Statistical Thermodynamics

Contents

1. Introduction
2. Distribution of Molecular States3. Interacting Systems - Gibbs Ensemble4. Classical Statistical Mechanics

1. Introduction

- Mechanics : Study of position, velocity, force and energy
- Classical Mechanics (Molecular Mechanics)
- Molecules (or molecular segments) are treated as rigid object (point, sphere, cube,...)
- Newton's law of motion
- Quantum Mechanics
- Molecules are composed of electrons, nuclei, ...
- Schrodinger's equation \rightarrow Wave function

1. Introduction

- Methodology of Thermodynamics and Statistical Mechanics
- Thermodynamics
- study of the relationships between macroscopic properties
- Volume, pressure, compressibility, ...
- Statistical Mechanics (Statistical Thermodynamics)
- how the various macroscopic properties arise as a consequence of the microscopic nature of the system
- Position and momenta of individual molecules (mechanical variables)
- Statistical Thermodynamics (or Statistical Mechanics) is a link between microscopic properties and bulk (macroscopic) properties

Pure mechanical variables

Thermodynamic Variables
Methods of QM
Methods of QM
Methods of MM
A particular microscopic model can be used

1.Introduction

- Equilibrium Macroscopic Properties
- Properties are consequence of average of individual molecules
- Properties are invariant with time \rightarrow Time average

Mechanical Properties of	average over molecules	average over time	statistical thermodynamics	Thermodynamic
position, velocity energy, ...				temperature, pressure internal energy, enthalpy,...

1. Introduction

- Description of States
- Macrostates : T, $\mathbf{P}, \mathbf{V}, \ldots$ (fewer variables)
- Microstates : position, momentum of each particles ($\sim 10^{23}$ variables)
- Fundamental methodology of statistical mechanics
- Probabilistic approach : statistical average
- Most probable value
- Is it reasonable?
- As N approaches very large number, then fluctuations are negligible
- "Central Limit Theorem" (from statistics)
- Deviation ~1/N $\mathbf{N}^{0.5}$

2. Distribution of Molecular States

- Statistical Distribution
- n : number of occurrences
- b : a property

2. Distribution of Molecular States

- Normalized Distribution Function
\rightarrow Probability Distribution Function

$$
\begin{aligned}
& P_{i}\left(b_{i}\right)=\frac{n_{i}\left(b_{i}\right)}{n}=\frac{n_{i}\left(b_{i}\right)}{\sum_{i} n_{i}\left(b_{i}\right)} \\
& \sum_{i} P_{i}\left(b_{i}\right)=1 \\
& \quad=\sum_{i} b_{i} P_{i} \\
& \quad<F(b)>=\sum_{i} F\left(b_{i}\right) P_{i}
\end{aligned}
$$

Finding probability (distribution) function is the main task in statistical thermodynamics

2. Distribution of Molecular States

- Quantum theory says,
- Each molecules can have only discrete values of energies
- Evidence
- Black-body radiation
- Planck distribution
- Heat capacities
- Atomic and molecular spectra
- Wave-Particle duality

$\ldots \quad$| Energy |
| :---: |
| Levels |

2. Distribution of Molecular States

- Configuration
- At any instance, there may be $\boldsymbol{n}_{\boldsymbol{o}}$ molecules at $\varepsilon_{0}, \boldsymbol{n}_{1}$ molecules at ε_{1}, n_{2} molecules at ε_{2}, \ldots
$\rightarrow\left\{n_{0}, n_{1}, n_{2} \ldots\right\}$ configuration

2. Distribution of Molecular States

- Weight
- Each configurations can be achieved in different ways
- Example1: \{3,0\} configuration $\boldsymbol{\rightarrow} \mathbf{1}$

- Example2 : $\{\mathbf{2 , 1}\}$ configuration $\boldsymbol{\rightarrow} \mathbf{3}$

2. Distribution of Molecular States

- Calculation of Weight

- Weight (W) : number of ways that a configuration can be achieved in different ways
- General formula for the weight of $\left\{n_{0}, n_{1}, n_{2} \ldots\right\}$ configuration

$$
W=\frac{N!}{n_{1}!n_{2}!n_{3}!\ldots}=\frac{N!}{\prod_{i} n_{i}!}
$$

Example1
$\{\mathbf{1 , 0 , 3 , 5 , 1 0 , 1 \}}$ of 20 objects

$$
W=9.31 \mathrm{E} 8
$$

Example 2
$\{\mathbf{0 , 1 , 5 , 0 , 8 , 0 , 3 , 2 , 1 \}}$ of 20 objects
$\mathrm{W}=4.19 \mathrm{E} 10$

Principles of Equal a Priori Probability

- All distributions of energy are equally probable
- If $\mathrm{E}=5$ and $\mathrm{N}=5$ then

\longrightarrow All configurations have equal probability, but possible number of way (weight) is different.

A Dominating Configuration

- For large number of molecules and large number of energy levels, there is a dominating configuration.
- The weight of the dominating configuration is much more larger than the other configurations.

Dominating Configuration

Difference in W becomes larger when N is increased !
\longrightarrow In molecular systems ($\mathbf{N} \sim 10^{23}$) considering the most dominant configuration is enough for average

How to find most dominant configuration?

- The Boltzmann Distribution
- Task : Find the dominant configuration for given N and total energy E
- Method : Find maximum value of W which satisfies,

$$
\begin{aligned}
& N=\sum_{i} n_{i} \\
& E=\sum_{i} \varepsilon_{i} n_{i}
\end{aligned}
$$

$$
\begin{aligned}
& \sum_{i} d n_{i}=0 \\
& \sum_{i} \varepsilon_{i} d n_{i}=0
\end{aligned}
$$

Stirling's approximation

- A useful formula when dealing with factorials of large numbers.

$$
\ln N!=N \ln N-N
$$

$$
\begin{aligned}
& \ln W=\ln \frac{N!}{n_{1}!n_{2}!n_{3}!\ldots}=\ln N!-\sum_{i} \ln n_{i}! \\
& =N \ln N-N-\sum_{i} n_{i} \ln n_{i}+\sum_{i} n_{i} \\
& =N \ln N-\sum_{i} n_{i} \ln n_{i}
\end{aligned}
$$

Method of Undetermined Multipliers

- Maximum weight , W
\rightarrow Recall the method to find min, max of a function...

$$
\begin{aligned}
& d \ln W=0 \\
& \left(\frac{\partial \ln W}{d n_{i}}\right)=0
\end{aligned}
$$

- Method of undetermined multiplier :
- Constraints should be multiplied by a constant and added to the main variation equation.

Method of Undetermined Multipliers

undetermined multipliers

$$
\begin{aligned}
& d \ln W=\sum_{i}\left(\frac{\partial \ln W}{d n_{i}}\right) d n_{i}+\alpha \sum_{i} d n_{i}-\beta \sum_{i} \varepsilon_{i} d n_{i} \\
& =\sum_{i}\left\{\left(\frac{\partial \ln W}{d n_{i}}\right)+\alpha-\beta \varepsilon_{i}\right\} d n_{i}=0
\end{aligned}
$$

$$
\left(\frac{\partial \ln W}{d n_{i}}\right)+\alpha-\beta \varepsilon_{i}=0
$$

Method of Undetermined Multipliers

$$
\begin{gathered}
\ln W=N \ln N-\sum n_{i} \ln n_{i} \\
\left(\frac{\partial \ln W}{\partial n_{i}}\right)=\frac{\partial N \ln N}{\partial n_{i}}-\sum_{j} \frac{\partial\left(n_{j} \ln n_{j}\right)}{\partial n_{i}} \\
\frac{\partial N \ln N}{\partial n_{i}}=\left(\frac{\partial N}{\partial n_{i}}\right) \ln N+N \times \frac{1}{N}\left(\frac{\partial N}{\partial n_{i}}\right)=\ln N+1 \\
\sum_{j} \frac{\partial\left(n_{j} \ln n_{j}\right)}{\partial n_{i}}=\sum_{j}\left\{\left(\frac{\partial n_{j}}{\partial n_{i}}\right) \ln n_{j}+n_{j} \times \frac{1}{n_{j}}\left(\frac{\partial n_{j}}{\partial n_{i}}\right)\right\}=\ln n_{i}+1 \\
\frac{\partial \ln W}{\partial n_{i}}=-\left(\ln n_{i}+1\right)+(\ln N+1)=-\ln \frac{n_{i}}{N}
\end{gathered}
$$

Method of Undetermined Multipliers

$$
-\ln \frac{n_{i}}{N}+\alpha+\beta \varepsilon_{i}=0 \longrightarrow \frac{n_{i}}{N}=e^{\alpha-\beta \varepsilon_{i}}
$$

Normalization Condition

$$
\begin{aligned}
N & =\sum_{j} n_{j}=N e^{\alpha} \sum_{j} e^{-\beta \varepsilon_{j}} \\
e^{\alpha} & =\frac{1}{\sum_{j} e^{-\beta \varepsilon_{j}}} \\
P_{i} & =\frac{n_{i}}{N}=\frac{e^{-\beta \varepsilon_{i}}}{\sum_{j} e^{-\beta \varepsilon_{j}}}
\end{aligned}
$$

Boltzmann Distribution (Probability function for energy distribution)

The Molecular Partition Function

- Boltzmann Distribution

$$
p_{i}=\frac{n_{i}}{N}=\frac{e^{-\beta \varepsilon_{i}}}{\sum_{j} e^{-\beta \varepsilon_{j}}}=\frac{e^{-\beta \varepsilon_{i}}}{q}
$$

- Molecular Partition Function

$$
q=\sum_{j} e^{-\beta \varepsilon_{j}}
$$

- Degeneracies : Same energy value but different states ($\mathrm{g}_{\mathrm{j}}{ }^{-}$ fold degenerate)

$$
q=\sum_{\substack{\text { levels } \\ j}} g_{j} e^{-\beta \varepsilon_{j}}
$$

How to obtain the value of beta?

- Assumption : $\beta=1 / k T$
- $\mathbf{T} \boldsymbol{\rightarrow} \mathbf{0}$ then $\mathbf{q} \boldsymbol{\rightarrow} \mathbf{1}$
- $T \rightarrow$ infinity then $q \rightarrow$ infinity
- The molecular partition function gives an indication of the average number of states that are thermally accessible to a molecule at T.

2. Interacting Systems
 - Gibbs Ensemble

- Solution to Schrodinger equation (Eigen-value problem)
- Wave function
- Allowed energy levels: E_{n}

$$
-\sum_{i} \frac{h^{2}}{8 \pi^{2} m_{i}} \nabla_{i}^{2} \Psi+U \Psi=E \Psi
$$

- Using the molecular partition function, we can calculate average values of property at given QUANTUM STATE.
- Quantum states are changing so rapidly that the observed dynamic properties are actually time average over quantum states.

Fluctuation with Time

Although we know most probable distribution of energies of individual molecules at given N and E (previous section - molecular partition function) it is almost impossible to get time average for interacting molecules

Thermodynamic Properties

- Entire set of possible quantum states

$$
\begin{aligned}
& \Psi_{1}, \Psi_{1}, \Psi_{1}, \ldots \Psi_{i}, \ldots \\
& E_{1}, E_{2}, E_{3}, \ldots, E_{i}, \ldots
\end{aligned}
$$

- Thermodynamic internal energy

$$
U=\lim _{\tau \rightarrow \infty} \frac{1}{\tau} \sum_{i} E_{i} \Delta t_{i}
$$

Difficulties

- Fluctuations are very small
- Fluctuations occur too rapidly
\rightarrow We have to use alternative, abstract approach.
\rightarrow Ensemble average method (proposed by Gibbs)

Alternative Procedure

- Canonical Ensemble
- Proposed by J. W. Gibbs (1839-1903)
- Alternative procedure to obtain average
- Ensemble : Infinite number of mental replica
 of system of interest

Two Postulate

Fist Postulate

The long time average of a mechanical variable M is equal to the ensemble average in the limit $N \rightarrow \infty$

Second Postulate (Ergodic Hypothesis)

The systems of ensemble are distributed uniformly for (n, V, T) system Single isolated system spend equal amount of time

Averaging Method

- Probability of observing particular quantum state i

$$
P_{i}=\frac{\tilde{n}_{i}}{\sum_{i} \tilde{n}_{i}}
$$

- Ensemble average of a dynamic property

$$
<E>=\sum_{i} E_{i} P_{i}
$$

- Time average anu einsemole average

$$
U=\lim _{\tau \rightarrow \infty} \sum E_{i} \Delta t_{i}=\lim _{n \rightarrow \infty} \sum_{i} E_{i} P_{i}
$$

How to find Most Probable Distribution?

- Calculation of Probability in an Ensemble
- Weight

$$
\Omega=\frac{\tilde{N}!}{\tilde{n}_{1}!\tilde{n}_{2}!\tilde{n}_{3}!\ldots}=\frac{\tilde{N}!}{\prod_{i} \tilde{n}_{i}!}
$$

- Most probable distribution = configuration with maximum weight
- Task : find the dominating configuration for given N and E
- Find maximum Ω which satisfies

$$
\begin{aligned}
& \tilde{N}=\sum_{i} \tilde{n}_{i} \\
& E_{t}=\sum_{i} E_{i} \tilde{n}_{i}
\end{aligned} \quad \square \quad \begin{aligned}
& \sum_{i} d \tilde{n}_{i}=0 \\
& \sum_{i} E_{i} d \tilde{n}_{i}=0
\end{aligned}
$$

Canonical Partition Function

- Similar method (Section 2) can be used to get most probable distribution

$$
\begin{aligned}
& P_{i}=\frac{n_{i}}{N}=\frac{e^{-\beta E_{i}}}{\sum_{j} e^{-\beta E_{j}}} \\
& P_{i}=\frac{n_{i}}{N}=\frac{e^{-\beta E_{i}}}{\sum_{j} e^{-\beta E_{j}}}=\frac{e^{-\beta E_{i}}}{Q}
\end{aligned}
$$

$$
Q=\sum_{j} e^{-\beta E_{j}}
$$

Canonical Partition Function

How to obtain beta?
 - Another interpretation

$$
\begin{aligned}
d U= & d\left(\sum_{i} E_{i} P_{i}\right)=\sum_{i} E_{i} d P_{i}+\sum_{i} P_{i} d E_{i} \\
d U= & \delta q_{\text {rev }}-\delta w_{\text {rev }}=T d S-p d V \\
& \sum_{i} P_{i} d E_{i}=\sum_{i} P_{i}\left(\frac{\partial E_{i}}{\partial V}\right)_{N} d V=-P d V=-\delta w_{\text {rev }} \\
& \sum_{i} E_{i} d P_{i}=-\frac{1}{\beta}\left(\sum_{i} \ln P_{i} d P_{i}+\ln Q \sum_{i} d P_{i}\right)=-\frac{1}{\beta} \sum_{i} \ln P_{i} d P_{i}=T d S=d q_{r e v}
\end{aligned}
$$

The only function that links heat (path integral) and state property is TEMPERATURE.

$$
\beta=1 / k T
$$

Properties from Canonical Partition Function

- Internal Energy

$$
\begin{aligned}
& U=\langle E\rangle=\sum_{i} E_{i} P_{i}==\frac{1}{Q} \sum_{i(q s)} E_{i} e^{-\beta E_{i}} \\
& \left(\frac{\partial Q}{\partial \beta}\right)_{N, V}=-\sum_{i(q s)} E_{i} e^{-\beta E_{i}} \\
& U=-\frac{1}{Q}\left(\frac{\partial Q}{\partial \beta}\right)_{N, V}=-\left(\frac{\partial \ln Q}{\partial \beta}\right)_{N, V}
\end{aligned}
$$

Properties from Canonical Partition Function

- Pressure

$$
\begin{aligned}
& \left(\delta w_{i}\right)_{N}=P_{i} d V=F_{i} d x \\
& \left(d E_{i}\right)_{N}=-F_{i} d x=-P_{i} d V=-\delta w_{i} \\
& P_{i}=-\left(\frac{\partial E_{i}}{\partial V}\right)_{N} \\
& P=\langle P\rangle=\sum_{i} P_{i} \mathrm{P}_{\mathrm{i}} \\
& P=\frac{1}{Q} \sum_{i} P_{i} e^{-\beta E_{i}}=\frac{1}{Q} \sum_{i}\left(\frac{\partial E_{i}}{\partial V}\right)_{N} e^{-\beta E_{i}} \\
& \left(\frac{\partial \ln Q}{\partial V}\right)_{\beta, N}=\frac{\beta}{Q} \sum_{i}\left(\frac{\partial E_{i}}{\partial V}\right)_{N} e^{-\beta E_{i}} \\
& P=\frac{1}{\beta}\left(\frac{\partial \ln Q}{\ln V}\right)
\end{aligned}
$$

$\rightarrow|d x| \leftarrow$

Thermodynamic Properties from Canonical Partition Function

$$
\begin{aligned}
& U=k T\left(\frac{\partial \ln Q}{\partial \ln T}\right)_{V, N} \\
& S=k\left(\ln Q+\left(\frac{\partial \ln Q}{\partial \ln T}\right)_{V, N}\right) \\
& H=k T\left(\left(\frac{\partial \ln Q}{\partial \ln T}\right)_{V, N}+\left(\frac{\partial \ln Q}{\partial \ln V}\right)_{T, N}\right)
\end{aligned}
$$

$$
A=-k T \ln Q
$$

$$
G=-k T\left(\ln Q-\left(\frac{\partial \ln Q}{\partial \ln V}\right)_{T, N}\right)
$$

$$
\mu_{i}=-k T\left(\frac{\partial \ln Q}{\partial N_{i}}\right)_{T, V, N_{j \neq i}}
$$

Grand Canonical Ensemble

- Ensemble approach for open system
- Useful for open systems and mixtures
- Walls are replaced by permeable walls

Grand Canonical Ensemble

- Similar approach as Canonical Ensemble
- We cannot use second postulate because systems are not isolated
- After equilibrium is reached, we place walls around ensemble and treat each members the same method used in canonical ensemble

T, V, μ
After equilibrium

Each members are (T,V,N) systems
$T, V, N_{2} \quad T, V, N_{4}$
\rightarrow Apply canonical ensemble methods for each member

Grand Canonical Ensemble

Weight and Constraint

Number of ensemble members

Method of undetermined multiplier with α, β, γ

$$
\begin{aligned}
& \mathcal{N}=\sum_{j, N} n_{j}(N) \longrightarrow \begin{array}{l}
\text { Number of molecules after } \\
\text { fixed wall has been placed }
\end{array} \\
& E_{t}=\sum_{j, N} n_{j}(N) E_{j}(V, N)
\end{aligned}
$$

$$
N_{t}=\sum_{j, N} n_{j}(N) N
$$

$$
n_{j}^{*}(N)=\mathcal{N} e^{-\alpha} e^{-\beta E_{j}(N, V)} e^{-\gamma N}
$$

$$
P_{j}(N)=\frac{\overline{n_{j}(N)}}{\mathcal{N}}=\frac{n_{j}^{*}(N)}{\mathcal{N}}=\frac{e^{-\beta E_{j}(N, V)} e^{-\gamma N}}{\sum_{j, N} e^{-\beta E_{j}(N, V)} e^{-\gamma N}}
$$

Grand Canonical Ensemble

- Determination of Undetermined Multipliers

$$
\begin{aligned}
& U=\langle E\rangle=\sum_{j, N} P_{j}(N) E_{j}(N, V) \quad \Xi=\sum_{j, N} e^{-\beta E_{j}(N, V)} e^{-\gamma N} \\
& d U=\sum_{j, N} E_{j}(N, V) d P_{j}(N)+\sum_{j, N} P_{j}(N) d E_{j}(N, V) \quad \downarrow \quad \text { Comparing two equation gives, } \\
& d U=-\frac{1}{\beta} \sum_{j, N}\left[\gamma N+\ln P_{j}(N)+\ln \Xi\right]_{d P_{j}(N)+\sum_{j, N} P_{j}(N) \frac{\partial E_{j}(N, V)}{\partial V} d V}^{d U=T d S-p d V-\mu d N} \begin{array}{l}
\quad \beta=\frac{1}{k T} \quad \gamma=-\frac{\mu}{k T} \\
\Xi=\sum_{j, N} e^{-E_{j}(N, V) / k T} e^{N \mu / k T} \longrightarrow \quad \text { Grand Canonical Partition Function }
\end{array}
\end{aligned}
$$

4. Classical Statistical Mechanics

- The formalism of statistical mechanics relies very much at the microscopic states.
- Number of states, sum over states
- convenient for the framework of quantum mechanics
- What about "Classical Sates"?
- Classical states
- We know position and velocity of all particles in the system
- Comparison between Quantum Mechanics and Classical Mechanics

| QM Problem | $H \psi=E \psi \longrightarrow$ Finding probability and discrete energy states |
| :---: | :---: | :---: | :---: |
| CM Problem | $F=m a \longrightarrow$ Finding position and momentum of individual molecules |

Newton's Law of Motion

- Three formulations for Newton's second law of motion
- Newtonian formulation
- Lagrangian formulation
- Hamiltonian formulation

$$
\begin{aligned}
& H\left(\mathbf{r}^{N}, \mathbf{p}^{N}\right)=\mathrm{KE}(\text { kinetic energy) }+\mathrm{PE}(\text { potenti al energy }) \\
& H\left(\mathbf{r}^{N}, \mathbf{p}^{N}\right)=\sum_{i} \frac{\mathbf{p}_{i}}{2 m_{i}}+U\left(\mathbf{r}_{1}, \mathbf{r}_{2}, \ldots, \mathbf{r}_{N}\right) \\
& {\left[\frac{\partial H}{\partial \mathbf{r}_{i}}\right]=-\dot{\mathbf{p}}_{i} \quad \frac{\partial \mathbf{r}_{i}}{\partial t}=\frac{\mathbf{p}_{i}}{m_{i}}} \\
& {\left[\frac{\partial H}{\partial \mathbf{p}_{i}}\right]=\dot{\mathbf{r}}_{i}}
\end{aligned} \quad \begin{aligned}
& \mathbf{r}=\mathbf{r}\left(r_{x}, r_{y}, r_{z}\right) \\
& \mathbf{p}=\mathbf{p}\left(p_{x}, p_{y}, p_{z}\right) \\
& \partial t \\
& {\left[\begin{array}{l}
i
\end{array}\right.} \\
& \mathbf{F}_{i}=\sum_{\substack{j=1 \\
j \neq i}} \mathbf{F}_{i j}
\end{aligned}
$$

Classical Statistical Mechanics

- Instead of taking replica of systems, use abstract "phase space" composed of momentum space and position space (total 6 N -space) \mathbf{p}^{N}

Classical Statistical Mechanics

- " Classical State " : defines a cell in the space (small volume of momentum and positions)
"Classical State" $\propto d q_{x} d q_{y} d q_{z} d r_{x} d r_{y} d r_{z}=d^{3} p d^{3} r$ for simplicity
- Ensemble Average

$$
\begin{gathered}
U=\lim _{\tau \rightarrow \infty} \frac{1}{\tau} \int_{0}^{\tau} E(\Gamma) d \tau=\lim _{n \rightarrow \infty} \int \mathscr{P}_{N}(\Gamma) E(\Gamma) d \Gamma \\
P_{N}(\Gamma) d \Gamma \longrightarrow \begin{array}{c}
\text { Fraction of Ensemble members in this range } \\
(\Gamma \text { to } \Gamma+d \Gamma)
\end{array} \\
\mathscr{P}_{N}(\Gamma) d \Gamma=\frac{\exp (-H / k T) d \Gamma}{\substack{\text { Using similar technique used for } \\
\text { Botzmann distribution }}} \\
\int \exp (-H / k T) d \Gamma
\end{gathered}
$$

Classical Statistical Mechanics

- Canonical Partition Function

Phase Integral

$$
\begin{aligned}
& \mathcal{T}=\int \ldots \int \exp (-H / k T) d \Gamma \\
& Q=c \int \ldots \int \exp (-H / k T) d \Gamma
\end{aligned}
$$

Canonical Partition Function

Match between Quantum and Classical Mechanics

$$
c=\lim _{T \rightarrow \infty} \frac{\sum_{i} \exp \left(-E_{i} / k T\right)}{\int \ldots \int \exp (-H / k T) d \Gamma}
$$

$$
\longrightarrow \quad c=\frac{1}{N!h^{N F}}
$$

For rigorous derivation see Hill, Chap. 6 ("Statistical Thermodynamics")

Classical Statistical Mechanics

- Canonical Partition Function in Classical Mechanics

$$
Q=\frac{1}{N!h^{N F}} \int \ldots \int \exp (-\mathbf{H} / k T) d \Gamma
$$

Example) Translational Motion for Ideal Gas

$H\left(\mathbf{r}^{N}, \mathbf{p}^{N}\right)=\mathrm{KE}($ kinetic energy $)+\mathrm{PE}$ (potenti al energy)

$$
\begin{aligned}
& H\left(\mathbf{r}^{N}, \mathbf{p}^{N}\right)=\sum_{i} \frac{\mathbf{p}_{i}}{2 m_{i}}+U\left(\mathbf{r}_{1}, \mathbf{r}_{2}, \ldots, \mathbf{r}_{N}\right) \\
& H=\sum_{i} \frac{p_{i}{ }^{2}}{2 m_{i}}
\end{aligned}
$$

$$
Q=\frac{1}{N!h^{3 N}} \int \ldots \int \exp \left(-\sum_{i} \frac{p_{i}^{2}}{2 m_{i}}\right) d p_{1} \ldots d p_{N} d r_{1} \ldots d r_{N}
$$

$$
=\frac{1}{N!h^{3 N}}\left[\int_{-\infty}^{\infty} \exp \left(-\frac{p}{2 m_{i}}\right) d p\right]^{3 N}\left[\int_{0}^{V} d r_{1} d r_{2} d r_{3}\right]^{N}
$$

$$
=\frac{1}{N!}\left[\frac{2 \pi m k T}{h^{2}}\right]^{3 N / 2} V^{N}
$$

We will get ideal gas law

$$
p V=n R T
$$

Semi-Classical Partition Function

- The energy of a molecule is distributed in different modes
- Vibration, Rotation (Internal : depends only on T)
- Translation (External : depends on \mathbf{T} and \mathbf{V})
- Assumption 1 : Partition Function (thus energy distribution) can be separated into two parts (internal + center of mass motion)

$$
\begin{aligned}
& Q=\sum \exp \left(-\frac{E_{i}^{C M}+E_{i}^{\mathrm{int}}}{k T}\right)=\sum \exp \left(-\frac{E_{i}^{C M}}{k T}\right) \sum \exp \left(-\frac{E_{i}^{\mathrm{int}}}{k T}\right) \\
& Q=Q_{C M}(N, V, T) Q_{\mathrm{int}}(N, T)
\end{aligned}
$$

Semi-Classical Partition Function

- Internal parts are density independent and most of the components have the same value with ideal gases.

$$
Q_{\mathrm{int}}(N, \rho, T)=Q_{\mathrm{int}}(N, 0, T)
$$

- For solids and polymeric molecules, this assumption is not valid any more.

Semi-Classical Partition Function

- Assumption 2 : for $\mathbf{T}>50 \mathrm{~K}$, classical approximation can be used for translational motion

$$
\begin{aligned}
& H_{C M}=\sum_{i} \frac{p_{i x}^{2}+p_{i y}^{2}+p_{i z}^{2}}{2 m}+U\left(r_{1}, r_{2}, \ldots, r_{3 N}\right) \\
& Q=\frac{1}{N!h^{3 N}} \int \ldots \int \exp \left(-\sum_{i} \frac{p_{i x}^{2}+p_{i v}^{2}+p_{i z}^{2}}{2 m k T}\right) d p^{3 N} \int \ldots \int(-U / k T) d r^{3 N} \\
& =\frac{\Lambda^{-3 N}}{N!} Z \\
& \Lambda=\left(\frac{h^{2}}{2 \pi m k T}\right)^{1 / 2} \\
& Z=\int \ldots \int(-U / k T) d r_{1} d r_{2} \ldots d r_{3 N} \quad \text { Configurational Integral } \\
& Q=\frac{1}{N!} Q_{\text {int }} \Lambda^{-3 N} Z
\end{aligned}
$$

The
 End

Another, Different Treatment

Statistical Thermodynamics: the basics

- Nature is quantum-mechanical

Consequence:

- Systems have discrete quantum states.
- For finite "closed" systems, the number of states is finite (but usually very large)
Hypothesis: In a closed system, every state is equally likely to be observed.
Consequence: ALL of equilibrium Statistical Mechanics and Thermodynamics

Does the basis assumption lead to something that is consistent with classical thermodynamics?

E_{1}	$E_{2}=E-E_{1}$

Systems 1 and 2 are weakly coupled such that they can exchange energy.

What will be E_{I} ?

$$
\Omega\left(E_{1}, E-E_{1}\right)=\Omega_{1}\left(E_{1}\right) \times \Omega_{2}\left(E-E_{1}\right)
$$

BA: each configuration is equally probable; but the number of states that give an energy E_{l} is not know.

$$
\begin{aligned}
& \Omega\left(E_{1}, E-E_{1}\right)=\Omega_{1}\left(E_{1}\right) \times \Omega_{2}\left(E-E_{1}\right) \\
& \ln \Omega\left(E_{1}, E-E_{1}\right)=\ln \Omega_{1}\left(E_{1}\right)+\ln \Omega_{2}\left(E-E_{1}\right) \\
& \left(\frac{\partial \ln \Omega\left(E_{1}, E-E_{1}\right)}{\partial E_{1}}\right)_{N_{1}, V_{1}}=0 \\
& \left(\frac{\partial \ln \Omega_{1}\left(E_{1}\right)}{\partial E_{1}}\right)_{N_{1}, V_{1}}+\left(\frac{\left.\partial \ln \Omega_{2}\left(E-E_{1}\right)\right)}{\partial E_{1}}\right)_{N_{2}, V_{2}}=0 \\
& \left(\frac{\partial \ln \Omega_{1}\left(E_{1}\right)}{\partial E_{1}}\right)_{N_{1}, V_{1}}=\left(\frac{\partial \ln \Omega_{2}\left(E-E_{1}\right)}{\partial E_{2}}\right)_{N_{2}, V_{2}} \begin{array}{l}
\text { This can be seen as an } \\
\text { equilibrium conserved! } \\
\text { equition }
\end{array} \\
& \beta \equiv\left(\frac{\partial \ln \Omega(E)}{\partial E}\right)_{N, V} \\
& \left(\frac{\beta_{1}=\beta_{2}}{}\right.
\end{aligned}
$$

Entropy and number of configurations

Conjecture: $\quad S=\ln \Omega$

Almost right.
-Good features:
-Extensivity
-Third law of thermodynamics comes for free
-Bad feature:

- It assumes that entropy is dimensionless but (for unfortunate, historical reasons, it is not...)

We have to live with the past, therefore

$$
S=k_{B} \ln \Omega(E)
$$

With $\mathrm{k}_{\mathrm{B}}=1.38066210^{-23} \mathrm{~J} / \mathrm{K}$
In thermodynamics, the absolute (Kelvin) temperature scale was defined such that

$$
\left(\frac{\partial S}{\partial E}\right)_{N, V}=\frac{1}{T} \quad \mathrm{~d} E=T \mathrm{~d} S-p \mathrm{~d} V+\sum_{i=1}^{n} \mu_{\mathrm{i}} \mathrm{~d} N_{i}
$$

But we found (defined):

$$
\beta \equiv\left(\frac{\partial \ln \Omega(E)}{\partial E}\right)_{N, V}
$$

And this gives the "statistical" definition of temperature:

$$
\frac{1}{T} \equiv k_{B}\left(\frac{\partial \ln \Omega(E)}{\partial E}\right)_{N, V}
$$

In short:

Entropy and temperature are both related to the fact that we can COUNT states.

Basic assumption:

1. leads to an equilibrium condition: equal temperatures
2. leads to a maximum of entropy
3. leads to the third law of thermodynamics

Number of configurations

How large is Ω ?
-For macroscopic systems, super-astronomically large.
-For instance, for a glass of water at room temperature:

$$
\Omega \approx 10^{2 \times 10^{25}}
$$

-Macroscopic deviations from the second law of thermodynamics are not forbidden, but they are extremely unlikely.

Canonical ensemble

Consider a small system that can exchange heat with a big reservoir

E_{i}	$E-E_{i}$

$$
\begin{aligned}
& \ln \Omega\left(E-E_{i}\right)=\ln \Omega(E)-\frac{\partial \ln \Omega}{\partial E} E_{i}+\cdots \\
& \ln \frac{\Omega\left(E-E_{i}\right)}{\Omega(E)}=-\frac{E_{i}}{k_{B} T}
\end{aligned}
$$

Hence, the probability to find E_{i} :

$$
\begin{aligned}
& P\left(E_{i}\right)=\frac{\Omega\left(E-E_{i}\right)}{\sum \Omega\left(E-E_{j}\right)}=\frac{\exp \left(-E_{i} / k_{B} T\right)}{\sum_{j} \exp \left(-E_{j} / k_{B} T\right)} \\
& P\left(E_{i}\right) \propto \exp \left(-E_{i} / k_{B} T\right)
\end{aligned}
$$

Boltzmann distribution

Example: ideal gas

$Q(N, V, 7$ Thermo recall (3)
Helmholtz Free energy:

$$
\mathrm{d} F=-S \mathrm{~d} T-p \mathrm{~d} V
$$

Free energy: Pressure

$$
\beta F \quad\left(\frac{\partial F}{\partial V}\right)_{T}=-P
$$

Energy:
Pressure:

$$
P=-\left(\begin{array}{l}
\left.\frac{\partial}{\partial 1 / T}\right)=\left(\frac{-}{\partial \beta}\right)=E \\
\frac{\partial}{\partial V \rho_{T}} \operatorname{pV} \quad E=\left(\frac{,}{\partial \beta}\right)=\frac{}{\Lambda} \overline{\partial \beta}=\frac{3}{2} N k_{B} T
\end{array}\right.
$$

Ensembles

- Micro-canonical ensemble: E, V, N
- Canonical ensemble: T, V, N
- Constant pressure ensemble: T,P,N
- Grand-canonical ensemble: T, V, μ

Does the basis assumption lead to something that is consistent with classical thermodynamics?

E_{1}	$E_{2}=E-E_{1}$

Systems 1 and 2 are weakly coupled such that they can exchange energy.

What will be E_{I} ?

$$
\Omega\left(E_{1}, E-E_{1}\right)=\Omega_{1}\left(E_{1}\right) \times \Omega_{2}\left(E-E_{1}\right)
$$

BA: each configuration is equally probable; but the number of states that give an energy E_{l} is not know.

$$
\begin{aligned}
& \Omega\left(E_{1}, E-E_{1}\right)=\Omega_{1}\left(E_{1}\right) \times \Omega_{2}\left(E-E_{1}\right) \\
& \ln \Omega\left(E_{1}, E-E_{1}\right)=\ln \Omega_{1}\left(E_{1}\right)+\ln \Omega_{2}\left(E-E_{1}\right) \\
& \left(\frac{\partial \ln \Omega\left(E_{1}, E-E_{1}\right)}{\partial E_{1}}\right)_{N_{1}, V_{1}}=0 \\
& \left(\frac{\partial \ln \Omega_{1}\left(E_{1}\right)}{\partial E_{1}}\right)_{N_{1}, V_{1}}+\left(\frac{\left.\partial \ln \Omega_{2}\left(E-E_{1}\right)\right)}{\partial E_{1}}\right)_{N_{2}, V_{2}}=0 \\
& \left(\frac{\partial \ln \Omega_{1}\left(E_{1}\right)}{\partial E_{1}}\right)_{N_{1}, V_{1}}=\left(\frac{\partial \ln \Omega_{2}\left(E-E_{1}\right)}{\partial E_{2}}\right)_{N_{2}, V_{2}} \begin{array}{l}
\text { This can be seen as an } \\
\text { equilibrium conserved! } \\
\text { equition }
\end{array} \\
& \beta \equiv\left(\frac{\partial \ln \Omega(E)}{\partial E}\right)_{N, V} \\
& \left(\frac{\beta_{1}=\beta_{2}}{}\right.
\end{aligned}
$$

Entropy and number of configurations

Conjecture: $\quad S=\ln \Omega$

Almost right.
-Good features:
-Extensivity
-Third law of thermodynamics comes for free
-Bad feature:

- It assumes that entropy is dimensionless but (for unfortunate, historical reasons, it is not...)

We have to live with the past, therefore

$$
S=k_{B} \ln \Omega(E)
$$

With $\mathrm{k}_{\mathrm{B}}=1.38066210^{-23} \mathrm{~J} / \mathrm{K}$
In thermodynamics, the absolute (Kelvin) temperature scale was defined such that

$$
\left(\frac{\partial S}{\partial E}\right)_{N, V}=\frac{1}{T} \quad \mathrm{~d} E=T \mathrm{~d} S-p \mathrm{~d} V+\sum_{i=1}^{n} \mu_{\mathrm{i}} \mathrm{~d} N_{i}
$$

But we found (defined):

$$
\beta \equiv\left(\frac{\partial \ln \Omega(E)}{\partial E}\right)_{N, V}
$$

And this gives the "statistical" definition of temperature:

$$
\frac{1}{T} \equiv k_{B}\left(\frac{\partial \ln \Omega(E)}{\partial E}\right)_{N, V}
$$

In short:

Entropy and temperature are both related to the fact that we can COUNT states.

Basic assumption:

1. leads to an equilibrium condition: equal temperatures
2. leads to a maximum of entropy
3. leads to the third law of thermodynamics

Number of configurations

How large is Ω ?
-For macroscopic systems, super-astronomically large.
-For instance, for a glass of water at room temperature:

$$
\Omega \approx 10^{2 \times 10^{25}}
$$

-Macroscopic deviations from the second law of thermodynamics are not forbidden, but they are extremely unlikely.

Canonical ensemble

Consider a small system that can exchange heat with a big reservoir

E_{i}	$E-E_{i}$

$$
\begin{aligned}
& \ln \Omega\left(E-E_{i}\right)=\ln \Omega(E)-\frac{\partial \ln \Omega}{\partial E} E_{i}+\cdots \\
& \ln \frac{\Omega\left(E-E_{i}\right)}{\Omega(E)}=-\frac{E_{i}}{k_{B} T}
\end{aligned}
$$

Hence, the probability to find E_{i} :

$$
\begin{aligned}
& P\left(E_{i}\right)=\frac{\Omega\left(E-E_{i}\right)}{\sum \Omega\left(E-E_{j}\right)}=\frac{\exp \left(-E_{i} / k_{B} T\right)}{\sum_{j} \exp \left(-E_{j} / k_{B} T\right)} \\
& P\left(E_{i}\right) \propto \exp \left(-E_{i} / k_{B} T\right)
\end{aligned}
$$

Boltzmann distribution

Example: ideal gas

$Q(N, V, 7$ Thermo recall (3)
Helmholtz Free energy:

$$
\mathrm{d} F=-S \mathrm{~d} T-p \mathrm{~d} V
$$

Free energy: Pressure

$$
\beta F \quad\left(\frac{\partial F}{\partial V}\right)_{T}=-P
$$

Energy:
Pressure:

$$
P=-\left(\begin{array}{l}
\left.\frac{\partial}{\partial 1 / T}\right)=\left(\frac{-}{\partial \beta}\right)=E \\
\frac{\partial}{\partial V \rho_{T}} \operatorname{pV} \quad E=\left(\frac{,}{\partial \beta}\right)=\frac{}{\Lambda} \overline{\partial \beta}=\frac{3}{2} N k_{B} T
\end{array}\right.
$$

Ensembles

- Micro-canonical ensemble: E, V, N
- Canonical ensemble: T, V, N
- Constant pressure ensemble: T,P,N
- Grand-canonical ensemble: T, V, μ

