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1. Introduction

= Mechanics : Study of position, velocity, force and
energy

= Classical Mechanics (Molecular Mechanics)

« Molecules (or molecular segments) are treated as rigid object
(point, sphere, cube,...)

 Newton’s law of motion
= Quantum Mechanics

« Molecules are composed of electrons, nucleit, ...
« Schrodinger’s equation = Wave function
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1. Introduction

= Methodology of Thermodynamics and Statistical Mechanics

=  Thermodynamics
 study of the relationships between macroscopic properties
— Volume, pressure, compressibility, ...
= Statistical Mechanics (Statistical Thermodynamics)

« how the various macroscopic properties arise as a consequence of the microscopic nature of
the system
— Position and momenta of individual molecules (mechanical variables)
= Statistical Thermodynamics (or Statistical Mechanics) is a link between microscopic
properties and bulk (macroscopic) properties

Thermodynamic Variables

*oo

Pure mechanical variables

Statistical

@ m Mechanics

Methods of QM

Methods of MM

. o>
A particular ® :
microscopic model ¥
can be used 4
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1.Introduction

= Equilibrium Macroscopic Properties

= Properties are consequence of average of individual
molecules

= Properties are invariant with time - Time average

M

Mechanical average average statistical
. over molecules over time thermodynamics )

Properties of . . ~ | Thermodynamic =
= Individual Properties =
— 2 3 4
= Molecules
= position, velocity temperature, pressure

energy, ... internal energy, enthalpy,...




1. Introduction

= Description of States
= Macrostates: T, P, V, ... (fewer variables)
= Microstates : position, momentum of each particles (~10%3 variables)

= Fundamental methodology of statistical mechanics
= Probabilistic approach : statistical average
« Most probable value
= Isit reasonable ?

« As N approaches very large number, then fluctuations are negligible

e “Central Limit Theorem” (from statistics)
« Deviation ~1/N9>
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2. Distribution of Molecul J

= Statistical Distribution

= n : number of occurrences
= b :aproperty

if we know “distribution”
we can calculate the average
value of the property b
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> Distribution of Molecu

= Normalized Distribution Function
-> Probability Distribution Function

n(b) _ _ni(b)
N ()
EZR(Q):l

<b>=ZbiF’i
<F(b)>=) F(b)P

R(Q)z
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b, b, by b, b b,

Finding probability (distribution) function is
the main task in statistical thermodynamics




2. Distribution of Mm

= Quantum theory says,
= Each molecules can have only discrete values of energies

= Evidence Energy
= Black-body radiation Levels

Planck distribution 1

Heat capacities

Atomic and molecular spectra

Wave-Particle duality
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2. Distribution of MM}

e
= Configuration ....

= At any Instance, there may be n, molecules at g,, n,
molecules at g,, n, molecules at ¢,, ...

-2 {n,, N, , n, ...} configuration

n

O . =

3,2,2,1,0,0
“ee . mHEE) (322100
006 .
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2. Distribution of MM

= Weight ....
= Each configurations can be achieved in different ways

= Examplel : {3,0} configuration = 1

£
_ 000 E
0

= Example2 : {2,1} configuration = 3

O c Q
_0e k @ O
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2. Distribution of Molecu

—_—

= Calculation of Weight ....

= Weight (W) : number of ways that a configuration can be achieved in
different ways

= General formula for the weight of {n,, n,, n, ...} configuration

I

| |
W — N : — N Examplel
n1! n2 I ns! . H ni | {1,0,3,5,10,1} of 20 objects
i

W =9.31E8

Example 2
{0,1,5,0,8,0,3,2,1} of 20 objects
W =419 E10
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Principles of Equal a PrM

= All distributions of energy are equally probable
= [fE=5and N=5 then

090000

NN W RN Y
NN W RN Y

g 000 oI I°H
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» All configurations have equal probability, but
possible number of way (weight) is different.
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A Dominating Confl'g

B

= For large number of molecules and large number of energy
levels, there is a dominating configuration.

= The weight of the dominating configuration is much more
larger than the other configurations.
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— iy =
Dominating Configur }
5 5 ® ;
4 4 4
3 ® 3 3
2 @ 2 2
090000 Ji ] =
0 (I 1@, 0 00 , =
W =1 (51/51) W = 20 (5!/31) W =5 (51/41) =

v

Difference in W becomes larger when N is increased !

In molecular systems (N~102%) considering the
most dominant configuration is enough for average
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How to find most do
configuration ?

S

= The Boltzmann Distribution

= Task : Find the dominant configuration for given N and
total energy E

= Method : Find maximum value of W which satisfies,

M
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http://www-groups.dcs.st-and.ac.uk/~history/PictDisplay/Boltzmann.html
http://www-groups.dcs.st-and.ac.uk/~history/PictDisplay/Boltzmann.html

— . &
Stirling's approximat

e

= A useful formula when dealing with factorials of
large numbers.

INn NI=NInh N —N

m

!
W =l — "y NI=> Inn;!
n!n,In,!... i

=NInN-N->nlnn+> n,
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Method of Undetermine
~ Multipliers

= Maximum weight , W

—~>Recall the method to find min, max of a function...
dinW =0

(mnWj:O
dn.

= Method of undetermined multiplier :

= Constraints should be multiplied by a constant and
added to the main variation equation.
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Method of Undetermi .
Multipliers
= undetermined multipliers

dinw = Z[a:jnnw jdni dni Zgidni

:Z{(a(ljnn\i/\/]+a—ﬂg}dni _0

. ]

(c’ﬂnw

dn.

j+a—ﬂq=0
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Method of Undetermi
Multipliers
—
INW=NIN->nln,
ohW) oNIhN a(n;inn;)
( on. j_ on Zjl on.

AL AR [ NI NV A
on, on, N | on,

|

on. Inn. on. on, =
ZM:Z v |nnj-|-nj><i —Lt=Ihn +1
. on. = (| on, n.\ on

J

J J

: B

—(hn+)+(0nN+1)=—1In ”N

olnWwW
on
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Method of Undeterhi
Multipliers

n.
—In—L+a+ P =0
N Joz=

Normalization Condition

N=>n =Ne">e”™
j j

Boltzmann Distribution
(Probability function for
energy distribution)
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The Molecular PartM

Boltzmann Distribution

p _&_ e_ﬂgi e_ﬁgi
N e g

J
Molecular Partition Function

q=) "
j

= Degeneracies : Same energy value but different states (g;-
fold degenerate)
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How to obtain the value

1|
A
S O N

Assumption :  [3 = 1/kT

= T->0 theng=>1

= T=> infinity then g = infinity =

= The molecular partition function gives an indication of the
average number of states that are thermally accessible to a
moleculeat T.
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2. Interacting Systems *
— Gibbs Ensemble

= Solution to Schrodinger equation (Eigen-value problem)
= Wave function he
= Allowed energy levels : E, _Zgﬁzm_ Vit +U¥ =EY

= Using the molecular partition function, we can calculate =
average values of property at given QUANTUM STATE.

= Quantum states are changing so rapidly that the observed
dynamic properties are actually time average over
guantum states.
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Fluctuation with Tim

i
'

states ﬂ —
J L ﬂ L L]

n

il

timao
(9] A\

Although we know most probable distribution of energies of individual
molecules at given N and E (previous section — molecular partition
function) it is almost impossible to get time average for interacting

molecules
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Thermodynamicm

= Entire set of possible quantum states
v, ¥,¥,. Y,
E.E, E;...E ..

= Thermodynamic internal energy

UﬁleE&

Z'—)ooz' :
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Difficulties

—

= Fluctuations are very small
= Fluctuations occur too rapidly

—~>We have to use alternative, abstract approach.

-~ Ensemble average method (proposed by Gibbs)
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Alternative ProceM}
- —

= Canonical Ensemble
= Proposed by J. W. Gibbs (1839-1903)
= Alternative procedure to obtain average
= Ensemble : Infinite number of mental replica
of system of interest

Large reservoir (constant T) =

All the ensemble members have the same (n, V, T)

"

Energy can be exchanged but
— 9)% g

particles cannot

MANN

Number of Systems : N
N 2w
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Two Postulate

Fist Postulate

The long time average of a mechanical variable M is

equal to the ensemble average in the limit N = o W/////////////////////

N

MY

time

AR R,

MAMMMTNH.

N

D7

Second Postulate (Ergodic Hypothesis)

The systems of ensemble are distributed uniformly for (n,V,T) system
Single isolated system spend equal amount of time

TN




Averaging Methom

= Probability of observing particular quantum state |

P =

Zn

= Ensemble average of a dynamic property

1l

<E>= Z EP
= Time averaye anu ensernole average

UL

U =lim > EAt =lim ZEP
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How to find Most Prol
- Distribution ?

e

= Weight _ _
N! N!
Q = o — = —
AT N Y
i
= Most probable distribution = configuration with maximum weight =

= Task : find the dominating configuration for given N and E
« Find maximum £2which satisfies
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Canonical Partition F

—

—

= Similar method (Section 2) can be used to get most
probable distribution

5 N e —PE;

i N Ze_ﬁEJ
5 _ n. _ e - PE; _ e—ﬂEi
i N Ze—ﬂEj Q

j —

Canonical Partition Function
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How to obtain beta ? o8

~_— Another Interpretation
=

dU:d(ZE ) = ZEdP+ZPdE
dU =&, — —TdS pdV

PdE, =S R[ i) dv = -Pav =-dw,,
> paE, - R 5 e
i i N

S E,dP :—%(Zln PP+ Q> dP) :—%Zln PdP =TdS =dqg_, B

The only function that links heat (path integral) and
state property is TEMPERATURE.

1

l :
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B =1/KT




Properties from Cano
Function .
_—— :

= Internal Energy

U =< E>:Z:Ei|3i ::éZEie_ﬂEi

i(as)
(@j — _Z Eie—ﬂEi

op i(gs)

U:_i(@j :_(anj
QLB Jyy 0B )y

QU L L LTS




Properties from Cano
Function ‘ |
i

L

= Pressure
(dw,), = RdV = Fdx
(dE)y =-FRdx=-PdV =

-{5)

P <P>—ZPP

gIre o3l &

—SW.

j e_ﬂEi
N

(aé”vQL,;ézia—viJfﬂE

Pzi(aln Qj
L InV

Small Adiabatic expansion of system




Thermodynamic Prop
~ Canonical Partition Functior |

———

aan)
oinT

S = k(l 0+ (aan) j

olnQ olnQ
H = kT((@IT) +(M)T,Nj

A=—kTInQ
B olnQ
G= kT(I Q- ( V) Nj

:_kT(aln Q]
aNi TV,N

VN

U =kT(
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Grand Canonicale

= Ensemble approach for open system
= Useful for open systems and mixtures
= Walls are replaced by permeable walls

arge reservoir (constant T )
) . T

/ All the ensemble members have the same (V, T, z)

Energy and particles can be exchanged
— gy Y g

]
) e

A
1

IIseserr’sS

AR R

Number of Systems : N
N 2w
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Grand Canonical ERs

_—

= Similar approach as Canonical Ensemble
= \We cannot use second postulate because systems are not isolated

= After equilibrium is reached, we place walls around ensemble and treat
each members the same method used in canonical ensemble

N\

After
equilibrium

=)

——
—
b
—

NN
IR

T

A

— |

I

I

o
NN\ |

TVu

|

T,VIN;

Each members are (T,V,N) systems
- Apply canonical ensemble methods for e
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Grand Canonical E‘ﬁ

B

- _ e
= Weight and Constraint

Number of ensemble members

] / —  Number of molecules after
: | Z nj (@ fixed wall has been placed
J.N

=[]
>
—
Z
~—

) Hn,-(N)i E, => n,(N)E;(V,N)
N i.N =

Method of undetermined multiplier
with e, B8,y




Grand Canonicam

= Determination of Undetermined Multipliers
=(E)=> P.(N)E.(N,V - _ (NV)—
(E)= 2P NE,(NV) E=Ye”
dU =3 E,(N,V)dP,(N)+ > P,(N)dE, (N,V) J.N
j,N i,N

:——Z[;N +In P (N)+IhEjP (N)+ZP (N) %, (N V) gv

1l

dU =TdS — pdV — «dN
~

_ 1 M
ﬂ—kT y =

X Comparing two equation gives,

UL

= Z e_Ej (N,V)/kTeNy/kT
— Grand Canonical Partition Function
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4. Classical Statistical ﬁ/fé

= The formalism of statistical mechanics relies very much at the
microscopic states.

= Number of states , sum over states
= convenient for the framework of quantum mechanics

=  What about “Classical Sates” ?

= Classical states
« We know position and velocity of all particles in the system

= Comparison between Quantum Mechanics and Classical Mechanics

M

"N

QM Problem Hy =Ey —— Finding probability and discrete energy states

WU

CM Problem F =ma — Finding position and momentum of individual molecules




Newton’s Law ofm

= Three formulations for Newton’s second law of motion
= Newtonian formulation
= Lagrangian formulation
= Hamiltonian formulation

H(r",p") = KE(Kinetic energy) + PE(potenti al energy)

H(Ir“,loN)=Z%+U(rl,r2 ..... ry)

= oH =—p. ar _p; r=r(r,r,r,) =
g :6ri: ot m, p=p(p,, Py, P,)

= oH I, L

= | p; _ ot
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Instead of taking replica of systems, use abstract “phase space”
composed of momentum space and position space (total 6N-space)

A

N

P
L,

I

M

t, Phase space

1

T F:{pl’pZ’pis""’pN’rl’r11r3""’rN}
1
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Classical Statistical N

= “ Classical State “ : defines a cell in the space (small volume of
momentum and positions)

"Classical State"oc dq,dq,da,dr,dr,dr, =d*pd°r for simplicity
= Ensemble Average

U =Ilim 1jTE(r)olrz im | @, (C)E(r)dr
T0 T 0 n—oo

Q)N (F) dF _— Fraction of Ensemble members in this range
(/to 7+d7)

Using similar technique used for
Boltzmann distribution

——
b -

exp(—H /KkT)dI’

A (1)dr = [.[exp(—H /kT)dD




Classical StatisticM}
- SR~

= Canonical Partition Function

Phase Integral T = jj exp(—H /kT)dI’
Canonical Partition Function Q — CII eXp(_H /kT)dF
exp(—E. /KT
Match between Quantum ) Z Xp( ' )
= and Classical Mechanics ¢ = T"Lnoo J- jexp(—H /kT)dF =
= 1
— > cC =
= N!h'F

For rigorous derivation see Hill, Chap.6 (“Statistical Thermodynamics”)




Classical StatistMl»

Fﬁ
=  Canonical Partition Function in Classical Mechanics

1
NIh™

Q = j...jexp(—H/kT)dr
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—
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Example ) Translational

Ideal Gas

S
-

l :
UL

H(r",p") = KE(kinetic energy) + PE(potenti al energy)

H( ) =2 U (1, e ty) | N
Bl ~ No potential energy, 3 dimensional
~ space.

M

1
Q= D I,_,jexp( Z )dp1 dp, dr,...dr,
Ny N
N'th{ | xp(——)dp} {jdrldrzdrg} =
0
1 [22mkT T
= N " \Y :> We will get ideal gas law
: pV=nRT




Semi-Classical Partition

i

-
= The energy of a molecule is distributed in different modes
= Vibration, Rotation (Internal : depends only on T)
= Translation (External : depends on T and V)

= Assumption 1 : Partition Function (thus energy distribution) can be separated
into two parts (internal + center of mass motion)

E-CM
KT

E

'int
KT )

Q= ZGXIO(— 2 kjrl' & )= Zexp(— )Z exp(—

Q - QCM (N 1V’T)Qint(N1T)

S




Semi-Classical PartiM}

—

= Internal parts are density independent and most of the
components have the same value with ideal gases.

Qine(N, 2, T) =Q;,(N,0,T)

= For solids and polymeric molecules, this assumption is not
valid any more.
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Semi-Classical Partition

Assumption 2 : for T>50 K, classical approximation can be
used for translational motion

pi2x + pi2 + pizz
Hey :Z y +U (1,0, )

: 2m

1 pi + Py + Py
Q= j j exp(—zi: 2mIiT )dp®" j j (-U /kT)dr" =

-3N
_A 7
N!

2 1/2
A= h
(Zﬂkaj

Z =[..[(-U /KT)drdr,..dr,

Configurational Integral







Another, Different Treatment



Statistical Thermodynamics:
the basics

Nature Is guantum-mechanical

Consequence:
— Systems have discrete quantum states.

— For finite “closed” systems, the number of
states Is finite (but usually very large)

Hypothesis: In a closed system, every
state Is equally likely to be observed.

Consequence: AL L of equilibrium
Statistical Mechanics and
Thermodynamics



Basic assump




Does the basis assumption lead to something
that 1s consistent with classical
thermodynamics?

Systems 1 and 2 are weakly coupled

E E,=E-E
1 - 1 such that they can exchange energy.

What will be E;?

Q(E,E-E)=(E)x(E-E)

BA: each configuration is equally probable; but the number of
states that give an energy E, Is not know.



O(E,E-E)=(E)x,(E-E)
InQ(E,E-E )=InQ (E)+InQ,(E-E)
(aan(El,E—El)j 0

OE,

fome,(E)) (oo, (E-E)
E, ) 6k, )

oln<y, (E,) _[0InQ,(E-E)
B Juy OE, X

ﬂ{@lnng(E )]N’V
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Entropy and number of
configurations

Conjecture: S =|nO

Almost right.
*Good features:
*Extensivity

*Third law of thermodynamics comes for free
-Bad feature:

|t assumes that entropy is dimensionless but (for

unfortunate, historical reasons, it 1s not...)



We have to live with the past, therefore
S =kz INQ(E)

With kg= 1.380662 1023 J/K

In thermodynamics, the absolute (Kelvin)
temperature scale was defined such that

(ﬁ) LR CE:TdS—pdV+ZyidJ\fi
OE Jyyv T i=I

But we found (defined):

ﬂE(alnng(E )]N’V




And this gives the “statistical” definition of temperature:

1 oInQ(E )
T ok

N,V

In short:

Entropy and temperature are both related to
the fact that we can COUNT states.

Basic assumption:
1. leads to an equilibrium condition: equal temperatures
2. leads to a maximum of entropy
3. leads to the third law of thermodynamics




Number of configurations

How large iIs Q7
*For macroscopic systems, super-astronomically large.

For instance, for a glass of water at room temperature:

Q - 102><1025

*Macroscopic deviations from the second law of
thermodynamics are not forbidden, but they are
extremely unlikely.



Canonical ensemble

Consider a small system that can exchange heat with a bigireservoir

B EE NQ(E-E)=ha(E)-IN2E ...
InQ(E_Ei)—— E
Q(E) kT

Hence, the probability to find E;:
Q(E-E)  exp(-E/kgT)

Q(E-E;) > exp(-E;/k,T)




Q(N,V,

Free energy:

PF

Pressure:

-

Example: ideal gas




Ensembles

Micro-canonical ensemble: E,V,N
Canonical ensemble: T,V,N
Constant pressure ensemble: T,P,N
Grand-canonical ensemble: T,V,u



Basic assump




Does the basis assumption lead to something
that 1s consistent with classical
thermodynamics?

Systems 1 and 2 are weakly coupled

E E,=E-E
1 - 1 such that they can exchange energy.

What will be E;?

Q(E,E-E)=(E)x(E-E)

BA: each configuration is equally probable; but the number of
states that give an energy E, Is not know.



O(E,E-E)=(E)x,(E-E)
InQ(E,E-E )=InQ (E)+InQ,(E-E)
(aan(El,E—El)j 0

OE,
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E, ) 6k, )
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B Juy OE, X

ﬂ{@lnng(E )]N’V

< 131:,82 >



Entropy and number of
configurations

Conjecture: S =|nO

Almost right.
*Good features:
*Extensivity

*Third law of thermodynamics comes for free
-Bad feature:

|t assumes that entropy is dimensionless but (for

unfortunate, historical reasons, it 1s not...)



We have to live with the past, therefore
S =kz INQ(E)

With kg= 1.380662 1023 J/K

In thermodynamics, the absolute (Kelvin)
temperature scale was defined such that

(ﬁ) LR CE:TdS—pdV+ZyidJ\fi
OE Jyyv T i=I

But we found (defined):

ﬂE(alnng(E )]N’V




And this gives the “statistical” definition of temperature:

1 oInQ(E )
T ok

N,V

In short:

Entropy and temperature are both related to
the fact that we can COUNT states.

Basic assumption:
1. leads to an equilibrium condition: equal temperatures
2. leads to a maximum of entropy
3. leads to the third law of thermodynamics




Number of configurations

How large iIs Q7
*For macroscopic systems, super-astronomically large.

For instance, for a glass of water at room temperature:

Q - 102><1025

*Macroscopic deviations from the second law of
thermodynamics are not forbidden, but they are
extremely unlikely.



Canonical ensemble

Consider a small system that can exchange heat with a bigireservoir

B EE NQ(E-E)=ha(E)-IN2E ...
InQ(E_Ei)—— E
Q(E) kT

Hence, the probability to find E;:
Q(E-E)  exp(-E/kgT)

Q(E-E;) > exp(-E;/k,T)




Q(N,V,

Free energy:

PF

Pressure:

-

Example: ideal gas




Ensembles

Micro-canonical ensemble: E,V,N
Canonical ensemble: T,V,N
Constant pressure ensemble: T,P,N
Grand-canonical ensemble: T,V,u



