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1. Introduction

 Mechanics : Study of position, velocity, force and 

energy 

 Classical Mechanics (Molecular Mechanics)

• Molecules (or molecular segments) are treated as rigid object 

(point, sphere, cube,...)

• Newton’s law of motion 

 Quantum Mechanics 

• Molecules are composed of electrons, nuclei, ...

• Schrodinger’s equation  Wave function 



1. Introduction 

 Methodology of Thermodynamics and Statistical Mechanics

 Thermodynamics 

• study of the relationships between macroscopic properties

– Volume, pressure, compressibility, …

 Statistical Mechanics (Statistical Thermodynamics)

• how the various macroscopic properties arise as a consequence of the microscopic nature of 

the system

– Position and momenta of individual molecules (mechanical variables)

 Statistical Thermodynamics (or Statistical Mechanics) is a link between microscopic 

properties and bulk (macroscopic) properties

Methods of QM

Methods of MM

A particular 

microscopic model

can be used
r
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Statistical

Mechanics
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Thermodynamic Variables



1.Introduction

 Equilibrium Macroscopic Properties 

 Properties are consequence of average of individual 

molecules 

 Properties are invariant with time  Time average 

Mechanical 

Properties of

Individual 

Molecules

position, velocity

energy, ...

Thermodynamic

Properties

temperature, pressure

internal energy, enthalpy,...

average

over molecules

average

over time

statistical

thermodynamics

2 3 4



1. Introduction 

 Description of States

 Macrostates : T, P, V, … (fewer variables)

 Microstates : position, momentum of each particles (~1023 variables)

 Fundamental methodology of statistical mechanics 

 Probabilistic approach : statistical average

• Most probable value 

 Is it reasonable ? 

• As N approaches very large number, then fluctuations are negligible 

• “Central Limit Theorem” (from statistics)

• Deviation ~1/N0.5



2. Distribution of Molecular States

 Statistical Distribution 

 n : number of occurrences

 b : a property

b

ni

1 2 3 4 5 6

if we know “distribution” 

we can calculate the average

value of the property b



2. Distribution of Molecular States

 Normalized Distribution Function 

 Probability Distribution Function
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Finding probability (distribution) function is 

the main task in statistical thermodynamics



2. Distribution of Molecular States

 Quantum theory says , 

 Each molecules can have only discrete values of energies 

 Evidence

 Black-body radiation

 Planck distribution

 Heat capacities

 Atomic and molecular spectra

 Wave-Particle duality 

Energy

Levels



2. Distribution of Molecular States

 Configuration ....

 At any instance, there may be no molecules at e0 , n1

molecules at e1 , n2 molecules at e2 , …  

 {n0 , n1 , n2 …} configuration 
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2. Distribution of Molecular States

 Weight ....

 Each configurations can be achieved in different ways

 Example1 :  {3,0} configuration  1

 Example2 :  {2,1} configuration  3
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2. Distribution of Molecular States

 Calculation of Weight ....

 Weight (W) : number of ways that a configuration can be achieved in 

different ways

 General formula for the weight of  {n0 , n1 , n2 …} configuration 
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Example1

{1,0,3,5,10,1} of 20 objects

W = 9.31E8 

Example 2

{0,1,5,0,8,0,3,2,1} of 20 objects

W = 4.19 E10



Principles of Equal a Priori Probability

 All distributions of energy are equally probable 

 If E = 5 and N = 5  then 
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All configurations have equal probability, but

possible number of way (weight) is different. 



A Dominating Configuration

 For large number of molecules and large number of energy 

levels, there is a dominating configuration. 

 The weight of the dominating configuration is much more 

larger than the other configurations. 

Configurations

Wi

{ni}



Dominating Configuration
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W = 1 (5!/5!) W = 20 (5!/3!) W = 5 (5!/4!)

Difference in W becomes larger when N is increased !

In molecular systems (N~1023) considering the 

most dominant configuration is enough for average 



How to find most dominant 

configuration ?

 The Boltzmann Distribution 

 Task : Find the dominant configuration for given N and 

total energy E

 Method : Find maximum value of W which satisfies, 
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Stirling's approximation

 A useful formula when dealing with factorials of 

large numbers. 
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Method of Undetermined 

Multipliers

 Maximum weight , W 

Recall the method to find min, max of a function…

 Method of undetermined multiplier : 

 Constraints should be multiplied by a constant and 

added to the main variation equation. 
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Method of Undetermined 

Multipliers
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Method of Undetermined 

Multipliers
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Method of Undetermined 

Multipliers
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The Molecular Partition Function

 Boltzmann Distribution

 Molecular Partition Function

 Degeneracies  : Same energy value but different states (gj-

fold degenerate)
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How to obtain the value of beta ?

 Assumption : 

 T 0  then q  1

 T infinity then q  infinity 

 The molecular partition function gives an indication of the 

average number of states that are thermally accessible to a 

molecule at T. 

kT/1



2. Interacting Systems 

– Gibbs Ensemble

 Solution to Schrodinger equation (Eigen-value problem)

 Wave function 

 Allowed energy levels  : En

 Using the molecular partition function, we can calculate 

average values of property at given QUANTUM STATE.

 Quantum states are changing so rapidly that the observed 

dynamic properties are actually time average over 

quantum states.
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Fluctuation with Time

time

states

Although we know most probable distribution of energies of individual 

molecules at given N and E  (previous section – molecular partition 

function) it is almost impossible to get time average for interacting 

molecules 



Thermodynamic Properties

 Entire set of possible quantum states 

 Thermodynamic internal energy
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Difficulties 

 Fluctuations are very small

 Fluctuations occur too rapidly

We have to use alternative, abstract approach.

Ensemble average method (proposed by Gibbs)



Alternative Procedure

 Canonical Ensemble

 Proposed by J. W. Gibbs (1839-1903) 

 Alternative procedure to obtain average

 Ensemble : Infinite number of mental replica 

of system of interest
Large reservoir (constant T)

All the ensemble members have the same (n, V, T)

Energy can be exchanged but

particles cannot 

Number of Systems : N 

N  ∞



Two Postulate

E1 E2 E3 E4 E5

time

Fist Postulate

The long time average of a mechanical variable M is 

equal to the ensemble average in the limit N ∞

Second Postulate (Ergodic Hypothesis)

The systems of ensemble are distributed uniformly for (n,V,T) system

Single isolated system spend equal amount of time



Averaging Method

 Probability of observing particular quantum state i 

 Ensemble average of a dynamic property

 Time average and ensemble average
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How to find Most Probable 

Distribution ?

 Calculation of Probability in an Ensemble 

 Weight 

 Most probable distribution = configuration with maximum weight 

 Task : find the dominating configuration for given N and E

• Find maximum W which satisfies
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Canonical Partition Function 

 Similar method (Section 2) can be used to get most 

probable distribution 
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How to obtain beta ? 

– Another interpretation
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Properties from Canonical Partition 

Function

 Internal Energy
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Properties from Canonical Partition 

Function

 Pressure
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Thermodynamic Properties from 

Canonical Partition Function
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Grand Canonical Ensemble

 Ensemble approach for open system

 Useful for open systems and mixtures

 Walls are replaced by permeable walls

Large reservoir (constant T )

All the ensemble members have the same (V, T, i )

Energy and particles can be exchanged 

Number of Systems : N 

N  ∞



Grand Canonical Ensemble

 Similar approach as Canonical Ensemble 

 We cannot use second postulate because systems are not isolated

 After equilibrium is reached, we place walls around ensemble and treat 

each members the same method used in canonical ensemble 

After

equilibrium

T,V, T,V,N1

T,V,N2

T,V,N3

T,V,N4

T,V,N5

Each members are (T,V,N) systems

 Apply canonical ensemble methods for each member



Grand Canonical Ensemble

 Weight and Constraint    
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Grand Canonical Ensemble

 Determination of Undetermined Multipliers
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4. Classical Statistical Mechanics

 The formalism of statistical mechanics relies very much at the 

microscopic states.

 Number of states , sum over states 

 convenient for the framework of quantum mechanics

 What about “Classical Sates” ?

 Classical states 

• We know position and velocity of all particles in the system

 Comparison between Quantum Mechanics and Classical Mechanics

 EH QM Problem Finding probability and discrete energy states 

maF CM Problem Finding position and momentum of individual molecules



Newton’s Law of Motion

 Three formulations for Newton’s second law of motion

 Newtonian formulation

 Lagrangian formulation

 Hamiltonian formulation
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Classical Statistical Mechanics

 Instead of taking replica of systems, use abstract “phase space” 

composed of momentum space and position space  (total 6N-space)
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Classical Statistical Mechanics

 “ Classical State “ : defines a cell in the space (small volume of 

momentum and positions)

 Ensemble Average
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Boltzmann distribution



Classical Statistical Mechanics

 Canonical Partition Function 

   dkTH )/exp(...TPhase Integral
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Match between Quantum 

and Classical Mechanics
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For rigorous derivation see Hill, Chap.6 (“Statistical Thermodynamics”)



Classical Statistical Mechanics

 Canonical Partition Function in Classical Mechanics 
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Example ) Translational Motion for 

Ideal Gas
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No potential energy, 3 dimensional

space.

We will get ideal gas law

pV= nRT



Semi-Classical Partition Function

 The energy of a molecule is distributed in different modes

 Vibration, Rotation (Internal : depends only on T)

 Translation (External : depends on T and V) 

 Assumption 1 : Partition Function (thus energy distribution) can be separated 

into two parts (internal + center of mass motion) 
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Semi-Classical Partition Function

 Internal parts are density independent and most of the 

components have the same value with ideal gases. 

 For solids and polymeric molecules, this assumption is not 

valid any more.
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Semi-Classical Partition Function

 Assumption 2 : for T>50 K , classical approximation can be 

used for translational motion 

N

N

i

NNiziyix

N

N

i

iziyix

CM

drdrdrkTUZ

mkT

h

Z
N

drkTUdp
mkT

ppp

hN
Q

rrrU
m

ppp
H

321

2/1
2

3

33

222

3

321

222

...)/(...

2

!

)/(...)
2

exp(...
!

1

),...,,(
2

 

    
































ZQ
N

Q N3

int
!

1 

Configurational Integral





Another, Different Treatment



Statistical Thermodynamics:

the basics

• Nature is quantum-mechanical

• Consequence:

– Systems have discrete quantum states.

– For finite “closed” systems, the number of 
states is finite (but usually very large)

• Hypothesis: In a closed system, every 
state is equally likely to be observed.

• Consequence: ALL of equilibrium 
Statistical Mechanics and 
Thermodynamics



Basic assumption
Each individual 

microstate is 

equally probable 

…, but there are not 

many microstates that 

give these extreme 

results

If the number of 

particles is large (>10) 

these functions are 

sharply peaked



Does the basis assumption lead to something 

that is consistent with classical 

thermodynamics?

1E
Systems 1 and 2 are weakly coupled 

such that they can exchange energy.

What will be E1?

     1 1 1 1 2 1,E E E E E EW   W W 

BA: each configuration is equally probable; but the number of 

states that give an energy E1 is not know. 

2 1E E E 



     1 1 1 1 2 1,E E E E E EW   W W 
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Energy is conserved!

dE1=-dE2

This can be seen as an 

equilibrium condition
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Conjecture:

Almost right.

•Good features:

•Extensivity

•Third law of thermodynamics comes for free

•Bad feature:

•It assumes that entropy is dimensionless but (for 

unfortunate, historical reasons, it is not…)

Entropy and number of 

configurations

lnS  W



We have to live with the past, therefore

With kB= 1.380662 10-23 J/K 

In thermodynamics, the absolute (Kelvin) 

temperature scale was defined such that

But we found (defined):

 lnBS k E W
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n
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And this gives the “statistical” definition of temperature:

In short:

Entropy and temperature are both related to 

the fact that we can COUNT states. 

 

,

ln1
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N V

E
k

T E

  W
  

 

Basic assumption:

1. leads to an equilibrium condition: equal temperatures

2. leads to a maximum of entropy

3. leads to the third law of thermodynamics



How large is W?

•For macroscopic systems, super-astronomically large. 

•For instance, for a glass of water at room temperature:

•Macroscopic deviations from the second law of 

thermodynamics are not forbidden, but they are 

extremely unlikely.

Number of configurations

252 1010 W 



Canonical ensemble

Consider a small system that can exchange heat with a big reservoir
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Boltzmann distribution



Example: ideal gas
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Thermo recall (3)

Helmholtz Free energy:
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Ensembles

• Micro-canonical ensemble: E,V,N

• Canonical ensemble: T,V,N

• Constant pressure ensemble: T,P,N

• Grand-canonical ensemble: T,V,μ



Basic assumption
Each individual 

microstate is 

equally probable 

…, but there are not 

many microstates that 

give these extreme 

results

If the number of 

particles is large (>10) 

these functions are 

sharply peaked



Does the basis assumption lead to something 

that is consistent with classical 

thermodynamics?

1E
Systems 1 and 2 are weakly coupled 

such that they can exchange energy.

What will be E1?

     1 1 1 1 2 1,E E E E E EW   W W 

BA: each configuration is equally probable; but the number of 

states that give an energy E1 is not know. 

2 1E E E 



     1 1 1 1 2 1,E E E E E EW   W W 
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Energy is conserved!

dE1=-dE2

This can be seen as an 

equilibrium condition
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Conjecture:

Almost right.

•Good features:

•Extensivity

•Third law of thermodynamics comes for free

•Bad feature:

•It assumes that entropy is dimensionless but (for 

unfortunate, historical reasons, it is not…)

Entropy and number of 

configurations

lnS  W



We have to live with the past, therefore

With kB= 1.380662 10-23 J/K 

In thermodynamics, the absolute (Kelvin) 

temperature scale was defined such that

But we found (defined):
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And this gives the “statistical” definition of temperature:

In short:

Entropy and temperature are both related to 

the fact that we can COUNT states. 
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Basic assumption:

1. leads to an equilibrium condition: equal temperatures

2. leads to a maximum of entropy

3. leads to the third law of thermodynamics



How large is W?

•For macroscopic systems, super-astronomically large. 

•For instance, for a glass of water at room temperature:

•Macroscopic deviations from the second law of 

thermodynamics are not forbidden, but they are 

extremely unlikely.

Number of configurations

252 1010 W 



Canonical ensemble

Consider a small system that can exchange heat with a big reservoir
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Example: ideal gas
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Thermo recall (3)

Helmholtz Free energy:
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Ensembles

• Micro-canonical ensemble: E,V,N

• Canonical ensemble: T,V,N

• Constant pressure ensemble: T,P,N

• Grand-canonical ensemble: T,V,μ


