distribution of empir-

ical frequency or probability of the present data on the

corresponding probability papers are shown in Fig. 7 for

Gf data obtained from SEM, TPM, or ECM (Set I), in

Fig. 8 for GF data obtained by the WFM (Set II), and in

Fig. 9 for cf data.

The pair of thin lines in each plot represents the lower

and upper confidence limits for the 5% and 95% probability

cut-offs (they are calculated on the basis of the Kolmo-

gorov–Smirnov distribution from the deviations of the

empirical distribution from the parent distribution). If the

distribution were followed by the data perfectly, the data

would fall on the straight line shown. The best distribution

is that for which the data lie the closest to the straight line.

As seen, the plots closest to a straight line are obtained for

the following distributions:

1. minimum Weibull distribution for Set I (SEM, TPM,

ECM) (Fig. 7);

2. minimum Weibull or maximum Gumbel distribution

for Set II (work-of-fracture) (Fig. 8).

3. lognormal distribution for cf (Fig. 9).

As seen in Figs. 7–9, the data on Gf, GF, and cf obtained

from Sets I and II are not well represented by the normal

(Gaussian) distribution. Overall, the minimum Weibull

Fig. 7. Cumulative frequency plots of Gf on various probability papers for Set I (SEM, TPM, and ECM).
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distribution appears to be the closest to the straight line. The

lognormal distribution is nearly as close as Weibull for GF,

but distinctly worse for Gf. For cf, the lognormal distribution

is the best.

7. Implications for the choice of testing method

for a standard

The present statistical study reveals that Gf is much less

scattered than GF. This point is relevant to the choice of

testing method for the testing standard, which has been

debated for over a dozen years.

The high scatter of the results obtained with the WFM

is explained partly by the difficulties in achieving in-

dependence of the results from the specimen size and

the test setup, partly by a higher statistical variability of

the tail of the softening load–deflection diagram, and

partly by the uncertainty in extrapolating the tail to zero

stress [76]. The fracture parameters measured by the SEM

have also the important advantage that they are size and

shape independent, by definition (this is of course true

only within the size range for which the size effect law

used is accurate, but this range encompasses the entire

range of practical testing). For the related methods TPM

and ECM, this is true only in the asymptotic sense, for

large sizes only.

With regard to the current debates, it should further be

noted that the maximum loads of structures depend mainly

on the initial tangent of the softening stress–separation

curve, which is fully characterized by Gf, and are almost

independent of the tail of this curve, which determines the

difference between GF and Gf. On the other hand, the

prediction of the entire postpeak softening load–deflection

curve of a structure, which is often of secondary interest for

design, does depend on the tail of the stress–separation

Fig. 8. Cumulative frequency plots of GF on various probability papers, for Set II (work-of-fracture).

Z.P. Bažant, E. Becq-Giraudon / Cement and Concrete Research 32 (2002) 529–556550



curve of the cohesive crack model, and thus on GF. In that

case, the direct determination of GF by the WFM has the

advantage that it does not depend on the error of the

approximation GF� 2.5Gf (Eq. (9)).

It is important to keep in mind that Gf and GF are two

different material characteristics determining the initial

slope and the tail of the stress–separation curve of the

cohesive crack model. GF can be estimated from Gf and vice

versa, but not accurately. Ideally, both Gf and GF should be

measured and used in structural analysis for calibrating the

initial slope and the tail of the cohesive crack model or crack

band model.

There is, however, a widespread tendency to measure

only one of these two fracture energies. In that case, if

the cohesive crack model is to be used in structural

analysis, the shape of the stress–separation diagram must

be fixed in advance (if a bilinear softening diagram is

adopted, this for example means fixing the ratios GF/Gf

and sknee/ft
0, where sknee/ft

0 is the stress at the point of

slope change; Fig. 1).

Among civil engineers, there is currently a widespread

preference to measure and use only GF. This might be

explained by the fact that the WFM and the use of the

cohesive crack model in finite element programs can be

understood even by civil engineers who have received no

education in fracture mechanics. This cannot be said about

the SEM or TPM. Although these methods also can be

used by an engineer with no such education, their under-

standing requires at least elementary acquaintance with

fracture mechanics. The choice of the testing standard,

however, should be objective. It should not depend on the

inadequacy of the current education.

At the (pre-FraMCoS-2) workshop of European and

American specialists in Cardiff in 1995, organized by

Fig. 9. Cumulative frequency plots of cf on various probability papers (SEM and TPM).
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B.I.G. Barr and S.E. Swartz, it was agreed that the testing

standard should specify two levels of testing. At Level II,

recommended for structures of high sensitivity to fracture

and size effect, both GF and Gf (or Kc) should be directly

measured, while at Level I, appropriate for normal struc-

tures, only one of the two needs to be tested (measurements

confined to the maximum load region and ignoring the tail

were recommended for Level I at that workshop). If the

cohesive crack model is calibrated by a Level I test, one

must of course assume in advance the shape of the soften-

ing–stress separation curve, i.e., fix the ratios GF/Gf and

sknee ft
0 based on prior knowledge.

Sticking to objective rational arguments only, should the

Level I test measure GF or Gf? The prime argument should

be that of accuracy, of minimizing the statistical uncer-

tainty. Then, based on the present study, the answer is

clear—Level I should involve the testing of Gf, and GF

should then be estimated from Gf, e.g., as GF� 2.5Gf.

Because Level I testing necessitates the ratio Gf/GF to

be fixed, the coefficient of variation of errors of the

measured fracture energy will get imposed on the other

fracture energy that is inferred. Thus, if the Level I test

measures GF, then its coefficient of variation will get

impressed on Gf (or the initial slope of the softening

curve), i.e., wGf =wGF = 29.9%. Consequently, the max-

imum loads of structures, even if calculated by the

cohesive crack model, will be governed by a fracture

energy value whose errors have the large coefficient of

variation of GF.

On the other hand, if the Level I test measures Gf

(or Kc) and the cohesive crack model is calibrated by the

measured Gf, the maximum loads of structures will be

governed by a fracture energy whose errors have the

coefficient of variation of Gf, which is 17.8%, roughly

1.67 times smaller. This is no small advantage.

If only a few tests of the given concrete are carried out

in the Level I test, only the mean is statistically reliable but

wGF or wGf is not. In that case, one would have to assume

the coefficients of variation from the prior experimental

evidence, which would mean using wGF = 29.9% or

wGf = 17.8%, unless there are extensive prior data for the

given concrete. If many, say 100, tests of the given

concrete are performed at Level I, the value of wGF or

wGf can be determined from the tests of the given concrete

alone. That value may be expected to be considerably

reduced compared to the preceding values because con-

cretes of different compositions are not mixed into one set.

But both coefficients of variation will likely be reduced by

the same ratio, e.g., to wGF = 20% and wGf = 12%. Thus,

the advantage of using Gf rather than GF for the Level I

test must be assumed to be preserved (it is of course not

entirely inconceivable that, in testing of one and the same

concrete, the ratio of wGF/wGf is different and less unfav-

orable to GF than found here, but this would have to be

demonstrated by extensive statistically reliable test data for

one concrete).

8. Conclusions

1. Although the statistical variations of the fracture

energy of concrete and the effective size of the fracture

process exhibit high random scatter, some clear statistical

trends can be discerned.

2. Approximate statistical prediction of the fracture

energy and of the order of magnitude of the effective

length of the fracture process zone can be based on the

standard compression strength of concrete, the maximum

aggregate size, the aggregate shape (river or crushed

aggregate), and the water–cement ratio. Among these

parameters, the first two appear to be the most important

for the fracture energy, and the last the least. In the case of

cf, the maximum aggregate size appears to be by far the

most important parameter, and the compressive strength the

least. However, this is true only if the statistical correlation

among these two parameters is ignored.

3. Formulae predicting the mean fracture energy Gf or

GF and the mean effective length cf of the fracture process

zone have been established. These formulae should be

used in the statistical sense, taking into account the

established coefficients of variation of Gf or cf. Structural

designs should be made for a certain specified probability

cutoff based on assuming a normal or Weibull distribution

for the fracture energy, and lognormal distribution for

the effective length of the fracture process zone. The

corresponding values of the critical crack-tip opening dis-

placement and of fracture toughness can be deduced from

well-known formulae.

4. If all the important influencing parameters were

known, it would have to be possible to be cast the

prediction formulae in a dimensionless form. At present,

however, this does not seem possible. It follows that not

all the relevant parameters are known and further research

is needed.

5. The coefficient of the data deviations from the

mean prediction formula is much higher (1.67 times

higher) for the fracture energy GF measured by the

WFM than it is for the fracture energy Gf measured by

the SEM. The reason can be either that the GF, per se,

has a higher degree of uncertainty, or that predicting the

mean for GF is harder than it is for Gf. Although it

remains to clarify the main reason, it is likely that the

first possible reason is valid at least to some extent,

because the tail of the softening stress–separation curve

of the cohesive crack model is more uncertain than the

initial tangent of that curve.

6. Gf and GF are different fracture parameters. Both are

needed to properly calibrate the softening stress–separa-

tion curve—Gf the initial slope and GF the tail portion.

Although they are partially correlated, ideally they should

both be measured. For the sake of simplicity, however, the

so-called Level I test now debated would measure only

one. Logically, it should be Gf. One argument for Gf has

been that the most important practical application, which is
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the calculation of load capacity of structures, normally

depends almost exclusively on the initial slope of the

stress–separation curve, which in turn is directly deter-

mined by Gf. The present study gives a second argument:

If the initial slope is based on the measured Gf, its errors

have the coefficient of variation of 17.8%, but if the initial

slope is inferred (according to the assumed shape of the

softening curve) from the measured GF, the coefficient of

variation of the initial slope is 29.9%, i.e., 1.67 times

higher. Consequently, the load capacities of structures have

much smaller statistical errors when their calculation is

based on measured Gf rather than GF.

7. The high scatter of the existing test results sug-

gests that future efforts should focus on improved pre-

diction formulae involving further parameters of concrete

composition and microstructure. Different formulae may

have to be developed for high-strength concrete and

lightweight concrete.
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Appendix A. Some influencing factors

needing clarification

In the case of high-strength concrete, the influence of the

compressive strength on the fracture energy is not very

clear. Gettu et al. [35], using the SEM, observed no

difference in fracture energy Gf when high- and normal-

strength concretes were compared. On the other hand, Gettu

et al. [36], Karihaloo and Nallathambi [56], and Ouyang et

al. [70] observed the fracture energy of high-strength

concrete to be significantly higher than that of normal-

strength concrete. However, the available data are too few

for being conclusive, and further research is needed.

The effects of the aggregate on the fracture energy also

require further study. The maximum aggregate size and the

shape (crushed or smooth) are taken into account in the

present formulae only very crudely. The role of the aggre-

gates is certainly more complex. Other parameters such as

the texture, mineralogy, and grading of the aggregate, and

the proportion of aggregates in the concrete mix, are likely

to have a nonnegligible influence on the fracture energy of

concrete, especially since they affect the cement matrix–

aggregate interface.

The influence of the water–cement ratio also calls for

further study. The data extracted from work-of-fracture

measurements show no correlation between the water-to-

cement ratio and the fracture energy.

Appendix B. Previous formulae for estimating fracture

A simple formula for a mean estimate of the fracture

energy has been developed by Bažant and Oh [21] on the

basis of the maximum load data for notched specimen:

Gf ¼ ð2:72þ 0:0214f 0t Þ f 0t 2
da

E
: ð14Þ

Formula (14), however, was based on very limited test

data—only those reported in the literature prior to 1980.

The test data reported in the literature up to the late 1980s

have been used to develop a mean estimate of GF recom-

mended by the Comité Euro-International du Béton pro-

posed in its CEB-FIP Model Code [29]:

GF ¼ 0:0469d2a � 0:5da þ 26
� � f 0c

10

� �0:7

ð15Þ

where fc
0 is in megapascals, da is in millimeters, and GF

in newtons per millimeter. A statistical comparison of this

formula with the present data Set II is made in Fig. 6a

and for comparison the present formula is shown in

Fig. 6b. The coefficient of variation of the prediction

errors of the CEB-FIP formula was found to be 33.3%.

Note that this is only 1.11 times higher than the value

29.9% for the present formula, despite the fact that the

data set available for developing this formula was an

order-of-magnitude smaller.1

Appendix C. Why does the SEM give Gf 6¼6¼6¼�����GF?

One might wonder why Gf and GF should be different

at all. During the 1980s, it used to be thought that Gf is the

fracture energy determined by LEFM for an infinitely large

specimen. Does this not imply Gf to be identical to GF?

Not really.

The cohesive crack model with a long tail on its soft-

ening stress–separation curve corresponds, in the sense of

the smeared-tip method [23], to a spectrum of fracture

energies, Gf1, Gf2, Gf3, . . ., associated with successively

increasing orders of magnitude of the size scale (see Ref.

[11], and in detail, Refs [12,14]). The corresponding

‘‘broad-range’’ size effect law is a sum of terms, each

1 Karihaloo and Nallathambi [55] developed another formula (Eq. (a)),

which reads:

Gf ¼
f 0c

2b

E
a1

da

b

� �a2 d

L

� �a3þa4ða=dÞ
ðaÞ

where a1 = 0.1431, a2 = 0.1713, a3 = 0.7666, and a4 = 0.4154. However,

the statistical basis was quite limited since the authors used only their own

test data, all obtained on notched beams. Besides, this formula was

obviously not intended to describe Gf as an objective material parameter

because it involved the dimensional and geometric characteristics of the

beam specimens.
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corresponding to one Gfi (i = 1, 2, . . .). The value Gfi

determines the location of the final asymptote of the i-th

term in the logarithmic size effect plot.

The asymptote of the last term corresponds to GF. The

asymptote of the first term (which may be written in the

form of Bažant’s 1984 original size effect law [7]) corre-

sponds to Gf1 =Gf, and Gf represents the area under the

steep initial tangent of the stress–separation curve (Fig. 1).

Only the first term can get manifested in normal size

effect testing of Gf, unless (hypothetically) the size range

would exceed about 1:100 (as verified by finite element

simulations in Ref. [18]). For the work-of-fracture measure-

ment of GF, by contrast, the entire spectrum matters. The

ratio GF/Gf = 2.5 means that, in the logarithmic size effect

plot spanning many orders of magnitude of the specimen

size, the asymptote of the last term should be shifted by log

2.5 to the right of the asymptote of the first term.

Numerical simulation show that, for fracture specimens

and normal-size structures, the maximum load is reached

when the crack-bridging stress at the notch tip is still quite

large (above the stress value corresponding to the ‘‘knee’’ of

a bilinear stress–separation curve). So, the cohesive crack is

never opened enough for the tail stresses to materialize. If

the cohesive crack model is replaced by a straight line

corresponding to the initial tangent, the computations yield

the same maximum load. Hence, the fracture energy cor-

responding to the area under this straight line governs. The

stress at notch tip at maximum load vanishes at maximum

load only when the size of the structure being simulated is

enlarged by several orders of magnitude. Only then do the

tail of the softening curve and the area under the complete

curve matter for the maximum load.

References

[1] M. Alexander, Data from tests on notched concrete beams, private

communication to Karihaloo and Nallathambi (see Ref. [54]),

University of Witwatersrand, Johannesburg, 1987.

[2] B.I.G. Barr, T.J. Bear, A simple test of fracture toughness, Concrete,

(1976) 25–27.

[3] B.I.G. Barr, E.B.D. Hasso, B.B. Sabir, The effect of test specimen

size on the fracture toughness of concrete, Cem. Concr. Res. 15

(1985) 833–841.

[4] B.I.G. Barr, B.B. Sabir, Fracture toughness testing by means of the

compact compression test specimen, Mag. Concr. Res. 37 (1985)

88–94.

[5] A. Bascoul, Private communication to Karihaloo and Nallathambi

(see Ref. [54]), University of Paul-Sabatier, Toulouse, France, 1987.
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(Eds.), Size Effect in Concrete Structures, E.&F.N. Spon, London,

1994, pp. 233–244.

[104] B. Harris J. Varlow, C.D. Ellis, The fracture behaviour of fibre

reinforced concrete, Cem. Concr. Res. 2 (1972) 447–461.

[105] A. Hillerborg, Concrete fracture energy tests performed by 9 labo-

ratories according to a draft RILEM recommendation, Report to

RILEM TC50-FMC, Report TVBM-3015, Division of Building

Materials, Lund Institute of Technology, Lund, Sweden, 1983.

[106] A. Hillerborg, Additional concrete fracture energy tests performed by

6 laboratories according to a draft RILEM recommendation, Report

to RILEM TC50-FMC, Report TVBM-3017, Division of building

materials, Lund Institute of Technology, Lund, Sweden, 1984.

[107] A. Hillerborg, Influence of beam size on concrete fracture energy

determined according to a draft RILEM recommendation, Report to

RILEM TC50-FMC, Report TVBM-3021, Division of Building

Materials, Lund Institute of Technology, Lund, Sweden, 1985.

[108] S. Mindess, Effect of notch width on KIc for mortar and concrete,

Cem. Concr. Res. 6 (1976) 529–534.

[109] P. Nallathambi, B.L. Karihaloo, Influence of slow crack growth on

the fracture toughness of plain concrete, in: F.H. Wittman (Ed.),

Proceedings of the International Conference on Fracture Tough-

ness and Fracture Energy of Concrete, Elsevier, Amsterdam, 1986,

pp. 271–280.

[110] P. Nallathambi, B.L. Karihaloo, Stress intensity factor and energy

release rate for three-point bend specimens, Eng. Fract. Mech. 25

(3) (1986) 315–321.

[111] P. Nallathambi, B.L. Karihaloo, B.S. Heaton, Effect of specimen and

crack sizes, water –cement ratio and coarse aggregate texture upon

fracture toughness of concrete, Mag. Concr. Res. 36 (1984) 227–236.

[112] P. Nallathambi, B.L. Karihaloo, B.S. Heaton, Various size effects in

fracture of concrete, Cem. Concr. Res. 15 (1985) 117–126.

[113] D.J. Naus, J.L. Lott, Fracture toughness of Portland cement con-

cretes, ACI J. 66 (1969) 481–498.

[114] R.P. Ojdrovic, H.J. Petroski, The cracked Brazilian test for fracture

toughness testing of concrete, Int. J. Fract. 27 (1985) R75–R80.

[115] R.P. Ojdrovic, A.L. Stojimirovic, H.J. Petroski, Effect of age on

splitting tensile strength and fracture resistance of concrete, Cem.

Concr. Res. 17 (1987) 70–76.

[116] J.P. Romualdi, G.B. Batson, Mechanics of crack arrest in concrete, J.

Eng.Mech. Div., Proc. Am. Soc. Civ. Eng. 89 (EM3) (1963) 147–168.

[117] V.E. Saouma, A.R. Ingraffea, D.M. Catalano, Fracture toughness of

concrete: KIc revisited, J. Eng. Mech. Div., Proc. Am. Soc. Civ. Eng.

108 (EM6) (1982) 1152–1166.

[118] S.P. Shah, Fracture toughness of fiber reinforced concrete, Report,

AFOSR, 1985, 82–0243.

[119] S.E. Swartz, K.K. Hu, M. Fartash, C.M.J. Huang, Stress intensity

factors for plain concrete in bending—prenotched versus pre-

cracked beams, Report, Department of Civil Engineering, Kansas

State University, Kansas, 1981.

[120] P.F. Walsh, Crack initiation in plain concrete, Mag. Concr. Res. 28

(94) (1976) 37–41.

[121] M. Wecharatana, Specimen size effect on non-linear fracture parame-

ters in concrete, in: F.H. Wittman (Ed.), Fracture Toughness and Frac-

ture Energy of Concrete, Elsevier, Amsterdam, 1986, pp. 437–440.

[122] M. Wecharatana, S.P. Shah, Nonlinear fracture mechanics parame-

ters, Div. Civ. Eng. (1983) 463–480.

[123] F.H. Wittman, H. Mihashi, N. Nomura, Size effect on fracture energy

of concrete, Eng. Fract. Mech. 35 (1–3) (1990) 107–115.

[124] L. Wu, X. Peng, Q. Chu, W. Lei, G. Bai, J. Yang, Fracture energy

of lime–sand concrete and application of the acoustic emission

technique, Mag. Concr. Res. 46 (166) (1994) 17–21.
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