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1 Introduction

Consider a real random variable Y with unknown distribution function

F (t) = P (Y ≤ t), t ∈ R,

where P is a probability measure defined on the Borel sets of R, and suppose one
observes a sample of Y , that is, n independent and identically distributed copies
Y1, . . . , Yn of Y . Probability theory provides the axiomatic definition of the math-
ematical objects P and F , and furnishes us with an exact notion of independence
of random variables. But can the physically more plausible frequentist notion of
probability be derived from these minimal axiomatic foundations? Or, in simpler
words: does the sample Y1, . . . , Yn ’tell us’ what the distribution F of Y is, at
least approximately, for sufficiently large sample size n? We expect the answer to
be ’yes’ in light of the law of large numbers, and mathematical statistics is about
developing a rigorous theory about the precise meaning of this question, and about
the various complex issues at the heart of the possible answers one may give.

Statistical analysis starts with a specification of a ’model’ for F . This means
that we specify a subset P of the set of all probability distribution functions on
R. We shall encounter in this course models that range from the simplest model
of univariate normal distributions

P = {N(µ, σ2) : µ ∈ R, σ2 > 0}

to the exhaustive infinite-dimensional model

P = {All probability distribution functions on R}.

This varying complexity does not only occur in the problem of estimating a distri-
bution function, but likewise in regression problems: Often the parameters specify-
ing the distribution are modelled themselves by the statistician to explain certain
functional (or even causal) relationships. In the simplest case this functional rela-
tion is modelled linearly, for instance one postulates

Yi = θxi + ui

where xi an explanatory variable/regressor, θ ∈ R the parameter and ui ∼ N(0, σ2).
Again, the set of all functional relationships

Yi = g(xi) + ui

is infinite-dimensional, and the restriction to linear g, or to g a fixed known func-
tion, is not necessarily sensible.
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These lecture notes try to give a mathematical introduction to some key aspects
of statistical theory. An attempt is made to be mathematically as self-contained
as possible without loosing focus over excessive technicalities. An emphasis is
given to develop an understanding of the interplay of probabilistic properties of
random samples with the analytic structures of the model P. This approach goes
at the expense of the breadth of topics that can be covered, but the hope is
that some main ideas that are representative of the whole field can be developed
rigorously. We shall analyse both finite and infinite dimensional models in this
course, and we shall see that, much like in analysis, the statistical theory of finite-
dimensional – or ’parametric’ – models is distinctively different from the theory
of infinite-dimensional – or ’nonparametric’ – models, and this will introduce a
natural division of this course into two parts, which require different mathematical
techniques and statistical intuitions. Somewhat in between lies the family of ‘high-
dimensional’ models, which shall be introduced as well.

The rough outline is as follows: We shall first review some basic results on
probabilistic limit theorems, which will be at the heart of many results of this
course, and we shall also prove a basic proposition from empirical process theory
that will be useful throughout. We then develop the by now classical consis-
tency and asymptotic normality theory in regular parametric models and explain
how this leads to Le Cam’s unifying notion of local asymptotic normality (LAN)
of statistical experiments. We shall use Le Cam theory to prove the celebrated
Bernstein-von Mises theorem about the frequentist interpretation of Bayes pro-
cedures in a locally asymptotically normal setting. We shall then develop some
main ideas of the theory of ‘large p - small n’ problems in the setting of normal
linear models, including the LASSO estimator and an analysis of the restricted
isometry property for Gaussian design matrices. In the part concerning ‘nonpara-
metric models’ the theory admits a less unified structure due to the absence of
’local asymptotic normality’ of most of these models, but we shall nevertheless at-
tempt to highlight some of the integral ideas behind this theory, in particular the
minimax paradigm and the solution of the adaptation problem that arises from it.

We shall assume that the reader is familiar with basic measure theory and
elementary stochastic convergence properties of random variables, see Dudley [29]
and van der Vaart ([81], Chapter 2) for comprehensive accounts of these topics.

1.1 The Law of Large Numbers and the Central Limit The-
orem

Under a random variable we shall understand a measurable mapping X from some
probability space (Ω,A, µ) into some metric space (S, d). The law of X is the
image measure µ◦X−1. A sequence of random variables Xn taking values in (S, d)

4



converges to a random variable X in probability, or Xn →P X in (S, d) if, for every
ε > 0,

µ(ω ∈ Ω : d(Xn(ω), X(ω)) > ε) → 0 as n→ ∞.

Likewise Xn converges to X in distribution, or in law, or Xn →d X , in the space
(S, d), if

Ef(Xn) → Ef(X)

as n → ∞ for every bounded continuous function f : S → R. There is also the
notion of almost sure convergence: Xn → X µ− a.s. if

µ(ω ∈ Ω : limXn(ω) = X(ω)) = 1.

Almost sure convergence, which is statistically less relevant, is stronger than con-
vergence in probability of Xn to X , and is sometimes useful in proofs. Recall
further that convergence in probability implies convergence in distribution, but
that the converse is false.

If (S, d) equals Rp with the standard metric induced by the Euclidean norm
‖ · ‖, then this is the classical definition of a random variable/vector. In particular
convergence in distribution is then equivalent to convergence of the distribution
functions FXn(t) = µ(Xn ≤ t) to FX(t) = µ(X ≤ t) at continuity points of FX .
We shall omit to mention (S, d) if it equals Rp.

Let now X,X1, . . . , Xn, . . . be i.i.d. random vectors in Rp, and write P ≡
µ◦X−1 for their common law. By the symbol Pr we shall always mean the product
probability measure PN defined on the canonical product space (Rp)∞ given by
the joint law of (X1, ..., Xn, . . . ). This measure exists as the unique extension of
the joint law P n of (X1, . . . , Xn) to (Rp)∞ (see Chapter 8.2 in [29] for instance).
By E we shall in such a case denote expectation with respect to Pr. This notation
allows us, as will be convenient, to avoid mentioning the underlying probability
space (Ω,A, µ). For instance, if we assume in addition that E‖X‖ < ∞, the law
of large numbers states that

1

n

n
∑

i=1

Xi → E(X) Pr−a.s. (1)

and thus also in probability, as n → ∞. The central limit theorem states that if
X satisfies E‖X‖2 <∞ and has a positive definite covariance matrix Σ then

√
n

(

1

n

n
∑

i=1

Xi − E(X)

)

→d N(0,Σ). (2)

These two classical results are the pillars of much of asymptotic (’n large’) statis-
tical theory, as we shall see. They have a comparably less well known ’nonasymp-
totic’ analogue, known as Hoeffding’s inequality: If X1, ..., Xn are mean zero in-
dependent random variables taking values in [bi, ci] for constants bi < ci, then, for
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every n ∈ N, u > 0,

Pr

{∣

∣

∣

∣

∣

n
∑

i=1

Xi

∣

∣

∣

∣

∣

> u

}

≤ 2 exp

(

− 2u2
∑n

i=1(ci − bi)2

)

, (3)

which should be compared to the tail of the limit distribution in (2). It shows that
the normal approximation is valid in the tails, if the Xi’s are bounded, for every
sample size n. The proof is left as Exercise 1.

1.2 Uniform Laws of Large Numbers

The key results (1) and (2) are very useful in statistics. Some more subtle mathe-
matical arguments will in fact require that the law of large numbers holds ’simul-
taneously’ for many random variables – the way to make this precise is via laws
of large numbers that are uniform in certain classes of functions.

Consider for the moment the even more general case where X,X1, X2, . . . are
i.i.d. random variables taking values in the arbitrary measurable space T (typically
T = Rd, but other choices are possible) so that their joint law is the product
probability measure Pr on T∞. If H is a class of measurable real-valued functions
defined on T and such that E|h(X)| <∞ for each h ∈ H, then

1

n

n
∑

i=1

(h(Xi)−Eh(X)) → 0 Pr−a.s

as n → ∞, for every h ∈ H by (1). A law of large numbers holds uniformly over
a class H of functions if also

sup
h∈H

∣

∣

∣

∣

∣

1

n

n
∑

i=1

(h(Xi)−Eh(X))

∣

∣

∣

∣

∣

→ 0 Pr−a.s. (4)

as n → ∞. The following general purpose result, which is based on a simple
’bracketing idea’, gives a sufficient condition for H to satisfy such a uniform law
of large numbers. Given two (measurable) real-valued functions l(x), u(x) on the
(measurable) space T , a ’bracket’ is the set of functions

[l, u] := {f : T → R : l(x) ≤ f(x) ≤ u(x) for all x ∈ T}.

Proposition 1. Let H be a class of functions from T to R. Assume that for
every ε > 0 there exists a finite set of brackets [lj, uj], j = 1, . . . , N(ε), such that
E|lj(X)| < ∞, E|uj(X)| < ∞ and E|uj(X) − lj(X)| < ε for every j. Suppose
moreover that for every h ∈ H there exists j with h ∈ [lj , uj]. Then (4) holds.
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Proof. Write shorthand Eng := n−1
∑n

i=1 g(Xi) and Eg := Eg(X) for functions
g : T → R. Let ε > 0 be arbitrary and choose brackets [lj , uj] such that

E|uj − lj|(X) < ε/2 (5)

for every j = 1, ..., N(ε/2), which is possible by hypothesis. Consider first the case
where the uj, lj do not depend on ε. We claim that for every ω ∈ T∞ \ A with
Pr(A) = 0 (A is called a ’null-set’) there exists an index n0 := n0(ω, ε) such that
n ≥ n0 implies

max
j=1,...,N(ε/2)

|Enuj − Euj| < ε/2 (6)

as well as
max

j=1,...,N(ε/2)
|Enlj −Elj | < ε/2. (7)

To see this observe the following: by the ordinary strong law of large numbers (and
definition of almost sure convergence), there exist sets Aj independent of ε with
Pr(Aj) = 0 such that the limit of the j-th term in these maxima is zero for every
ω ∈ T∞ \ Aj, so in particular each term is less than ε/2 for every ω ∈ T∞ \ Aj

and n ≥ n0(j, ω, ε). Then choose n0 := maxj n0(j, ω, ε) which, being a maximum
of finitely many integers, is again finite. The finite union A := ∪jAj of null sets
still satisfies

Pr(A) = Pr(∪Aj) ≤
N(ε)
∑

j=1

Pr(Aj) = 0.

If the uj, lj depend on ε repeat the above argument with εm = 1/m,m ∈ N, in
which case the exceptional sets Aj,m depend on m as well but still satisfy that
∑

j,mPr(Aj,m) = 0.
Now combining (5), (6), (7) we have for h ∈ H arbitrary, every ω ∈ T∞ \ A

and n ≥ n0 that

1

n

n
∑

i=1

h(Xi)− Eh(X) = Enh−Eh ≤ Enuj −Eh = Enuj − Euj + E(uj − h) < ε

and similarly
Enh− Eh ≥ Enlj −Elj + E(lj − h) > −ε.

Hence for every ω ∈ T∞ \A and n ≥ n0, |Enh−Eh| < ε. Since ε and h ∈ H were
arbitrary, we have limn suph∈H |Enh − Eh| = 0 for every ω ∈ T∞ \ A and hence
the result.

For measure theory enthusiasts: It should be noted that the supremum in (4)
is not necessarily measurable (i.e., a proper random variable). The simplest way
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to show that it is one is to show that the supremum can be realized as one over a
countable subset of H.

We shall use Proposition 1 at several key places in the rest of these lecture
notes. For the interested reader let us mention the following consequence of it.

Example 1 (The Law of Large Numbers in Banach Spaces). Together with some
facts from functional analysis Proposition 1 can be used to prove the following:
Let (S, ‖ · ‖S) be any separable Banach (i.e., complete normed linear) space, let
X1, ..., Xn be i.i.d. random variables taking values in S, and assume that E‖X‖S <
∞. Then

∥

∥

1
n

∑n
i=1Xi −E(X)

∥

∥

S
→ 0 almost surely, and the moment condition is

necessary, see [54], Corollary 7.10. For a proof that uses Proposition 1 and the
Ascoli-Arzela theorem see Chapter 7.1 in Dudley [28], to whom this proof is due.

1.3 Exercises

Exercise 1. The following result is known as Hoeffding’s inequality: If X1, ..., Xn

are mean zero independent random variables taking values in [bi, ci] for constants
bi < ci, then for every n ∈ N, u > 0,

Pr

{

n
∑

i=1

Xi > u

}

≤ exp

(

− 2u2
∑n

i=1(ci − bi)2

)

(8)

of which an obvious consequence is (why?)

Pr

{∣

∣

∣

∣

∣

n
∑

i=1

Xi

∣

∣

∣

∣

∣

> u

}

≤ 2 exp

(

− 2u2
∑n

i=1(ci − bi)2

)

. (9)

Provide a proof of this inequality. [You may find it useful to first prove the auxiliary
result E(exp{vXi}) ≤ exp{v2(ci − bi)

2/8} for v > 0, and then use Markov’s in-
equality in conjuction with a bound for the moment generating function of v

∑

Xi.]
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2 Parametric Models

Consider the situation where we are given an i.i.d. sample Y1, . . . , Yn with unknown
distribution F (t) = P (Y ≤ t). Suppose we have reason to postulate, before the
data was collected, that P belongs to a family of probability measures

PΘ := {Pθ : θ ∈ Θ}

where Θ is a subset of an Euclidean space Rp. The set Θ is called the param-
eter space. This general setting entails all finite-dimensional models usually en-
countered in statistical inference: for instance it includes normal, Poisson, Beta,
exponential, binomial etc., – indeed all parametric families of distributions. This
setting also easily extends to important statistical problems where the sample is
independent but not identically distributed, say Yi ∼ Fi(θ), where θ ∈ Θ does
not depend on i, which covers linear, generalised linear and nonlinear regression
problems that are at the heart of much of statistical inference.

A crucial assumption that we shall impose on PΘ is that it is correctly specified.
This means that we assume that there exists a point θ0 ∈ Θ such that the true
distribution P of the sample equals Pθ0 – we shall usually refer to θ0 as the true
value of θ. We shall then often write, in slight abuse of notation, Pθ0 for Pr to
indicate that we are computing probabilities under the law that generated the
actual sample, and likewise Eθ0 for expectations under Pr.

The goal of statistical inference in these situations is typically not to estimate
Pθ0 , but rather to estimate θ0 (which in turn entails an estimate of Pθ0 as well). This
is often achieved by defining estimators as solutions of maximisation/minimisation
problems, and the resulting estimators θ̂n are thus often calledM-estimators. Here
are two leading examples.

Example 2 (Nonlinear Least Squares (NLS)). Consider the model

Zi = g(xi, θ) + ui, i = 1, . . . , n

where the xi’s are some design points/explanatory variables, where g is a known
possibly nonlinear regression function, θ ∈ Θ a parameter indexing the set of possi-
ble regression functions, and where the ui’s are random variables with E(ui|xi) = 0.
Fixed design corresponds to xi nonrandom whereas in the random design case it is
often assumed that the Yi ≡ (Zi, xi) are jointly i.i.d. random vectors. The intuitive
least squares estimator θ̂n of θ solves the minimization problem

min
θ∈Θ

1

n

n
∑

i=1

(Zi − g(xi, θ))
2.
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Example 3 (Maximum Likelihood Estimators (MLEs)). Suppose we have a family
PΘ = {f(θ, ·) : θ ∈ Θ} of probability densities f(θ), and suppose we have an
i.i.d. sample Y1, . . . , Yn from one of these densities, still denoted by f(θ, ·). We
shall write Pθ for the probability measure induced by the density f(θ). The joint
distribution of the sample is

∏n
i=1 f(θ, yi), and if we view this as a function of the

parameter only and evaluate yi at the sample points, this defines the likelihood
function

Ln(θ) = L(θ; Y1, . . . , Yn) =
n
∏

i=1

f(θ, Yi).

It is often convenient to work with the log-likelihood function

ln(θ) = l(θ; Y1, . . . , Yn) =

n
∑

i=1

log f(θ, Yi),

with the convention that log 0 = −∞. The maximum likelihood estimator solves

max
θ∈Θ

ln(θ).

Many other examples can be given, such as method of moment estimators. In
general the finite-sample properties of so-defined estimators are intractable, and
one has to resort to asymptotic (n large) approximations of the distribution of θ̂n.
A first goal, however, is to show that these estimators make sense from a frequentist
point of view in that θ̂n converges in probability to θ0 for every possible true value
θ0, as sample size increases (n→ ∞).

2.1 Consistency of M-Estimators

We shall in this subsection adopt a general framework and study estimators based
on a sample Y1, . . . , Yn that are obtained from minimising a criterion function
Qn(θ) ≡ Qn(θ; Y1, . . . , Yn), θ ∈ Θ ⊂ Rp, over Θ. In the nonlinear least squares
example this criterion function equals, recalling the notation Yi = (Zi, xi),

Qn(θ; Y1, . . . , Yn) =
1

n

n
∑

i=1

(Zi − g(xi, θ))
2

and in the maximum likelihood problem it equals

Qn(θ; Y1, . . . , Yn) = −1

n

n
∑

i=1

log f(θ, Yi) = −1

n
ln(θ),

but the results that follow do not require this sample average structure unless
specifically mentioned.

10



2.1.1 A General Consistency Theorem

The statistical intuiting behind such procedures is that Qn(θ) is close, with high
probability, to some nonrandom function Q(θ), that this function is minimized at
the true value θ0, in a unique way, and that thus a minimizer of Qn should be close
to θ0. In the above examples Qn is based on a sample mean and if EQn(θ) exists
this will define Q(θ)as the limit in probability of Qn, by the law of large numbers
(1). For instance, in the case of MLEs,

Q(θ) = −E log f(θ, Y ).

In mathematical terms we are asking the following: If a sequence of random func-
tions Qn converges to Q, can we find weak conditions that ensure that the mini-
mizers of Qn converge to the minimizer of Q, if the latter exists? Here is a general
result of this kind.

Theorem 1. Suppose Θ ⊂ Rp is compact (i.e., bounded and closed). Assume that
Q : Θ → R is a (nonrandom) function that is continuous on Θ, and that θ0 is the
unique minimizer of Q. If

sup
θ∈Θ

|Qn(θ; Y1, . . . , Yn)−Q(θ)| →P 0 (10)

as n→ ∞, then any solution θ̂n of

min
θ∈Θ

Qn(θ, Y1, . . . , Yn)

converges to θ0 in probability as n→ ∞.

Proof. For every ε > 0, the set {θ ∈ Θ : ‖θ − θ0‖ ≥ ε} is compact and Q is
continuous on this set, so infθ∈Θ:‖θ−θ0‖≥εQ(θ) is attained, and since θ0 is a unique
minimiser we necessarily have

c(ε) ≡ inf
θ∈Θ:‖θ−θ0‖≥ε

Q(θ) > Q(θ0). (11)

Choose 0 < δ(ε) < (c(ε) − Q(θ0))/2 so that c(ε) − δ(ε) > Q(θ0) + δ(ε). On the
event

An(ε) ≡
{

sup
θ∈Θ

|Qn(θ)−Q(θ)| < δ(ε)

}

we have

inf
θ∈Θ:‖θ−θ0‖≥ε

Qn(θ) ≥ inf
θ∈Θ:‖θ−θ0‖≥ε

Q(θ)− δ(ε) = c(ε)− δ(ε)

> Q(θ0) + δ(ε) ≥ Qn(θ0)

11



so if θ̂n would lie in {θ ∈ Θ : ‖θ − θ0‖ ≥ ε} then θ0 would yield a strictly smaller
value of Qn, a contradiction to θ̂n being a minimiser. We conclude

{

‖θ̂n − θ0‖ < ε
}

⊃ An(ε)

but by (10) we have Pr(An(ε)) → 1 as n→ ∞ for every ε > 0 so

Pr
({

‖θ̂n − θ0‖ < ε
})

→ 1

as well, hence consistency.

We have again completely neglected measurability issues: It is not a fortiori
clear that θ̂n is a measurable function of the Yi’s. Sufficient conditions that apply
to most examples can be found, for instance, in Lemma A3 in [66], but we shall
neglect this issue in what follows and will tacitly assume that θ̂n is a proper random
variable.

The assumptions of uniqueness of θ0, continuity of Q, and condition (10) will be
discussed in the next two subsections. The only other assumption is compactness
of Θ, which at first looks restrictive – for instance in linear regression yi = θxi+ui
the parameter space is usually all of R, so not compact. Compactness is only
explicitly used in the proof Theorem 1 to establish (11), which can often be verified
without compactness. However, as we shall see below, compactness (or at least
boundedness) of Θ is often crucial in the verification of (10), where it is not as
easy to relax. A better strategy is to first prove that the criterion function Qn

is uniformly large outside of a fixed compact set Θ∗, so that θ̂n ∈ Θ∗ on sets of
probability approaching one, and then to apply Theorem 1 with Θ0 in place of Θ.
See Exercise 6 for how this applies in regression problems.

2.1.2 Identifiability

Theorem 1 can be used if the limiting criterion function Q is continuous and has
a unique minimiser. This assumption, which depends on the analytic properties
of the parameterisation θ 7→ Q(θ), is typically a natural one, as we show in the
following examples.

Example 4. (Nonlinear Least Squares) Consider again Zi = g(xi, θ0) + ui where
Yi = (Zi, xi) are i.i.d. random vectors, where g is a known regression function, and
where ui and Xi are independent, E(u2i ) = σ2 <∞. Then

Q(θ) = E
[

(Zi − g(xi, θ0) + g(xi, θ0)− g(xi, θ))
2]

= E
[

(ui + g(xi, θ0)− g(xi, θ))
2]

= σ2 + E
[

(g(xi, θ0)− g(xi, θ))
2] .
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Thus the identification assumption of uniqueness of θ0 reduces to an assumption
on the (known) regression function g, namely, whether g(·, θ) = g(·, θ0) holds in
mean square if and only if θ = θ0, a more than reasonable assumption for any
regression model.

Example 5. (Maximum Likelihood Estimators) Consider next the case of max-
imum likelihood estimation where Y1, . . . , Yn come from some density f(θ0, ·) on
Y ⊂ R

d, and θ0 ∈ Θ so that the model {f(θ, ·) : θ ∈ Θ} is correctly specified.
Assume

∫

Y | log f(θ, y)|f(θ0, y)dy < ∞ and f(θ, y) > 0 for every θ ∈ Θ and every
y ∈ Y . In this case the limiting criterion function is, by the law of large numbers,
equal to

Q(θ) = −Eθ0

(

1

n

n
∑

i=1

log f(θ, Yi)

)

= −Eθ0 log f(θ, Y ) = −
∫

Y
log f(θ, y)f(θ0, y)dy

and here it is less obvious that the limiting minimizer is the true value θ0. The dif-
ference Q(θ0)−Q(θ) equals the negative of the so-called Kullback-Leibler distance
between f(θ) and f(θ0), a concept of key importance in statistics and information
theory: In fact

Q(θ0)−Q(θ) =

∫
[

log
f(θ, y)

f(θ0, y)
f(θ0, y)

]

dy (12)

≤ log

∫

f(θ, y)dy = log 1 = 0.

by Jensen’s inequality. So Q(θ0) ≤ Q(θ) for every θ ∈ Θ, i.e., θ0 is a minimiser of
the limiting function Q. If we impose further the natural identifiability assumption

f(θ0, ·) = f(θ1, ·) Lebesgue-almost everywhere ⇔ θ0 = θ1 (13)

then the ratio f(θ, y)/f(θ0, y) is not identical one almost everywhere for every
θ 6= θ0. Since the logarithm is strictly concave the strict version of Jensen’s
inequality implies that (12) holds with strict inequality, that is under (13) we have
Q(θ0) < Q(θ) for every θ 6= θ0, so θ0 is unique.

2.1.3 Verifying Uniform Convergence

A key step to making Theorem 1 applicable is to verify uniform convergence (10).
Note first that without uniformity in θ in (10) the conclusion of Theorem 1 may
be false, see Exercise 5 below.

If Qn has the form of a sample mean such as

Qn(θ) =
1

n

n
∑

i=1

q(θ,Xi),

13



as is the case of NLS and ML estimation, then uniform convergence can be es-
tablished without too much difficulty using the ’bracketing’ uniform law of large
numbers from the introduction. The following proposition gives mild sufficient
conditions under which Proposition 1 applies.

Proposition 2. Suppose Θ is a bounded and closed subset of Rp, and let q(θ, x) :
Θ × Rd → R be continuous in θ for each x and measurable in x for each θ. If
X1, ..., Xn are i.i.d. in Rd and if

E sup
θ∈Θ

|q(θ,X)| <∞ (14)

then, as n→ ∞,

sup
θ∈Θ

∣

∣

∣

∣

∣

1

n

n
∑

i=1

q(θ,Xi)− Eq(θ,X)

∣

∣

∣

∣

∣

→ 0 Pr−a.s. (15)

Proof. We apply Proposition 1, so (15) will be proved if we find suitable brackets
for the class of functions

H = {q(θ, ·) : θ ∈ Θ} ,
which is done as follows: First define the open balls B(θ, η) = {θ′ ∈ Θ : ‖θ− θ′‖ <
η}, and define, for every θ ∈ Θ, the auxiliary brackets

u(x, θ, η) = sup
θ′∈B(θ,η)

q(θ′, x)

and
l(x, θ, η) = inf

θ′∈B(θ,η)
q(θ′, x)

so that clearly l(x, θ, η) ≤ q(θ′, x) ≤ u(x, θ, η) holds for every x ∈ Rd and every
θ′ ∈ B(θ, η). By condition (14) we have

E|u(X, θ, η)| <∞, E|l(X, θ, η)| <∞ (16)

for every θ ∈ Θ and every η. Furthermore since q(·, x) is continuous, the suprema in
the definition of u(x, θ, η) are attained at points θu(θ) that satisfy ‖θu(θ)−θ‖ ≤ η,
and likewise for the infimum in the definition of l(x, θ, η). Hence limη→0 |u(x, θ, η)−
q(θ, x)| → 0 for every x and every θ ∈ Θ, and an analogous result holds for the
lower brackets. We can integrate this limit by using the dominated convergence
theorem (cf. Exercise 2) together with (14), so that we conclude

lim
η→0

E|u(X, θ, η)− q(θ,X)| → 0 and lim
η→0

E|l(X, θ, η)− q(θ,X)| → 0

14



for every θ ∈ Θ. Consequently, for ε > 0 arbitrary and every θ ∈ Θ we can find
η := η(ε, θ) small enough such that

E|u(X, θ, η)− l(X, θ, η)| ≤ E|u(X, θ, η)− q(θ,X)|+ E|q(θ,X)− l(X, θ, η)| < ε.
(17)

The open balls {B(θ, η(ε, θ))}θ∈Θ constitute an open cover of the compact set
Θ in Rp, so by compactness there exists a finite subcover with centers θ1, ..., θN ,
j = 1, ..., N (the Heine-Borel theorem). The functions q(θ′, ·) for θ′ ∈ B(θj , η(ε, j))
are bracketed between uj := u(·, θj, η(ε, j)) and lj := l(·, θj, η(ε, j)), j = 1, ..., N ,
so that (16) and (17) complete the proof of (15) by invoking Proposition 1.

First, Condition (14) can not be weakened: This follows from the fact that the
limit (15) is a law of large numbers in the separable Banach space of continuous
functions on Θ (cf. Example 1). Second, exactly the same proof works if (Θ, d) is
any compact metric space. Third, for maximum likelihood estimation often the
i.i.d. assumption is inconvenient, but the same ’bracketing’ techniques work for
dependent data as well, we refer to [66].

2.1.4 Consistency of the Maximum Likelihood Estimator

Putting the previous general results together, we can now derive a generic consis-
tency result for maximum likelihood estimators under assumptions on the para-
metric model {f(θ, ·) : θ ∈ Θ} only.

Theorem 2. Consider the model f(θ, y), θ ∈ Θ ⊂ Rp, y ∈ Y ⊂ Rd. Assume
f(θ, y) > 0 for all y ∈ Y and all θ ∈ Θ, and that

∫

Y f(θ, y)dy = 1 for every θ ∈ Θ.
Assume further that Θ is compact and that the map θ 7→ f(θ, y) is continuous
on Θ for every y ∈ Y. Let Y1, . . . , Yn be i.i.d. with common density f(θ0), where
θ0 ∈ Θ. Suppose finally that the identification condition (13) and the domination
condition

∫

sup
θ′∈Θ

| log f(θ′, y)|f(θ0, y)dy <∞

hold. If θ̂n is the MLE in the model {f(θ, ·) : θ ∈ Θ} based on the sample Y1, . . . , Yn,
then θ̂n is consistent, i.e.,

θ̂n →Pθ0 θ0 as n→ ∞. (18)

Proof. Setting q(θ, y) = − log f(θ, y), Q(θ) = Eθ0q(θ, Y ), Qn(θ) = n−1
∑n

i=1 q(θ, Yi),
this follows from combining Theorem 1, Proposition 2 with what has been said in
Example 5, and noting that continuity of Q follows from continuity of log f(y, ·)
combined with the domination condition and the dominated convergence theorem
(see Exercise 2).
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The first general result of this kind goes back to Wald (1949), who also realised
that θ 7→ f(θ, y) only has to be upper semicontinuous in θ for it to hold, at the
expense of a slightly more technical proof. Theorem 2 (and its proof) applies to
families of discrete probability distributions line by line if one replaces probabil-
ity densities f(θ, y) by probability mass functions p(θ, y), and integrals by sums.
Consequently it can be applied to most parametric models for which maximum
likelihood can be used.

A similar consistency result for nonlinear least squares estimators is part of the
exercises. The theory for more general M-estimation procedures follows the same
patterns, see [66, 67, 80].

A simple example to which Theorem 2 applies is the following.

Example 6. [Exponential Families] Consider the classical exponential family of
order 1

f(θ, y) = eθy−K(θ)f0(y), θ ∈ Θ,

generated by some fixed density f0, whereK(θ) is the cumulant generating function
of the model. Assume K is continuous on the compact set Θ. For instance if f0
is the standard normal density, so that we are modelling a N(θ, 1) family, then
K(θ) = θ2/2, or if f0 is Poisson with parameter λ = 1 then K(θ) = eθ − 1. Then
θ 7→ f(θ, y) is continuous for every y, and the domination condition reduces to
∫

sup
θ′∈Θ

| log f(θ′, y)|f(θ, y)dy =

∫

sup
θ′∈Θ

|(θ′y −K(θ′)) + log f0(y)|f(θ, y)dy <∞

≤ sup
θ′

|θ′|Eθ|Y |+ sup
θ′∈Θ

K(θ′)|+ Eθ| log f0(Y )|

which is finite if f(θ) has a first moment and integrates log f0, since continuous K
is bounded on the compact set K(θ). Thus Theorem 2 applies for compact Θ, and
non-compact Θ can be dealt along the lines of Exercise 6.

2.1.5 Uniform Consistency

The above results show that one can find estimators that are consistent for every
θ ∈ Θ in the parameter space. For instance in Theorem 2, if Y1, . . . , Yn come from
density f(θ) then θ̂n → θ in Pθ-probability for every θ ∈ Θ. A stronger requirement
is consistency of an estimator Tn uniformly in θ ∈ Θ, that is, for every δ > 0

sup
θ0∈Θ

Pθ0(‖Tn − θ0‖ > δ) → 0 as n→ ∞. (19)

Inspection of the proof of Theorem 1 shows that sufficient conditions for this to
be the case are that, for every ε > 0,

inf
θ0∈Θ

inf
θ∈Θ:‖θ−θ0‖≥ε

(Q(θ)−Q(θ0)) > 0
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is satisfied and that the uniform law of large numbers in (10) holds uniformly
under the law Pθ, that is, if

sup
θ0∈Θ

Pθ0

(

sup
θ∈Θ

|Qn(θ; Y1, . . . , Yn)−Q(θ)| > δ

)

→ 0 as n→ ∞

where the Yi inside the probability are drawn from law Pθ0 . While the first is a
reasonable analytic condition on the limiting criterion function Q that requires the
identifiability of θ0 to be ’uniform’ in Θ, the second requires a little more thought:
careful inspection of the proofs above, combined with the proof of the weak law of
large numbers by Chebyshev’s inequality, shows that a sufficient condition is

sup
θ0∈Θ

Eθ0 sup
θ∈Θ

|Q(θ,X)|2 <∞,

but weaker assumptions are possible. In fact classes of functions for which the
uniform law of large numbers holds uniformly in a set of indexing laws Pθ were
completely characterised in [30], see also Chapter 2.8 in [82] .

2.1.6 Exercises

Exercise 2. [Dominated Convergence Theorem.] Let fn and g be real-valued func-
tions defined on some measure space (T,A, µ), and suppose fn, g are µ-integrable.
Assume |fn(x)| ≤ g(x) and fn(x) → f(x) as n → ∞ for µ-almost every x ∈ T .
Then f is µ-integrable and limn

∫

T
fn(x)dµ(x) =

∫

T
limn fn(x)dµ(x) =

∫

T
f(x)dµ(x).

Exercise 3. Derive an analogue of the consistency result for the MLE (Theorem
2) for the nonlinear least squares estimator with random design, under the assump-
tions that the Yi = (Zi, xi) are i.i.d., that E(Zi|xi) = 0, and that the parameter
space Θ is compact. Which further assumptions do you need (be as economical as
you can)? Show that the general normal linear model

Y = Xθ + u

with X a n × p matrix, θ ∈ Rp, u ∼ N(0, σ2In), σ
2 > 0, is a special case of the

NLS model from Example 2, and show further that the uniqueness condition for
θ0 is satisfied if the n× p matrix X has full column rank.

Exercise 4. A class of model functions of the form

f(µ, σ2, y) = a(σ2, y) exp

{

ζ(µ)y −K(ζ(µ))

σ2

}

, y ∈ Y , µ ∈ M, σ2 ∈ Φ ⊆ (0,∞)

where a(σ2, y) is a known positive function, is called an exponential dispersion fam-
ily (of order 1). The parameter µ is the mean of this distribution, ζ is a suitable
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real function defined on M, and the parameter σ2 is called the dispersion param-
eter, so that the full parameter is θ = (µ, σ2). Find ζ(µ) and K(ζ(µ)) for normal,
Poisson and binomial models. Restricting to compact Θ, formulate conditions on
K, ζ so that the maximum likelihood estimator based on an i.i.d. sample from f
is consistent, and verify them for the normal, Poisson and binomial case.

Exercise 5. Give an example of criterion functions Qn, Q such

Qn(θ) →P Q(θ)

for every θ ∈ Θ as n → ∞, that further satisfy all the conditions of Theorem 1
except for the uniform convergence condition (10), and for which θ̂n converges to
a value different from the true value θ0.

Exercise 6. Consider the problem of Exercise 3 above, but now with Θ = R.
Assuming that

E

[

inf
θ

(

∂g(xt, θ)

∂θ

)2
]

> 0,

show that one can find a compact set Θ∗ = [θ0 −M, θ0 +M ] such that

inf
θ/∈Θ∗

Qn(θ) > Qn(θ0)

with probability approaching one, and use this to prove consistency of the NLS es-
timator. How does the condition on the derivative of g simplify in linear regression
where g(xi, θ) = xiθ?

2.2 Asymptotic Distribution Theory

2.2.1 Asymptotic Normality of Maximum Likelihood Estimators

While a consistency result like the one from the previous section appears to be a
minimal requirement for an estimator θ̂n, it is not useful for statistical inference
as it stands. For this to be the case, the accuracy of estimation θ̂n − θ0 has to
be quantified, and since θ̂n is random, this means that we would like to derive
or approximate the distribution of the random fluctuations θ̂n − θ0. In general
not much can be said about this distribution for fixed sample size, as θ̂n depends
non-linearly on the sample. One can, however, often obtain reasonable approxi-
mations of the distribution of θ̂n − θ0 whose accuracy increases with sample size
n. The study of such approximations constitutes the field of asymptotic statistics,
and one of the most remarkable result in this theory is the asymptotic normality
and optimality of maximum likelihood estimators, which holds in some nontrivial
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universality, and which was first observed by R.A. Fisher ([33, 34]) in the 1920s,
with first rigorous proofs due to Cramér [15].

Let us first sketch the main ideas behind the proof of asymptotic normality of
MLEs. Consider Θ ⊂ R for the moment. The derivative of Qn at the maximiser
θ̂n should equal zero, and the mean value theorem implies, assuming necessary
regularity properties of Qn

0 = Q′
n(θ̂n) = Q′

n(θ0) +Q′′
n(θ̃n)(θ̂n − θ0)

so

θ̂n − θ0 = −Q
′
n(θ0)

Q′′
n(θ̃n)

.

Typically EQn(θ) = Q(θ) and under regularity conditions also EQ′
n(θ0) = Q′(θ0) =

0 since we are thinking of θ0 being a minimizer of Q. If Qn(θ0) is of sample mean
form 1

n

∑

i q(θ0, Yi) as before Proposition 2, then we can informally conclude

√
nQ′

n(θ0) =
1√
n

∑

i

(q′(θ0, Yi)− Eq′(θ0, Yi)) →d N(0, σ2) as n→ ∞

by the central limit theorem (2), where σ2 = E(q′(θ0, Y ))2. If Q′′
n(θ̃n) converges

also to some limit in probability (typically to Q′′(θ0) under consistency of θ̂n), then
we deduce that

√
n(θ̂n − θ0) converges to a non-degenerate normal distribution.

Let us now investigate these ideas rigorously, which requires some care, and
which leads to some assumptions on the model {f(θ) : θ ∈ Θ} that at first look
technical, but that are natural and shall be shown to be satisfied in most relevant
examples.

When deriving the asymptotic distribution of MLEs, it is common to assume
consistency of θ̂n in the formal statements. The reason is the following: Consis-
tency is a statement about the global behaviour of θ̂n as an estimator of θ0, and
can be established under assumptions discussed in the prevous section. Asymp-
totic normality of the MLE is, in contrast, only a ’local’ statement about the
random fluctuations of θ̂n in 1/

√
n-neighborhoods of θ0, and it makes sense to

separate ’local’ and ’global’ statements mathematically, as they require different
(but compatible) sets of assumptions.

In the following theorem ‖ · ‖ stands, depending on the context, either for the
Euclidean norm on R

p or for any matrix norm, and we shall write

∂ log f(θ0, Y )

∂θ
for

∂ log f(θ, Y )

∂θ |θ=θ0
,

and likewise for second derivatives, to simplify notation throughout.
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Theorem 3. Consider the model f(θ, y), θ ∈ Θ ⊂ R
p, y ∈ Y ⊂ R

d. Assume
f(θ, y) > 0 for all y ∈ Y and all θ ∈ Θ, and that

∫

Y f(θ, y)dy = 1 for every θ ∈ Θ.
Let Y1, . . . , Yn be i.i.d. from density f(θ0, y) for some θ0 ∈ Θ. Assume moreover
i) that θ0 is an interior point of Θ,
ii) that there exists an open set U satisfying θ0 ∈ U ⊂ Θ such that f(θ, y) is, for
every y ∈ Y, twice continuously differentiable w.r.t. θ on U ,
iii) Eθ0 [∂

2 log f(θ0, Y )/∂θ∂θ
T ] is nonsingular and

Eθ0

∥

∥

∥

∥

∂ log f(θ0, Y )

∂θ

∥

∥

∥

∥

2

<∞,

iv) there exists a compact ball K ⊂ U (with nonempty interior) centered at θ0 s.t.

Eθ0 sup
θ∈K

∥

∥

∥

∥

∂2 log f(θ, Y )

∂θ∂θT

∥

∥

∥

∥

<∞,

∫

Y
sup
θ∈K

∥

∥

∥

∥

∂f(θ, y)

∂θ

∥

∥

∥

∥

dy <∞ and

∫

Y
sup
θ∈K

∥

∥

∥

∥

∂2f(θ, y)

∂θ∂θT

∥

∥

∥

∥

dy <∞.

Let θ̂n be the MLE in the model {f(θ, ·); θ ∈ Θ} based on the sample Y1, . . . , Yn,
and assume θ̂n →Pθ0 θ0 as n→ ∞. Define the Fisher information

i(θ0) := Eθ0

[

∂ log f(θ0, Y )

∂θ

∂ log f(θ0, Y )

∂θ

T
]

. (20)

Then i(θ0) = −Eθ0 [∂
2 log f(θ0, Y )/∂θ∂θ

T ] and

√
n(θ̂n − θ0) →d N(0, i−1(θ0)), as n→ ∞. (21)

Proof. Let us note first that under the maintained assumptions

Qn(θ) = −1

n

n
∑

i=1

log f(θ, Yi)

is twice continuously differentiable on Θ and by using Exercise 7 and the first part
of condition iv) we can differentiate under the integral sign to deduce that

Q(θ) = −Eθ0 log f(θ, Y )

is twice continuously differentiable in the interior of K.
We need another preliminary remark:

∫

f(θ, y)dy = 1 for every θ ∈ Θ implies

∂

∂θ

∫

f(θ, y)dy = 0 for every θ ∈ U
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and by the second part of condition iv) and Exercise 7 we can interchange inte-
gration and differentiation with respect to θ in the interior of K to conclude

0 =

∫

∂f(θ, y)

∂θ
dy =

∫

∂ log f(θ, y)

∂θ
f(θ, y)dy for every θ ∈ int(K). (22)

Since θ0 ∈ int(K) we thus have

Eθ0

[

∂ log f(θ0, Y )

∂θ

]

= 0. (23)

Since Pr(Xn ≤ t) = Pr({Xn ≤ t}∩An)+Pr({Xn ≤ t}∩Ac
n) it suffices to prove

a distributional limit theorem for Xn on events An whose probability approaches
one. Since θ̂n →P θ0 we infer that θ̂n is an interior point of Θ on events of
probability approaching one as n→ ∞, and thus we must have

∂Qn(θ̂n)

∂θ
= 0

on these sets (which we shall not repeat to mention in the proof). We can apply
the mean value theorem to each component of this vector to obtain

0 =
√
n
∂Qn(θ0)

∂θ
+ Ān

√
n(θ̂n − θ0) (24)

where Ān is the matrix (∂2/(∂θ∂θT ))Qn(θ) of second derivatives of Qn with the
j-th row evaluated at a mean value θ̄nj on the line segment between θ0 and θ̂n.

Let us first study

√
n
∂Qn(θ0)

∂θ
= − 1√

n

n
∑

i=1

∂ log f(θ0, Yi)

∂θ
,

which is centred in view of (23). The central limit theorem (2) and existence of
second moments from condition iii) thus imply

√
n
∂Qn(θ0)

∂θ
→d N(0, i(θ0)) as n→ ∞. (25)

We next consider Ān, and show that this matrix converges in probability to
−E[∂2 log f(θ0, Y )/∂θ∂θT ] as n→ ∞, for which it suffices to show convergence of
each matrix component. The k-th entry in the j-th row of Ān is

1

n

n
∑

i=1

hjk(θ̄nj , Yi)
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where hjk is the second mixed partial derivative of − log f(θ, Yi) with respect
to θj and θk, and we wish to show that each of these components converges

to Ehjk(θ0, Y ) in probability. We can write, noting that θ̂n →Pθ0 θ0 implies
θ̄nj →Pθ0 θ0 and that θ̄nj ∈ K on events of probability approaching one,

∣

∣

∣

∣

∣

1

n

n
∑

i=1

hjk(θ̄nj, Yi)−Ehjk(θ̄nj, Y ) + Ehjk(θ̄nj, Y )− Ehjk(θ0, Y )

∣

∣

∣

∣

∣

≤ sup
θ∈K

∣

∣

∣

∣

∣

1

n

n
∑

i=1

hjk(θ, Yi)−Ehjk(θ, Y )

∣

∣

∣

∣

∣

+
∣

∣Ehjk(θ̄nj, Y )− Ehjk(θ0, Y )
∣

∣ ,

where E denotes expectation w.r.t. Y only (and not w.r.t. θ̄nj). Note next that
twofold continuous differentiability of θ 7→ f(θ, y) implies, by the dominated con-
vergence theorem and the first part of condition iv) (cf. Exercise 7), that the
expected partial second derivatives Ehjk(·, Y ) are continuous on K. Using again
the first part of condition iv) then verifies the conditions of the uniform (over K)
law of large numbers in Proposition 2, so that the first quantity in the last display
converges to zero. The continuity of Ehjk(·, Y ) and the fact that θ̄nj → θ0 in prob-
ability as n→ ∞ imply that the second quantity converges to zero in probability
as well. [For the pedantic reader: One may show that the θ̄nj are measurable so
that the above probability statements make sense. This extra argument is however
not necessary, since measurable upper bounds for the expression in the last display
converge to zero by the arguments just employed.] Thus

− Ān →Pθ0 Eθ0

[

∂2 log f(θ0, Y )

∂θ∂θT

]

≡ Σ(θ0) as n→ ∞. (26)

Since the limiting matrix is invertible we infer that Ān is invertible on sets whose
probability approaches one, and we can thus rewrite (24) on these sets as

√
n(θ̂n − θ0) = −Ā−1

n

√
n
∂Qn(θ0)

∂θ
→d N

(

0,Σ−1(θ0)i(θ0)Σ
−1(θ0)

)

the limit following from (25), (26) and from Slutsky’s lemma. This completes the
proof if we show Σ(θ0) = i(θ0), which is done as follows: Note that (22) implies

∂

∂θT

∫

∂f(θ, y)

∂θ
dy = 0 for every θ ∈ int(K)

and by the third part of condition iv) and Exercise 7 we can interchange integration
and differentiation to deduce

∫

∂2f(θ, y)

∂θ∂θT
dy = 0 for every θ ∈ int(K). (27)
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The chain rule implies, for every θ ∈ U ,

∂2 log f(θ, y)

∂θ∂θT
=

1

f(θ, y)

∂2f(θ, y)

∂θ∂θT
− 1

f 2(θ, y)

∂f(θ, y)

∂θ

∂f(θ, y)

∂θ

T

=
1

f(θ, y)

∂2f(θ, y)

∂θ∂θT
− ∂ log f(θ, y)

∂θ

∂ log f(θ, y)

∂θ

T

.

Using this identity at θ0 and integrating it with respect to f(θ0, y) combined with
(27) implies Σ(θ0) = i(θ0), and thus completes the proof.

Theorem 3 can be readily used for asymptotic inference with the maximum
likelihood estimator, as soon as we can estimate the Fisher information i(θ0) con-
sistently. This is discussed in Exercises 9 and 10.

2.2.2 Asymptotic Efficiency, Plug-in MLEs and the Delta-Method

Theorem 3 establishes a way to use the maximum likelihood estimator for asymp-
totic inference. The question arises as to whether one can find estimators for θ that
are better than the MLE. While an improvement of the rate of convergence 1/

√
n

cannot be expected in regular parametric models, one can still ask whether the
asymptotic variance of the estimator is the smallest possible one. This question
has more than one answer, and we do not attempt to provide a rigorous derivation
of these results, but rather discuss one of them briefly.

A first basic observation is the following result, known as the Cramèr-Rao lower
bound, which we give, for simplicity, in the one-dimensional situation p = 1.

Proposition 3. In the framework of Theorem 3 with p = 1 and for n ∈ N fixed,
let θ̃ = θ̃(Y1, . . . , Yn) be any unbiased estimator of θ, i.e., one that satisfies Eθθ̃ = θ
for all θ ∈ Θ. Then

V arθ(θ̃n) ≥
1

ni(θ)
∀θ ∈ int(Θ).

Proof. Write y = (y1, . . . , yn) in slight abuse of notation and set

l′(θ, Y ) ≡ d

dθ
log

n
∏

i=1

f(θ, Yi) =
n
∑

i=1

d

dθ
log f(θ, Yi).

We have, by the Cauchy-Schwarz inequality and (23),

V arθ(θ̃) ≥
Cov2θ(θ̃, l

′(θ, Y ))

V arθ(l′(θ, Y ))
=

1

ni(θ)
,
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since, interchanging differentiation and integration,

Covθ(θ̃, l
′(θ, Y )) =

∫

θ̃(y)l′(θ, y)
n
∏

i=1

f(θ, yi)dy

=

∫

θ̃(y)
d

dθ
f(θ, y)dy =

d

dθ
Eθθ̃ =

d

dθ
θ = 1.

A multi-dimensional extension ob the above proposition is straightforward to
obtain if one agrees to say that a symmetric matrix A is greater than or equal to
another symmetric matrix B if A− B is positive semi-definite.

The above result can be used to informally justify the maximum likelihood
estimator among all asymptotically unbiased estimators, a class very similar in
nature to all consistent estimators. The following example however shows that
difficulties can be expected when attempting to make this intuition rigorous.

Example 7. [Hodges’ estimator.] In a parametric model satisfying the conditions
of Theorem 3, and with Θ = R for simplicity, let θ̂n be the maximum likelihood
estimator. Consider the alternative estimator

θ̃n = θ̂n1{|θ̂n| ≥ n−1/4}
that is thresholded to zero whenever the MLE does not exceed n−1/4 in absolute
value. Suppose first the Yi’s are drawn from Pθ, θ 6= 0. Let n large enough such
that |θ| − n−1/4 ≥ |θ|/2 > 0, then by the triangle inequality and consistency of θ̂n
we have

Pθ(θ̃n 6= θ̂n) ≤ Pθ(|θ̂n − θ + θ| < n−1/4)

≤ Pθ(|θ| − n−1/4 < |θ̂n − θ|)
≤ Pθ(|θ̂n − θ| > |θ|/2) → 0

as n → ∞, and hence
√
n(θ̃ − θ) →d N(0, i−1(θ)) under Pθ, θ 6= 0. When θ = 0,

however, for any t ∈ R,

P0

(√
n(θ̃n − θ) ≤ t

)

= P0

(

0 ≤ t, θ̃n = 0
)

+ P0

(√
n(θ̃n − θ) ≤ t, θ̃n 6= 0

)

.

We have

P0(θ̃n 6= 0) = P0(|θ̂n| ≥ n−1/4) = P0(
√
n|θ̂n − θ| ≥ n1/4) → 0

as n → ∞ since
√
n(θ̂n − θ) is asymptotically normal (and hence stochastically

bounded), in view of Theorem 3. Conclude from the last but one display that
under P0 we have

√
n(θ̃n − θ) →d δ0 = N(0, 0), hence the estimator θ̃ has an

asymptotic covariance that strictly dominates, at θ = 0, the asymptotic variance
of the maximum likelihood estimator.
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To rule out estimators as the one above we can either restrict to ‘regular’
estimators, or invoke the minimax principle. Consider a parametric model {f(θ) :
θ ∈ Θ},Θ ⊂ Rp, that satisfies the regularity conditions of Theorem 3, and suppose
we are interested in making inference on Φ(θ), where Φ : Θ → Rm is differentiable
at θ, possibly Φ = id,m = p. Let Y1, . . . , Yn be i.i.d. from density f(θ) and let
Tn be any estimator for Φ(θ), i.e., any measurable function of a sample of size n.
Then, for any bowl-shaped loss function ℓ (i.e., any nonnegative function for which
the sets {x : ℓ(x) ≤ c} are convex and symmetric about the origin), and for every
θ ∈ int(Θ), one can show

sup
I

lim inf
n

sup
h∈I

Eθ+ h√
n
ℓ

(√
n(Tn − Φ

(

θ +
h√
n

))

≥ EN(0,Σ(Φ,θ))ℓ(X) (28)

where the first supremum runs over all finite subsets I ⊂ Rp, and where the
asymptotic variance equals the m×m matrix

Σ(Φ, θ) =
∂Φ(θ)

∂θ
i−1(θ)

∂Φ(θ)

∂θ

T

.

This means that if we scale the risk of any estimator Tn for Φ(θ) by
√
n, then Tn

cannot have smaller asymptotic risk than EN(0,Σ(Φ,θ))ℓ(X) uniformly in neighbor-
hoods of θ that shrink at rate 1/

√
n, so in particular not uniformly in all of Θ. See

Chapter 8.7 in [81] for a proof. In the case where Φ = id the asymptotic covariance
Σ(Φ, θ) simplifies to Σ(θ) from Theorem 3 and shows that the maximum likelihood
estimator is asymptotically efficient from a local minimax point of view in that it
attains the above lower bound. Moreover the Hodges’ estimator from above can
be shown to have minimax risk equal to infinity, see Example 8 below.

If Φ is not equal to the identity function this gives a lower bound on the
behaviour of any estimator of the functional Φ(θ) defined on Θ, and it is a natural
question to compare this lower bound to the asymptotic performance of the plug-
in maximum likelihood estimator Φ(θ̂n). The following general result, which we
shall prove in Section 3.7.1 below in even more generality, is known as the Delta-
method. It implies in particular that a plug-in MLE is also asymptotically efficient
for estimating Φ(θ).

Proposition 4. Let Θ be an open subset of Rp and let Φ : Θ → Rm be differentiable
at θ ∈ Θ, with derivative DΦθ. Let rn be a divergent sequence of positive real
numbers and let Xn be random variables taking values in Θ such that rn(Xn−θ) →d

X as n→ ∞. Then
rn(Φ(Xn)− Φ(θ)) →d DΦθ(X)

as n→ ∞. If X ∼ N(0, i−1(θ)) then

DΦθ(X) ∼ N(0,Σ(Φ, θ)).
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The result should not come as a surprise, in particular since one can show
that the maximum likelihood estimator is preserved under transformations, that
is, Φ(θ̂n) equals the MLE in the model {Φ(θ) : θ ∈ Θ} based on the sample, a
result that even holds when Φ is not differentiable. See Exercise 12 for this fact.

2.2.3 Parametric Testing Theory

Suppose we observe Y1, . . . , Yn from a density f(θ, ·) and consider the testing prob-
lem

H0 : θ ∈ Θ0 against H1 : θ ∈ Θ

where Θ0 ⊂ Θ ⊂ Rp. The Neyman-Pearson theory suggests to test these hypothe-
ses by the likelihood ratio test statistic

Λn(Θ,Θ0) := 2 log
supθ∈Θ

∏n
i=1 f(θ, Yi)

supθ∈Θ0

∏n
i=1 f(θ, Yi)

(29)

which in terms of the maximum likelihood estimators θ̂n, θ̂n,0 of the models Θ,Θ0

equals

Λn(Θ,Θ0) = 2 log

∏n
i=1 f(θ̂n, Yi)

∏n
i=1 f(θ̂n,0, Yi)

= −2
n
∑

i=1

(log f(θ̂n,0, Yi)− log f(θ̂n, Yi)).

If the null-hypothesis is simple, Θ0 = {θ0}, then θ̂n,0 = θ0, and a first key result is
the following.

Theorem 4. Consider a parametric model f(θ, y), θ ∈ Θ ⊂ R
p, that satisfies the

assumptions of Theorem 3. Consider the simple null hypothesis Θ0 = {θ0}, θ0 ∈
Θ. Then, under H0, the likelihood ratio test statistic is asymptotically chi-square
distributed, i.e.,

Λn(Θ,Θ0) →d χ2
p as n→ ∞ under Pθ0 (30)

where χ2
p is a chi-square random variable with p degrees of freedom.

Proof. Using the notation from the proof of Theorem 3 we see that Λn(Θ,Θ0) =
2nQn(θ0) − 2nQn(θ̂n), which we can expand into a Taylor series about θ̂n, up to
second order,

Λn(Θ,Θ0) = 2nQn(θ0)− 2nQn(θ̂n)

= 2n
∂Qn(θ̂n)

T

∂θ
(θ0 − θ̂n) + n(θ0 − θ̂n)

T ∂
2Q(θ̄n)

∂θ∂θT
(θ0 − θ̂n)

for a vector θ̄n on the line segment between θ̂n and θ0. The first term in the last
line equals zero on sets of probability approaching one since θ̂n is eventually an
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interior minimizer of Qn. Using the uniform law of large numbers in Proposition
2 one shows, as in (26), that the matrix Ān of second negative log-likelihood
derivatives evaluated at θ̄n converges to i(θ0) in probability. By Theorem 3 and
Slutsky’s lemma we deduce that

√
n(θ̂n − θ0)

T (Ān − i(θ0)) converges to zero in
distribution and then also in probability (as the limit is constant), and by repeating
this argument we deduce that

√
n(θ̂n − θ0)

T (Ān − i(θ0))
√
n(θ̂n − θ0) →Pθ0 0 as n→ ∞.

Consequently Λn(Θ,Θ0) has the same limiting distribution under Pθ0 as the ran-
dom variable √

n(θ̂n − θ0)
T i(θ0)

√
n(θ̂n − θ0).

Since the mapping x 7→ xT i(θ0)x is continuous from R
p to R we obtain from The-

orem 3 and the continuous mapping theorem that this limiting distribution equals
XT i(θ0)X where X ∼ N(0, i−1(θ0)). This equals the squared Euclidean norm of
a multivariate standard normal N(0, Ip) vector, which has a χ2

p distribution, and
completes the proof.

Note that the above result can be extended to composite null hypotheses Θ0

with dimension p0 < p, the limit being χ2
q with q degrees of freedom, where q =

p − p0. We do not pursue this further here, as the modifications are mostly of a
technical nature. See Chapter 16 in [81] for details.

Let us instead ask a more abstract question about testing parametric hypothe-
ses, that will be useful later on, but is also of separate interest. By definition we
shall say that a test φn is a random indicator function depending on the sample
Y1, . . . , Yn that takes values in {0, 1}, so accepts a null hypothesis H0 if φn = 0 and
rejects it otherwise. Theorem 4 implies that we can design a test that is consistent
under the null-hypothesis, i.e., Eθ0φn → 0 as n → ∞. However, for the test to
be informative one also has to ask for the behaviour of the test under alternatives
θ 6= θ0, θ ∈ Θ. Ideally we would want a test such that, for every δ > 0,

Eθ0φn → 0 and sup
θ:‖θ−θ0‖>δ

Eθ(1− φn) → 0 as n→ ∞. (31)

The existence of such tests can be verified in any parametric model {f(θ) : θ ∈ Θ}
in which uniformly consistent estimators Tn for θ exist.

Lemma 1. Let {f(θ) : θ ∈ Θ} be a parametric model in which uniformly consistent
estimators Tn = T (Y1, . . . Yn) in the sense of (19) exist. Then there exist tests
φn ≡ φ(Y1, . . . , Yn, θ0) for H0 : θ = θ0 against H1 : θ ∈ Θ \ {θ0} such that for every
θ satisfying ‖θ − θ0‖ > δ > 0, for some universal constant C,

max (Eθ0φn, Eθ(1− φn)) ≤ e−Cn.
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Proof. We can assume n large enough as otherwise the bound is trivial for a
sufficiently small constant C. We first show that consistent tests exist: Set

ψn = 1{‖Tn − θ0‖ ≥ δ/2}

which converges to 0 under Pθ0 and also satisfies, using the triangle inequality,

sup
θ:‖θ−θ0‖≥δ

Eθ(1− ψn) ≤ sup
θ:‖θ−θ0‖≥δ

P n
θ (‖Tn − θ‖ > ‖θ − θ0‖ − δ/2)

≤ sup
θ:‖θ−θ0‖≥δ

P n
θ (‖Tn − θ‖ > δ/2) → 0 as n→ ∞.

To establish the exponential bound, fix k ∈ N such that Eθ0ψk and Eθ(1−ψk) are
both less than 1/4 for every θ that satisfies ‖θ−θ0‖ > δ. For n = mk+r,m ∈ N, 0 ≤
r < k order the sample into groups of size k, (X1, . . . , Xk), (Xk+1, . . . , X2k), . . . , set
Ynj = ψk(Xk(j−1)+1, . . . , Xkj) and define the sample average Ȳnm = m−1

∑m
j=1 Ynj.

Define new tests φn = 1{Ȳnm ≥ 1/2}. Since EθYnj ≥ 3/4 we can use Hoeffding’s
inequality (3) to obtain

Eθ(1− φn) = Pθ(Ȳnm < 1/2) ≤ e−2m( 3
4
− 1

2)
2

≤ e−m/8.

Since m ∼ n this proves the desired exponential decay under the alternative. Since
Eθ0Ynj ≤ 1/4 the same proof applies under the null hypothesis, which establishes
the same exponential bound for Eθ0φn.

While in (31) we asked for tests that are globally consistent for alternatives
bounded away from θ0, one can further ask the ’local’ question about the perfor-
mance of tests against local alternatives θ0 +M/

√
n that may be as close to θ0

as a multiple of 1/
√
n. At least for M large enough such local alternatives can

still be distinguished consistently, as the following result shows. We only consider
alternatives that are ’close’, ‖θ − θ0‖ < δ for δ > 0 small as ‖θ − θ0‖ > δ > 0 has
been dealt with above.

Lemma 2. Let {f(θ) : θ ∈ Θ} be a parametric model that satisfies the conditions
of Theorem 4. Let Mn → ∞ as n → ∞. Then there exist tests φn for H0 : θ = θ0
against H1 : θ ∈ Θ \ {θ0} such that

Eθ0φn → 0 as n→ ∞

and, for every θ satisfying Mn/
√
n < ‖θ − θ0‖ ≤ δ for some δ < 1, we have for

some universal constant D,

Eθ(1− φn) ≤
1

D
e−Dn‖θ−θ0‖2 → 0 as n→ ∞.
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Proof. We shall again use the notation from the proof of Theorem 3, particularly
q(θ, y) = − log f(θ, y), and we shall prove the result under the additional assump-
tion that ∂q(θ0, y)/∂θ is a bounded function in y (otherwise a simple truncation
argument can be used). Define

φn = 1

{∥

∥

∥

∥

∂Qn(θ0)

∂θ

∥

∥

∥

∥

≥
√

Mn/n

}

,

a quantity known as the score test. We shall use here for simplicity the maximum
norm

‖v‖ = max
i=1,...,p

|vi|,

but any other (equivalent) norm on Rp works as well. By (25), Prohorov’s theorem
and since Mn → ∞, this quantity converges to zero in probability under Pθ0 , so
verifies the first conclusion of the lemma. Under any alternative, using the triangle
inequality, (23), a Taylor expansion up to second order and the ’regularity’ condi-

tions of Theorem 3, including invertibility of i(θ0), we can lower bound
∥

∥

∥

∂Qn(θ0)
∂θ

∥

∥

∥

by

∥

∥

∥

∥

Eθ
∂q(θ0, Y )

∂θ
− Eθ0

∂q(θ0, Y )

∂θ

∥

∥

∥

∥

−
∥

∥

∥

∥

∂Qn(θ0)

∂θ
−Eθ

∂q(θ0, Y )

∂θ

∥

∥

∥

∥

=

∥

∥

∥

∥

∫
(

∂q(θ0, y)

∂θ

∂f(θ0, y)
T

∂θ
+ o(‖θ − θ0‖)

)

dy(θ − θ0)

∥

∥

∥

∥

−
∥

∥

∥

∥

∂Qn(θ0)

∂θ
− Eθ

∂q(θ0, Y )

∂θ

∥

∥

∥

∥

= ‖(i(θ0) + o(‖θ − θ0‖))(θ − θ0)‖ −
∥

∥

∥

∥

∂Qn(θ0)

∂θ
− Eθ

∂q(θ0, Y )

∂θ

∥

∥

∥

∥

≥ c‖θ − θ0‖ −
∥

∥

∥

∥

∂Qn(θ0)

∂θ
−Eθ

∂q(θ0, Y )

∂θ

∥

∥

∥

∥

where c > 0 is some constant. Therefore, since ‖θ − θ0‖ ≥ Mn/
√
n we have for n

large enough

Eθ(1− φn) = Pθ

(∥

∥

∥

∥

∂Qn(θ0)

∂θ

∥

∥

∥

∥

<
√

Mn/n

)

≤ Pθ

(

∥

∥

∥

∥

∂Qn(θ0)

∂θ
− Eθ

∂q(θ0, Y )

∂θ

∥

∥

∥

∥

> c‖θ − θ0‖ −
√

Mn

n

)

≤ Pθ

(∥

∥

∥

∥

∂Qn(θ0)

∂θ
−Eθ

∂q(θ0, Y )

∂θ

∥

∥

∥

∥

>
c

2
‖θ − θ0‖

)

≤ D−1e−Dn‖θ−θ0‖2

by Hoeffding’s inequality (3), recalling the assumption that ∂q(θ0, y)/∂θ is bounded
and using Pr(maxi=1,...,p |vi| > u) ≤ pmaxi=1,...,p Pr(|vi| > u).

29



While the previous lemmata only prove existence of such tests, some more
detailed analysis shows that the score test used in the previous proof also works
in Lemma 1, under suitable conditions on {f(θ) : θ ∈ Θ} like the ones discussed
after (19), so that this gives a concrete example of a test that works. Likelihood
ratio tests can also be used, but we do not pursue this further here.

2.2.4 Local Asymptotic Normality and Contiguity

The results from the previous subsection on parametric testing theory allow to
reduce the search for the true value θ0 of θ to a M/

√
n neighborhood of θ0. Once

we have ’zoomed in’ to this neighborhood, inference on θ0 starts to resemble the
structure of a simple Gaussian experiment, and this phenomenon is often referred
to as ’local asymptotic normality’.

Suppose we observe a ’Gaussian shift experiment’ given by the single normal
observation X ∼ N(g, i−1(θ)) with unknown shift g ∈ Rp, and consider the likeli-
hood ratio between a N(h, i−1(θ)) model and a N(0, i−1(θ)) model

log
dN(h, i−1(θ))

dN(0, i−1(θ))
(X) = hT i(θ)X − 1

2
hT i(θ)h. (32)

So the local difference between the relevant likelihood ratios is again a normally
distributed random variable. This motivates the following definition.

Definition 1 (Local Asymptotic Normality (LAN)). Consider a parametric model

f(θ) ≡ f(θ, ·), θ ∈ Θ ⊂ R
p,

and let q(θ, y) = − log f(θ, y). Suppose (∂/∂θ)q(θ0, y) and the Fisher information
i(θ0) exist at the interior point θ0 ∈ Θ. We say that the model {f(θ) : θ ∈ Θ} is
locally asymptotically normal at θ0 if for every convergent sequence hn → h and
for Y1, . . . , Yn i.i.d.∼ f(θ0) we have, as n→ ∞,

log

n
∏

i=1

f (θ0 + hn/
√
n)

f(θ0)
(Yi) = − 1√

n

n
∑

i=1

hT
∂q(θ0, Yi)

∂θ
− 1

2
hT i(θ0)h+ oPθ0

(1).

We say that the model {f(θ) : θ ∈ Θ} is locally asymptotically normal if it is
locally asymptotically normal for every θ ∈ int(Θ).

In words local asymptotic normality means the following: If the Yi are drawn
from f(θ) for some θ in the interior of Θ, then the ratio between the likeli-
hood Πn

i=1f(θ + h/
√
n, Yi) of the local ’alternative’ θ + h/

√
n and the likelihood

Πn
i=1f(θ, Yi) of the true parameter θ admits an asymptotic approximation by a
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random variable whose limit distribution under Pθ is the Gaussian variable oc-
curring on the right hand side in (32) when g = 0. ’Local’ refers here to 1/

√
n

neighborhoods of θ.
Intuitively speaking, statistical inference in a LAN model is asymptotically

locally equivalent to inference in a Gaussian shift experiment with shift g, and the
parametric models we have dealt with so far are locally asymptotically normal, as
the following proposition shows.

Proposition 5. Consider a parametric model {f(θ), θ ∈ Θ},Θ ⊂ Rp, that satisfies
the assumptions of Theorem 3. Then {f(θ) : θ ∈ Θ0} is locally asymptotically
normal for every open subset Θ0 of Θ.

Proof. We only prove hn = h fixed, the proof for hn → h follows analogously.
Expanding log f(θ0 + h/

√
n) about log f(θ0) up to second order as in the proof of

Theorem 4 we see that the likelihood ratio equals

− 1√
n

n
∑

i=1

hT
∂q(θ0, Yi)

∂θ
− 1

2n
hT

n
∑

i=1

∂2q(θ̄n, Yi)

∂θ∂θT
h

for some vector θ̄n lying on the line segment between θ0 and θ0+h/
√
n. Using the

uniform law of large numbers Proposition 2 one shows, as in (26), that

1

2n
hT

n
∑

i=1

∂2q(θ̄n, Yi)

∂θ∂θT
h− 1

2
hT i(θ0)h→Pθ0 0 as n→ ∞

which completes the proof.

Le Cam [52, 53] developed the notion of local asymptotic normality as a uni-
fying notion of much of asymptotic parametric statistics. It can be seen as the
’statistical equivalent’ of the regularity assumptions from Theorem 3. Assuming
local asymptotic normality together with ’differentiability in quadratic mean’ of
θ 7→ f(θ) is an alternative route to derive the asymptotic distribution of maximum
likelihood estimators, see Section 7.4 in [81]. The assumption of differentiability in
quadratic mean is slightly weaker than the assumptions we imposed in Theorem
3, but for most relevant parametric models these assumptions are equivalent, and
then the present approach avoids some technicalities. Proposition 5 highlights,
however, the close connection between these approaches.

Local asymptotic normality is not only another assumption, but also a key
concept to derive further properties in parametric models, often in conjunction
with the following concept.

Definition 2 (Contiguity.). Let Pn, Qn be two sequences of probability measures.
We say that Qn is contiguous with respect to Pn if for every sequence of measurable
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sets An the hypothesis Pn(An) → 0 as n→ ∞ implies Qn(An) → 0 as n→ ∞, and
write Qn ⊳ Pn. The sequences Pn, Qn are mutually contiguous if both Qn ⊳ Pn

and Pn ⊳ Qn, which is denoted by Pn ⊳⊲ Qn.

A useful way to take advantage of contiguity is the following lemma, which
is due to Le Cam. For two probability measures P,Q the ratio dP a/dQ is the
Radon-Nikodym density of the absolutely continuous part P a of P with respect to
Q, and we can write

P a(A) =

∫

A

dP a

dQ
(x)dQ(x)

for every measurable set A. In statistics the random variable (dP/dQ)(X) ≡
(dP a/dQ)(X) (with a suppressed) where X has law Q is usually referred to as the
likelihood ratio, and by the usual convention in measure theory (∞·0 = 0) we may
leave the quotient undefined when dQ = 0. Moreover the notation dPn/dQn →d

Qn

U shall be used to denote dPn/dQn(Xn) →d U for random variables Xn that have
distribution Qn.

Lemma 3. [Le Cam’s first lemma] Let Pn, Qn be sequences of probability measures
on measurable spaces (Ωn,An). Then the following are equivalent.
i) Qn ⊳ Pn.
ii) If dPn/dQn →d

Qn
U along a subsequence of n, then P (U > 0) = 1.

iii) If dQn/dPn →d
Pn
V along a subsequence of n, then EV = 1.

iv) For any sequence of statistics (measurable functions) Tn : Ωn → Rk we have:
Tn →Pn 0 as n→ ∞ implies Tn →Qn 0 as n→ ∞.

Proof. The equivalence of (i) and (iv) is clear: Assuming contiguity we can take
sets An = {‖Tn‖ > ε} so that Qn(An) → 0 means Tn →Qn 0. Conversely given
sets An take statistics Tn = 1An .
i) → ii): In abuse of notation denote the subsequence of n again by n. Define
gn(ε) = Qn(dPn/dQn < ε)−P (U < ε). By the portmanteau theorem lim infn gn(ε) ≥
0, and we can find εn ց 0 such that also lim infn gn(εn) ≥ 0, so

P (U = 0) = lim
n
P (U < εn) ≤ lim inf

n
Qn

(

dPn

dQn
< εn

)

.

On the other hand

Pn

(

dPn

dQn
≤ εn, dQn > 0

)

=

∫

dPn/dQn≤εn

dPn

dQn
dQn ≤

∫

εndQn → 0.

By contiguity and equivalence of (i) and (iv) the Pn probability on the left in the
last line thus converges to zero also under Qn, so that the right hand side in the
last but one display equals zero, so P (U = 0) = 0.
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(iii) → (i): If Pn(An) → 0 then 1Ωn\An converges to one under Pn. By Pro-
horov’s theorem we can find a subsequence of n along which the random vector
(dQn/dPn, 1Ωn−An) →d (V, 1) under Pn. The mapping (v, t) → vt is continuous
and nonnegative on the set [0,∞)× {0, 1}, so the portmanteau lemma gives

lim inf
n

Qn(Ωn \ An) ≥ lim inf

∫

1Ωn\An

dQn

dPn
dPn ≥ E1 · V = 1,

so the left hand side has to converge to one, i.e., Qn(An) → 0 as well.
ii) → iii): Define the probability measures

µn =
Pn +Qn

2

which dominate both Pn and Qn in the sense that µn(A) = 0 implies Pn(A) =
Qn(A) = 0. If pn, qn are the densities of Pn and Qn, respectively, with respect to
µn, then pn + qn = 2 µn-almost everywhere and so pn and qn take values in the
interval [0, 2]. Conclude that dPn/dµn is uniformly tight with respect to µn, and
using the hypotheses of ii), iii) we can thus find a subsequence of n that we still
denote by n such that

dPn

dQn
→d

Qn
U,

dQn

dPn
→d

Pn
V, Wn ≡ dPn

dµn
→d

µn
W

for some random variables U, V,W and Wn with EµnWn =
∫

dPn = 1 for every n.
Since the densities pn are uniformly bounded we can use dominated convergence
to infer EWn → EW as n → ∞, so EW = 1 as well. For given bounded and
continuous f define g : [0, 2] → R as g(w) = f(w/(2 − w))(2 − w) if 0 ≤ w < 2
and g(2) = 0, which is again bounded and continuous. Now clearly dPn/dQn =
Wn/(2−Wn) and dQn/dµn = 2−Wn so by the portmanteau lemma

EQnf

(

dPn

dQn

)

= Eµnf

(

dPn

dQn

)

dQn

dµn
= Eµng(Wn) → Ef

(

W

2−W

)

(2−W ).

By hypothesis the left hand side converges to Ef(U), which thus equals the right
hand side for every bounded continuous function f . Take a sequence of such f
satisfying 1 ≥ fm ց 1{0}, so that dominated convergence implies

P (U = 0) = E1{0}(U) = E1{0}

(

W

2−W

)

(2−W ) = 2P (W = 0).

By analogous arguments, Ef(V ) = Ef((2 − W )/W )W for every continuous
bounded f , and taking a sequence 0 ≤ fm(x) ր x we conclude from monotone
convergence

EV = E

(

2−W

W

)

W = E(2−W )1{W > 0} = 2P (W > 0)− 1

so P (U = 0) + EV = 1, which conlcudes the proof.
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The key application of this lemma in our context is the following corollary,
which we shall use repeatedly in the next section.

Corollary 1. i) Let Pn, Qn be sequences of probability measures on measurable
spaces (Ωn,An) such that dPn

dQn
→d

Qn
eX where X ∼ N(−1

2
σ2, σ2) for some σ2 > 0

as n→ ∞. Then Pn ⊳⊲ Qn.
ii) If {f(θ) : θ ∈ Θ} is locally asymptotically normal and if hn → h ∈ Rp,
then the product measures P n

θ+hn/
√
n and P n

θ corresponding to samples X1, . . . , Xn

from densities f(θ + hn/
√
n) and f(θ), respectively, are mutually contiguous. In

particular if a statistic T (Y1, . . . , Yn) converges to zero in probability under P n
θ then

it also converges to zero in P n
θ+hn/

√
n
-probability.

Proof. i) Since P (eX > 0) = 1 for every normal random variable, part ii) of
Lemma 3 implies Qn ⊳ Pn, and since EeN(µ,σ2) = 1 if and only if µ = −σ2/2 the
converse follows from part iii) of the same lemma. Part ii) now follows immediately
from Proposition 5 and the fact that the asymptotic expansion there converges in
distribution to N(−hT i(θ)h/2, hT i(θ)h) under Pθ. The last claim follows from the
last part of Lemma 3.

Example 8. [Hodges’ estimator, continued.] Let us return to Example 7 and apply
the above ideas to detect the flaw in the construction of the Hodges’ estimator θ̃
in the setting of locally asymptotically normal models. Intuitively speaking, the
improvement of θ̃ over θ̂ occurs at the origin θ = 0, but this comes at the price of
unbounded minimax risk ‘near’ the origin. To make this precise consider a ‘local
alternative’ 0 + h/

√
n where h ∈ R is arbitrary, let P n

θ be the product measure
representing the law of a sample of size n from Pθ, and let En

θ be the expectation
under this product measure. The minimax quadratic risk for fixed n is bounded
from below by

sup
θ∈Θ

En
θ (
√
n(θ̃(X1, . . . , Xn)− θ))2 ≥ En

h/
√
nn(θ̃ − h/

√
n)2

≥ h2En
h/

√
n1{θ̃ = 0}

≥ h2(1− P n
h/

√
n(θ̃ 6= 0)).

We know from Example 7 above that P n
0 (θ̃ 6= 0) → 0 as n → ∞. By Corollary 1

the product measures P n
0 , P

n
h/

√
n
are contiguous, hence the quantity in the last line

of the last display converges to h2, in particular it exceeds h2/2 for all n ≥ n0(h)
large enough. Since h was arbitrary we conclude that

lim
n

sup
θ∈Θ

En
θ (
√
n(θ̃ − θ))2 = ∞.
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This is in contrast to the MLE whose asymptotic minimax risk

lim sup
n

sup
θ∈Θ

En
θ (
√
n(θ̂ − θ))2 <∞,

see the discussion after Example 7 above. In this sense the Hodges’ estimator is
not a uniform improvement over the maximum likelihood estimator.

2.2.5 Bayesian Inference and the Bernstein - von Mises Theorem

Bayesian parametric inference also starts with the specification of a model of prob-
ability distributions Pθ, θ ∈ Θ ⊂ Rp, but it views the unknown parameter θ itself
as a random variable. This means that the Bayesian has prior beliefs about the
value of θ which are encoded in a random variable Θ̄ that has law, or prior dis-
tribution, Π on Θ. The observations X1, . . . , Xn are viewed as being realisations
of the conditional law X|θ ∼ Pθ given that Θ̄ = θ has occurred. The conditional
distribution of Θ̄ given X1, . . . , Xn is called the posterior distribution, which can
be computed by Bayes’ formula. If the parametric model consists of probability
densities f(θ), and if Π possesses a probability density π, then the posterior equals

π(θ|X1, . . . , Xn) =

∏n
i=1 f(θ,Xi)π(θ)

∫

Θ

∏n
i=1 f(θ,Xi)dΠ(θ)

, (33)

see Exercise 13. The posterior can thus be interpreted as the weighted (and renor-
malised) likelihood of the model {f(θ) : θ ∈ Θ}. We denote the corresponding
posterior probability distribution by

Π(B|X1, . . . , Xn) =

∫

B

π(θ|X1, . . . , Xn)dθ, B a Borel subset of Θ.

The posterior is the main tool for Bayesian inference: it gives rise to point estimates
for θ by taking, for instance, the posterior mean

E(Θ̄|X1, . . . , Xn) =

∫

Θ

θπ(θ|X1, . . . , Xn)dθ,

and can also be used directly to construct ’credibility regions’ (the ’Bayesian ver-
sion’ of confidence sets) for θ based on the quantiles of the posterior distribution.

While for a Bayesian statistician the analysis ends in a certain sense with the
posterior, one can ask interesting questions about the the properties of posterior-
based inference from a frequentist point of view. This means that one assumes that
X1, . . . , Xn are realisations from a fixed density f(θ0) with law Pθ0 and studies the
behaviour of the posterior, which is a random probability measure that depends
on X1, . . . , Xn, under Pθ0 . The hope is that the information contained in the
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sample eventually dominates the influence of the prior. For instance one can ask
for frequentist consistency in the sense that, for every δ > 0, as n→ ∞,

Π ({θ : ‖θ − θ0‖ > δ}|X1, . . . , Xn) → 0 in Pθ0 − probability,

which means that the posterior distribution asymptotically collapses to a point
mass at θ0. In fact we shall prove the more general result that under the assumption
that the prior Π has a positive density in a neighbourhood of θ0, and if θ̂n is the
maximum likelihood estimator of {f(θ) : θ ∈ Θ} based on the sample X1, . . . , Xn

from density f(θ0), then the posterior distribution is asymptotically equal to a
normal distribution centred at θ̂n with covariance i−1(θ0)/n. This entails that for
purposes of frequentist asymptotic inference typical Bayesian procedures give the
same results as if one uses the asymptotic distribution of the maximum likelihood
estimator. This remarkable result is known as the Bernstein-von Mises theorem,
see [3, 83], and its origins date back as far as to Laplace [51].

Before we give a proof of the general Bernstein-von Mises theorem, let us
first examine a simple special case to gain some intuition. Consider observing
X,X1, . . . , Xn from Pθ equal to a N(θ, 1) distribution where θ ∈ Θ = R, and take
as prior Π a standard N(0, 1) distribution on the θ’s. Assuming X|θ ∼ N(θ, 1)
one easily deduces from (33) that (see Exercise 13)

θ|X1, . . . , Xn ∼ N

(∑n
i=1Xi

n+ 1
,

1

n+ 1

)

. (34)

We see that for Gaussian observations and Gaussian prior, the posterior is also
Gaussian, a special case of a conjugate situation. The frequentist asymptotics
of the normal distribution on the right hand side of (34) are easily obtained: If
X̄n = n−1

∑n
i=1Xi is the sample mean we have

√
n([θ|X1, . . . , Xn]− X̄n) ∼ N(Zn, n/(n+ 1)),

where, assuming we are sampling from a fixed N(θ0, 1) distribution,

Zn =
√
n
(

E[θ|X1, . . .Xn]− X̄n

)

=
−√

n

n(n + 1)
X̄n →Pθ0 0

as n→ ∞ by the law of large numbers. We can conclude that

√
n([θ|X1, . . . , Xn]− X̄n) →d N(0, 1) in Pθ0 − probability,

in particular posterior-based inference coincides asymptotically with the standard
frequentist inference based on the sample mean.

The remarkable fact is that the above phenomenon is not tied to the Gaussian
conjugate situation, but that it is entirely universal for any prior that charges a
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neighborhood of the true parameter θ0 with positive probability. We now give
Le Cam’s [52] proof of the general Bernstein-von Mises theorem for parametric
models under our standard regularity conditions, provided the model allows for the
existence of uniformly consistent estimators, sufficient conditions for the existence
of which were given after (19). Recall that

‖P −Q‖TV := sup
B∈B(Rp)

|P (B)−Q(B)|

is the total variation distance on the set of probability measures on the Borel
σ-algebra B(Rp) of Rp.

Theorem 5. Consider a parametric model {f(θ), θ ∈ Θ},Θ ⊂ Rp, that satisfies the
assumptions of Theorem 3. Suppose that the model admits a uniformly consistent
estimator Tn in the sense of (19). Let X1, . . . , Xn be i.i.d. from density f(θ0), let
θ̂n be the MLE based on the sample, assume the prior measure Π is defined on
the Borel sets of Rp and that Π possesses a Lebesgue-density π that is continuous
and positive in a neighbourhood of θ0. Then, if Π(·|X1, . . . , Xn) is the posterior
distribution given the sample, we have

∥

∥

∥

∥

Π(·|X1, . . . , Xn)−N

(

θ̂n,
1

n
i−1(θ0)

)∥

∥

∥

∥

TV

→Pθ0 0 as n→ ∞. (35)

Proof. We shall assume, for notational simplicity, that the Xi are univariate ran-
dom variables. We shall write, to ease notation, πn and Πn for the posterior density
and distribution given the priors π and Π, respectively.

Step 1: We shall first translate the problem into a LAN setting. The total
variation norm on densities equals half the L1-norm and thus the quantity in
(35) equals, using the change of variables h =

√
n(θ − θ0), and writing σ0 :=

√

2π det(i−1(θ0)),

1

2

∫
∣

∣

∣

∣

πn(θ)−
np/2

σ0
exp

{

−1

2
n(θ − θ̂n)

T i(θ0)(θ − θ̂n)

}∣

∣

∣

∣

dθ = (36)

1

2

∫
∣

∣

∣

∣

πn(θ0 + h/
√
n)

np/2
− 1

σ0
e−

1
2
(h−√

n(θ̂n−θ0))T i(θ0)(h−
√
n(θ̂n−θ0))

∣

∣

∣

∣

dh

where the normal density subtracted in the second line is the one of a N(
√
n(θ̂n −

θ0), i
−1(θ0)) distribution. Note moreover that, using the above change of variables

again in the denominator,

πn(θ0 + h/
√
n)

np/2
=

∏n
i=1 f(θ0 + h/

√
n,Xi)π(θ0 + h/

√
n)

∫
∏n

i=1 f(θ0 + h/
√
n,Xi)π(θ0 + h/

√
n)dh

≡ π̃n(θ),
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which equals the posterior density arising from the sample and prior density
π̃(h) := π(θ0 + h/

√
n)/np/2, positive in a neighbourhood of zero. Define by

Π̃n, Π̃ the corresponding posterior and prior probability measures concentrated
on {h =

√
n(θ − θ0) : θ ∈ Θ}, respectively, and deduce that it suffices to prove

that
‖Π̃n −N(

√
n(θ̂n − θ0), i

−1(θ0))‖TV →Pθ0 0 (37)

as n→ ∞.
Define next

∆n,θ0 =
1√
n

n
∑

i=1

i−1(θ0)
∂Q(θ0, Xi)

∂θ
.

The proof of Theorem 3 implies that

√
n(θ̂n − θ0)−∆n,θ0 →Pθ0 0 as n→ ∞,

and moreover that both terms in the difference are uniformly tight (Prohorov’s
theorem) and hence concentrate with probability arbitrarily close to one one a
bounded subset of Rp. The total variation difference between two normal densities
dN(u, Z−1) and dN(v, Z−1) can be written, up to multiplicative constants, as

∫

e−hTZh
∣

∣

∣
e2u

TZhe−uTZu − e2v
TZhe−vTZv

∣

∣

∣
dh

and since the exponential map and x 7→ x2 are Lipschitz on bounded sets, the
previous remark implies, for some universal constant C,

‖N(
√
n(θ̂n − θ0), i

−1(θ0))−N(∆n,θ0 , i
−1(θ0))‖TV ≤ C‖

√
n(θ̂n − θ0)−∆n,θ0‖

so that this quantity converges to zero in Pθ0-probability as n→ ∞. These obser-
vations combined with (38) above imply that in order to prove (35) it suffices to
prove

‖Π̃n −N(∆n,θ0 , i
−1(θ0))‖TV →Pθ0 0 (38)

as n→ ∞.
To proceed we introduce some simplifying notation. Define, for any measurable

set C ⊂ Rp, the probability measure

Π̃C(B) =
Π̃(B ∩ C)
Π̃(C)

obtained from restricting (and renormalising) the prior Π̃ to C, let π̃C be its
density, and set Π̃C

n = Π̃C(·|X1, . . . , Xn) to be the posterior obtained under the
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restricted prior Π̃C . Write further P n
h for the distribution of the sample X1, . . . , Xn

under θ0 + h/
√
n and define

P n
C =

∫

C

P n
h dΠ̃

C(h),

the Π̃C-mean of P n
h over C, which should be understood in the sense that whenever

we compute a probability / take expectation with respect to P n
C then we compute

a probability / take an expectation under P h
n , h ∈ C, first and then integrate the

result over C with respect to Π̃C .
Throughout the remainder of the proof we shall use the contiguity relation

P n
U ⊳⊲ P n

0 (39)

for U any closed ball of fixed radius around zero. To verify this, let first An be a
sequence of sets for which P n

0 (An) → 0. Then Corollary 1 implies P n
h (An) → 0 for

every h ∈ U and since probabilities are bounded by one the dominated convergence
implies P n

U (An) =
∫

U
P n
h (An)dΠ̃

U(h) → 0 as n → ∞. The converse also follows,
noting P n

U (An) ≥ infh∈U P
n
h (An), passing to a convergent subsequence hn ∈ U

approaching the infimum, and using Proposition 5 combined with Corollary 1. We
conclude that when showing convergence to zero of a random variable we may
interchange P n

U and P n
0 as we wish in view of Corollary 1.

Step 2: We first show that the difference between the full posterior and the
posterior obtained from the prior restricted to C converges to zero where C is a
ball of radius M sufficiently large about zero. For arbitrary measurable set A,B,
writing J(A) =

∫

A

∏n
i=1 f(θ0 + h/

√
n,Xi)dΠ̃(h),

∣

∣

∣
Π̃n(B)− Π̃C

n (B)
∣

∣

∣
=

∣

∣

∣

∣

J(B)

J(Rp)
− J(B ∩ C)

J(C)

∣

∣

∣

∣

=

∣

∣

∣

∣

J(Cc ∩B)

J(Rp)
+
J(C ∩B)

J(Rp)
− J(C ∩ B)

J(C)

∣

∣

∣

∣

=

∣

∣

∣

∣

J(Cc ∩B)

J(Rp)
+
J(C ∩B)J(C)− J(C ∩ B)J(Rp)

J(Rp)J(C)

∣

∣

∣

∣

=

∣

∣

∣

∣

J(Cc ∩B)

J(Rp)
− J(Rp \ C)

J(Rp)

J(C ∩ B)

J(C)

∣

∣

∣

∣

=
∣

∣

∣
Π̃n(B ∩ Cc)− Π̃n(C

c)Π̃C
n (B)

∣

∣

∣
≤ 2Π̃n(C

c),

a bound that is uniform in B and hence applies to the total variation distance
between Π̃n and Π̃C

n . We now show that the En
U - expectation of this bound

converges to zero, so that it also converges to zero in P n
U -probability by Markov’s
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inequality. Define φn to be the test for H0 : θ = θ0 against H1 : θ ∈ Θ \ {θ0}
obtained from taking the maximum of the tests φn in Lemmata 1, 2. Recalling
(39) and since φn → 0 under P n

0 as n→ ∞ we deduce

En
U Π̃n(C

c) = En
U [Π̃n(C

c)(1− φn)] + oPn
U
(1). (40)

The quantity En
U Π̃n(C

c)(1− φn) equals by definition and Fubini’s theorem

∫

U

∫

Rn

∫

Cc

(1−φn)

∏n
i=1 f(θ0 +

g√
n
, xi)

∫
∏n

i=1 f(θ0 +
m√
n
, xi)dΠ̃(m)

dΠ̃(g)

n
∏

i=1

f

(

θ0 +
h√
n
, xi

)

dxi
dΠ̃(h)

Π̃(U)

=
Π̃(Cc)

Π̃(U)

∫

Cc

∫

Rn

∫

U

(1− φn)

∏n
i=1 f(θ0 +

h√
n
, xi)

∫
∏n

i=1 f(θ0 +
m√
n
, xi)dΠ̃(m)

dΠ̃(h)dP n
g (x)dΠ̃

Cc

(g)

=
Π̃(Cc)

Π̃(U)
En

CcΠ̃n(U)(1− φn),

so we have exchanged the ’centered’ expectation over U with expectation under
’distant alternatives’ Cc. Under these alternatives the type two errors in (40)
converge to zero exponentially fast, and we exploit this now: using the trans-
formation theorem for probability measures, Lemma 2, the inequality Π̃(U) =
Π(θ0 +U/

√
n) ≥ 1/(cnp/2) for some c > 0 by positivity and continuity of the den-

sity π in a neighbourhood of θ0, and for D′ ≤ 1 small enough so that π is bounded
by c′(Π) on {θ : ‖θ − θ0‖ ≤ D′} that

Π̃(Cc)

Π̃(U)
En

CcΠ̃n(U)(1− φn) ≤ 1

Π̃(U)

∫

Cc

En
h (1− φn)dΠ̃(h)

=
1

Π̃(U)

∫

θ:‖θ−θ0‖≥M/
√
n

En
θ (1− φn)dΠ(θ)

≤ c′(Π)cnp/2

∫

θ:M/
√
n≤‖θ−θ0‖≤D′

En
θ (1− φn)dθ

+ cnp/2

∫

θ:‖θ−θ0‖>D′

En
θ (1− φn)dΠ(θ)

≤ c′′
∫

θ:‖θ−θ0‖≥M/
√
n

e−Dn‖θ−θ0‖2np/2dθ + 2cnp/2e−Cn

= c′′
∫

h:‖h‖≥M

e−D‖h‖2dh+ 2cnp/2e−Cn

which can be made smaller than ε > 0 arbitrary by choosing M large enough and
thus implies, as M → ∞

sup
B

∣

∣

∣
Π̃n(B)− Π̃C

n (B)
∣

∣

∣
→Pn

U 0. (41)
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By (39) this quantity then also converges to zero in P n
0 -probability.

To complete the second step, note that for any sequence N(µn, i) of normal
probability measures such that supn |µn| <∞ and for every Borel set B in Rp we
have

|N(µn, i)(B)−NC(µn, i)(B)| ≤ 2N(µn, i)(C
c),

where NC is N restricted to C and renormalised, and since ∆n,θ0 is uniformly tight
by Prohorov’s theorem we conclude that for Cn a sufficiently large ball of radius
M(ε) around zero

‖N(∆n,θ0 , i
−1(θ0))−NC(∆n,θ0, i

−1(θ0))‖TV < ε

for every ε > 0 on a set of P n
0 probability as close to one as desired. This leaves

us with having to prove
∥

∥

∥
NC(∆n,θ0, i

−1(θ0))− Π̃C
n

∥

∥

∥

TV
→Pn

0 0 as n→ ∞ (42)

for every ball C about zero of fixed radius M .

Step 3: We prove that (42) holds under the law P n
C , which is sufficient as it is

contiguous to P n
0 by (39). The total variation norm of two probability measures

P,Q can be expressed as ‖P−Q‖TV = 2−1
∫

(1−dP/dQ)+dQ so we bound, writing
fh,n for

∏n
i=1 f(θ0 + h/

√
n,Xi) and λC for Lebesgue measure on C,

1

2
‖NC(∆n,θ0 , i

−1(θ0))− Π̃C
n ‖TV

=

∫

(

1− dNC(∆n,θ0, i
−1(θ0))(h)

1Cfh,ndΠ̃(h)/
∫

C
fg,ndΠ̃(g)

)+

dΠ̃C
n (h)

≤
∫ ∫

(

1− fg,ndΠ̃(g)dN
C(∆n,θ0 , i

−1(θ0))(h)

fh,ndΠ̃(h)dNC(∆n,θ0, i
−1(θ0))(g)

)+

dNC(∆n,θ0, i
−1(θ0))(g)dΠ̃

C
n (h)

≤ c

∫ ∫

(

1− fg,ndΠ̃(g)dN
C(∆n,θ0, i

−1(θ0))(h)

fh,ndΠ̃(h)dNC(∆n,θ0 , i
−1(θ0))(g)

)+

dλC(g)dΠ̃
C
n (h)

where we used (1−EY )+ ≤ E(1−Y )+ in the first inequality. The P n
C -expectation

of this quantity equals the expectation of the integrand

(

1− fg,ndΠ̃(g)dN
C(∆n,θ0, i

−1(θ0))(h)

fh,ndΠ̃(h)dNC(∆n,θ0, i
−1(θ0))(g)

)+

under
Π̃C

n (dh)P
n
C(dx)λC(dg) = P n

h (dx)Π̃
C(dh)λC(dg)
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the latter identity following from Fubini’s theorem and
∫

C

∫

Rn

n
∏

i=1

f(θ0 + k/
√
n, xi)

∏n
i=1 f(θ0 + h/

√
n, xi)dΠ̃

C(h)
∫
∏n

i=1 f(θ0 +m/
√
n, xi)dΠ̃C(m)

dxdΠ̃C(k)

=

∫

Rn

n
∏

i=1

f(θ0 + h/
√
n, xi)dxdΠ̃

C(h).

Since Π̃C(dh) has a bounded density it suffices to prove convergence to zero under
P n
h (dx)λC(dh)λC(dg) which is contiguous to P n

0 (dx)λC(dh)λC(dg) by (39). By
the dominated convergence theorem it thus suffices to prove that the integrand
converges to zero under P n

0 for every h, g, which follows from continuity of π at
θ0 and the fact that Proposition 5 implies that the likelihood ratios fg,n/fh,n =
(fg,n/f0,n) · (f0,n/fh,n) admit, under P n

0 , the LAN expansion

exp

{

−1

2
gT i(θ0)g +

1

2
hi(θ0)h−

1√
n

n
∑

i=1

gT
∂Q(θ0, Xi)

∂θ
+

1√
n

n
∑

i=1

hT
∂Q(θ0, Xi)

∂θ

}

which exactly cancels with the ratio

dNC(∆n,θ0 , i
−1(θ0))(h)

dNC(∆n,θ0 , i
−1(θ0))(g)

.

2.2.6 Exercises

Exercise 7. [Differentiating under an Integral Sign.] Let V be an open subset
of Rp and let (S,A, µ) be a measure space. Suppose the function f : V × S →
R is µ-integrable for every v ∈ V , and assume that for every v, s the deriva-
tive (∂/∂v)f(v, s) exists and is continuous as a mapping from V to Rp for ev-
ery s. Suppose further there exists a µ-integrable function g : S → R such
that ‖(∂/∂v)f(v, s)‖ ≤ g(s) for every v ∈ V, s ∈ S. Prove that the mapping
φ : v 7→

∫

S
f(v, s)dµ(s) from V to R is differentiable with derivative (∂/∂v)φ(v) =

∫

S
(∂/∂v)f(v, s)dµ(s). [Hint: use the pathwise mean value theorem and dominated

convergence.]

Exercise 8. Formulate mild conditions on K(θ) such that the conditions of The-
orem 3 are satisfied for the exponential family from Example 6.

Exercise 9. [Estimation of the Fisher Information.] Let the assumptions of The-
orem 3 be satisfied. Assuming consistency of θ̂n, prove that

în = −1

n

n
∑

i=1

∂2Q(θ̂n, Yi)

∂θ∂θT
→Pθ0 i(θ0) as n→ ∞.
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Exercise 10. [Confidence Sets and the Wald test.] Working in the framework and
under the assumptions of Theorem 3, and using Exercise 9, construct a random
set Cn ∈ Rp (a ’confidence region’) that depends only on α and Y1, . . . , Yn such
that

lim
n
Pθ0(θ0 ∈ Cn) = 1− α.

If θ̂n is the MLE, derive further the asymptotic distribution of the Wald statistic

n(θ̂n − θ0)
T în(θ̂n − θ0)

under Pθ0 , and use it to design an asymptotic level α test for the null hypothesis
H0 : θ = 0 against H1 : θ ∈ Θ, θ 6= 0.

Exercise 11. Consider Y1, . . . , Yn i.i.d. Poisson random variables with parameter
λ. Derive explicit formulas for the MLE and for the likelihood ratio test statistic
for testing H0 : λ = λ0 against H1 : λ 6= λ0. Deduce the asymptotic distribution
of

√
n(λ̂n−λ) directly, and verify that it agrees with what the general asymptotic

theory predicts.

Exercise 12. Let {f(θ) : θ ∈ Θ},Θ ⊂ Rp, be a parametric model and let Φ : Θ →
R

m be measurable function. Let θ̂n be the MLE in the model Θ. Show that the
maximum likelihood estimator φ̂n in the model {f(φ) : φ = φ(θ) : θ ∈ Θ} equals
Φ(θ̂n).

Exercise 13. Use Bayes’ rule to derive the expressions (33) and (34).

Exercise 14. In the setting of Theorem 5, let Cn be an Euclidean ball in Rp

centred at the MLE θ̂n such that Π(Cn|X1, . . . , Xn) = 1 − α for all n (Cn is a
credible set for the posterior distribution). Show that Pθ0(θ0 ∈ Cn) → 1 − α as
n→ ∞ (that is, Cn is a frequentist confidence set).
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2.3 High Dimensional Linear Models

In this section we consider a response variable Y = (Y1, . . . , Yn)
T in vector notation,

and study linear models

Y = Xθ + ε, ε ∼ N(0, σ2In), θ ∈ Θ = R
p, σ2 > 0, (43)

where X is a n×p design matrix, and where ε is a standard Gaussian noise vector
in Rn. Throughout we denote the resulting p× p Gram matrix by

Σ̂ =
1

n
XTX,

which is symmetric and positive semi-definite. We denote by ‖θ‖2 =
√

∑

j θ
2
j and

‖θ‖1 =
∑

j |θj| the usual ℓ2 and ℓ1 norm of a vector in Euclidean space. Moreover
a . b will mean that a ≤ Cb for some fixed (ideally numerical, or otherwise at
least ‘harmless’) constant C > 0.

2.3.1 Beyond the standard linear model

In the model (43) with p ≤ n the classical least squares estimator introduced by
Gauß solves the minimisation problem

min
θ∈Rp

‖Y −Xθ‖2
n

= min
θ∈Rp

1

n

n
∑

i=1

(Yi − (Xθ)i)
2,

whose solution has the well known form, in matrix notation,

θ̂ = (XTX)−1XTY ∼ N(θ, σ2(XTX)−1), (44)

where we assume that X has full column rank so that XTX is invertible. Even
without assuming Gaussianity for ε the normal distribution of θ̂ is still approxi-
mately true under some mild conditions on ε,X , as can be shown using the central
limit theorem (for triangular arrays of independent random variables). Thus (44)
can be used to conduct inference on θ following the principles laid out in the previ-
ous section, including the construction of confidence sets and tests of hypotheses.

Let us note that the performance of the least squares estimator depends strongly
on the dimensionality of Θ. Indeed, assuming the simplest case of orthogonal de-
sign XTX/n = Ip for instance, we see

1

n
Eθ‖X(θ̂ − θ)‖22 = Eθ‖θ̂ − θ‖22 =

σ2

n
tr(Ip) =

σ2p

n
. (45)
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We can conclude from these heuristics that for ‘reasonable’ design matrices X
the quadratic risk of the least squares estimator of θ is, for p ≤ n, of order of
magnitude

Eθ‖θ̂ − θ‖22 = error variance σ2 × model dimension p

sample-size n
,

and the prediction risk Eθ‖X(θ̂− θ)‖22/n is of the same order. See Exercise 15 for
some details.

Recent advances in science and information processing have generated complex
data sets that have to be thought of as high-dimensional in the sense that the
number p of possible explanatory variables xj = (xij : i = 1, . . . , n), j = 1, . . . , p
exceeds the number n of observed responses Yi, i = 1, . . . , n. Moreover a priori
selection of the relevant variables xj is often impossible, in fact we may even think
of many xj’s chosen at random by the scientist to ‘sense’ a high-dimensional signal
θ, without requiring a scientific interpretation of the influence of the xj ’s. Such
models are fundamentally ill-posed unless one believes in sparsity of the signal θ in
the sense that most of the coefficients θj , j = 1, . . . , p, are zero. Assuming sparsity
the challenge for the statistician starts from the fact that one does not know which
ones the nonzero coefficients are.

A basic setting to study such ‘large p-small n’ problems is to assume that a
‘true’ low-dimensional submodel Y = Xθ0 + ε sits within the linear model (43),
where one assumes that

θ0 ∈ B0(k) ≡ {θ ∈ R
p has at most k nonzero entries} , k ≤ p. (46)

The parameter k is called the sparsity level of θ0 which itself is called a k-sparse
vector or signal. For θ0 ∈ B0(k), k ≤ p, we call

S0 = {j : θ0j 6= 0}

the active set of θ0, pertaining to those indices j that have nonzero coefficients θ0j .
Moreover for arbitrary θ ∈ Rp denote by θS0 the vector obtained from setting all
θj , j ∈ Sc

0, equal to zero and leaving the remaining θj ’s unchanged.
When thinking of a sparse vector we think of k much smaller than p, in fact

typically even much smaller than n. In this situation we cannot use the least
squares estimator θ̂ since XTX is never invertible for p > n. We may still hope
to achieve a perfomance that improves on the (in the high-dimensional setting
useless) bound p/n from (45), ideally in a way that would reflect the bound k/n
corresponding to the low-dimensional submodel Y = Xθ0 + ε. In other words
we are trying to find an estimator that ‘mimics the oracle’ that would fit a least
squares procedure on the k-dimensional ‘true’ submodel, with all the unnecessary
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covariates removed. Such a question in fact already arises when p ≤ n, and has
been studied in the area of statistical model or variable selection.

A natural attempt to deal with such problems is to consider a modified criterion
function that penalises ‘too many nonzero’ estimated coefficients;

Qn(θ) =
‖Y −Xθ‖22

n
+ λ

p
∑

j=1

1{θj 6= 0}, θ ∈ R
p, (47)

where λ is a penalisation parameter, paralleling the weights occuring in standard
model-selection criteria, such as AIC, BIC or Mallow’s Cp. For instance, restrict-
ing attention to p ≤ n and least squares estimators, we can minimise critCp(M)
over all candidate submodels M of Rp, where critCp(M) is defined and derived in

Exercise 15, and fit least squares in the selected model M̂ . Even for k fixed min-
imising such a penalised least squares criterion functions over all

(

p
k

)

submodels
of Rp is combinatorially hard and practically not feasible for large p. We hence
have to search for an alternative method that is computationally tractable in high
dimensions but still incorporates the same penalisation ideas.

2.3.2 The LASSO

The main idea to resolve the above problems is to search for a convex relaxation
of the (non-convex) problem of optimising Qn from (47). If we consider the scale
of ‘complexity penalisation’ functionals

‖θ‖qq =
p
∑

j=1

|θj |q, q > 0,

we would want to take q as close to zero as possible to mimic the ‘ℓ0-penalty’ in
(47). On the other hand the minimisation problem will only be convex in θ if p ≥ 1,
and hence the boundary value p = 1 becomes a natural choice that accommodates
both practical feasibility and the attempt to penalise non-sparse models. Let us
thus define the estimator

θ̃ = θ̃LASSO = argmin
θ∈Rp

[‖Y −Xθ‖22
n

+ λ‖θ‖1
]

, (48)

where λ > 0 is a scalar penalisation parameter, known as the LASSO (‘Least
Absolute Shrinkage and Selection Operator’). The above minimisation problem
may have several solutions, and the theory below holds for any selection from the
set of its minimisers. We note that the fitted values Xθ̃ as well as the estimated
ℓ1-norm ‖θ̃‖1 coincide for all solutions of (48), see Exercise 17.
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Algorithms for efficient computation of this estimator exist, and we now inves-
tigate the theoretical properties of the LASSO. We will prove that if the design
matrix X has some specific structure compatible with the solution path of θ̃LASSO,
and if the true θ0 generating the high-dimensional linear model is k-sparse, then
the LASSO performs almost as well as the least squares estimator θ̂ in the k-
dimensional submodel, that is,

sup
θ∈B0(k)

Eθ
‖X(θ̃ − θ)‖22

n
. log p× k

n

where we recall that B0(k) denotes all k-sparse vectors in Rp.
Next to the crucial Condition (49) that we discuss in detail in the next section

we will assume in the following theorem that the error variance σ2 is known and
in fact standardised to one. If σ is unknown we need to multiply our choice of λ
below by an estimate σ̂ of it (see Exercise 18).

Theorem 6. Let θ0 ∈ B0(k) be a k-sparse vector in Rp with active set S0. Suppose

Y = Xθ0 + ε

where ε = (ε1, . . . , εn)
T ∼ N(0, In), let θ̃ be the LASSO estimator with penalisation

parameter

λ = 4σ̄

√

t2 + 2 log p

n
, σ̄2 = max

j=1,...,p
Σ̂jj,

and assume the n× p matrix X is such that, for some r0 > 0,

‖θ̃S0 − θ0‖21 ≤ kr0(θ̃ − θ0)T Σ̂(θ̃ − θ0) (49)

on an event of probability at least 1 − β. Then with probability at least 1 − β −
exp{−t2/2} we have

1

n
‖X(θ̃ − θ0)‖22 + λ‖θ̃ − θ0‖1 ≤ 4λ2kr0 .

k

n
× log p. (50)

Proof. We first note that the definition of θ̃ implies

1

n
‖Y −Xθ̃‖22 + λ‖θ̃‖1 ≤

1

n
‖Y −Xθ0‖22 + λ‖θ0‖1

or equivalently, inserting the model equation Y = Xθ0 + ε,

1

n
‖X(θ0 − θ̃) + ε‖22 + λ‖θ̃‖1 ≤

1

n
‖ε‖22 + λ‖θ0‖1,

hence
1

n
‖X(θ0 − θ̃)‖22 + λ‖θ̃‖1 ≤

2

n
εTX(θ̃ − θ0) + λ‖θ0‖1. (51)
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Lemma 4. Let λ0 = λ/2. Then for all t > 0

Pr

(

max
j=1,...,p

2

n
|(εTX)j| ≤ λ0

)

≥ 1− exp{−t2/2}.

Proof. The variables (εTX)/
√
n are N(0, Σ̂)-distributed. Note that σ̄2 ≥ Σ̂jj for

all j. For Z ∼ N(0, 1) the probability in question therefore exceeds one minus

Pr

(

max
j=1,...,p

1√
n
|(εTX)j| > σ̄

√

t2 + 2 log p

)

≤
p
∑

j=1

Pr(|Z| >
√

t2 + 2 log p)

≤ pe−t2/2e− log p = e−t2/2

where we used Exercise 16 in the last inequality.

We hence have on the event inside of the probability of the last lemma – call
it A – the inequality

|2εTX(θ̃ − θ0)/n| ≤ max
j=1,...,p

|2(εTX)j/n|‖θ̃ − θ0‖1 ≤ (λ/2)‖θ̃ − θ0‖1 (52)

which combined with (51) gives, on that event,

2

n
‖X(θ0 − θ̃)‖22 + 2λ‖θ̃‖1 ≤ λ‖θ̃ − θ0‖1 + 2λ‖θ0‖1. (53)

Now using

‖θ̃‖1 = ‖θ̃S0‖1 + ‖θ̃Sc
0
‖1 ≥ ‖θ0S0

‖1 − ‖θ̃S0 − θ0S0
‖1 + ‖θ̃Sc

0
‖1

we obtain, on the event A and noting θ0Sc
0
= 0 by definition of S0,

2

n
‖X(θ0 − θ̃)‖22 + 2λ‖θ̃Sc

0
‖1 ≤

2

n
‖X(θ0 − θ̃)‖22 + 2λ‖θ̃‖1 − 2λ‖θ0S0

‖1 + 2λ‖θ̃S0 − θ0S0
‖1

≤ λ‖θ̃ − θ0‖1 + 2λ‖θ0‖1 − 2λ‖θ0S0
‖1 + 2λ‖θ̃S0 − θ0S0

‖1
= 3λ‖θ̃S0 − θ0S0

‖1 + λ‖θ̃Sc
0
‖1

so that after subtracting

2

n
‖X(θ0 − θ̃)‖22 + λ‖θ̃Sc

0
‖1 ≤ 3λ‖θ̃S0 − θ0S0

‖1 (54)

holds on the event A. Now (50) follows since, on the event A, using the last
inequality, (49) and 4ab ≤ a2 + 4b2,

2

n
‖X(θ̃ − θ0)‖22 + λ‖θ̃ − θ0‖1 =

2

n
‖X(θ̃ − θ0)‖22 + λ‖θ̃S0 − θ0S0

‖1 + λ‖θ̃Sc
0
‖1

≤ 4λ‖θ̃S0 − θ0S0
‖1

≤ 4λ
√

kr0/n‖X(θ̃ − θ0)‖2
≤ 1

n
‖X(θ̃ − θ0)‖22 + 4λ2kr0.
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The above result gives a bound for the prediction error ‖X(θ̃−θ)‖2 that ‘almost’
matches the one of the ‘oracle’ least squares estimator in the k-sparse submodel,
with the typically mild ‘penalty’ log p for not knowing the position of the active set
S0. At least when β = 0 the above bounds can be integrated to give bounds for the
expectations of the above errors (and thus for the risk) too, using the inequality
E(X) = K +

∫∞
K
P (X > u)du. One can also deduce from Theorem 6 a result for

the estimation error ‖θ̃ − θ‖2, see Exercise 19.

While the above theorem is a neat result about the performance of the LASSO,
inference based on θ̃ is not a straightforward task. For instance, unlike in the stan-
dard linear model, or in the parametric models dealt with above, the distribution
of θ̃ is not known, and it is not obvious at all how to construct a confidence set for
θ0. In fact inference based on any sparse estimator is fundamentally different from
the standard theory developed above, and nontrivial issues arise. See the article
[62] where it is shown that a basic confidence set of diameter at best of the order
n−1/4 can be constructed, and that uniform improvements on such a confidence
set are impossible without further restrictions on the parameter θ0.

2.3.3 Coherence conditions for design matrices

We now turn to discuss the crucial Condition (49) which requires

‖θ̃S0 − θ0‖21 ≤ kr0(θ̃ − θ0)T Σ̂(θ̃ − θ0)

to hold true with high probability. One way to verify this condition is to verify
it with θ̃ replaced by an arbitrary θ ∈ V where V is a subset of Rp on which
θ̃ concentrates with high probability. Taking note of (54) the proof of the last
theorem implies that the solution path of the LASSO satisfies (on the event A
from the proof) ‖θ̃Sc

0
‖1 ≤ 3λ‖θ̃S0 − θ0S0

‖1.

Corollary 2. Theorem 6 remains true with Condition (49) replaced by the follow-
ing condition: For S0 the active set of θ0 ∈ B0(k), k ≤ p, assume the n× p matrix
X satisfies, for all θ in

{θ ∈ R
p : ‖θSc

0
‖1 ≤ 3‖θS0 − θ0S0

‖1}

and some universal constant r0,

‖θS0 − θ0‖21 ≤ kr0(θ − θ0)T Σ̂(θ − θ0). (55)
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An extensive discussion of this condition and the many variants of it can be
found in Sections 6.12 and 6.13 in [7].

There is no space here to treat this subject in full, but let us investigate a key
aspect of it in more detail. We can first note that, since |S0| = k, one clearly has

‖θ̃S0 − θ0‖21 ≤ k‖θ̃S0 − θ0‖22

so that (49) can be verified by requiring

‖θS0 − θ0‖22 ≤ r0(θ − θ0)T Σ̂(θ − θ0) (56)

to hold for θ = θ̃ or for all θ ∈ V, with a uniform constant r0 > 0. Condition (56)
cannot be true without restrictions. For instance for V = Rp, S0 = {1, . . . , p}, the
above condition effectively requires

inf
θ∈Rp

θT Σ̂θ

θT θ
≥ r−1

0 ,

hence that Σ̂ = XTX/n has a minimal eigenvalue bounded away from zero, which
is impossible for the case p > n relevant here. But under suitable restrictions
on the sparsity of θ0 there may still be some hope. For instance if the LASSO
concentrates on k′-sparse solutions – as can be shown under suitable conditions
(see, e.g., Section 2.6 in [7]) – it suffices to verify (56) for all θ ∈ B0(k

′). Since the
difference θ − θ0 is a k̄ = k + k′-sparse vector this leads to a basic mathematical
question whether a noninvertible Gram matrix Σ̂ = XTX/n can have ‘a smallest
eigenvalue bounded away from zero along sparse subspaces ’, that is, whether

inf
θ∈B0(k̄)

θT Σ̂θ

θT θ
≥ r−1

0 , k̄ ≤ n, (57)

can hold true.
From a deterministic point of view checking (57) when p is large will be hard

if not impossible. But random matrix theory can come to our aid to provide some
intuitions, particularly relevant if we think of Σ̂ = XTX/n as a sampled correlation
or covariance matrix from population analogue Σ. Theorem 7 below will show that
(57) does hold true for design matrices X whose entries are drawn i.i.d. from a
standard Gaussian distribution, and with high probability. Results of this kind are
related to the so-called restricted isometry property of high-dimensional random
matrices which requires (57) and a corresponding, easier, upper bound too: One
assumes for some ǫ > 0 (typically desired to be as small as possible) that

(1− ǫ)‖θ‖22 ≤ ‖Σ̂θ‖22 ≤ (1 + ǫ)‖θ‖22 ∀θ ∈ B0(k). (58)
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Such conditions and their verification have been key topics in the related area of
compressed sensing, see the papers Candès, Romberg and Tao (2006a,b), Candès
and Tao (2007) for instance. They can also be used directly to verify the conditions
in Corollary 2, as discussed in Sections 6.12 and 6.13 in [7].

For sake of exposition we formulate the following result as a ‘large enough
sample size n’ result. It proves the lower bound in (58) with ǫ = 1/2. The proof
in fact gives a result for every ǫ > 0 if one carefully tracks the dependence of
all constants on ǫ, but the case ǫ < 1 already makes the main point. Moreover,
the easier right hand side inequality in (58) follows from the proof as well. A
non-asymptotic version of the proof that holds for every n ∈ N can be proved too
at the expense of slightly more tedious expressions – see Corollary 1 in [62], from
where the proof of the following result is taken.

Theorem 7. Let the n × p matrix X have entries (Xij) ∼i.i.d. N(0, 1), and let

Σ̂ = XTX/n. Suppose n/ log p → ∞ as min(p, n) → ∞. Then for every k ∈ N

fixed and every 0 < C <∞ there exists n large enough such that

Pr

(

θT Σ̂θ ≥ 1

2
‖θ‖22 ∀θ ∈ B0(k)

)

≥ 1− 2 exp {−Ck log p} .

Proof. The result is clearly true when θ = 0. Hence it suffices to bound

Pr

(

θT Σ̂θ ≥ ‖θ‖22
2

∀θ ∈ B0(k) \ {0}
)

= Pr

(

θT Σ̂θ

‖θ‖22
− 1 ≥ −1

2
∀θ ∈ B0(k) \ {0}

)

≥ Pr

(

sup
θ∈B0(k),‖θ‖22 6=0

∣

∣

∣

∣

∣

θT Σ̂θ

θT θ
− 1

∣

∣

∣

∣

∣

≤ 1/2

)

from below by 1 − 2 exp{−Ck log p}. To achieve this, fix a set S ⊂ {1, . . . , p} of
cardinality |S| = k and let R

p
S denote the corresponding k-dimensional subspace

of Rp. By the union bound for probabilities we see

Pr

(

sup
θ∈B0(k),‖θ‖22 6=0

∣

∣

∣

∣

∣

θT Σ̂θ

θT θ
− 1

∣

∣

∣

∣

∣

≥ 1

2

)

≤
∑

S⊂{1,...,p}
Pr

(

sup
θ∈Rp

S ,‖θ‖22 6=0

∣

∣

∣

∣

∣

θT Σ̂θ

θT θ
− 1

∣

∣

∣

∣

∣

≥ 1

2

)

.

If we can bound each of the probabilities in the last sum by 2e−(C+1)k log p =
2e−Ck log pp−k then the proof is complete since there are

(

p
k

)

≤ pk subsets S of
cardinality k in {1, . . . , p}. The required bounds follow from Lemma 5 below upon
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taking t = (C +1)k log p, and noting that (k log p)/n→ 0 as n→ ∞ implies that,
for any C we have

18

(
√

(C + 1)k log p+ c0k

n
+

(C + 1)k log p+ c0k

n

)

< 1/2

whenever n is large enough.

The proof of Theorem 7 relied on the following key lemma, which is an applica-
tion of basic ideas from ‘empirical process theory’. It starts with a concentration
inequality for single random variables (Lemma 6 given below), and deduces a con-
centration inequality that is uniform in many variables indexed by a set whose
‘degree of compactness’ can be controlled in a quantitative way – in the present
case this set is the unit ball in a finite-dimensional space.

Lemma 5. Under the conditions of Theorem 7 we have for some universal constant
c0 > 0, every S ⊂ {1, . . . , p} such that |S| = k and every t > 0,

Pr

(

sup
θ∈Rp

S ,‖θ‖22 6=0

∣

∣

∣

∣

∣

θT Σ̂θ

θT θ
− 1

∣

∣

∣

∣

∣

≥ 18

(
√

t+ c0k

n
+
t+ c0k

n

))

≤ 2e−t.

Proof. We note

sup
θ∈Rp

S ,‖θ‖22 6=0

∣

∣

∣

∣

∣

θT Σ̂θ

θT θ
− 1

∣

∣

∣

∣

∣

= sup
θ∈Rp

S ,‖θ‖22 6=0

∣

∣

∣

∣

∣

θT (Σ̂− I)θ

θT θ

∣

∣

∣

∣

∣

= sup
θ∈Rp

S ,‖θ‖22≤1

∣

∣

∣
θT (Σ̂− I)θ

∣

∣

∣
.

The unit ball
B(S) ≡ {θ ∈ R

p
S : ‖θ‖2 ≤ 1}

of Rp
S is compact and hence for any 0 < δ < 1 we can cover B(S) by a net of

points θl ∈ B(S), l = 1, . . . , N(δ), such that for every θ ∈ B(S) there exists l for
which ‖θ − θl‖2 ≤ δ. Writing Φ = Σ̂− I we have

θTΦθ = (θ − θl)TΦ(θ − θl) + (θl)TΦθl + 2(θ − θl)TΦθl.

Given any θ ∈ B(S) and fixing δ = 1/3 we can find θl such that

|(θ − θl)TΦ(θ − θl)| ≤ 1

9
sup

v∈B(S)

|vTΦv|.

Also, for φi the eigenvalues of the symmetric matrix Φ acting on ⊗j∈SR and
φ2
max = maxi φ

2
i , by the Cauchy-Schwarz inequality,

|(θ − θl)TΦθl| ≤ δ‖Φθl‖2 ≤ δ|φmax| ≤
1

3
sup

v∈B(S)

|vTΦv|,
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so that
sup

θ∈B(S)

|θTΦθ| ≤ (9/2) max
l=1,...,N(1/3)

|(θl)TΦθl|, (59)

reducing the supremum over the unit ball to a maximum over N(1/3) points.
For each fixed θl ∈ B(S) we have

(θl)TΦθl =
1

n

n
∑

i=1

((Xθl)2i − E(Xθl)2i )

and the random variables (Xθl)i are independent N(0, ‖θl‖22) distributed with vari-
ances ‖θl‖22 ≤ 1. Thus, for gi ∼i.i.d. N(0, 1), using the union bound for probabilities,

Pr

(

(9/2) max
l=1,...,N(1/3)

|(θl)TΦθl| > 18

(
√

t+ c0k

n
+
t+ c0k

n

))

≤
N(1/3)
∑

l=1

Pr

(

|(θl)TΦθl| > 4‖θl‖22

(
√

t+ c0k

n
+
t+ c0k

n

))

=

N(1/3)
∑

l=1

Pr

(∣

∣

∣

∣

∣

n
∑

i=1

(g2i − 1)

∣

∣

∣

∣

∣

> 4
(

√

n(t+ c0k) + t+ c0k
)

)

≤ 2N(1/3)e−te−c0k ≤ 2e−t,

where we used the second inequality in Lemma 6 below with z = t + c0k, that
the covering numbers of the unit ball in k-dimensional Euclidean space satisfy
N(δ) ≤ (A/δ)k for some universal constant A > 0 (see Exercise 21), and where we
have chosen c0 large enough in dependence of A only.

The final ingredient is a basic concentration inequality for sums of centred
squared Gaussian random variables. The inequality combines two concentration
‘regimes’, pertaining to product measure concentration (for n large it gives a Gaus-
sian tail suggested by the central limit theorem) and to exponential concentration
(for t large but n fixed it gives the tail of a squared standard normal variable).

Lemma 6. Let gi, i = 1, . . . , n, be i.i.d. N(0, 1) and set

X =

n
∑

i=1

(g2i − 1).

Then for all t ≥ 0 and every n ∈ N,

Pr(|X| ≥ t) ≤ 2 exp

{

− t2

4(n + t)

}

. (60)
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Moreover, for every z ≥ 0 and every n ∈ N,

Pr(|X| ≥ 4(
√
nz + z)) ≤ 2e−z. (61)

Remark 1. One may replace 4 by 2 in (61) at the expense of a slightly longer
proof.

Proof. For λ satisfying |λ| < 1/2 and g standard normal,

Eeλ(g
2−1) =

1√
2π

∫

R

eλ(x
2−1)−x2/2dx = e−λ/

√
1− 2λ = e

1
2
[− log(1−2λ)−2λ].

By Taylor development, for |λ| < 1/2,

1

2
[− log(1− 2λ)− 2λ] = λ2

(

1 +
2

3
2λ+ · · ·+ 2

k + 2
(2λ)k + . . .

)

≤ λ2

1− 2λ
.

Hence for all 0 < |λ| < 1/2 and since the gi’s are i.i.d.,

logEeλX = log
(

Eeλ(g
2−1)
)n

≤ nλ2

1− 2λ
(62)

so that
EeλX ≤ enλ

2/(1−2λ)

follows. Now using Markov’s inequality gives, for all t > 0 and 0 < λ < 1/2,

Pr(X > t) ≤ EeλX−λt ≤ enλ
2/(1−2λ)−λt = exp

{

− t2

4(n + t)

}

after taking λ = t/(2n + 2t). Repeating the above argument with −X,−λ and
using the union bound Pr(|X| > t) ≤ Pr(X > t) + Pr(−X > t) gives the first
inequality of the lemma. The second inequality now follows from the first after
substituting t = 4(

√
nz + z) into the first inequality.

The above proof relies on the assumption that the Xi’s are Gaussian only
through the last lemma. In [62] it is shown that one can treat more general ‘sub-
gaussian’ designs if one replaces Lemma 6 by Bernstein’s inequality (see p.486
in [7], for instance, for the relevant version of that inequality). Also, instead of
i.i.d.Xij ’s one could have considered correlated designs that allow forE(XTX/n) =
Σ where Σ is not necessarily the identity matrix but is invertible with minimal
eigenvalue bounded away from zero – we again refer to [62] for these facts.
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2.3.4 Exercises

Exercise 15. Derive the formula θ̂ = (XTX)−1XTY for the least squares estima-
tor in the standard Gaussian linear model

Y = Xθ + ε,

when p ≤ n, X is a n× p matrix of full column rank p, and ε ∼ N(0, σ2Ip), σ > 0.

Show that Xθ̂ = PY where P is the projection matrix that projects onto the
span of the column vectors of X and deduce E‖Xθ̂ −Xθ‖2 = σ2p. Now let X be
partitioned as (XM , XMc

) where XM is a n × k matrix, k < p, and consider the
least squares predictor PMY = Xθ̂M from sub-model M , where PM projects onto
the linear span of the column vectors of XM . For

σ̂2 = (n− p)−1‖Y − PY ‖2

show that Mallow’s Cp criterion

critCp(M) = ‖Y − PMY ‖2 + 2σ̂2k − nσ̂2,

is an unbiased estimator of the prediction risk

E‖Xθ̂M −Xθ‖2

of the least squares predictor from the restricted model M .

Exercise 16. Prove that Gaussian random variables are subgaussian, that is, for
Z ∼ N(0, 1) prove that for all x > 0,

Pr(|Z| > x) ≤ e−x2/2.

Exercise 17. Prove that every solution θ̃LASSO of the LASSO criterion function
generates the same fitted value Xθ̃LASSO and the same ℓ1-norm ‖θ̃LASSO‖1.

Exercise 18. In the linear model (43) generated from θ0, the ‘signal to noise ratio’
is defined as SNR = ‖Xθ0‖2/

√
nσ. If σ̂2 = Y TY/n (and assuming EY = 0 for

simplicity), show that for all t > 0 and with probability at least 1 − exp{−t2/2}
we have

σ̂2

σ2
∈
[

1 + SNR(SNR± 2t/
√
n)± bn

]

, bn ≡
∣

∣

∣

∣

εTε

nσ2
− 1

∣

∣

∣

∣

.

Exercise 19. In the setting of Corollary 2, prove that with probability at least
1− e−t2/2 one has

‖θ̃ − θ0‖22 .
k

n
log p,
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assuming in addition, for the θ’s relevant in (55), that

‖θN − θ0‖22 ≤ r1(θ − θ0)T Σ̂(θ − θ0)

for some r1 > 0, where θN is the vector consisting of zeros except for those θj ’s for
which j ∈ S0 joined by those θj’s with indices corresponding to the k largest |θj |′s
for j /∈ S0.

Exercise 20. For a p × p symmetric matrix Φ, show that the maximal absolute
eigenvalue φmax = maxi |φi| is equal to sup‖v‖2≤1 |vTΦv|. Show further that the

minimal absolute eigenvalue corresponds to inf‖v‖2≤1 |vTΦv|.

Exercise 21. Let B be the unit ball in a k-dimensional Euclidean space. Let
N(δ), δ > 0 be the minimal number of closed balls of radius δ with centers in
B that are required to cover B. Show that for some constant A > 0 and every
0 < δ < A we have

N(δ) ≤ (A/δ)k.
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3 Nonparametric Models

We shall in the third part of these notes consider statistical models that are infinite-
dimensional. There is at first no reason to call these models ’nonparametric’, since
one could easily think of a parametric model {f(θ) : θ ∈ Θ} where Θ is an infinite-
dimensional set, but if one thinks of the infinite-dimensional models

{All probability distribution functions} or {All probability density functions}

then the parameter is the probability distribution / density itself, so that speaking
of a parameter is not necessarily natural.

We shall see, however, that the differences between finite and infinite dimen-
sional models are not only of a semantic nature, and that asymptotic theory in
infinite dimensional models is distinctively different.

To ease the transition we shall start with a review of some classical nonpara-
metric problems where the theory is similar to the ’parametric’ case.

3.1 Classical Empirical Processes

3.1.1 Empirical Distribution Functions

Suppose we are given a random variable X that has unknown law P and distri-
bution function F (t) = P (X ≤ t), and suppose we obtain n independent and
identically distributed copies X1, ..., Xn from X . Suppose we want to estimate
the distribution function F at the point t. The obvious estimator is to count the
proportion of observations that are smaller or equal to t, namely

Fn(t) =
1

n

n
∑

i=1

1{Xi ≤ t} =
1

n

n
∑

i=1

1(−∞,t](Xi). (63)

The function t 7→ Fn(t) is called the empirical distribution function, which is a
random step function defined on the real line and taking values in [0, 1].

Is Fn(t) a good estimator of F (t)? Defining Zi(t) = 1(−∞,t](Xi), these are
again i.i.d. random variables, and their expectation is E|1(−∞,t](X)| = P (X ≤
t) = F (t) ≤ 1. Consequently we have

|Fn(t)− F (t)| =
∣

∣

∣

∣

∣

1

n

n
∑

i=1

(Zi(t)− EZi(t))

∣

∣

∣

∣

∣

→ 0 Pr−a.s. (64)

as n→ ∞, by the law of large numbers. This already tells us that we can estimate
consistently an arbitrary distribution function at any given point t. Moreover, this
law of large numbers holds uniformly in t, a result that is sometimes called the
fundamental theorem of mathematical statistics, namely
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Theorem 8. (Glivenko (1933), Cantelli (1933)). Let X1, ..., Xn be i.i.d. random
variables with arbitrary distribution function F . Then

sup
t∈R

|Fn(t)− F (t)| → 0 Pr−a.s.

as n→ ∞.

Proof. We use Proposition 1, and have to find a suitable bracketing for the class
of functions

H = {1(−∞,t] : t ∈ R}.
For any grid of points −∞ < t0 < t1 < ... < tk < ∞ the brackets [l0, u0] =
[0, 1(−∞,t0)], [li, ui] = [1(−∞,ti−1], 1(−∞,ti)] for i = 1, ..., k, [lk+1, uk+1] = [1(−∞,tk], 1]
cover H, and clearly E|li(X)| < ∞, E|ui(X)| < ∞ for all i. It remains to choose
the grid such that E|ui(X)−li(X)| < ε. If F is continuous, it takes R onto (0, 1), so
divide (0, 1) into [1/ε]+1 pieces with breakpoints ai, i = 1, ..., [1/ε], |ai+1−ai| < ε
and choose the ti’s such that F (ti) = ai, so that F (ti+1) − F (ti) < ε for every i,
which completes the proof since

E|ui(X)− li(X)| =
∫ ti+1

ti

dP = F (ti+1)− F (ti).

If F is not continuous, take ti as before, but if F has a jump at t so that it ’skips’
the level aj, then add the point t (without counting multiplicities). The brackets
still have size F (ti−)− F (ti−1) < ε, F (ti+1)− F (ti+) < ε by construction.

In higher dimensions we have the following analogue of the Glivenko-Cantelli
theorem. Let us write, for t ∈ Rd, in abuse of notation, 1(−∞,t] = 1(−∞,t1]...1(−∞,td].

Theorem 9. Let X1, ..., Xn be i.i.d. random vectors in Rd with common distribu-
tion function F (t) = P (X ≤ t), t ∈ Rd. Define further Fn(t) =

1
n

∑n
i=1 1(−∞,t](Xi).

Then
sup
t∈Rd

|Fn(t)− F (t)| → 0 Pr−a.s.

as n→ ∞.

The proof, which is only a little more involved than the one of Theorem 8, is
left as Exercise 26.

One might then ask for probabilistic statements for Fn(t)−F (t) that are more
exact than just a law of large numbers, e.g., for a central limit theorem. Such
questions have been at the heart of mathematical statistics and probability theory
from the 1940s onwards: Several deep and fundamental results have been obtained
for what is known as the empirical process, namely the stochastic process

t 7→
√
n(Fn(t)− F (t)), t ∈ R (65)
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Note first that, similar to (64), we have for each given t that

√
n(Fn(t)− F (t)) =

1√
n

n
∑

i=1

(Zi(t)− EZi(t)) →d N(0, F (t)(1− F (t)))

from the central limit theorem. Moreover, from the multivariate central limit
theorem we have (Exercise 22) for any finite set of points t1, ..., tk ∈ R

[
√
n(Fn(t1)− F (t1)), ...,

√
n(Fn(tk)− F (tk))] →d N(0,Σ) (66)

as n → ∞ where the limit is multivariate normal, and the covariance matrix has
(i, j)-th entry F (ti ∧ tj)− F (ti)F (tj).

To make this result ’uniform in t’ is much more involved than in Theorem 8, as
it essentially amounts to proving a central limit theorem in the infinite-dimensional
space of bounded functions on R. While a full understanding of the mathematics
behind such results was not achieved before the 1990s (’empirical process theory’,
cf. Dudley (1999)), the following remarkable result was proved already in the 1950s.
Denote by L∞ the space of bounded functions on R equipped with the usual
uniform norm ‖f‖∞ := supt∈R |f(t)|. We can view Fn − F as random variables in
the metric space L∞. But what about the normal limiting variable suggested in
(66)? Here is the relevant definition:

Definition 3 (Brownian Bridge). The F -Brownian bridge process GF is the mean-
zero Gaussian process indexed by R that has the covariance

EGF (ti)GF (tj) = F (ti ∧ tj)− F (ti)F (tj)

for any ti, tj ∈ R.

For F equal to the uniform distribution on [0, 1] this process equals the standard
Brownian bridge process G. See Exercise 22 for more facts. There always exists a
version of GF which is sample bounded almost surely, that is supt∈R |GF (t)| < ∞
holds almost surely, a non-trivial fact that follows, e.g., from existence of sample-
continuous versions of Brownian motion as proved in Theorem 12.1.5 in [29]. Hence
the trajectories of (a suitable version of) the Brownian bridge are almost surely in
the space L∞.

The following result can be thought of as a central limit theorem in infinite
dimensions.

Theorem 10. (Doob (1949), Donsker (1952), Skorohod (1956), Dudley (1966)).
Let X1, ..., Xn be i.i.d. random variables with arbitrary distribution function F .
Then the random functions

√
n(Fn − F ) converge in distribution in the space L∞

to the F -Brownian bridge process GF as n→ ∞.
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One of the delicate points here is to actually show that
√
n(Fn − F ) is a

proper random variable in (measurable mapping to) L∞. Dudley (1966) gave
an appropriate treatment of this point (which circumvents the somewhat involved
alternative approach via the ’Skorohod topology’, but is now also outdated), and he
also proved the multi-dimensional analogue of Theorem 10 (i.e., for i.i.d. random
vectors X1, ...Xn). The proof of this theorem belongs to a course on empirical
process theory and will not be given in these notes: The first (somewhat incorrect)
proof is by Donsker (1952), a classical proof using the Skorohod topology can be
found, e.g., in [6], Chapter 14, and a proof using more modern techniques is in
[28].

3.1.2 Finite-sample error bounds and Minimaxity

Whereas Theorem 10 tells us that the stochastic behaviour of
√
n(Fn − F ) is

approximately the one of a F -Brownian bridge, it is still a limit theorem, and so it
is not clear what ’approximately’ means for given sample size n, and what error we
make by using this approximation. The following classical inequality shows quite
remarkably that the normal approximation is effective for every sample size, as it
shows that the probability of

√
n‖Fn−F‖∞ to cross the level λ is bounded by the

tail of a normal distribution.

Theorem 11. (Dvoretzky, Kiefer, Wolfowitz (1956), Massart (1990)) Let X1, ..., Xn

be i.i.d. random variables with arbitrary distribution function F . Then, for every
n ∈ N and every λ ≥ 0,

Pr

(√
n sup

t∈R
|Fn(t)− F (t)| > λ

)

≤ 2 exp{−2λ2}.

This inequality was proved by Dvoretzky, Kiefer and Wolfowitz (1956), with a
larger leading constant. The sharp constants in this inequality were not obtained
until Massart (1990). A proof of this inequality for fixed t will be Exercise 23.

Dvoretzky, Kiefer and Wolfowitz (1956) moved on and used their inequality to
prove the following result, which establishes the ’asymptotic minimax optimality’
of the empirical distribution function.

Theorem 12. (Dvoretzky, Kiefer, Wolfowitz (1956)) Let X1, ..., Xn be i.i.d. ran-
dom variables with arbitrary distribution function F . Denote by P the set of all
probability distribution functions on R, and by Tn the set of all estimators for F .
Then

lim
n

supF∈P
√
nEF‖Fn − F‖∞

infTn∈Tn supF∈P
√
nEF‖Tn − F‖∞

= 1
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This result shows that if nothing is known a priori about the underlying distri-
bution F , then, for large samples, the empirical distribution function is the best
possible estimator for F in a minimax sense. This is still true if one has some a
priori information on F , such as knowing that F is concave or convex, cf. Kiefer
and Wolfowitz (1976). For a fresh view at the optimality of Fn (including the
construction of an estimator that is uniformly better than Fn in a certain sense)
see [40], Theorem 2.

3.1.3 Some Applications

The Kolmogorov-Smirnov Statistic.

We know from Theorem 10 that
√
n(Fn − F ) behaves approximately like a F -

Brownian bridge GF , so that
√
n‖Fn − F‖∞ should behave approximately as the

maximum (over R) of GF . Whereas the limit process GF does still depend on F ,
the maximum of its absolute value actually does not depend on F anymore. Using
results of Kolmogorov, Smirnov proved the following result even before Theorem
10 was known. It follows quite easily from a ’continuous mapping’ argument once
one has proved Theorem 10.

Theorem 13. (Kolmogorov (1933), Smirnov (1939)) Let X1, ..., Xn be i.i.d. ran-
dom variables with continuous distribution function F . Then

√
n sup

t∈R
|Fn(t)− F (t)| →d sup

t∈[0,1]
|G(t)|

as n → ∞ where G is a standard Brownian bridge. Furthermore the distribution
of the limit is given by

Pr

(

sup
t∈[0,1]

|G(t)| > λ

)

= 2
∞
∑

j=1

(−1)j+1e−2j2λ2

.

Proof. To prove the first claim, consider first an i.i.d. sample U1, ..., Un drawn from
the uniform distribution G(x) = x on [0, 1], and denote by Gn(x) the empirical
distribution function of the uniform sample. Then, if F is a continuous distribution
function, F takes R onto (0, 1), hence

sup
x∈[0,1]

|Gn(x)−G(x)| = sup
t∈R

|Gn(F (t))−G(F (t))|.

[The boundary values 0, 1 are negligible since Gn(0)− 0 = Gn(1)− 1 = 0 almost
surely in view of absolute continuity of G.] Now clearly G(F (t)) = F (t) and
the distribution of Gn(F (t)) is the same as the distribution of Fn(t) (in view of
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{0 ≤ Ui ≤ F (t)} = {−∞ < F−1(Ui) ≤ t} and since F−1(Ui) has the same distri-
bution as Xi drawn from the distribution F , see Exercise 25). We conclude that√
n supt∈R |Fn(t)−F (t)| has the same distribution as

√
n supx∈[0,1] |Gn(x)−G(x)|.

Since
√
n(Gn(x) − G(x)) converges in law in L∞(R) to the standard Brownian

bridge G by Theorem 10, the first result follows from continuity of the mapping
f 7→ ‖f‖∞ on L∞(R) and the continuous mapping theorem for weak convergence.

The second result is a nice exercise in probability theory, and follows, e.g., from
the reflection principle for Brownian motion, see [29], Chapter 12.3.

This result, in particular the fact that the limit distribution does not depend
on F , is extremely useful in statistical applications. Suppose for instance we
conjecture that F is standard normal, or any other distribution function H , then
we just have to compute the maximal deviation of Fn to H and compare it with the
limiting distribution of Theorem 13, whose quantiles can be easily tabulated (e.g.,
Shorack and Wellner (1986, p.143)). Another application is in the construction of
confidence bands for the unknown distribution function F , see Exercise 24.

Estimation of the Quantile Function.

Often the object of statistical interest is not the distribution function F (t), but
the quantile function F−1 : (0, 1] → R which, when F has no inverse, is defined as
the generalized inverse

F−1(p) = inf{x : F (x) ≥ p}.

The natural estimator is to take the generalized inverse F−1
n of the empirical dis-

tribution function Fn, namely

F−1
n (p) = X(i) for p ∈

(

i− 1

n
,
i

n

]

where X(i) is the i-th order statistic of the sample. (The order statistic X(1) <
X(2) < ... < X(n) is the sample ordered beginning with the smallest observation
and ending with the largest.) An application of Theorems 8 and 10 gives:

Theorem 14. Let 0 < p < 1. If F is differentiable at F−1(p) with positive
derivative f(F−1(p)), then

|F−1
n (p)− F−1(p)| → 0 a.s.

as well as
√
n(F−1

n (p)− F−1(p)) →d N

(

0,
p(1− p)

f 2(F−1(p))

)

as n→ ∞.
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We will prove this result later in this course as a corollary to Theorem 10 using
what is known as the ’functional’ or infinite-dimensional delta-method, see Section
3.7.1.

Estimation of Cumulative Hazard Functions.

A natural object in survival analysis and insurance mathematics is the hazard
rate function

f(t)

1− F (t−)

of a nonnegative random variable X with distribution function F : [0,∞) → R

and density f . The cumulative hazard function is

ΛF (t) =

∫ t

0

f(u)

1− F (u−)
du,

which can be estimated by the empirical cumulative hazard function

ΛFn(t) =
1

n

n
∑

i=1

(1− Fn(Xi−))−11[0,t](Xi).

Theorem 15. Let t be such that 1− F (t) > 0. Then

|ΛFn(t)− ΛF (t)| → 0 a.s.

as well as
√
n(ΛFn(t)− ΛF (t)) →d N

(

0,
F (t)

1− F (t)

)

as n→ ∞.

Similar to Theorem 25, we will derive this result as a corollary to Theorems 8
and 10 later in this course, see Example 10.

3.1.4 Exercises

Exercise 22. Let T be a nonempty set and let (W,W, µ) be a probability space.
A Gaussian process G indexed by T is a mapping G : T × (W,W, µ) → R such
that the vector (G(t1), ..., G(tk)) has a multivariate normal distribution for every
finite set of elements t1, ..., tk of T . A Brownian motion or Wiener process is the
Gaussian process B(t) on T = [0,∞) with mean zero and covariance EB(t)B(s) =
min(s, t). For T = [0, 1] the Brownian bridge process is defined as G(t) = B(t)−
tB(1). Find the covariance EG(t)G(s) of this process. Show that the F -Brownian
bridge GF can be obtained from G ◦ F by showing that the covariances coincide.
Let (

√
n(Fn(t1)− F (t1)), ...,

√
n(Fn(tk)− F (tk)) be the empirical process indexed
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by the finite set of points t1, ..., tk. Use the multivariate central limit theorem to
derive its limiting distribution. How does the covariance of the limiting normal
distribution relate to the covariance of the F -Brownian bridge?

Exercise 23. Use Hoeffding’s inequality to deduce the Dvoretzky-Kiefer-Wolfowitz
inequality for a fixed t, that is, without the supt∈R.

Exercise 24. Consider X1, ..., Xn independent and identically distributed random
variables with continuous distribution function F . A level 1−α confidence band for
F centered at the empirical distribution function Fn is a family of random intervals
Cn(x) = [Fn(x)−dn, Fn(x)+dn], x ∈ R, dn > 0, whose coverage probability satisfies
Pr(F (x) ∈ Cn(x) for every x ∈ R) ≥ 1−α. The band Cn has asymptotic level α if
coverage holds in the limit, that is, lim infn Pr(F (x) ∈ Cn(x) for every x ∈ R) ≥
1−α. Argue that an asymptotic level 0.95 confidence band can be constructed by
choosing dn = 1.359/

√
n. [You may use that P (supt∈[0,1] |G(t)| ≤ 1.359) ≃ 0.95,

where G is the standard Brownian bridge.] Show further that the choice 1.36
in place of 1.359 implies the same coverage result for every fixed sample size n.
Compute the diameter of these bands when n = 100, n = 1000, n = 10000.

Exercise 25. Quantile Transform. If F : R → [0, 1] is a continuous distribution
function and U a random variable that is uniformly distributed on [0, 1], show that
the new random variable F−1(U) has distribution function F .

Exercise 26. Let X1, ..., Xn be independent and identically distributed random
vectors in R2 with continuous distribution function F : R2 → R. Define the
empirical distribution function Fn of the sample, and prove that supt∈R2 |Fn(t) −
F (t)| → 0 almost surely as n→ ∞. What about d > 2?

3.2 Minimax Lower Bounds

We shall develop in this subsection some simple lower bound techniques from
minimax theory, that shed light on the class of infinite-dimensional models that
we will study subsequently. They will show that once we leave the simple setting
of estimating a distribution function, statistical inference in infinite dimensional
models may become qualitatively more complex.

Suppose we are given a model P of probability densities, and a random sam-
ple X1, . . . , Xn from f ∈ P, where P is equipped with some (pseudo-)metric
d (satisfying the triangle inequality). Let Pf ≡ P n

f be probability law of the
X1, . . . , Xn and denote by Ef expectation with respect to Pf . Consider any esti-
mator fn(x) = f(x;X1, . . . , Xn) for f(x). The best performance in terms of risk
under d-loss we can expect in this estimation problem is the minimax risk

inf
fn

sup
f∈P

r−1
n Efd(fn, f), (67)
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where rn is a sequence of positive real numbers. If rn is chosen in such a way that
this quantity is bounded away from zero and infinity, then we speak of rn as being
the minimax rate of convergence in the metric d over the class P. In parametric
problems this rate was seen to equal rn = 1/

√
n. Likewise, when estimating a

distribution function in sup-norm loss, the rate is 1/
√
n. We shall see that in a

variety of other relevant nonparametric problems, the rate is strictly slower than
1/
√
n. The general conclusion will be that the minimax rate depends both on the

complexity of the set P and on the loss function d.

3.2.1 A Reduction to Testing Problems

We shall show in this section how minimax lower bounds can be reduced to simple
testing problems, for which lower bounds can be obtained in an effective way. We
have from Markov’s inequality

Efr
−1
n d(fn, f) ≥ Pf(d(fn, f) ≥ rn). (68)

Let n > 2 and consider testing the simple hypothesis

H0 : f = f0 against H1 : f = f1, f0, f1 ∈ P, d(f0, f1) ≥ 2rn.

Define the test Ψn = 0 if d(fn, f0) < d(fn, f1) and Ψn = 1 otherwise. Then if
Ψn 6= 1 we necessarily have

d(fn, f1) ≥ d(f1, f0)− d(fn, f0) ≥ 2rn − d(fn, f1)

by the triangle inequality and repeating the argument for Ψn 6= 0 we conclude

Pfj(d(fn, fj) ≥ rn) ≥ Pfj(Ψn 6= j), j = 0, 1.

We thus deduce, for such f0, f1,

inf
fn∈F

sup
f∈P

Pf(d(fn, f) ≥ rn) ≥ inf
Ψ

max
j∈{0,1}

Pfj(Ψ 6= j) (69)

where the infimum extends over all tests based on the sample. One of the appeals
of this lower bound is that it is independent of the metric d and, since these bounds
hold for every n, we can let f0, f1 depend on n as long as they stay in P for every
n.

We now need a lower bound on tests. A simple one is the following.

Lemma 7. We have, for every η > 0,

inf
Ψ

max
j∈{0,1}

Pfj (Ψ 6= j) ≥ 1− η

2

(

1− Ef0 |Z − 1|
η

)

where Z equals the likelihood ratio dPf1/dPf0.
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Proof. We have, for any test Ψ,

2max
j=0,1

Pfj(Ψ 6= j) ≥ (Ef0Ψ+ Ef1(1−Ψ)) = Ef0(Ψ + (1−Ψ)Z)

≥ Ef0[(Ψ(1− η) + (1−Ψ)(1− η))1{Z ≥ 1− η}]
≥ (1− η)(1− Pf0(|Z − 1| > η))

≥ (1− η)

(

1− Ef0 |Z − 1|
η

)

where we used Markov’s inequality in the last step.

This bound is useful if the likelihood ratio Z is close to one with large prob-
ability. If Pf0 , Pf1 correspond to product measures from samples from f0, f1, re-
spectively, then closeness of Z to one means that the ’data’ coming from Pf0 ’look
similar’ to data coming from Pf1, which makes the testing problem more diffi-
cult. Quantitative estimates depend on concrete examples, and we study a key
case in what follows. While Lemma 7 will be seen to be useful in this particular
example, we should note that in many other minimax problems a reduction to a
two-hypothesis testing problem can be too crude, and one has to resort to lower
bounds for multiple hypothesis testing problems. We refer to [79] for an excellent
introduction into the field of minimax lower bounds in nonparametric statistics.

3.2.2 Lower Bounds for Estimating a Differentiable Density

We shall now apply the previous techniques to show that the minimax risk for
estimating a differentiable density at a point depends on the number of existing
derivatives, and that the risk is always of slower order than 1/

√
n.

On the space of m-times differentiable real-valued functions on [0, 1] define the
norm

‖f‖m,∞ := max
0≤α≤m

‖Dαf‖∞ (70)

with the convention D0f = f , and with derivatives being understood one-sided at
0, 1.

Theorem 16. Let m > 0, B > 1 and let

C(m,B) =

{

f : [0, 1] → [0,∞) :

∫ 1

0

f(x)dx = 1, ‖f‖m,∞ ≤ B

}

.

Let F be the class of all possible density estimators (i.e., all measurable functions
of X1, . . . , Xn), and let x0 ∈ [0, 1] be arbitrary. Then

lim inf
n

inf
fn∈F

sup
f∈C(m,B)

nm/(2m+1)Ef |fn(x0)− f(x0)| ≥ c > 0

for some constant c that depends on B only.
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Proof. We shall only prove the case where B ≥ 2 and x0 ∈ (0, 1) for simplicity.
Let f0 be identically 1 on [0, 1], which clearly belongs to C(m,B) since B ≥ 1.
Let ψ : R → R be a function of compact support that is m-times continuously
differentiable,

∫

R
ψ2(x)dx = 1,

∫

R
ψ(x)dx = 0 and such that |ψ(0)| > 0. Such

functions exist, for instance suitably translated Daubechies wavelets that we shall
encounter later on. Define the alternative

f1(x) = 1 + ǫ2−jn(m+1/2)ψjn(x), x ∈ [0, 1], (71)

where ψj(x) = 2j/2ψ(2jx − 2jx0), where ǫ > 0 will be chosen below, and where
j ∈ N is such that

2−jnm ≃ rn(m), rn(m) = n−m/(2m+1). (72)

For n and thus 2jn large enough the function ψjn is supported in the interior
of [0, 1], and since

∫

R
ψ = 0 we infer

∫

f1 = 1. Since ψ is bounded we can
choose ǫ small enough depending only on ‖ψ‖∞, B such that 0 ≤ f1 ≤ B, so
f1 is a probability density bounded by B. Moreover, for 0 < α ≤ m, Dαf1 =
ǫ2−jnm2jnα(Dαψ)(2jnx− 2jnx0) so

‖Dαf1‖∞ ≤ ǫ‖ψ‖m,∞ ≤ B

for ǫ small enough, so that f1 ∈ C(m,B) for every n ∈ N large enough.
We now apply the arguments from the previous subsection with d(f0, f1) =

|f0(x0) − f1(x0)|, P = C(m,B), with Pf0 the product probability measure of a
sample of size n from f0 (so the uniform distribution on [0, 1]n) and with Pf1 the
product probability measure on [0, 1] with density

n
∏

i=1

(1 + ǫ2−jn(m+1/2)ψjn(xi)).

The pointwise distance between f0 and f1 equals |f0(x0)−f1(x0)| = ǫ2−jnm|ψ(0)| ≥
crn(m), the constant c depending only on ǫ, ψ, so that the result will follow from
(69) and Lemma 7 if we can show that for every δ > 0 we can choose ǫ > 0 small
enough such that

(Ef0|Z − 1|)2 ≤ Ef0(Z − 1)2 < δ

for Z the likelihood ratio between Pf0 and Pf1 .
Writing (in slight abuse of notation) j = jn, γj = ǫ2−jn(m+1/2), using

∫

ψ2
jn =
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1,
∫

ψjn = 0 repeatedly as well as (1 + x) ≤ ex we see

Ef0(Z − 1)2 =

∫

[0,1]n
((Πn

i=1(1 + γjψj(xi))− 1))2 dx

=

∫

[0,1]n
Πn

i=1(1 + γjψj(xi))
2dx− 1

=

(
∫

[0,1]

(1 + γjψj(x))
2dx

)n

− 1 = (1 + γ2j )
n − 1 ≤ enγ

2
j − 1.

Now by (72) we see nγ2j = cǫ2 for some constant c > 0 and by choosing ǫ small

enough we can make ecǫ
2 − 1 < δ, which completes the proof by virtue of Lemma

7.

The rate of convergence n−m/(2m+1) is strictly slower than 1/
√
n, for m = 1 for

instance we only have the rate n−1/3. As m → ∞ the model C(m,B) approaches
a finite-dimensional model and the rate approaches the parametric rate 1/

√
n.

Similar results can be proved in different metrics, such as dp(f, g) =
∫ 1

0
|f −

g|(x)pdx or d(f, g) = ‖f − g‖∞, but the proofs require more refined lower bounds
on multiple testing problems than the one in Lemma 7, see [79] for such results.

Intuitively the reason behind Theorem 16 is that two functions f0, f1 that
differ by a large ’peak’ on a very small neighborhood of the point x0 may give
rise to samples that look very much alike, so that such peaks are hard to detect
statistically. A rigorous analysis of this intuition showed that the maximal size
of an ’undetectable’ peak depends on the smoothness bounds m,B for f0, f1, and
on sample size, and it resulted in a minimax lower bound for the accuracy of
estimating a density at a fixed point. We shall see in the next sections that this
lower bound can be attained by concrete nonparametric estimators, but for this
we have to review some basic approximation theory first.

3.3 Approximation of Functions

In contrast to estimation of the distribution function F , estimation of the density
function f of F is a more intricate problem. Similar difficulties arise in non-
parametric regression problems. One way to approach these difficulties is to first
approximate f by a simpler function, K(f) say, and then to estimate the simpler
object K(f) by Kn(f) based on the sample. Evidently, to achieve a good overall
performance we will have to ’balance’ the approximation error |K(f)−f | with the
estimation error |Kn(f)−K(f)|, and we therefore first review some techniques from
analysis on how to approximate arbitrary functions by simpler functions. Since a
probability density is by definition an integrable function, we will focus here on
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approximation of integrable functions, and – to obtain some stronger results – also
on continuous functions.

Some notation: We recall that

Lp =

{

f :

∫

R

|f(x)|pdx <∞
}

,

is the space of p-fold Lebesgue-integrable functions, 1 ≤ p < ∞, normed by

‖f‖p :=
(∫

R
|f(x)|pdx

)1/p
, and that

L2 =

{

f :

∫

R

f 2(x)dx <∞
}

is the space of square Lebesgue-integrable functions normed by ‖f‖22 :=
∫

R
f 2(x)dx.

Finally, a locally integrable function f : R 7→ R is a function that satisfies
∫

C
|f(x)|dx <∞ for every bounded (Borel-) set C ⊂ R.

3.3.1 Regularisation by Convolution

For two real valued functions f, g defined on R, define their convolution

f ∗ g(x) =
∫

R

f(x− y)g(y)dy

if the integral exists. It is obvious that f ∗ g = g ∗f . A simple way to approximate
an arbitrary integrable, or a bounded continuous function f : R → R is by the
convolution Kh ∗ f of f with a suitably ’localized’ kernel function

Kh(x) =
1

h
K
(x

h

)

,

where K is integrable and satisfies
∫

R
K(x)dx = 1 and where h > 0 governs the

degree of ’localization’. (Informally speaking, a positive function f : R → R is
’localized around a point x’ if most of the area under its graph is concentrated
above a ’small interval centered at x’.) In the language of functional analysis,
the functions Kh, as h → 0, furnish an approximation of the identity operator on
certain spaces of integrable functions. Furthermore, the quality of approximation
increases if f is smoother (and if K is ’suitably regular’). We summarize some of
these facts in the following proposition.

Proposition 6. Let f : R → R be a (measurable) function and let K : R → R be
an integrable function (the ’kernel’) that satisfies

∫

R
K(u)du = 1.

i.) If f is bounded on R and continuous at x, then Kh ∗ f(x) converges to f(x) as
h→ 0.
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ii.) If
∫

R
|f(x)|pdx < ∞ for some 1 ≤ p < ∞ then

∫

R
|Kh ∗ f(x) − f(x)|pdx → 0

as h→ 0.
Assume further that K is a function symmetric about the origin that satisfies
∫

R
|K(u)|u2du < ∞ and define κ(m) =

∫

R
|K(u)||u|mdu for m ≤ 2. Suppose f is

m-times differentiable on R, m = 1, 2.
iii.) If f is bounded on R, and if the m-th derivative of f is bounded on R, by D
say, then for every x ∈ R we have

|Kh ∗ f(x)− f(x)| ≤ hm21−mDκ(m).

iv.) If
∫

R
|f(x)|pdx and D′ :=

∫

R
|Dmf(x)|pdx both are finite, then

∫

R

|Kh ∗ f(x)− f(x)|pdx ≤ hpm2p(1−m)D′κ(m)p.

Proof. This proof is neither short nor difficult. We assume for simplicity that K is
bounded, symmetric and has compact support, say in [−a, a], and we also restrict
ourselves to the case p = 1 as the general case is only slightly more involved but
notationally inconvenient.

To prove i.), note first that boundedness of f implies that the integral Kh ∗ f
converges, and we have

|Kh ∗ f(x)− f(x)| =

∣

∣

∣

∣

∫

R

h−1K((x− y)/h)f(y)dy− f(x)

∣

∣

∣

∣

=

∣

∣

∣

∣

∫

R

K(u)f(x− uh)du− f(x)

∣

∣

∣

∣

=

∣

∣

∣

∣

∫

R

K(u)(f(x− uh)− f(x))du

∣

∣

∣

∣

(73)

≤
∫ a

−a

|K(u)||f(x− uh)− f(x)|du

where we have used the substitution (x − y)/h 7→ u and that
∫

R
K(u)du = 1

by assumption. Let now ε > 0 arbitrary be given, and let δ > 0 be such that
|f(x+ v)− f(x)| < ε/

∫ a

−a
|K(u)|du for |v| < δ. Such δ exists since f is continuous

at x and since
∫ a

−a
|K(u)|du is finite. Then |uh| ≤ ah < δ for h small enough, so

that the last expression in the last display is less than ε, proving this claim.
To prove ii.) (p = 1), we note first that the integral Kh ∗f converges in view of

boundedness of K and f ∈ L1. We integrate the last inequality in the last display
so that

∫

R

|Kh ∗ f(x)− f(x)|dx ≤
∫

R

∫

R

|K(u)||f(x− uh)− f(x)|dudx

=

∫ a

−a

|K(u)|
∫

R

|f(x− uh)− f(x)|dxdu
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using Fubini’s theorem for the last identity. The last expression in the above
display now converges to 0 as h→ 0 since supu∈[−a,a]

∫

R
|f(x− uh)− f(x)|dx does

in view of Exercise 27.
We next prove iv.), again only for p = 1. If m = 1, we write (understanding

∫ v

0
as −

∫ 0

v
if v < 0)

f(x− uh)− f(x) =

∫ −uh

0

Df(x+ t)dt (74)

by the fundamental theorem of calculus if Df is continuous (and by absolute con-
tinuity of f otherwise, cf. Corollary 3.33 in [35]) and then we have from integrating
(73), Fubini’s theorem and change of variables that

∫

R

|Kh ∗ f(x)− f(x)|dx =

∫

R

∣

∣

∣

∣

∫

R

K(u)

∫ −uh

0

Df(x+ t)dtdu

∣

∣

∣

∣

dx

≤
∫

R

|K(u)|
∫ −uh

0

∫

R

|Df(x)|dxdtdu ≤ hκ(1)‖Df‖1

which proves the case m = 1. If m = 2, use again (73) and expand f into a Taylor
series up to second order about x with Laplacian representation of the remainder
(e.g., (8.14.3) in [20]) to obtain

∫

R

|Kh ∗ f(x)− f(x)|dx

=

∫

R

∣

∣

∣

∣

∫

R

K(u)[Df(x)uh+ (uh)2
∫ 1

0

D2f(x− tuh)(1− t)dt]du

∣

∣

∣

∣

dx

≤ h2
∫

R

|K(u)|u2du
∫

R

|D2f(x)|dx
∫ 1

0

(1− t)dt = h2κ(2)‖D2f‖12−1

where we used that
∫

K(u)udu = 0 since K is symmetric around 0, Fubini’s
theorem and a change of variables. The proof of iii.), which is simpler than (and
implicit in) iv.), is left to the reader.

The above proposition allows to approximate functions that are at most twice
differentiable in a good way, but one would expect an error bound of magnitude
hm as in iii.) even for m > 2. This can indeed be achieved by using ’higher order’
kernels K, see Exercises 28, 29.

3.3.2 Approximation by Basis Functions

Another approach to approximate an arbitrary function f : R → R is to decompose
it into sufficiently many linear combinations of much simpler basis functions ek, so
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that the approximation of f(x) is of the form
∑

k ck(f)ek(x) where ck(f) are some
coefficients.

To understand this approach better we review here briefly some facts about
Hilbert spaces. A complete normed linear space H whose norm ‖ · ‖H is given by
‖h‖2H =< h, h >H , where < ·, · >H is an inner product (i.e., a symmetric bilinear
mapping from H ×H to R or C), is called a (real or complex) Hilbert space. An
example is Rd with < x,y >=

∑d
i=1 xiyi, but for us more important is the space

L2 which has inner product

< f, g >:=

∫

R

f(x)g(x)dx. (75)

In analogy to the Euclidean case we say that an element h ∈ H is orthogonal to
h′ ∈ H if < h, h′ >= 0. If M is any closed linear subspace of H , its orthogonal
complement is

M− := H ⊖M = {h ∈ H :< h, x >H= 0 for every x ∈M},
and H equals the direct sum M− ⊕ M = {x + y : x ∈ M, y ∈ M−}, the sum
being ’direct’ because its summands are orthogonal to each other. If {ek} is an
orthonormal basis for M , then the orthogonal projection πM (h) of any element
h ∈ H onto M has the representation

πM(h) =
∑

k

< h, ek > ek.

See Chapters 5.3 and 5.4 in [29] or Chapter 5.5 in [35] for more details and facts.
The classical example is the reconstruction of a periodic function on (0, 1] by

the partial sum of its Fourier-series, namely by

Sn(f)(x) =
∑

k∈Z:|k|≤n

ck(f)e
2πixk

where ck(f) = (2π)−1
∫ 1

0
f(x)e−2πixkdx are the Fourier-coefficients of f . Whereas

this approximation is optimal in the space L2, it can be very bad at any given point.
In particular, the Fourier-series Sn(f)(x) of ’most’ continuous functions diverges
at some x ∈ (0, 1]. (To be precise, the set of continuous periodic functions on (0, 1]
for which the Fourier series converges at all points can be shown to be a ’meagre’
subset - in the sense of Baire categories - of the Banach space of continuous periodic
functions on (0, 1].) Can we find orthonormal bases for L2 where these pathologies
do not occur?

Another way to decompose a function into linear combinations of ’atoms’ is
by piecewise constant functions: The Haar basis (named after its inventor Haar
(1910)) is the set of functions

{

φ(· − k), 2l/2ψ(2l(·)− k), k ∈ Z, l ∈ N ∪ {0}
}
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where φ(y) = 1(0,1](y) and ψ = 1[0,1/2] − 1(1/2,1], and where we write shorthand
φk(x) = φ(x − k) and ψlk = 2l/2ψ(2lx − k). It is easily checked that this basis
is orthogonal with respect to the L2-inner product (75), in fact its linear span is
dense in the space L2 (see Exercise 30). Moreover, a locally integrable function
f : R → R can be approximated by its Haar-projection, i.e., by the piecewise
constant function

Hj(f)(x) =
∑

k∈Z
< f, φk > φk(x) +

j−1
∑

l=0

∑

k∈Z
< f, ψlk > ψlk(x) (76)

For the Haar basis, one can prove the following analogue to Proposition 6:

Proposition 7. Let f : R → R be a locally integrable function.
i.) If f is continuous at x ∈ R, then Hj(f)(x) converges to f(x) as j → ∞.
ii.) If

∫

R
|f(x)|pdx <∞ for some 1 ≤ p <∞ then

∫

R

|Hj(f)(x)− f(x)|pdx→ 0

as j → ∞.
Suppose further that f is differentiable on R.
iii.) If the derivative of f is bounded in absolute value on R, by D say, then we
have for every x ∈ R that

|Hj(f)(x)− f(x)| ≤ 2−jD.

iv.) If
∫

R
|f(x)|pdx and D′ :=

∫

R
|Df(x)|pdx both are finite then

∫

R

|Hj(f)(x)− f(x)|pdx ≤ 2−pjD′.

We will prove this result as a special case of Proposition 9 below. The ap-
proximation by the Haar-basis is very simple and useful, but also has limitations.
Comparing Proposition 7 with Proposition 6 for the approximation Kh ∗ f , the
question arises whether m = 2 could be considered in the case of the Haar basis as
well. It turns out that the second part of Proposition 7 can only be proved with
m = 1, that is, an analogue of Parts iii.) and iv.) of Proposition 6 with m = 2 does
not exist for the Haar basis. The intuitive reason is that one can not approximate
a smooth function very well by unsmooth functions. Roughly speaking one can
say that if we want to approximate a m-times differentiable function in an optimal
way, we should take the basis function of our approximation to be at least m− 1
times differentiable. The Haar basis functions are not differentiable and so cannot
’detect’ differentiability of order higher than one. Can this shortcoming of the
Haar basis be circumvented, by considering ’smoother basis functions’?
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From the Haar basis to B-splines+.

One might be tempted to suggest to replace the simple function 1(0,1] by, say,
the basis function N (2)(x) given by x on [0, 1] and by 1 − x on [1, 2]. These ’hat
functions’ can indeed be used to approximate functions, and the family

{

N (2)(· − k), k ∈ Z
}

is known as the linear B-spline basis (with integer breakpoints). To arrive at even
smoother basis functions, it is useful to note that the hat function can be obtained
from the Haar basis by virtue of

N (2) = 1(0,1] ∗ 1(0,1],

which motivates to define the B-spline of degree r iteratively by

N (r) = 1(0,1] ∗ 1(0,1] ∗ .... ∗ 1(0,1] r − times. (77)

For r = 3 these functions are called quadratic B-splines (with integer breakpoints),
and the case r = 4 corresponds to cubic B-splines. It is easily checked that N (r)

is r − 2 times differentiable (and in fact r − 1 times ’weakly’ differentiable, which
is the relevant notion here).

Theorem 17 (Curry-Schoenberg (1966)). The dyadic B-spline family of degree r,
{

N
(r)
lk := N (r)(2l(·)− k), l ∈ N ∪ {0}, k ∈ Z

}

is a basis for the linear (’Schoenberg’-) space of piecewise polynomials of order r−1
with dyadic breakpoints {2−jk}k∈Z.

The space of piecewise polynomials is here (and usually, but not necessarily)
taken to consist of functions that are r−2 times continuously differentiable at the
breakpoints. One can also choose a grid of breakpoints different from the integers
and obtain the same result, but in this case the family N

(r)
lk cannot be described

in simple terms of translates and dilates of the basic function N (r).
We will not prove this theorem (which belongs in a course on approximation

theory) and we refer to p.141 in [18] for a proof and the exact definition of the
Schoenberg spaces. The theorem tells us that every piecewise polynomial P of
degree r − 1 with dyadic breakpoints {2−jk}k∈Z can be written as

P (x) =
∑

k

ck,j(P )N
(r)(2jx− k)

for some suitable coefficients ck,j(P ). This is a ’sparse’ representation of P since
we only need a few translates and dilates of the fixed basis function N (r)(x) to
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reconstruct P (x) at a given point x ∈ R (note that N
(r)
jk is supported in [k/2j, (k+

r)/2j]). This can be used in various simple and computationally efficient ways to
approximate integrable and/or continuous functions as in Proposition 6, and these
approximations can be shown to improve in quality if we refine the partition of
breakpoints, that is, if we increase j. For example, one can prove the following
proposition:

Proposition 8. Let f : R → R be bounded, continuous at x and suppose f is
r-times differentiable, with r-th derivative uniformly bounded by D. Then there
exist coefficients {ck(f, r)}k∈Z such that for Pf(x) =

∑

k ck(f, r)N
(r)
jk (x) we have

|Pf(x)− f(x)| ≤ c2−jr

where the constant c depends only on r and D.

Again, this result belongs to approximation theory. It can be deduced without
too many complications from Theorem 12.2.4 in [18].

It is not clear from the proposition how the coefficients ck(f, r) should be chosen
in practice. A good way to do this is to choose them by projection from the space
of square-integrable functions onto the Schoenberg-space. This projection inherits
the approximation properties from Proposition 8 and can be computed easily (by
simple linear algebra), cf., e.g., p.401f. in [18].

Whereas the B-spline basis give us a simple and localized way to approximate
many functions f by piecewise polynomials, it is still not satisfactory for all pur-
poses since, when compared to the Haar basis, one looses ’orthogonality’ of the
translates. One verifies easily that for every k (and r > 1)

< N (r)(· − k), N (r)(· − k − 1) > 6= 0,

which can be inconvenient.

3.3.3 Orthornormal Wavelet Bases

The question remains whether one can find a set of basis functions that is simul-
taneously
a) orthogonal with respect to the L2-inner product < ·, · >,
b) localized in the sense that f(x) is approximated, in a sparse way, by just a few
basis functions with support close to x and
c) a good ’approximator’ in the sense that an analogue of Proposition 6 can be
proved, possibly even with m ∈ N arbitrary.

For some time it was thought that this was impossible, but this question was
eventually answered in the positive by the advent of wavelets around 1990 (Meyer
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(1992), Daubechies (1992) and others). In fact, the first wavelets were constructed
by ’orthogonalizing’ the B-spline bases from Theorem 17 (by virtue of a ’Gram-
Schmidt’ orthogonalization procedure), but the most striking breakthrough was
the construction of compactly supported wavelets that have an arbitrary degree of
smoothness: so called Daubechies’ wavelets.

The general definition of a wavelet basis (whose existence has to be ensured)
is the following: Let φ ∈ L2(R) be a scaling function (’father wavelet’), that is, φ
is such that

{φ(· − k) : k ∈ Z}
is an orthonormal system in L2, and moreover the linear spaces

V0 =

{

f(x) =
∑

k

ckφ(x− k), {ck}k∈Z :
∑

k

c2k <∞
}

,

V1 = {h(x) = f(2x) : f ∈ V0},
..., Vj = {h(x) = f(2jx) : f ∈ V0}, ...,

are nested (Vj−1 ⊂ Vj for j ∈ N) and such that ∪j≥0Vj is dense in L2. Such φ
exists, e.g., the Haar function φ = 1(0,1] (see Exercise 30), but other examples will
be discussed below.

Moreover, since the spaces Vj are nested, there are nontrivial subspaces of L2

obtained from taking the orthogonal complements Wl := Vl+1⊖Vl, indeed, we can
’telescope’ these orthogonal complements to see that the space Vj can be written
as

Vj = V0 ⊕ V1 ⊖ V0 ⊕ V2 ⊖ V1 ⊕ .......⊕ Vj−1 ⊖ Vj−2 ⊕ Vj ⊖ Vj−1

= V0 ⊕
(

j−1
⊕

l=0

Wl

)

. (78)

If we want to find the othogonal projection of f ∈ L2 onto Vj, then the above
orthogonal decomposition of Vj tells us that we can describe this projection as the
projection of f onto V0 plus the sum of the projections of f onto Wl from l = 0 to
j − 1.

Now clearly the projection of f onto V0 is

K0(f)(x) =
∑

k∈Z
< φk, f > φk(x),

where we write φk = φ(·−k). To describe the projections ontoWl, we would like to
find basis functions that span the spacesWl, and this is where the ’mother’ wavelet
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enters the stage: Assume that there exists a fixed function ψ, the (’mother’)
wavelet, such that, for every l ∈ N ∪ {0},

{

ψlk := 2l/2ψ(2l(·)− k) : k ∈ Z
}

is an orthonormal set of functions that spans Wl. Again, such ψ exists (take the
Haar-wavelet ψ = 1[0,1/2] − 1(1/2,1], cf. Exercise 30), but other examples can be
constructed, and they will be discussed below. The projection of f onto Wl is

∑

k

< ψlk, f > ψlk

and, adding things up, we see that the projection Kj(f) of f onto Vj is given by

Kj(f)(x) =
∑

k∈Z
< φk, f > φk(x) +

j−1
∑

l=0

∑

k∈Z
< ψlk, f > ψlk(x). (79)

It should be clear that for φ equal to the Haar wavelet, this projection exactly
corresponds to the quantity Hj(f) from (76).

This projection is the partial sum of what is called the wavelet series of a
function f ∈ L2: To understand this, note first that, since ∪j≥0Vj is dense in L2

we necessarily conclude from (78) that the space L2 can be decomposed into the
direct sum

L2 = V0 ⊕
( ∞
⊕

l=0

Wl

)

,

so that the set of functions

{φ(· − k), 2l/2ψ(2l(·)− k) : k ∈ Z, l ∈ N ∪ {0}} (80)

is an orthonormal basis of the Hilbert space L2. As a consequence, every f ∈ L2

has the wavelet series expansion

f(x) =
∑

k∈Z
< φk, f > φk(x) +

∞
∑

l=0

∑

k∈Z
< ψlk, f > ψlk(x) (81)

where convergence is guaranteed at least in the space L2.
Now the question arises whether functions φ and ψ besides the Haar basis exist

such that the class of functions (80) is an orthonormal basis in L2 (and such that
the associated spaces Vj are nested). In fact, for several reasons, we would like
the basis functions φ and ψ to be both smooth and compactly supported. The
following assumption will formalize this desire. The symbols φk, ψlk and the spaces
Vj and Wl are defined as above.
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Condition 1. (S) We say that an orthonormal system {φk, ψlk : k ∈ Z, l ∈
N ∪ {0}} is an S-regular compactly supported wavelet basis if the following holds:
a) φ and ψ are bounded and have compact support,
b) {φk}k∈Z spans V0, {ψlk}k∈Z spans Wl, the associated spaces {Vj}j≥0 are nested
and ∪j≥0Vj is dense in L2,
c) one of the following two conditions is satisfied: Either i) φ has bounded deriva-
tives up to order S; or ii) ψ satisfies

∫

R
xiψ(x)dx = 0, i = 0, ..., S.

The Haar wavelets, corresponding to φ = 1(0,1] and ψ = 1(0,1/2] − 1(1/2,1], sat-
isfy this condition only for S = 0. The following fundamental result is due to
Daubechies (1988).

Theorem 18 (Daubechies (1988)). For any given S there exist wavelets φ and ψ
that satisfy Condition (S).

These wavelet bases also always satisfy
∫

R
φ(x)dx = 1,

∫

R
ψ(x)dx = 0. The

proof of Theorem 18 uses nontrivial Fourier analysis, and can be found, e.g., in
Daubechies (1992) or Meyer (1992). (The one in Daubechies (1988) is not recom-
mended for first reading.)

It remains to obtain an analogue of Propositions 6, 7 for wavelets. The first
two claims of the following result show that the wavelet series (81) converges in
Lp for every 1 ≤ p <∞ and pointwise for any continuous function, so remarkably
outperforming Fourier series (and other orthonormal bases of L2).

Proposition 9. Let f : R → R be a locally integrable function and let φ, ψ be a
wavelet basis that satisfies Condition 1(S) for some S ≥ 0. Denote by Kj(f) the
wavelet projection (79).
i.) If f is continuous at x, then Kj(f)(x) converges to f(x) as j → ∞.
ii.) If

∫

R
|f(x)|pdx <∞ for some 1 ≤ p <∞ then

∫

|Kj(f)(x)− f(x)|pdx→ 0 as
j → ∞.
Suppose further that f is m-times differentiable on R, m ≤ S + 1.
iii.) If f is bounded on R, and if the m-th derivative of f is bounded on R, by D
say, then for every x ∈ R we have

|Kj(f)(x)− f(x)| ≤ C2−jm

for some constant C that depends only on D and φ.
iv.) If

∫

R
|f(x)|pdx and D′ :=

∫

R
|Dmf(x)|pdx both are finite then

∫

R

|Kj(f)(x)− f(x)|pdx ≤ C ′2−jpm

where C ′ depends only on D′, φ and p.
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Proof. We will prove the result for the special case of the Haar wavelet (and hence
only form = 1) to illustrate the main ideas, and we also restrict ourselves to p = 1.
The general case will be discussed at the end.

It follows from the definitions that

{φjk := 2j/2φ(2jx− k) : k ∈ Z}

is an orthonormal basis for the space Vj . Consequently the projection Kj(f) can
also be written as

Kj(f)(x) =
∑

k∈Z
< φjk, f > φjk(x) = 2j

∫

R

K(2jx, 2jy)f(y)dy (82)

where
K(x, y) =

∑

k∈Z
1(0,1](x− k)1(0,1](y − k)

(note that, for fixed x, all sums here are finite, so no convergence issues of these
series have to be addressed). Moreover, since (k, k + 1], k ∈ Z, forms a partition
of R and since

∫

R
1(0,1](y)dy = 1 we have

∫

R

K(x, y)dy =
∑

k∈Z
1(0,1](x− k) = 1 (83)

for every x ∈ R, and by substitution we also have 2j
∫

R
K(2jx, 2jy)dy = 1. Fur-

thermore, since the support of φ is (0, 1], we have, for every x,

0 ≤ K(2jx, 2jx− u) ≤ 1[−1,1](u). (84)

Using these facts, we obtain, substituting 2jy 7→ 2jx− u

|Kj(f)(x)− f(x)| =

∣

∣

∣

∣

2j
∫

R

K(2jx, 2jy)f(y)dy − f(x)

∣

∣

∣

∣

=

∣

∣

∣

∣

2j
∫

R

K(2jx, 2jy)(f(y)− f(x))dy

∣

∣

∣

∣

=

∣

∣

∣

∣

∫

R

K(2jx, 2jx− u)(f(x− 2−ju)− f(x))du

∣

∣

∣

∣

≤
∫

R

|K(2jx, 2jx− u)||f(x− 2−ju)− f(x)|du (85)

≤ sup
u∈[−1,1]

|f(x− 2−ju)− f(x)|
∫ 1

−1

du→ 0

as j → ∞ by continuity of f at x. This proves i.). Part ii.) is proved by integrating
(85) and using again (84) together with continuity of translation in L1, see Exercise
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Q8. To prove part iii.), we apply the mean value theorem to (85) and use (84) to
obtain

|Kj(f)(x)− f(x)| ≤ 2−j‖Df‖∞
∫ 1

−1

|u|du = 2−jD.

Part iv.) is proved by again integrating (85) with respect to x, using the funda-
mental theorem of calculus as in (74), and then proceeding as in the proof of Part
iv.) of Proposition 6), using also (84).

The proof for general wavelets essentially reduces to obtaining properties analo-
gous to (83) and (84) for general scaling functions φ. If φ is bounded and compactly
supported, in [0, a] say (up to a translation), and if K(x, y) =

∑

k φ(x−k)φ(y−k),
then clearly

|K(2jx, 2jx− u)| ≤ c‖φ‖2∞1[−a,a](u) (86)

for some fixed constant c that depends only on a, which can be used to replace (84)
in the above argument. To deal with m > 1, one also needs the property that the
wavelet projection kernel K(x, y) reproduces polynomials, i.e.,

∫

R
K(x, y)yα = xα

for every integer 0 ≤ α ≤ S. This nontrivial result can be established for the
wavelet bases from Condition 1(S) using Fourier analytic methods. They can be
found, e.g., in [58] or Chapters 8 and 9 of [47].

3.3.4 Exercises

Exercise 27. Use the fact that the set of continuous functions with compact
support is dense in the normed space L1 of integrable functions to show that the
mapping h 7→

∫

|f(x+h)−f(x)|dx is continuous at 0 for every integrable function
f .

Exercise 28. Higher order kernels. A kernel is said to be of order l if it integrates
to one, if

∫

R
K(u)umdu = 0 for every m = 1, ..., l, and if

κ(l) =

∫

R

|K(u)|ul+1du <∞.

Any compactly supported symmetric probability density K : R → R is a kernel of
order 1 (why?). To construct kernels of higher order than 1, let {φm}m∈N be the
orthonormal basis in L2([−1, 1]) of Légendre polynomials defined by

φ0(x) := 2−1/2, φm(x) =

√

2m+ 1

2

1

2mm!

dm

dxm
[(x2 − 1)m]

for x ∈ [−1, 1] and m ∈ N. Define, for l ∈ N,

K(l)(u) =
l
∑

m=0

φm(0)φm(u)1{|u| ≤ 1}.

80



Given an exact formula for K(2)(x), and show that it is a kernel of order 2. Is
it of order 3? Of order 4? Show in general that K(l) defines a kernel of order l.
(In doing so, you may use the fact that {φm}m∈N is orthonormal w.r.t. the inner

product < f, g >[−1,1]:=
∫ 1

−1
fg.)

Exercise 29. Approximation with higher order kernels. Suppose f : R → R is a
bounded function that is m-times differentiable, with m-th derivative bounded by
D. If m is any positive integer, show that one can devise a kernel K such that
|Kh ∗ f(x)− f(x)| ≤ Chm where the constant C depends only on K and D. (Use
the previous exercise.)

Exercise 30. [Haar basis.] If

V0 =

{

f(x) =
∑

k

ckφ(x− k), {ck}k∈Z :
∑

k

c2k <∞
}

,

Vj = {h(x) = f(2jx) : f ∈ V0},
give a description of the spaces Vj , j ≥ 0, and

Wj = Vj+1 ⊖ Vj

if φ, ψ is the Haar wavelet basis. Why are the Vj’s nested? Verify that ψlk :=
2l/2ψ(2l(·) − k) is orthogonal to ψl′k for l 6= l′. Recalling the construction of the
Lebesgue integral, why is it obvious that the union of the Vj ’s is dense in the
normed space L1 of Lebesgue-integrable functions?

3.4 Density Estimation on R

We now return to the situation where we observe an i.i.d. sample X1, ..., Xn of a
random variable X with distribution function F . Suppose we know further that
F is absolutely continuous with probability density function f : R → R, so that

P (X ∈ A) =

∫

A

f(x)dx

for every Borel set A. Can we estimate the object f in a similar way as we were
able to estimate F ? Certainly, we cannot use the empirical distribution func-
tion Fn to do this, since Fn does not possess a density. Are there any ’natural
estimators’ for a density f? At first sight the answer might be no: indeed, in con-
trast to distribution functions, which are nondecreasing right-continuous bounded
functions, a probability density is potentially a very erratic object, that can be
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unbounded, have wild oscillations, cusps, uncountably many jumps, etc. These
facts just reflect the richness of the infinite-dimensional set

{

f : R → R, f ≥ 0,

∫

R

f(x)dx = 1

}

of densities in L1. On the other hand, the results from Section 3.3 taught us that
arbitrary integrable functions f can be approximated by much simpler functions
K(f), and this applies to densities as well. The fact that approximations K(f) of
the type introduced in the last section can usually be estimated from the sample
X1, ..., Xn in a reasonable way nourishes our hope to construct a reasonable esti-
mator for the ultimate object of interest, f . The different types of approximation
K(f) then give rise to different choices for ’density estimators’.

Another question is the ’loss function’ in which we would like to assess the
performance of an estimator. Whereas sup-norm loss seems natural to estimate
a function, this introduces a priori restrictions in the case of densities (which
can be unbounded so that ‖f‖∞ = ∞!). At first sight then L1-loss ‖f − g‖1 =
∫

R
|f(x)− g(x)|dx seems natural, as it is defined for all densities. If one is willing

to assume more on the density f , one can also consider L2-loss and pointwise loss,
where the theory is simpler. If one assumes that f is uniformly continuous, then
the stronger sup-norm loss d(f, g) = supx∈R |f(x)− g(x)| is also of interest.

3.4.1 Kernel Density Estimators

From Proposition 6 one candidate to approximate f is its convolution with a kernel
Kh, i.e.,

Kh ∗ f(x) =
1

h

∫

R

K

(

x− y

h

)

f(y)dy.

This is an integral of a fixed function against a probability density, and it can be
estimated in a natural, unbiased way by

fK
n (h, x) =

1

nh

n
∑

i=1

K

(

x−Xi

h

)

, (87)

which is known as the kernel density estimator, introduced by Akaike (1954),
Rosenblatt (1956) and Parzen (1962) and much studied since then.

We start with a positive result, which implies that the kernel density estimator
is consistent in L1-loss for any density f .

Theorem 19. Let X1, ..., Xn be i.i.d. with arbitrary density f and let fK
n be the

kernel density estimator from (87), where K ∈ L2 is nonnegative and satisfies
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∫

R
K(u)du = 1. If h := hn is chosen in dependence of n such that hn → 0 and

nhn → ∞, then
E‖fK

n (h)− f‖1 → 0

as n→ ∞.

Proof. We have the ’variance-bias’ decomposition
∫

R

|fK
n (h, x)− f(x)|dx ≤

∫

R

|fK
n (h, x)−Kh ∗ f(x)|dx+

∫

R

|Kh ∗ f(x)− f(x)|dx,

where the first term is random and the second is not. In fact, the second term
converges to zero as n → ∞ by Proposition 6. For the first term, note that
h−1

∫

R
K((x− y)/h)dx = 1 for every y and Fubini’s theorem imply
∫

R

(fK
n (h, x)−Kh ∗ f(x))dx = 1−

∫

R

∫

R

h−1K((x− y)/h)dxf(y)dy = 0,

and hence the integral of the positive part of (fK
n (h, x)−Kh ∗ f(x)) has to equal

the integral of the negative part, so that, using again Fubini’s theorem and since
E|X| ≤ (EX2)1/2 for any random variable X we have

E

∫

R

|fK
n (h, x)−Kh ∗ f(x)|dx = 2E

∫

R

(Kh ∗ f(x)− fK
n (h, x))+dx

= 2

∫

R

E(Kh ∗ f(x)− fK
n (h, x))+dx

≤ 2

∫

R

min(Kh ∗ f(x), E(Kh ∗ f(x)− fK
n (h, x))+)dx

≤ 2

∫

R

min(f(x), (E(Kh ∗ f(x)− fK
n (h, x))2)1/2)dx

+2

∫

R

|Kh ∗ f(x)− f(x)|dx.

The second term in the last expression is identical to twice the bias term and hence
again converges to zero as n → ∞ by Proposition 6. For the first term note that
(Kh ∗ f(x) − fK

n (h, x)) = n−1
∑n

i=1(EZi − Zi) where Zi = h−1K((x −Xi)/h) are
i.i.d. random variables, so that

[E(Kh ∗ f(x)− fK
n (h, x))2]1/2 ≤

√

1/n(EZ2
i )

1/2. (88)

To proceed, we consider first the simpler case whereK = 1[−1/2,1/2] so thatK
2 = K.

We then see that EZ2
i = 1

h
Kh ∗ f(x) and

Khn ∗ f(x) =
1

hn

∫ x+(hn/2)

x−(hn/2)

f(y)dy → f(x)
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as n → ∞ for almost every x ∈ R by Lebesgue’s differentiation theorem (e.g.,
Theorem 3.21 in [35]). Consequently

1

nhn
Khn ∗ f(x) =

1

nhn
(Khn ∗ f(x)− f(x)) +

1

nhn
f(x) → 0

as n → ∞ for almost every x ∈ R since nhn → ∞ by assumption. We conclude
that

min(f(x), (E(Khn ∗ f(x)− fK
n (hn, x))

2)1/2) ≤ min

(

f(x),

√

1

nhn
Khn ∗ f(x)

)

→ 0

as n→ ∞ for almost every x ∈ R, and since this quantity is (pointwise) bounded
from above by the integrable function f , its integral also converges to zero in view
of the dominated convergence theorem (Exercise 2). This completes the proof for
this choice of K, and the case of general K follows from a simple reduction from
general kernels to K = 1[−1/2,1/2], see Theorem 9.2 in Devroye and Lugosi (2001),
from where this proof is taken.

This theorem shows that one can estimate an unknown density consistently by
a kernel estimator. One may be tempted to view Theorem 19 as a density-analogue
of the Glivenko-Cantelli theorem (Theorem 8), and go further and ask for the rate
of convergence to zero in Theorem 19. The following proposition contains some
sobering facts, that we will not prove here (see Devroye and Lugosi (2001, p.85)):

Proposition 10. Let X1, ..., Xn be i.i.d. random variables with density f , and let
fK
n be the kernel estimator from (87), where K ∈ L1 is nonnegative and integrates
to one. Then

sup
f :f≥0,

∫
f=1

inf
h>0

E‖fK
n (h)− f‖1 = 2,

and for any sequence an → 0 there exists a density f such that for all n large
enough

inf
h
E‖fK

n (h)− f‖1 > an.

So in general there is ’no rate of convergence’ in Theorem 19, and the kernel
estimator is not uniformly consistent for the model of all probability densities.

Pointwise Risk Bounds.

Proposition 10 is related to the minimax lower bounds from Section 3.2. In the
lower bound from Theorem 16 quantitative assumptions were made on the exis-
tence and size of derivatives of f , and the question arises how the kernel estimator
performs under such assumptions.
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Proposition 11. Let X1, ..., Xn be i.i.d. random variables with bounded density f ,
and let fK

n be the kernel estimator from (87). Suppose the kernel K ∈ L2 satisfies
the conditions of Part iii.) of Proposition 6. If the m-th derivative of f , m ≤ 2,
is bounded in absolute value on R, by D say, then for every x ∈ R, every n ∈ N

and every h > 0 we have

E|fK
n (h, x)− f(x)| ≤

√

1

nh
‖f‖1/2∞ ‖K‖2 + hm21−mDκ(m).

Proof. As usual

E|fK
n (h, x)− f(x)| ≤ E|fK

n (h, x)−Kh ∗ f(x)|+ |Kh ∗ f(x)− f(x)|.

The second term is bounded by using Proposition 6. To bound the first term, we
have from (88)

E(fK
n (h, x)−Kh ∗ f(x))2 ≤ 1

h2n
EK2((x−X)/h)

=
1

nh

∫

R

K2(u)f(x− uh)du ≤ 1

nh
‖K‖22‖f‖∞

which completes the proof.

It follows directly from the proof of Proposition 6 that, if K is supported in
[−a, a], then there is a ’local’ version of the above result, where f is only required to
be m-times differentiable in a neighborhood of x, and where D has to be replaced
by supy∈[x−ha,x+ha] |Dmf(y)|.

A result similar to Proposition 11 can be obtained for m > 2, using the same
proof and Exercises 28, 29. The first term in the above decomposition is often
called the ’variance term’, whereas the second one is called the ’bias term’. We
see that, as h decreases, the first term increases whereas the second one decreases.
Hence it makes sense to choose h such that the two terms are of the same size.
Straightforward algebra shows that this happens when

h ≃
(

1

n

)
1

2m+1

(

‖f‖1/2∞ ‖K‖2
Dκ(m)

)
1

m+1/2

. (89)

This choice is statistically not feasible: The constants D and ‖f‖∞ are generally
not known to the statistician, but they can be estimated (D only under additional
assumptions). A more fundamental problem is that m is unknown, and this pa-
rameter can in fact not be reliably estimated. However, it is interesting to consider
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for the moment the case wherem is known: then any choice h∗n ≃ n−1/(2m+1) would
produce an estimator with the rate of convergence

sup
f :‖f‖∞+‖Dmf‖∞≤B

E|fK
n (h∗n, x)− f(x)| ≤ C

(

1

n

)m/(2m+1)

(90)

where the constant C does only depend on the number B and the kernel K. Thus
the kernel estimator with this bandwidth choice achieves the lower bound for the
minimax rate of convergence in pointwise loss derived in Theorem 16. This implies
in particular that n−m/(2m+1) is the minimax rate of convergence in this problem. A
rate of convergence is a relatively crude probabilistic result. However, the moment
bound (90) is quite precise for every n ∈ N: the probabilistic fluctuations of
the estimation error measured at the scale n−m/(2m+1) satisfy a good exponential
inequality, see Exercise 32.

Another question is whether this result can be made uniform in all x ∈ R,
similar to the results for the empirical distribution function. This can be done,
but it requires substantially more techniques, mostly from empirical process theory,
and was not done until recently, see [38].

Pointwise Asymptotic Distribution of Kernel Estimators

Whereas the results from the previous section have shown us that fK
n (x) con-

verges to f(x) in probability under certain assumptions, we cannot straightfor-
wardly use this for statistical inference. Ideally, if we want to estimate f at the
point x, we would like to have exact confidence statements of the form

Pr
(

f(x) ∈ [fK
n (h, x)− c(n, α, x,K), fK

n (h, x) + c(n, α, x,K)
)

≥ 1− α

where α is some significance level and where c(n, α, x,K) is a sequence of constants
that one would like to be as small as possible (given α). The kernel estimator from
the previous section can be used for this, if one ’undersmooths’ slightly, by virtue
of the following exact distributional limit theorem.

Proposition 12. Let fK
n (h, x) be the kernel density estimator from (87), where K

is bounded and satisfies the conditions from Part iii.) of Proposition 6. Suppose f
is m-times differentiable, m = 1, 2, and that f and Dmf are bounded. If hn → 0
is chosen such that nhn → ∞ but

√
nh

m+1/2
n → 0 as n→ ∞, then

√

nhn
(

fK
n (hn, x)− f(x)

)

→d N(0, f(x)‖K‖22)

as n→ ∞.

Proof. We have to prove this limit theorem only for
√
nh
(

fK
n (hn, x)−Kh ∗ f(x)

)

since √
nh |Kh ∗ f(x)− f(x)| ≤ C

√
nhhm → 0
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for some fixed constant C by Proposition 6 and assumption on hn.
To prove the limit for the ’variance term’, we use the Lindeberg-Feller central

limit theorem for triangular arrays of i.i.d. random variables, which reads as follows
(e.g., [81], p.20): For each n let Yn1, ..., Ynn be i.i.d. random variables with finite
variances. If, as n → ∞, i) nEY 2

ni1{|Yni| > ε} → 0 for every ε > 0 and ii)
nE(Yni − EYni)

2 → σ2, then
∑n

i=1(Yni − EYni) →d N(0, σ2) as n→ ∞.
We apply this theorem with

Yni =
√

nhn
1

nhn
K

(

x−Xi

hn

)

=

√

1

nhn
K

(

x−Xi

hn

)

so that we have, similar as before (88),

√

nhn
(

fK
n (hn, x)−Khn ∗ f(x)

)

=

n
∑

i=1

(Yni −EYni),

and it remains to verify the hypotheses from above. Clearly,

nEY 2
ni =

1

hn

∫

R

K2

(

x− y

hn

)

f(y)dy

=

∫

R

K2(u)f(x− uhn)du→ f(x)‖K‖22

as n → ∞ by the dominated convergence theorem, since f is continuous at
x and bounded on R, and since K ∈ L1 ∩ L∞ ⊂ L2. Furthermore, |Yni| ≤
(nhn)

−1/2‖K‖∞ → 0 as n→ ∞ by assumption on hn, so also

1{|Yni| > ε} → 0

for every ε > 0. This already verifies Condition i), and ii) follows from E(Yni −
EYni)

2 = EY 2
ni − (EYni)

2, the limit nEY 2
ni → f(x)‖K‖22 as established above and

since

n(EYni)
2 =

1

hn

(
∫

R

K

(

x− y

hn

)

f(y)dy

)2

≤ hn‖f‖2∞‖K‖21 → 0

as n→ ∞.

See Exercise 31 for how to apply this result to obtain confidence intervals for
f(x). The theory for confidence ’bands’, where coverage is simultaneously in all
points x in a given interval [a, b], is more complicated. One can use extreme
value theory and some sophisticated Gaussian approximation arguments to obtain
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these as well, as was shown in remarkable work by Smirnov (1950) and Bickel and
Rosenblatt (1973). See [39] and [42] for recent work on this.

The kernel density estimator as an estimator of F

We have seen now that, at least under certain assumptions, the kernel density
estimator fK

n (x) has a reasonable performance as an estimator of the unknown
density f(x). Moreover, it also gives us a natural estimator of the unknown dis-
tribution function F (t) = P (X ≤ t), namely

FK
n (t, h) =

∫ t

−∞
fK
n (h, y)dy,

and it would be reassuring to see that this estimator is not worse than the very
good and simple estimator Fn. Recall the notion of a kernel of order l from Exercise
28.

Theorem 20. Let X1, ..., Xn be i.i.d. with bounded density f . Suppose f is m-
times continuously differentiable, m ≥ 0, with m-th derivative bounded by D,
assume h ≥ d(log n/n) for some constant d, and that the kernel K is integrable
and of order m. If FK

n is the distribution function of fK
n and if Fn is the empirical

distribution function, then, for every n ∈ N

E sup
t∈R

|FK
n (t, h)− Fn(t)| ≤ c

√

h log(1/h)

n
+ c′hm+1

for some constants c and c′ depending only on K,D, ‖f‖∞.
Furthermore, if hn → 0 as n→ ∞ is chosen such that

√
nhm+1

n → 0, then

√
n(FK

n − F ) →d
GF in L∞

where GF is the F -Brownian bridge.

Proof. The proof of the first claim with the supremum over t ∈ R uses empirical
process methods that we have not developed so far, and follows from Theorem 1
in [40].

To illustrate the main ideas, we prove the first claim for a fixed t (in which case
the log(1/h)-term disappears), and for compactly supported K. We decompose

FK
n (t, h)−Fn(t) = (FK

n (t, h)−Fn(t)−EFK
n (t, h)+EFn(t))+(EFK

n (t, h)−EFn(t))
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and we deal with these two terms separately. The second term equals

EFK
n (t, h)−EFn(t) = E

1

nh

n
∑

i=1

∫ t

−∞
K((x−Xi)/h)dx− F (t)

=

∫ t

−∞

∫

R

h−1K((x− y)/h)f(y)dydx− F (t)

=

∫ t

−∞

∫

R

K(u)f(x− uh)dudx− F (t)

=

∫

R

K(u)

∫ t−uh

−∞
f(v)dvdu− F (t)

=

∫

R

K(u)F (t− uh)du− F (t)

= Kh ∗ F (t)− F (t)

where we have used Fubini’s theorem and the change of variables (x − y)/h 7→ u
in the dy integral. The absolute value of the last term is bounded by c′hm+1 by
Proposition 6 (and using Exercise 29 ifm+1 ≥ 2), observing that the fundamental
theorem of calculus implies that F is m+1 times differentiable when f is m-times
continuously differentiable.

To bound the first term, define the functions gh(x) = Kh∗1(−∞,t](x)−1(−∞,t](x)
and note that

FK
n (t, h)− Fn(t) =

1

n

n
∑

i=1

(
∫

R

1(−∞,t](x)
1

h
K

(

x−Xi

h

)

dx− 1(−∞,t](Xi)

)

=
1

n

n
∑

i=1

gh(Xi)

(using also the symmetry of K). Hence the first term is bounded by

E|FK
n (t, h)− Fn(t)− EFK

n (t, h) + EFn(t)|

= E

∣

∣

∣

∣

∣

1

n

n
∑

i=1

(gh(Xi)−Egh(X))

∣

∣

∣

∣

∣

≤
√

1

n
(Eg2h(X))1/2

=

√

1

n

[

E

(
∫

R

(1(−∞,t](X + y)− 1(−∞,t](X))Kh(y)dy

)2
]1/2
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≤
√

1

n

∫

R

[E(1(−∞,t](X + y)− 1(−∞,t](X))2]1/2|Kh(y)|dy

=

√

1

n

∫

R

[
∫ t

t−y

f(x)dx

]1/2

|Kh(y)|dy

≤
√

1

n
‖f‖1/2∞

∫

R

|y|1/2|Kh(y)|dy

=

√

h

n
‖f‖1/2∞

∫

|v|1/2|K(v)|dv,

where we have used (E|X|)2 ≤ EX2, that Kh integrates to one and Minkowski’s
inequality for integrals (e.g., p.194 in [35]). This proves the first claim (for fixed
t ∈ R).

The second claim of the theorem is proved as follows: Markov’s inequality
(Pr(|X| > t) ≤ E|X|/t) implies that for this choice of hn we have ‖√n(FK

n −
Fn)‖∞ → 0 in probability as n → ∞, so that

√
n(FK

n − F ) has the same limit in
law as

√
n(Fn − F ), which is the F -Brownian bridge by Theorem 10.

This theorem can be used to derive analogues of the results in Section 3.1.3
with Fn replaced by a suitable kernel density estimator, see Section 3.7.1 for more
details.

We see that the choice for h that yields a good pointwise density estimator in
(90) does satisfy the hypotheses of the second claim of the last theorem. So, if
m is known, this kernel density estimator simultaneously estimates the underlying
distribution F function efficiently, and the density consistently at a point, with a
rate of convergence depending on m. This simultaneous property (which is not
shared by the empirical distribution function Fn) is often useful, see Proposition
17 for an example, and [4, 40] for further details.

One can also obtain analogues of the Dvoretzky-Kiefer-Wolfowitz Theorem 11
for the distribution function of the kernel density estimator, and other properties,
but this requires a more exact probabilistic analysis of FK

n . See [40] for further
details. The paper [13] contains some refinements for the case where X is only
required to possess a continuous distribution function, rather than a bounded
density, where the kernel estimator can be shown to be still consistent.

3.4.2 Histogram Density Estimators

An intuitive way to estimate a density, which was also the first to be used in
practice, is the following: take a partition of R into intervals Ik = (ak, ak+1], count
the number of observations in each Ik, divide this number by the length of Ik,
multiply the indicator function 1Ik(x) with the resulting number, and sum over
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all k to obtain the estimator. For example, if the partition is dyadic, so that
(ak)k∈Z = (2−jk)k∈Z, then the estimator has the simple form

fH
n (j, x) =

∑

k∈Z

(

1

n

n
∑

i=1

1(k/2j ,(k+1)/2j ](Xi)

)

2j1(k/2j ,(k+1)/2j ](x). (91)

Using (82) one sees that the expectation of this estimator EfH
n (j, x) = Hj(f)(x)

equals the Haar-projection (76) of f . Hence Proposition 7 can be used to control
the approximation error when using the histogram density estimator (with ’dyadic
bins’), and the role of the ’localization’ parameter h for kernel estimators is the
’binsize’ 2−j, driven by the parameter j.

One can prove analogues of Theorem 19 and Proposition 11 for the dyadic
histogram estimator. To introduce some variation, we now consider the so called
mean integrated squared error (instead of the pointwise loss) of this estimator,
namely

E‖fH
n (j)− f‖22 = E

∫

R

(fH
n (j, x)− f(x))2dx.

Proposition 13. Let X1, ..., Xn be i.i.d. random variables with density f ∈ L2,
and let fH

n be the dyadic histogram estimator. If the derivative Df of f exists and
satisfies ‖Df‖2 <∞, then for every j, n ∈ N we have

E‖fH
n (j)− f‖22 ≤

2j+1

n
+ 2−2j‖Df‖22.

Proof. We use here the fact that Hj(f) can be viewed as the Haar-wavelet pro-
jection and recall the notation from Section 3.3.3. Since fH

n (j)−Hj(f) ∈ Vj and
Hj(f)− f ∈ L2 ⊖ Vj we have

< fH
n (j)−Hj(f), Hj(f)− f >= 0 (92)

and hence the orthogonal decomposition

E‖fH
n (j)− f‖22 = E

∫

R

(fH
n (j, x)−Hj(f)(x))

2dx+ ‖Hj(f)− f‖22.

The second quantity is bounded using Proposition 7. To bound the first quantity,
we write

fH
n (j, x)−Hj(f)(x) =

1

n

n
∑

i=1

(Zi(x)− EZ(x))

with
Zi(x) =

∑

k

2j1(k/2j ,(k+1)/2j ](x)1(k/2j ,(k+1)/2j ](Xi).

91



Now by Fubini’s theorem, recalling the notationK(x, y) =
∑

k∈Z 1(0,1](x−k)1(0,1](y−
k), using a substitution together with (84) and that f is a density we have

E

∫

R

(fH
n (j, x)−Hj(f)(x))

2dx =

∫

R

E(fH
n (j, x)−Hj(f)(x))

2dx

≤ 1

n

∫

R

EZ2
i (x)dx

=
22j

n

∫

R

∫

R

K2(2jx, 2jy)f(y)dydx

=
2j

n

∫

R

∫

R

K2(2jx, 2jx− u)f(x− 2−ju)dudx

≤ 2j

n

∫

R

1[−1,1](u)

∫

R

f(x− 2−ju)dxdu =
2j+1

n
,

which completes the proof.

Balancing the two terms gives the choice

2j ≃
(

n‖Df‖22
2

)1/3

which parallels the convolution kernel case after Proposition 11 with m = 1 (and
after the ’conversion’ h→ 2−j), and in this case we would have the error bound

E‖fH
n (j)− f‖2 ≤

(

2

n

)1/3

‖Df‖1/32 . (93)

Although this is a very neat risk bound with explicit constants, we cannot improve
this rate further if f is more than once differentiable, because of the limitations of
Proposition 7. The histogram estimator is simple and useful in practice, even if
it has theoretical limitations. These limitations can be overcome by replacing the
Haar basis by more general wavelet bases.

3.4.3 Wavelet Density Estimators

Next to approximation by convolution with ’approximate identities’ Kh, it was
shown in the last section that one can approximate functions f by their wavelet
series (81). Suppose again X1, ..., Xn are i.i.d. random variables from the density
f : R → R. If φ and ψ are the generating functions of a wavelet basis satisfying
Condition 1, then recall from (79) that the projection of an arbitrary density f
onto the space Vj spanned by this wavelet basis is given by

Kj(f)(x) =
∑

k∈Z
< φk, f > φ(x− k) +

j−1
∑

l=0

∑

k∈Z
< ψlk, f > ψlk(x),
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where

< φk, f >=

∫

R

φ(y − k)f(y)dy, < ψlk, f >=

∫

R

2l/2ψ(2ly − k)f(y)dy

are the corresponding wavelet coefficients, which can be naturally estimated by
the sample means

α̂k =
1

n

n
∑

i=1

φ(Xi − k), β̂lk =
2l/2

n

n
∑

i=1

ψ(2lXi − k). (94)

Hence the linear wavelet density estimator fW
n (j, x) at resolution level j is

fW
n (j, x) =

∑

k∈Z
α̂kφ(x− k) +

j−1
∑

l=0

∑

k∈Z
β̂lkψlk(x) (95)

=
∑

k∈Z
α̂jk2

j/2φ(2jx− k)

where the second identity follows from arguments similar to those leading to (82),
and where

α̂jk =
2j/2

n

n
∑

i=1

φ(2jXi − k).

One can prove results similar to Theorem 19 and Propositions 11 and 13 for the
wavelet density estimator, as the next proposition shows.

Proposition 14. Let X1, ..., Xn be i.i.d. random variables with density f , and let
fW
n be the wavelet density estimator from (95). Suppose the wavelet basis satisfies
Condition 1 for some S ≥ 0, and let m ≤ S + 1.
i.) If f is bounded and if the m-th derivative of f is bounded on R, by D say, then
for every x ∈ R, every n ∈ N and every j > 0 we have

E|fW
n (j, x)− f(x)| ≤ C

(
√

2j

n
+ 2−jm

)

where the constant C depends only on ‖f‖∞, φ and on D.
ii.) If f ∈ L2 and if D′ := ‖Dmf‖2 <∞ then

E

∫

R

(fW
n (j, x)− f(x))2dx ≤ C ′

(

2j

n
+ 2−2jm

)

where the constant C ′ depends only on φ and on D′.
iii.) If f ∈ L1, D′′ := ‖Dmf‖1 < ∞ and if L(κ) :=

∫

R
(1 + |x|)κf(x)dx < ∞ for
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some κ > 1, then

E

∫

R

|fW
n (j, x)− f(x)|dx ≤ C ′′

(
√

2j

n
+ 2−jm

)

where the constant C ′′ depends only on φ,D′′, L(κ).

Proof. The variance-bias decomposition is (p ∈ {1, 2})
∫

R

|fW
n (j, x)− f(x)|pdx ≤

∫

R

|fW
n (j, x)−Kj(f)(x)|pdx+

∫

R

|Kj(f)(x)− f(x)|pdx,
(96)

(in case p = 2 because of orthogonality as in (92)), and for Part i.) the same holds
without integrals. To deal with the integrand of the first term, define the random
variables Zi(x) = 2jK(2jx, 2jXi) where K(x, y) =

∑

k∈Z φ(x − k)φ(y − k), then,
using the second characterisation of fW

n in (95) we see that

E(fW
n (j, x)−Kj(f)(x))

2 = E

(

1

n

n
∑

i=1

(Zi(x)−EZi(x))

)2

≤ 1

n
EZ2

i (x)

=
22j

n

∫

R

K2(2jx, 2jy)f(y)dy

=
2j

n

∫

R

K2(2jx, 2jx− u)f(x− 2−ju)du

≤ 2j

n

∫

R

c2‖φ‖2∞1[−a,a](u)f(x− 2−ju)du. (97)

where we have used (86).
To prove Part i.) we can use Proposition 9 to bound the second term from

(96). For the first term E|X| ≤
√
EX2 and (97) give the desired bound since

∫

R

c‖φ‖2∞1[−a,a](u)f(x− 2−ju)du ≤ 2ac‖φ‖2∞‖f‖∞.

Part ii.) follows from (96), Proposition 9 and from

E

∫

R

(fW
n (j, x)−Kj(f)(x))

2dx =

∫

R

E(fW
n (j, x)−Kj(f)(x))

2dx

≤ 2j

n

∫

R

∫

R

c‖φ‖2∞1[−a,a](u)f(x− 2−ju)dudx

=
2j+1

n
ac‖φ‖2∞
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where we have used (97), Fubini’s theorem and that f is a density.
To prove Part iii), (99) and Proposition 9 leaves us with the ’variance term’:

Setting aj(x) = 2j1[−a,a](2
jx) we obtain

E

∫

R

|fW
n (j, x)−Kj(f)(x)|dx =

∫

R

E|fW
n (j, x)−Kj(f)(x)|dx

≤
√

2j

n
c‖φ‖∞

∫

R

√

∫

R

1[−a,a](u)f(x− 2−ju)dudx

=

√

2j

n
c‖φ‖∞

∫

R

√

aj ∗ f(x)dx

≤
√

2j

n
cd‖φ‖∞

∫

R

(1 + |x|)κf(x)dx

using Exercise 36.

Similar to the discussion after Proposition 11, one can obtain a ’local’ version of
Part i) of the above result. Moreover one can ask whether Part i.) of Proposition 14
can be made uniform in x ∈ R or whether the integrated wavelet density estimator
has properties similar to Theorem 20. See [41] for such results.

The last proposition implies that we can estimate a density of arbitrary smooth-
ness m at the minimax rate of convergence n−m/(2m+1) (cf. Theorem 16), at least
if we would know m, and if we use wavelets of regularity S ≥ m− 1. As m → ∞
this recovers the ’parametric’ rate 1/

√
n from finite-dimensional models.

3.4.4 Application to Inverse Problems

An enormous field within applied mathematics is concerned with so-called ’inverse
problems’, which are strongly motivated by applications in industrial and medical
engineering as well as in image and signal processing. The main problem can be
described as follows: one would like to observe a signal or function f which, how-
ever, has been corrupted for some external reason (systematic measurement error,
experimental setup of the measurement device, too high cost of full measurement
of f etc.). Mathematically this is often modeled as the observed function being
K(f) instead of f , where K is some operator on some function space. If the op-
erator K is invertible this poses no serious problems, but the interesting case is
usually where K is not invertible, for instance if K is a compact operator on L2.
If K is not invertible these problems are called ’ill-posed’ inverse problems, and
the ’ill-posedness’ is usually measured in terms of the spectral properties of the
operator K (usually the rate of decay of its eigenvalues at infinity).
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A special case of an ill-posed inverse problem is the statistical deconvolution
problem: Suppose we would like to estimate a probability density f : R → R

from a sample X1, ..., Xn of f , but we do not observe the Xi’s, but rather Yi =
Xi + εi, where εi is a random error term with known probability distribution ϕ,
independent of Xi. In the language of inverse problems this means that K is an
integral operator that arises from convolving f with ϕ, and that we do not observe
a sample from f , but from K(f) which has density g := f ∗ ϕ =

∫

f(· − y)dϕ(y),
and would like to estimate f . If ϕ is pointmass at some point x thenK is invertible,
but as soon as ϕ has a density the convolution operator is compact and thus K is
not invertible, so that this is an ill-posed inverse problem.

Minimax Results for Deconvolution Density Estimation.

To understand how nonparametric density estimation changes in the deconvo-
lution problem, let us first consider the minimax risk as in Subsection 3.2. Define,
for m ∈ N, 0 < B <∞, the class of densities

W(m,B) =

{

f : f ≥ 0,

∫

R

f(x)dx = 1, ‖f‖2 + ‖Dmf‖2 ≤ B

}

and define the minimax L2-risk

Rn(m,B) = inf
f̃n

sup
f∈W (m,B)

E‖f̃n − f‖2, (98)

where the infimum is taken over all possible estimators f̃n. Note that an esti-
mator in the deconvolution problem means any measurable function of a sample
Y1, . . . , Yn from density f ∗ ϕ.

The spectrum of the convolution operator K, in particular the decay of its
eigenvalues at infinity, is linked to the decay at infinity of the Fourier transform

F [ϕ](u) =

∫

R

e−ixudϕ(x)

of ϕ. This decay measures, in a way, the regularity properties of the measure ϕ
– for instance if ϕ has an infinitely differentiable density, then F [ϕ] decays faster
than any polynomial.

The following theorem distinguishes the so-called ’moderately ill-posed’ case,
where F [ϕ] decays polynomially at infinity (as is the case, for instance, with
Laplace errors), and the ’severely ill-posed’ case where F [ϕ] may decay expo-
nentially fast (including, for instance, the Gaussian or Cauchy densities). Note
also that if there is no measurement error present so that ϕ equals pointmass δ0
at 0, then c0 = w = 0 in the following theorem which retrieves the minimax rates
from the usual density estimation problem.
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Theorem 21. Suppose ϕ has Fourier transform F [ϕ](u) = C(1+u2)−
w
2 e−c0|u|α, u ∈

R, for some constants C, α > 0 and w, c0 ≥ 0. Then for any m,B > 0 there exists
a constant c := c(m,B,C, α, w, c0) > 0 such that for every n we have

Rn(m,B)) ≥ c







(

1
logn

)
m
α

if c0 > 0
(

1
n

) m
2m+2w+1 if c0 = 0.

For a proof see [32] and also [64]. This shows that for smoother error densities
the problem of estimation of f becomes more difficult. In particular, if ε is standard
normal then the best rate of convergence for estimating f is only of logarithmic
order in n, instead of polynomial rates in the ’direct’ density estimation problem.
If the error density is the Laplace density e−|u|, then the Fourier transform decays
like (1 + x2)−1, so that the best possible rate is polynomial, but deteriorates by
an exponent of w = 2. This is the price to be paid for the non-invertibility of the
convolution operator f 7→ f ∗ ϕ.

Wavelet Deconvolution.

The above results show that deconvolution is a ’harder’ problem than regular
density estimation, and that there are some natural restrictions to the performance
of any estimator. But can we find one estimator that attains the minimax risk
from Theorem 21?

One idea is to ’deconvolve’ g = f ∗ ϕ by ’Fourier inversion’, as follows. We
recall some properties of the Fourier transform F , which for f ∈ L1 is defined as
F [f ](u) =

∫

R
f(x)e−ixudx and can be naturally extended to L2. First

F [f ∗ µ] = F [f ] · F [µ], F [f ∗ g] = F [f ] · F [g]

for any probability measure µ and f, g ∈ L1, second the Plancherel identity

〈g, h〉 = 1

2π
〈F [g], F [h]〉,

for g, h ∈ L2, where 〈·, ·〉 is the L2-inner product; and third, for h ∈ L1 and
α ∈ R \ {0} the function hα(x) := h(αx) has Fourier transform

F [hα](u) = α−1F [h](α−1u).

Denote finally the inverse Fourier(-Plancherel) transform by F−1, F−1h(x) =
(1/2π)

∫

R
h(u)eixudu, so that

F−1Fh = h for h ∈ L2.
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When estimating f we can, following the ideas from the previous sections, esti-
mate its wavelet projection Kj(f) =

∑

k〈φjk, f〉φjk first and then balance estima-
tion with approximation error. To estimate Kj(f), recall (82), write φ0k = φ(·−k),
assume |F [ϕ]| > 0 on R and observe

Kj(f)(x) = 2j
∑

k

φ(2jx− k)

∫

R

φ(2jy − k)f(y)dy

=
∑

k

φ(2jx− k)
1

2π

∫

R

F [φ0k](2−ju)F [f ](u)du

=
∑

k

φ(2jx− k)
1

2π

∫

R

F [φ0k](2−ju)

F [ϕ](u)
F [g](u)du

= 2j
∑

k

φ(2jx− k)

∫

R

φ̃jk(y)g(y)dy

=

∫

R

K∗
j (x, y)g(y)dy, (99)

where the (nonsymmetric) kernel K∗
j is given by

K∗
j (x, y) = 2j

∑

k∈Z
φ(2jx− k)φ̃jk(y)

with

φ̃jk(x) = F−1

[

2−jF [φ0k](2
−j·)

F [ϕ]

]

(x) = φ0k(2
j·) ∗ F−1

[

1[−2ja,2ja]

1

F [ϕ]

]

(x).

The interchange of summation and integration in (99) can be justified by using
the dominated convergence theorem.

Since we have a sample Y1, ..., Yn from the density g the identity (99) suggests
a natural estimator of f , namely the wavelet deconvolution density estimator

fn(x, j) =
1

n

n
∑

m=1

K∗
j (x, Ym), (100)

which is an unbiased estimate of Kj(f)(x). This estimator was studied, for in-
stance, in [64] and [48]. It turns out that both in practice and for the theoretical
development it is advisable to choose wavelets that satisfy Condition 1 with one
crucial difference: the requirement that φ has compact support should be replaced
by the assumption that F [ϕ] has compact support (to have both is not possible
by Heisenberg’s ’uncertainty principle’). Such wavelets exist, for instance ’Meyer
wavelets’. One can then show that the estimator (100) attains the minimax rates
of convergence in Theorem 21. See the exercises for a consistency result.
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3.4.5 Exercises

Exercise 31. Suppose you are given an i.i.d. sample from a bounded density f with
bounded derivative. Suppose c(α, x) is such that Pr(−c(α, x) ≤ Z ≤ c(α, x)) =
1 − α where Z ∼ N(0, f(x)). Use a kernel density estimator (with a suitable
kernel) to obtain a 95 percent confidence interval for f(x) in such a way that the
size of the interval shrinks at rate 1/

√
nhn as n→ ∞, and that h can be chosen so

that this rate is ’almost’ (say, up to a log n term) of order n−1/3. Use an auxiliary
estimator of f(x) to construct a similar confidence interval if you are given only
the quantiles of the standard normal distribution, thereby circumventing that the
variance of the N(0, f(x)) distribution is unknown.

Exercise 32. The following result is known as Bernstein’s inequality: If X1, ..., Xn

are mean zero independent random variables taking values in [−c, c] for some
constant 0 < c <∞, then

Pr

{∣

∣

∣

∣

∣

n
∑

i=1

Xi

∣

∣

∣

∣

∣

> u

}

≤ 2 exp

(

− u2

2nEX2
i + (2/3)cu

)

. (101)

i) If K = 1[−1/2,1/2], use this inequality to prove for the kernel density estimator
that

Pr
{∣

∣fK
n (x, h)−Kh ∗ f(x)

∣

∣ > t
}

≤ 1 exp

{

− nht2

2‖f‖∞ + (2/3)t

}

.

Now choose t = x
√

1/nh and describe the tail of this inequality as x varies over
(0,∞). In which range of ts can one deduce a similar inequality for {|fK

n (x, h) −
f(x)| ≥ t}? ii)+ Prove Bernstein’s inequality.

Exercise 33. Let fK
n (h) be a kernel density estimator with compactly supported

symmetric kernel function K : R → R. Suppose f ∈ L2 is twice differentiable with
∫

R
(D2f(x))2dx < ∞. Bound the mean-integrated squared error E

∫

R
(fK

n (h, x) −
f(x))2dx by

1

nh
‖K‖22 + (1/3)h4‖D2f‖22

(
∫

R

u2K(u)du

)2

.

Find the choice h that balances these antagonistic terms.

Exercise 34. Let fH
n (j) be the Haar wavelet density estimator. Assume that f

is once differentiable with bounded derivative. Show that E|fH
n (j, x) − f(x)| ≤

Cn−1/3 for every x ∈ R, some constant C independent on n, and if one chooses
2jn ≃ n1/3.

Exercise 35. + Consider the statistical deconvolution problem Y = X+ǫ where ǫ
is distributed as a standard Cauchy random variable, and where X is independent
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of ǫ and has unknown density f . Let f̂n be the Meyer-wavelet deconvolution density
estimator at resolution level jn based on Meyer wavelets φ whose Fourier transform
F [φ] is supported in the compact interval [−a, a]. Assuming that f is bounded and
continuous on R and that j := jn → ∞ is chosen in such a way that e2

j+1a/n→ 0,
show that f̂n is pointwise consistent for f , i.e., show that E|f̂n(x)− f(x)| → 0 as
n→ ∞. [You may use freely facts from Fourier analysis, that the Meyer wavelets
form an orthonormal basis of L2, that |Kj(f) − f |(x) → 0 as j → ∞ if Kj(f) is
the wavelet projection of f , as well as the fact that supx∈R

∑

k |φ(x− k)| <∞.]

Exercise 36. + If f and g are two nonnegative functions on R, such that
∫

R
f(x)(1+

|x|)sdx = c(f) is finite for some s > 1 and if g has compact support, in [−a, a] say,
prove that

∫

R

√
gh ∗ f(x)dx ≤ d

√

c(g)c(f) where the constant d depends only on
s and a. (Hint: use Jensen’s inequality.)

3.5 Nonparametric Regression

The typical regression problem is the following: Suppose we are given n pairs of
observations (X1, Y1), ..., (Xn, Yn), and suppose the response variable Y is related
to the covariate (or ’feature’) X by a functional relationship of the form

Yi = m(Xi) + ǫi, E(ǫi) = 0, i = 1, ...n (102)

where m : R → R is some unknown function. In simple linear regression models we
assume m(Xi) = a+ bXi for some unknown a, b, or m(Xi) = m(Xi, θ), θ ∈ Θ ⊂ Rp

in more general parametric models, but nonparametric regression models try to
make as few assumptions on m as possible. If we view the Xi’s as fixed numerical
values, we speak of a ’fixed design’ regression model (and one usually writes xi for
Xi then). Often it is reasonable to treat the covariates also as random, in which
case we speak of a ’random design’ regression model.

Given the random design situation, we usually assume that the (Xi, Yi) are
jointly i.i.d., and there are at least two ways to view the regression problem. For the
first, suppose we have ’unobserved’ errors ǫi that are i.i.d. mean zero with variance
σ2, independent of the Xi’s . In this case we neccesarily have m(x) = E(Y |X = x)
in (102) since

E(Y |X = x) = E(m(X)|X = x) + E(ǫ|X = x) = m(x).

The second approach to this problem avoids an explicit additive structure of the
errors ǫi and views this problem as a mere prediction problem: Given the random
variable X , we would like to predict the value of Y , and the function m(x) =
E(Y |X = x) is always the best predictor (in a mean-square sense), see Exercise
17. So, viewed as a prediction problem, it is of independent interest to estimate
this conditional expectation nonparametrically. All results below apply to both
these ’philosophies’ behind the regression problem.
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3.5.1 Nonparametric regression based on kernel methods

We will show that the methods from kernel density estimation from the last section
can be adapted to estimation of a regression function, both in the random design
case (prediction problem) as well as in the fixed design case.

The ’Nadaraya-Watson’ estimator

We first consider the random design model: Let (Xi, Yi) be an i.i.d. sample
from (X, Y ) with joint density f(x, y) and denote the marginal density of X by
fX(x). Recall that by definition

E(Y |X = x) =

∫

R

y
f(x, y)

fX(x)
dy.

If K is a nonnegative kernel function with
∫

R
K(u)du = 1, then the proposed

estimator for m(x) is

m̂n(h, x) =

∑n
i=1 YiK((x−Xi)/h)
∑n

i=1K((x−Xi)/h)
(103)

if the denominator is nonzero, and zero otherwise. This estimator was first studied
by Nadaraya (1964) and Watson (1964). We will now prove the following theorem
for the case where m is twice and fX once differentiable. Different sets of as-
sumptions are possible, but at the expense of a somewhat unreasonable notational
complexity.

Theorem 22. Suppose m(x) = E(Y |X = x) is bounded and twice continuously
differentiable at x ∈ R, that the conditional variance function V (x) = V ar(Y |X =
x) is bounded on R and continuous at x, and that fX is bounded on R, continuously
differentiable at x, and satisfies fX(x) > 0. Suppose further that K is positive,
symmetric, bounded, compactly supported and integrates to one. If h → 0 as
n→ ∞ satisfies nh/ logn→ ∞, then

E|m̂n(h, x)−m(x)| ≤ L√
nh

+ L′h2 + Zn (104)

where Zn = o
(

h2 + (nh)−1/2
)

,

L2 =
V (x)‖K‖22
fX(x)

and

L′ = κ(2)

(

Dm(x)DfX(x)

fX(x)
+
D2m(x)

2

)
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and where κ(2) was defined in Proposition 6.
In particular, if hn ≃ n−1/5, then, as n→ ∞ we have

E|m̂n(h, x)−m(x)| = O(n−2/5). (105)

Proof. We take w.l.o.g. K = 1[−1/2,1/2] and note in advance that the denominator
of m̂n(h, x) is (up to the 1/nh-term) just the kernel density estimator

f̂X(x) := fK
n (h, x) =

1

nh

n
∑

i=1

K((x−Xi)/h)

based on the covariates. We will also use repeatedly that E(Z) =
∫

E(Z|X =
u)fX(u)du for any absolutely continuous pair (Z,X) of random vectors with
marginal density fX .

Step 1. This step is important, but a little technical and can be skipped
at first reading. We wish to first bound E(m̂n(h, x) − m(x))2 from above by a
constant. We have

E(m̂n(h, x))
2 = E

(∑n
i=1 YiK((x−Xi)/h)
∑n

i=1K((x−Xi)/h)

)2

=

∫

Rn\U
E

[

(∑n
i=1 YiK((x− ui)/h)
∑n

i=1K((x− ui)/h)

)2

|X1 = u1, ..., Xn = un

]

Πn
i=1f

X(ui)dui

where U = {(ui)ni=1 :
∑

iK((x − ui)/h) = 0}, on which the random variable
m̂n(x)|{Xi = ui for all i} equals zero by definition of m̂n. Now the integrand
equals, using vector notation,

E

[

(∑n
i=1(Yi −E[Yi|X = u])K((x− ui)/h)

∑n
i=1K((x− ui)/h)

)2

|X = u

]

+

(∑n
i=1E[Yi|X = u]K((x− ui)/h)
∑n

i=1K((x− ui)/h)

)2

,

where the second summand is bounded by ‖m‖2∞ since E[Yi|X = u] = E[Y |X =
ui] = m(ui) and since K is positive. Similarly, the first summand equals, by
(conditional) independence,

∑n
i=1 V ar(Y |X = ui])K

2((x− ui)/h)

(
∑n

i=1K((x− ui)/h))
2 ≤ ‖V ‖∞

since, setting Ki = K((x− ui)/h), we have
∑

K2
i

(
∑

Ki)
2 ≤ 1 ⇐⇒ 2

∑

i 6=j

KiKj ≥ 0
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which is satisfied by positivity of the kernel. Since Πn
i=1f

X is integrable on R
n we

conclude

E(m̂n(h, x)−m(x))2 ≤ 4‖m‖2∞ + 2‖V ‖∞ = d2(‖m‖∞, ‖V ‖∞) := d2. (106)

Furthermore, since fX(x) > 0 and since fX is continuous at x, there exists a
neighborhood of x where fX is greater than or equal to 2δ for some δ > 0. Then

Kh ∗ fX(x) = h−1

∫

R

K

(

x− y

h

)

fX(y)dy =

∫ 1/2

−1/2

fX(x− hu)du ≥ 2δ (107)

for h small enough and since K is positive and integrates to one. Now using
the Cauchy-Schwarz and Bernstein’s inequality (Exercise 32), (106), (107) and
nh/ logn → ∞, we have for some divergent sequence an and some fixed constant
c := c(δ, ‖fX‖∞) that

E|m̂n(h, x)−m(x)|1{f̂X(x) ≤ δ} ≤
(

E(m̂n(h, x)−m(x))2
)1/2

√

Pr{f̂X(x) ≤ δ}

≤ d

√

Pr{|f̂X(x)−Kh ∗ fX(x)| ≥ δ}

≤
√
2d exp

{

− nhδ2

4‖fX‖∞ + (2/6)δ

}

≤
√
2d exp

{

− nhδ2

4‖fX‖∞ + (2/6)δ

}

.

≤
√
2d exp {−anc logn} = O(n−anc)

which is o
(

h2 + (nh)−1/2
)

in view of the maintained assumptions on h.
Step 2. We now proceed with the main proof, and only have to consider

E|m̂n(h, x)−m(x)|1{f̂X(x) > δ},

so can work on the event {f̂X(x) > δ} for some δ > 0. On this event, setting
shorthand

ĝ(x) =
1

nh

n
∑

i=1

YiK((x−Xi)/h),

and g(x) = m(x)fX(x) we can write

m̂n(h, x)−m(x) =
ĝ(x)

f̂X(x)
− g(x)

fX(x)

=
ĝ(x)fX(x)− g(x)f̂X(x)

f̂X(x)fX(x)
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=
ĝ(x)fX(x)− g(x)f̂X(x)

(fX(x))2

+
ĝ(x)fX(x)− g(x)f̂X(x)

(fX(x))2

(

fX(x)

f̂X(x)
− 1

)

:= Mn +Mn

(

fX(x)

f̂X(x)
− 1

)

, (108)

and we treat the expectation of Mn first. Define the random variables

Wi = YiK

(

x−Xi

h

)

fX(x)−K

(

x−Xi

h

)

g(x)

so that

(E|Mn|)2 ≤ EM2
n

= (fX(x))−4E
(

ĝ(x)fX(x)− g(x)f̂X(x)
)2

= (fX(x))−4n−2h−2E

(

n
∑

i=1

Wi

)2

= (fX(x))−4n−2h−2



V ar

(

n
∑

i=1

Wi

)

+

(

n
∑

i=1

EWi

)2


 . (109)

We bound the variances

V ar(Wi) ≤ E(W 2
i )

= E

(

Y K

(

x−X

h

)

fX(x)−K

(

x−X

h

)

m(x)fX(x)

)2

= (fX(x))2E

(

(Y −m(x))K

(

x−X

h

))2

= (fX(x))2
∫

R

E((Y −m(x))2|X = u)K2

(

x− u

h

)

fX(u)du

= (fX(x))2h

∫

R

E((Y −m(x))2|X = x− vh)K2(v)fX(x− vh)dv

= (fX(x))3hV ar(Y |X = x)‖K‖22 + o(h)

using that m(x) is the conditional expectation E(Y |X = x), and continuity of the
functions V ar(Y |X = (·)), m and fX at x, inserting and subtracting

E((Y −m(x− vh))2|X = x− vh) = V (x− vh)
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in the last integrand. Since the (Yi, Xi) are jointly i.i.d. we have V ar(
∑

Wi) =
nV ar(Wi), and plugging this bound into the first part of (109) yields the first term
in (104).

We next bound the means EWi. By applying Taylor expansions similar as
in the proof of Proposition 6, using that m is twice and fX once continuously
differentiable at x, we have

EWi = E

(

Y K

(

x−X

h

)

fX(x)−K

(

x−X

h

)

m(x)fX(x)

)

= fX(x)

∫

R

(E(Y |X = u)−m(x))K

(

x− u

h

)

fX(u)du

= fX(x)h

∫

R

(m(x− vh)−m(x))K(v)fX(x− vh)dv

= (fX(x))2h

∫

R

(m(x− vh)−m(x))K(v)dv

+fX(x)h

∫

R

(m(x− vh)−m(x))(fX(x− vh)− fX(x))K(v)dv

≤ h3κ(2)
(

(fX(x))22−1D2m(x) + fX(x)Dm(x)DfX(x)
)

+ o(h3).

Feeding this bound into the second part of (109) yields the second term in (104).
It remains to prove that the expectation of the second term in (108) is of smaller
order than the first. Clearly

E

∣

∣

∣

∣

∣

Mn

(

fX

f̂X(x)
− 1

)∣

∣

∣

∣

∣

≤ (EM2
n)

1/2



E

(

fX(x)

f̂X(x)
− 1

)2




1/2

by the Cauchy-Schwarz inequality which completes the proof of the theorem by
what was established about EM2

n above and since, on the event {f̂X
n (x) > δ},

E

((

fX(x)

f̂X(x)
− 1

))2

≤ δ−2E(fX(x)− f̂X(x))2 → 0

as n→ ∞ by the same arguments as in the proof of Proposition 11.

This result shows that the very simple estimator (103) has a reasonable per-
formance for estimating an arbitrary twice differentiable regression function. We
should also note that the hypotheses on the error term ǫ are rather weak here, and
essentially implicit in the assumptions on m and V .

Similar to Section 3.2, one can show that the rate of convergence in (105) is
best possible over the class of twice differentiable regression functions, so that this
theorem is optimal in this respect.
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We have also seen that roughly the same techniques needed to derive proper-
ties of kernel density estimators are needed in regression. One can then proceed
and prove results similar to those in Section 3.4 for regression estimators, e.g., a
pointwise limit theorem analogous to Proposition 12.

3.5.2 Local polynomial estimators.

A more general class of regression estimators is given by local polynomial estima-
tors : Define the (ℓ+ 1)× 1 vectors

U(t) = (1, t, t2/2!, ..., tℓ/ℓ!)T , M(x) =
(

m(x), Dm(x)h,D2m(x)h2, ..., Dℓm(x)hℓ
)T
.

If K ∈ L1 is a positive kernel that integrates to one and ℓ ≥ 0 an integer, define
an estimator of M(x) given by

M̂n(h, x) = arg min
M∈Rℓ+1

n
∑

i=1

[

Yi −MTU

(

Xi − x

h

)]2

K

(

Xi − x

h

)

. (110)

The statistic m̂ℓ
n(h, x) = U(0)T M̂n(h, x), which picks the first component out of

the vector M̂n(h, x), is called the local polynomial estimator of order ℓ of m(x). If
ℓ ≥ 1 the successive components of the vector M̂n(h, x) furnish us with estimates
of the derivatives of m as well.

For x fixed m̂ℓ
n(h, x) is a weighted least squares estimator, and this fact is

investigated further in Exercise 38. In particular, the case ℓ = 0 will be seen to
correspond to the Nadaraya-Watson estimator (103), as one can show that

m̂ℓ
n(h, x) =

n
∑

i=1

YiWni(x) (111)

where (see Exercise 38)

Wni(x) =
1

nh
UT (0)B−1U

(

Xi − x

h

)

K

(

Xi − x

h

)

if the matrix

B =
1

nh

n
∑

i=1

U

(

Xi − x

h

)

UT

(

Xi − x

h

)

K

(

Xi − x

h

)

is invertible . In the fixed design case with equal spacings one can show that the
matrix B has a lower bound λ0 > 0 on its smallest eigenvalue that is uniform in x
and n ≥ n0 for n0 large enough, see p.40 in [79], so that the latter assumption is
mild.

The following proposition gives a risk bound for the local polynomial estimator
similar to the one in Theorem 22, but for fixed design.
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Proposition 15. Let xi = i/n, i = 1, ..., n, be fixed design points on the interval
[0, 1] and suppose Yi = m(xi) + ǫi where ǫi are mean zero i.i.d. random variables
with finite variance σ2. Let m̂n(x) := m̂ℓ

n(h, x) be the local polynomial estimator
of order ℓ with compactly supported kernel K ∈ L∞, and assume that the smallest
eigenvalue λmin of B is greater than or equal to λ0 > 0 for every n ∈ N, x ∈ [0, 1].
Suppose m : R → R is s-times differentiable with m,Dsm ∈ L∞, s = ℓ + 1. Then
there exists a constant L := L(‖Dsm‖∞, λ0, σ2, ℓ) such that for every h > 0, every
n ∈ N such that nh ≥ 1 and every x ∈ [0, 1] we have

E |m̂n(x)−m(x)| ≤ L

(

1√
nh

+ hs
)

.

Proof. Consider without loss of generality the case whereK is supported in [−1/2, 1/2].
We need a few preliminary results: First, if Q is any polynomial of degree less than
or equal to ℓ, then

n
∑

i=1

Q(xi)Wni(x) = Q(x). (112)

To see this write

Q(xi) = Q(x) +DQ(x)(xi − x) + · · ·+ DℓQ(x)(xi − x)ℓ

ℓ!
=: qT (x)U

(

xi − x

h

)

where q(x) = (Q(x), DQ(x)h, · · · , DℓQ(x)hℓ). Setting Yi = Q(xi) we obtain

M̂n(h, x) = arg min
M∈Rℓ+1

n
∑

i=1

(

Q(xi)−MTU

(

xi − x

h

))2

K

(

xi − x

h

)

= arg min
M∈Rℓ+1

n
∑

i=1

(

(q(x)−M)TU

(

xi − x

h

))2

K

(

xi − x

h

)

= arg min
M∈Rℓ+1

(q(x)−M)TB(q(x)−M)

which for invertible B is minimised at M = q(x), and we obtain m̂n(x) = Q(x).
On the other hand by (111) we have m̂n(x) =

∑n
i=1Q(xi)Wni(x) for this Yi, which

establishes (112).
Moreover we have, using ‖U(0)‖ = 1 (‖ · ‖ is the Euclidean norm on Rℓ+1)

|Wni(x)| ≤ 1

nh

∥

∥

∥

∥

B−1U

(

xi − x

h

)

K

(

xi − x

h

)∥

∥

∥

∥

≤ ‖K‖∞
λ0nh

∥

∥

∥

∥

U

(

xi − x

h

)∥

∥

∥

∥

I

{∣

∣

∣

∣

xi − x

h

∣

∣

∣

∣

≤ 1/2

}

≤ C(λ0, K)

nh
(113)
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for some constant C(λ0), using the eigenvalue assumption on B. Likewise, using
nh ≥ 1 when nh is moderate and a Riemann sum approximation when n >> h
one has

n
∑

i=1

|Wni(x)| ≤
C(λ0, K)

nh

n
∑

i=1

I {x− h/2 ≤ i/n ≤ x+ h/2} ≤ C ′(λ0, K). (114)

We now proceed to prove the proposition: (112) implies
∑

iWni(x) = 1 as well as
∑

i(xi − x)kWni(x) = 0 for k = 1, ..., ℓ, so using also (114) and a Taylor expansion

|Em̂n(x)−m(x)| =

∣

∣

∣

∣

∣

n
∑

i=1

(m(xi)−m(x))Wni(x)

∣

∣

∣

∣

∣

=

∣

∣

∣

∣

∣

n
∑

i=1

Dℓm(x− θ(x− xi))−Dℓm(x)

ℓ!
(xi − x)ℓWni(x)

∣

∣

∣

∣

∣

≤ ‖Dsm‖∞
ℓ!

n
∑

i=1

|xi − x|s|Wni(x)|I
{ |xi − x|

h
≤ 1/2

}

≤ Chs.

where C := C(‖Dsm‖∞, ℓ, λ0, K). Furthermore, using (113), (114), E|X| ≤
(EX2)1/2 and independence

(E |m̂n(x)− Em̂n(x)|)2 =

(

E

∣

∣

∣

∣

∣

n
∑

i=1

(Yi −EYi)Wni(x)

∣

∣

∣

∣

∣

)2

≤ E

(

∑

i

ǫiWni(x)

)2

=
∑

i

W 2
ni(x)E(ǫ

2
i )

≤ σ2 sup
i

|Wni(x)|
∑

i

|Wni(x)|

≤ C(σ2, λ0, K)

nh

which completes the proof after taking square roots.

3.5.3 More Regression Methods

Penalized nonparametric regression and cubic splines.

Consider again the fixed design regression model Yi = m(xi) + ǫi, where we
assume for simplicity that the design points are equally spaced on [0, 1], say xi =
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i/(n+1) for i = 1, ..., n. The estimators in (110) were obtained by a weighted least
squares procedure. An alternative approach is to penalize the objective function
to be minimized for complexity of the function m, measured, e.g., by the size

J(m) =

∫

R

(D2m(x))2dx

of its second derivative. To be precise, we would like to minimize the objective
function

Q(m, λ) =
n
∑

i=1

(Yi −m(xi))
2 + λJ(m) (115)

over all twice differentiable functions m (or, to be precise, all differentiable func-
tionsm with absolutely continuous Dm andD2m ∈ L2). For each λ this minimizer
is unique and can be explicitly characterised by a cubic spline m̂S

n with breakpoints
at the xi’s, see Schoenberg (1964) and Exercise 39. Similar to Theorem 17 every
cubic spline can be uniquely decomposed into a linear combination of (suitably
rescaled) cubic B-splines Nl, i.e.

m̂S
n(x) =

n+4
∑

l=1

ĉlNl(x).

Denote then by N the n× (n+ 4) matrix with entries nkl = Nl(k/(n+1)) and by
C the transposed (n+ 4)× 1 vector of ĉl’s, then we can rewrite the minimization
problem involving (115) as

argmin
C

[

(Y −NC)T (Y −NC) + λCTΩC
]

where the (n+4)× (n+4) matrix Ω has entry ωlk =
∫

R
D2Nl(x)D

2Nk(x)dx. This
is now a simple linear algebra problem (similar to ridge-regression), and we obtain
(cf. Exercise 40) that

C = (NTN + λΩ)−1NTY.

It should be clear the role of the ’bandwidth’ h in local polynomial regression is
paralleled by the parameter λ in penalized regression. In particular, one can show
that these penalized spline estimates are equivalent to certain kernel estimators
with a fixed kernel choice, see Silverman (1984), and then the techniques from
kernel estimation can be applied here as well. For more details on cubic splines in
regression estimation see Green and Silverman (1994).

Wavelet Regression.

Consider again the fixed design regression model Yi = m(xi)+ ǫi with xi = i/n
for i = 1, ..., n. Another approach to estimate m is to first approximate m by the
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partial sum

Kj(m) =
∑

k

< φk, m > φk +

j−1
∑

l=0

∑

k

< ψlk, m > ψlk

of its wavelet series, cf. (79). To make this work we have to estimate the coefficients
< φk, m > and < ψlk, m > from the sample. A sensible choice is

α̂k =
1

n

n
∑

i=1

Yiφk

(

i

n

)

, β̂lk =
1

n

n
∑

i=1

Yiψlk

(

i

n

)

with expectations

Eα̂k =
1

n

n
∑

i=1

m(i/n)φk(i/n) ≃
∫

mφk, Eβ̂lk =
1

n

n
∑

i=1

m(i/n)ψlk(i/n) ≃
∫

mψlk.

The wavelet regression estimator is then

m̂W
n (j, x) =

∑

k

α̂kφk(x) +

j−1
∑

l=0

∑

k

β̂lkψlk(x). (116)

To derive theoretical properties of these estimators one can proceed similar as in
Proposition 14. See Chapter 10.8 in [47] for more details.

3.5.4 Exercises

Exercise 37. Suppose we are given two random variables Y and X , and given
an observation from X , we want to predict the value of Y . Let g(X) denote any
predictor, i.e., g is any measurable function. Prove E[(Y − g(X))2] ≥ E[(Y −
E(Y |X))2].

Exercise 38. Show that the local polynomial regression estimator m̂ℓ
n(h, x) equals

the Nadaraya-Watson estimator for ℓ = 0. Derive an explicit formula for the
local polynomial estimator of the form m̂ℓ

n(h, x) =
∑n

i=1 YiWni(x) for some weight
function Wni(x).

Exercise 39. A cubic spline r on [0, 1] with breakpoints 0 < x1 < x2 < ... < xn <
1 is a continuous function that is a cubic polynomial over (0, x1), (xi, xi+1)

n−1
i=1 , (xn, 1)

and that has continuous first and second order derivatives at the knots. A cubic
spline is called natural if D2g(0) = D2g(1) = D3g(0) = D3g(1) = 0, where
third derivatives are understood one-sided. Let m be any minimizer of Q(m) =
∑n

i=1(Yi−m(xi))
2+λJ(m) over the set of twice differentiable functions m defined
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on [0, 1], where xi = i/(n + 1), i = 1, ..., n, Y1, ..., Yn are real numbers, λ ∈ R and
J(m) = ‖m′′‖22. Show that m can be taken to be a natural cubic spline . [You
may use the fact that for any set of numbers z1, ..., zn we can find a unique natural
cubic spline g such that g(xi) = zi.]

Exercise 40. Let p ≥ n and let N be n × p and Ω a symmetric p× p matrix, C
a p× 1 and Y a n× 1 vector. Consider the minimization problem

argmin
C

[

(Y −NC)T (Y −NC) + λCTΩC
]

where λ is a fixed scalar. Show that the minimzer satisfies C = (NTN+λΩ)−1NTY ,
assuming invertibility of the involved matrices when necessary

3.6 Choosing the Tuning Parameters

The risk bounds obtained in the last two sections did all depend on a ’tuning
parameter’, either the bandwidth h or the resolution level j. For instance, the
optimal choices necessary to obtain the results (90), (93), (105) all depended on
several unknown constants, most notably the unknown degree of differentiability of
the unknown functions f orm. In practice then, how do we choose the bandwidth?

Another problem is the following: Suppose we know that f is once differen-
tiable at x0 but ten times differentiable at x1. Then at the point x1, we could use
Daubechies wavelets of regularity 9 and estimate f(x1) very well with 2jn ≃ n1/21,
achieving the optimal rate of convergence n−10/21 in the pointwise risk. On the
other hand, to estimate f(x0), this choice of jn fails badly, having rate of conver-
gence n−1/21 in the pointwise risk, and we should rather take 2jn ≃ n1/3 to obtain
the optimal rate n−1/3. But then this estimator will be suboptimal for estimating
f(x1). Can we find a single estimator that is optimal at both points?

At least two paradigms exist to address these questions. One is motivated
from practice and tries to choose h and jn in a way that depends both on the data
and on the point x where we want to estimate f . While many procedures can
be proposed, there are generally no theoretical justifications for or comparisons
between these procedures.

The other paradigm could be called ’adaptive estimation’, where one wants to
devise estimators that, at least for large samples sizes, are as good (sometimes
only ’nearly’ as good) as the generally infeasible procedure that would be chosen
if the smoothness of f were known. Adaptation can be ’spatial’ (to the different
smoothness degrees at different points in space), ’to the unknown smoothness of f ’,
or to some other unknown structural property of f . Here some deep mathematical
results can be obtained. The results are often only asymptotic (for large n), and
performance in small samples is generally not well-understood, with some notable
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exceptions. Furthermore, the adaptation paradigm has a concept of ’statistical
performance’ which derives from the minimax paradigm (cf. Section 3.2), and this
itself can be questioned as being too pessimistic. In any case, adaptive estimation
gives final theoretical answers of a certain kind to many nonparametric estimation
problems.

3.6.1 Some Heuristic Methods

Cross Validation.

We start with a very simple yet practically effective method, and we present it
in the framework of regression. Let m̂n(h, x) be the Nadaraya Watson estimator
from (103). Define

m̂n,−i(h, x) =

∑n
j=1,j 6=i YjK((x−Xj)/h)
∑n

j=1,j 6=iK((x−Xj)/h)
,

the same estimator obtained from leaving the i-th observation out. Then the
leave-one-out cross validation score is defined as

CV (h) =
1

n

n
∑

i=1

(Yi − m̂n,−i(h,Xi))
2. (117)

The idea would now be to choose h such that CV (h) is minimized. For estima-
tors that are ’linear’ (as the Nadaraya-Watson estimator), one can compute this
quantity in a numerically effective way. There are also generalized cross-validation
ideas. One can then proceed heuristically with this choice of h to make statistical
inference, see Chapters 5.2 to 5.9 in Wasserman (2006) for these and more facts
and details.

Variable Bandwidth Choice.

Another way to choose h is dependent on the point at which one estimates f .
Take for instance the kernel density estimator, then we propose

f̂K
n (x) =

n
∑

i=1

1

nh(x, i)
K

(

x−Xi

h(x, i)

)

,

where now the bandwidth h(x, i) may depend both on x and i. For example one
can take h(x, i) = hk(x) to be the distance of x to the k-th nearest sample point.
Or one takes h(x, i) = hk(i) the distance from Xi to the k-th nearest sample
point. Another choice is hi ≃ f(Xi)

−1/2, where of course f has to be replaced by
a preliminary estimate. These methods are particularly designed to estimate the
density in a ’localized’ way, meaning that the bandwidth depends on the point
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x. There seem to be no theoretical results confirming that these choices lead to
good overall statistical procedures. But they are heuristically plausible and used
in practice. We refer to the paper Terrell and Scott (1992) for more discussion and
details.

Hard Thresholding.

If the nonparametric estimator comes from a series expansion, such as in the
case of the Haar basis or wavelets, there is another simple heuristic to construct an
estimator which, in a certain way, circumvents the problem of bandwidth-choice.
Take, for instance, a general wavelet density estimator

fW
n (j, x) =

∑

k∈Z
α̂kφ(x− k) +

j0−1
∑

l=0

∑

k∈Z
β̂lkψlk(x) +

j1−1
∑

l=j0

∑

k∈Z
β̂lkψlk(x).

where the coefficients α̂k and β̂lk are the empirical wavelet coefficients defined in
(94). The idea of hard thresholding is to i) first choose a rather small level j0 and
a very large level j1 (not depending on any unknown constants), and then ii) keep
only those β̂lkψlk(x)’s between the resolution levels j0 and j1 − 1 where |β̂lk| > τ
for some threshold τ . More precisely, the thresholded wavelet density estimator is,
for given j0, j1, τ .

fT
n (x) =

∑

k∈Z
α̂kφ(x−k)+

j0−1
∑

l=0

∑

k∈Z
β̂lkψlk(x)+

j1−1
∑

l=j0

∑

k∈Z
β̂lk1{|β̂lk| > τ}ψlk(x). (118)

This estimator was introduced and studied in Donoho and Johnstone (1995),
Donoho, Johnstone, Kerkyacharian and Picard (1996). Of course, at first sight this
just transfers the problem to the appropriate choice of the threshold τ . However,
if < ψlk, f >= 0 so that the basis function ψlk has no significance in reconstruct-
ing f , then β̂lk = n−1

∑n
i=1 ψlk(Xi) is a centred i.i.d. sum of random variables,

and if f is bounded the corresponding variances are uniformly bounded in l. By
Bernstein’s inequality (Exercise 32) such sample means make excursions of size
√

(logn)/n with probability vanishing polynomially in n, and this motivates the

universal choice τ = C
√

log n/n, where C is some numerical constant which can
be chosen to depend only on ψ and ‖f‖∞ (the latter constant being estimable from
the data in a simple way). It should be noted that, since ψ has compact support,
this procedure effectively gives rise to a ’spatially variable resolution level choice’,
in the sense that the number of basis functions used to estimate f at x0 can be
very different from the number used at x1.
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3.6.2 Adaptive Estimation by Wavelet Thresholding

The heuristic procedures from the previous chapter all have their merits, but it
is difficult to assess the statistical performance of the final estimator obtained, at
least from a theoretical point of view. For example, we would like to have explicit
risk bounds or rates of convergence for the regression estimator m̂n(ĥn, x) where
ĥn was chosen by one of these procedures. Since ĥn is now random, the proofs
from the previous sections do not apply here.

Quite remarkably, the wavelet thresholding procedure can be shown to be adap-
tive: It has risk properties that are (almost) as good as an estimator built with
the knowledge of the smoothness of f .

The main ideas of the proof of the following deep result are from Donoho,
Johnstone, Kerkyacharian and Picard (1996). It shows that the estimator fT

n with
purely data-driven choice of τ, j0, j1 estimates a m-times differentiable density at
the minimax rate of convergence in pointwise loss from Theorem 16, up to a term
of logarithmic order in n, without requiring the knowledge of m. In the theorem
below we require the density to have a globally bounded m-th derivative, so that
the theorem does not prove spatial adaptivity. However, a refinement of this proof
shows that this is also the case, i.e., one can relax the assumption of a globally
bounded m-th derivative to existence of Dmf in a neighborhood of x only, and
to Dmf being bounded in this neighborhood. We comment on the role of the
constant κ after the proof of the theorem.

Theorem 23. Let X1, ..., Xn be i.i.d. with bounded density f . Let fT
n be the thresh-

olding wavelet density estimator from (118) based on wavelets satisfying Condi-
tion 1 for some S. Choose j0 < j1 in such a way that 2j0 ≃ n1/(2S+3) and
n/ logn ≤ 2j1 ≤ 2n/ logn, and set τ := τn = κ

√

(logn)/n. If f is m-times
differentiable, 0 < m ≤ S + 1, with Dmf ∈ L∞, then there exists a choice of κ
depending only on ‖f‖∞ and ψ such that

E|fT
n (x)− f(x)| = O

(

(

log n

n

)m/(2m+1)
)

.

Proof. Writing βlk for < f, ψlk >, we have

|fT
n (x)− f(x)| ≤ |fW

n (j0)(x)−Kj0(f)(x)|+ |Kj1(f)(x)− f(x)|

+

∣

∣

∣

∣

∣

j1−1
∑

l=j0

∑

k

(β̂lk1{|β̂lk| > τ} − βlk)ψlk(x)

∣

∣

∣

∣

∣

.

Using (97), the expectation of the first term on the r.h.s. of the inequality is of
order

√

2j0

n
≃
(

1

n

)
S+1

2(S+1)+1

= O

(

(

1

n

)
m

2m+1

)
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since m ≤ S+1, which is of smaller order than the bound required in the theorem.
Similarly, using Proposition 9iii, the second term is of order

|Kj1(f)(x)− f(x)| ≤ C2−j1m ≃
(

log n

n

)m

which is of smaller order than the bound required in the theorem in view of m >
m/(2m+ 1).

It remains to control the third term. We write

j1−1
∑

l=j0

∑

k

(β̂lk − βlk)ψlk(x)
(

1{|β̂lk| > τ, |βlk| > τ/2}+ 1{|β̂lk| > τ, |βlk| ≤ τ/2}
)

−
j1−1
∑

l=j0

∑

k

βlkψlk(x)
(

1{|β̂lk| ≤ τ, |βlk| > 2τ} + 1{|β̂lk| ≤ τ, |βlk| ≤ 2τ}
)

= I + II + III + IV,

and we treat these four terms separately.
We mention in advance some preliminary facts that we shall use repeatedly.

First, for fixed x and l, all sums over k are finite and consist of at most 2a + 1
terms due to the compact support of ψ. (To be precise, only the k’s with 2lx−a ≤
k ≤ 2lx+ a are nonzero, where ψ is supported in [−a, a].) Furthermore, we have

E(β̂lk − βlk)
2 ≤ 2l

n

∫

ψ2(2lx− k)f(x)dx ≤ 1

n
‖f‖∞, (119)

recalling ‖ψ‖22 = 1. Finally, a bounded function with bounded m-th derivative can
be shown to satisfy the estimate

sup
k

|βlk| ≤ d2−l(m+1/2) (120)

for some constant d: To see this note that
∫

ψ(u)uα = 0 for 0 ≤ α ≤ S in view of
Condition 1 allows us to write, using a Taylor expansion,

βlk =

∫

R

ψlk(y)(f(y)− f(k2−l))dy = 2−l/2

∫

R

ψ(u)(f((u+ k)2−l)− f(k2−l))du

= 2−l(m−1/2)

∫

R

ψ(u)um−1

(

Dm−1f((ζu+ k)2−l)−Dm−1f(k2−l)

(m− 1)!

)

du

which gives (120) by compact support of ψ.
About term (I): Let j1(m) be such that j0 ≤ j1(m) ≤ j1 − 1 and

2j1(m) ≃ n1/(2m+1)
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(such j1(m) exists by the definitions). Using (119) and compact support of ψ, we
have, for some constant that depends only on ψ and ‖f‖∞ that

E

∣

∣

∣

∣

∣

∣

j1(m)−1
∑

l=j0

∑

k

(β̂lk − βlk)ψlk(x)I[|β̂lk|>τ,|βlk|>τ/2]

∣

∣

∣

∣

∣

∣

≤
j1(m)−1
∑

l=j0

∑

k

√

E(β̂lk − βlk)2|ψlk(x)|

≤ C

j1(m)−1
∑

l=j0

√

2l

n
= O

(
√

2j1(m)

n

)

= o

(

(

log n

n

)m/(2m+1)
)

.

For the second part of (I), using (119), (120), the definition of τ and again compact
support of ψ, we have

E

∣

∣

∣

∣

∣

∣

j1−1
∑

l=j1(m)

∑

k

(β̂lk − βlk)ψlk(x)I[|β̂lk|>τ,|βlk|>τ/2]

∣

∣

∣

∣

∣

∣

≤
j1−1
∑

l=j1(m)

∑

k

√

E
(

|β̂lk − βlk|
)2 2

κ

√

n

log n
sup
k

|βlk||ψlk(x)|

≤ C(log n)−1/2

j1−1
∑

l=j1(m)

2−lm = o

(

(

log n

n

)m/(2m+1)
)

.

For (II) we have, using (119) and the Cauchy-Schwarz inequality

E

∣

∣

∣

∣

∣

j1−1
∑

l=j0

∑

k

(β̂lk − βlk)ψlk(x)I[|β̂lk|>τ,|βlk|≤τ/2]

∣

∣

∣

∣

∣

≤
j1−1
∑

l=j0

∑

k

√

E(β̂lk − βlk)2 Pr{|β̂lk| > τ, |βlk| ≤ τ/2}1/2|ψlk(x)|

≤ ‖ψ‖2‖ψ‖∞‖f‖1/2∞√
n

j1−1
∑

l=j0

2l/2
∑

k∈[2jx−a,2jx+a]

Pr{|β̂lk| > τ, |βlk| ≤ τ/2}1/2

and we next analyse the probability appearing in the square root: Bernstein’s
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inequality (Exercise 32) gives, for l ≤ j1 − 1 (and n ≥ e2),

Pr{|β̂lk| > τ, |βlk| ≤ τ/2}
≤ Pr{|β̂lk − βlk| > τ − |βlk|, |βlk| ≤ τ/2}
≤ Pr{|β̂lk − βlk| > τ/2}

= Pr

{∣

∣

∣

∣

∣

n
∑

i=1

(ψ(2lXi − k)− Eψ(2lX − k))

∣

∣

∣

∣

∣

> 2−1κ
√

n log n/2l

}

≤ 2 exp

(

− κ2 log n

8‖ψ‖22‖f‖∞ + 8
3
κ‖ψ‖∞

√

2l logn/n

)

≤ 2 exp

(

− κ2 log n

8‖f‖∞ + 8
3
√
log 2

κ‖ψ‖∞

)

, (121)

a bound which is independent of k. Consequently, we have the overall bound for
(II)

C ′ 1√
n

j1−1
∑

l=j0

2l/2 exp

(

− κ2 logn

16‖f‖∞ + 16
3
√
log 2

κ‖ψ‖∞

)

, (122)

which can be made as small as desired by choosing κ large enough. For term (III),
using compact support of ψ, (120) and (121)

E

∣

∣

∣

∣

∣

j1−1
∑

l=j0

∑

k

βlkψlk(x)I[|β̂lk|≤τ,|βlk|>2τ ]

∣

∣

∣

∣

∣

≤
j1−1
∑

l=j0

(2a+ 1)2l/2‖ψ‖∞ sup
k

|βlk| sup
k

Pr{|β̂lk| ≤ τ, |βlk| > 2τ}

≤ c

j1−1
∑

l=j0

2−lm sup
k

Pr{|β̂lk − βlk| > τ}

≤ c

j1−1
∑

l=j0

2−lm exp

(

− κ2 logn

8‖p0‖∞ + 8
3
√
log 2

κ‖ψ‖∞

)

= o

((

log n

n

)m/(2m+1) )

for κ large enough. Finally, for term (IV) we have, using compact support of ψ
and (120), that
∣

∣

∣

∣

∣

j1−1
∑

l=j0

∑

k

βlkψlk(x)I[|β̂lk|≤τ,|βlk|≤2τ ]

∣

∣

∣

∣

∣

≤ (2a+ 1)‖ψ‖∞
j1−1
∑

l=j0

sup
k

2l/2|βlk|I[|βlk|≤2τ ]

≤ c

j1−1
∑

l=j0

min(2l/2τ, 2−lm),
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Let j̄1(m) ∈ {j0, . . . , j1 − 1} such that 2j̄1(m) ≃ (n/ logn)1/(2m+1) and estimate the
last quantity by

c

√

log n

n

∑

j0≤l≤j̄1(m)−1

2l/2 + c
∑

j̄1(m)≤l≤j1−1

2−lm

both of which are of order

O

((

logn

n

)m/(2m+1) )

,

completing the proof.

To reduce technicalities, we did not specify the constant κ in the above theorem,
but this can be done easily by tracking the constants explicitly in the proof, see
Exercise 41. One can replace ‖f‖∞ by ‖fW

n (j1)‖∞ and the proof goes through as
well, using results in [41].

We say that the hard thresholding estimator is rate-adaptive within a logarith-
mic factor, because it achieves the minimax rate of convergence from Theorem 16
up to a factor of order a power of log n. Remarkably, an analogue of this theorem
can be proved, for the same estimator (and compactly supported densities), for all
Lp-loss functions. For 1 ≤ p < ∞, this was proved in Donoho, Johnstone, Kerky-
acharian and Picard (1996), and for p = ∞ in [41] (where no compact support of
the density is needed, and no logarithmic penalty has to be paid). So the hard
thresholding wavelet density estimator is rate adaptive within a logarithmic factor
for all these loss functions simultaneously.

It should be noted that estimators that are adaptive in the sense of Theorem 23
have been studied extensively in the last 15 years, starting with path-breaking work
by Lepski (1991), and later Donoho and Johnstone (1995), Donoho, Johnstone,
Kerkyacharian and Picard (1996), Lepski and Spokoyni (1997), Lepski, Mammen
and Spokoyni (1997), Barron, Birgé and Massart (1999), Tsybakov (1999), and
many others. This has then led to many challenging new questions in recent years,
such as the construction of adaptive confidence sets. The latter turns out to be a
particularly intricate subject, see, for instance, Cai and Low (2004), Robins and
van der Vaart (2006), Genovese and Wasserman (2008) and Giné and Nickl (2010).

3.6.3 Exercises

Exercise 41. Suppose you know ‖f‖∞. Give an admissible choice for κ in the
theorem on the pointwise risk of the hard thresholding wavelet density estimator.
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Exercise 42. + Suppose the unknown density f is bounded, compactly sup-
ported, and m-times differentiable Dmf ∈ L∞. Prove that the hard threshold-
ing density estimator based on Daubechies’ wavelets of regularity S, and with
τ = κ

√

(logn)/n for suitable choice of κ, satisfies

E‖fT
n − f‖22 = O

(

(n/ logn)−2m/(2m+1)
)

for m ≤ S+1. (Hint: It is useful to apply Parseval’s identity to the L2-norm of the
thresholded window, and then work in the sequence space ℓ2 of square-summable
sequences.)

3.7 Functional Estimation and Applications

So far we were able to come up with reasonable estimators of fundamental statisti-
cal quantities such as the distribution function F of a random variable, its density
f , or a regression function m. The final aim of statistical inference is often to esti-
mate some aspect of F , f , orm. These ’aspects’ are usually simple functionals of F ,
f , orm. For example, we might be interested in the quantile function Φ(F ) = F−1,
the entropy Φ(f) =

∫

f log f , or a maximizer Φ(m) = argmaxx∈[0,1]m(x). Once
we have phrased our statistical problem in that way, we can use the natural ’plug-
in’ estimators Φ(Xn) where Xn is one of the nonparametric estimators introduced
in the previous sections.

Following the spirit of Proposition 4, a powerful and elegant way to derive prop-
erties of these plug-in estimators is to use continuity and differentiability properties
of Φ on certain function spaces, typically spaces whose norms or metrics are given
by the loss functions considered in the previous sections. We have already seen
one instance of this approach in the proof of the Kolmogorov-Smirnov limit the-
orem (Theorem 13): There the continuous mapping Φ = ‖ · ‖∞ was applied to
the whole process

√
n(Fn − F ) (so that we obtained the limit of Φ(

√
n(Fn − F ))

from Theorem 10), but often the quantity of interest is Φ(Fn)−Φ(F ), and if Φ is
nonlinear, one has to proceed differently.

3.7.1 The ’von Mises’ or ’Functional Delta-Method’

Suppose we have a good estimate Xn for an object s0 in a normed space (S, ‖ · ‖S),
and we would like to estimate Φ(s0) by Φ(Xn) where Φ is a real-valued mapping
defined on S (or possibly a subset of it). Recalling the ’delta’ method, our intuition
would be to differentiate Φ around s0, so we have to come up with a proper notion
of differentiation on general normed spaces S. This approach was pioneered by
von Mises (1947).

The classical notion of strong (or Fréchet-) differentiability of a real-valued
mapping Φ defined on an open subset SD of a normed space S at the point s0 ∈ SD
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requires the existence of a linear continuous mapping DΦs0 [·] : S → R such that

|Φ(s0 + h)− Φ(s0)−DΦs0 [h]| = o(‖h‖S).

See Dieudonné (1960) for a treatment of differentiation in general Banach spaces.
However, this notion of differentiability is sometimes too strong for many statistical
applications, and Reeds (1976) showed (in his PhD dissertation) that a weaker
notion of differentiability still suffices for statistical applications.

Definition 4. If SD is a subset of a normed space S, then a mapping Φ : SD → R

is said to be Hadamard- (or compactly) differentiable at s0 ∈ SD if there exists a
linear continuous mapping DΦs0[·] : S → R such that

∣

∣

∣

∣

Φ(s0 + tht)− Φ(s0)

t
−DΦs0[h]

∣

∣

∣

∣

→ 0

for every h ∈ S, every t→ 0 and every ht with ‖ht − h‖S → 0 and s0 + tht ∈ SD.
Furthermore, Φ is said to be Hadamard-differentiable tangentially to a set S0 ⊂ S
by requiring ht → h with h ∈ S0.

It should be noted that, if S is finite-dimensional, then this notion can be
shown to be equivalent to Fréchet differentiability, but in the infinite-dimensional
case it is not. For statistical applications, the following result is central.

Proposition 16. Let (S, ‖ · ‖) be a normed space, let SD ⊂ S and let Φ : SD → R

be Hadamard-differentiable at s0 ∈ SD tangentially to S0, with derivative DΦs0.
Let rn be a real sequence such that rn → ∞ and let Xn be random variables taking
values in SD such that rn(Xn − s0) converges in law to some random variable X
taking values in S0, as n→ ∞. Then

rn(Φ(Xn)− Φ(s0)) →d DΦs0(X)

as n→ ∞.

Proof. We use here a theorem of Skorohod on ’almost surely convergent realizations
of weakly convergent sequences of random variables’: If Yn, n = 1, 2, ... are random
variables taking values in a metric space (SD, d) such that Yn converges to Y0 in
law, then there exist a probability space (W,W, µ) and random variables Ỹn :
(W,W, µ) → SD, n = 0, 1, 2, ... such that Yn = Ỹn in distribution and d(Ỹn, Ỹ0)
converges to zero almost surely as n → ∞. See [29], Theorem 11.7.2 for a proof
(and also [28], Theorem 3.5.1, for the nonseparable case).

To prove the proposition, we apply this result and construct random variables
X̃n, X̃ such that rn(X̃n − s0) converges to X̃ almost surely. But now

∣

∣

∣
rn(Φ(X̃n)− Φ(s0))−DΦs0 [X̃ ]

∣

∣

∣
=

∣

∣

∣

∣

∣

Φ(s0 + r−1
n rn(X̃n − s0))− Φ(s0)

r−1
n

−DΦs0 [X̃ ]

∣

∣

∣

∣

∣
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converges to zero almost surely in view of Hadamard differentiability of Φ, since
on a set of probability one we have rn(X̃n − s0) → X̃. Since rn(Φ(Xn)−Φ(s0))−
DΦs0(X) has – by construction – the same distribution as rn(Φ(X̃n) − Φ(s0)) −
DΦs0(X̃), and since almost sure convergence implies convergence in law, the result
follows.

Classically one tries to combine this proposition with Theorem 10, so the choice
for rn(Xn − s0) is

√
n(Fn − F ), the empirical process, and S = L∞. Since L∞ is a

very large space, complications can arise, some from the fact that the functional Φ
might not be defined on all of L∞, others related to measurability issues. The latter
can be circumvented by introducing a slightly different definition of convergence
in law (e.g., Chapter 3 in [28]), and an analogue of the above proposition can still
be proved in this case, see, e.g., van der Vaart (1998, Theorem 20.8). However,
these problems partially disappear if one uses Theorem 20, which allows one to
take Xn = FK

n the distribution function of a kernel density estimator, which is a
continuous function, so that S can simply be taken to be the space of bounded
continuous functions (or some other subspace of it).

The functional delta method has many applications to statistics, and we shall
show how Theorems 14 and 15 can be proved using it, but there are many other
applications, see, e.g., Gill (1989), Pitts (1994) and Chapter 20 in [81]. We also
refer to Dudley (1992, 1994), who takes a different approach (using Fréchet dif-
ferentiability with ’stronger’ norms). Next to delivering elegant proofs one of the
main appeals of the functional delta-method is that it separates the analysis from
the probability part in a given statistical problem.

Example 9 (Differentiability of the quantile transform). Recall the notation and
assumptions from Theorem 25. Set φ(F ) = F−1(p), and consider the domain of
definition SD ⊂ L∞ to be the set of increasing functions G taking values between
[0, 1] for which the inequalities

G(G−1(p)−) ≤ p ≤ G(G−1(p)) (123)

hold. Clearly F ∈ SD since its inverse exists, and also Fn ∈ SD. Choose ξp such
that F (ξp) = p (which is possible by assumption on F ) and set ξtp = φ(F + tHt),
where Ht is a sequence of functions in SD that converges uniformly to H , which we
take to be continuous at ξp. We want to differentiate φ(F + tHt)−φ(F ) = ξtp− ξp
tangentially to the subspace S0 of functions that are continuous at ξp. If we knew
that G(G−1(p)) = p for every G ∈ SD, then applying the mean value theorem to
the identity (F + tHt)(ξtp) = p and noting F (ξp) = p would give

F ′(ξp)(ξtp − ξp) + tHt(ξtp) = o(|ξp − ξtp|),
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and, since ξtp → ξp as t→ 0 as is easy to prove, one concludes
∣

∣

∣

∣

ξtp − ξp
t

− H

F ′ (ξp)

∣

∣

∣

∣

→ 0.

This already suggests that the Hadamard derivative should be

DφF (H) =
H

F ′ (F
−1(p)),

but does not quite work for us because Fn does not have a proper inverse. Even
if we take FK

n instead of Fn, and K such that FK
n is invertible, then FK

n − F is
not necessarily invertible. To overcome this problem, one has to be a little more
careful and work with the inequalities (123), and this is left as Exercise 43, which
completes the proof of Theorem 25 using Theorem 10 and Proposition 16, and
noting that we can differentiate tangentially to the space of continuous functions
since the F -Brownian bridge is sample-continuous almost surely.

Example 10 (Differentiability of Cumulative Hazard Functions). If D([0,∞) is
the space of bounded right-continuous real-valued functions on [0,∞) with left
limits equipped with the supremum norm, and if we show that the mapping

Λ := Λu : F 7→
∫ u

0

(1− F (x−))−1dF (x)

is Hadamard-differentiable on a suitable subset of D([0,∞)), then we have proved
Theorem 15 by virtue of Theorem 10 and Proposition 16. Alternatively, one can
combine Theorem 20 and Proposition 16 to prove an analogue of Theorem 15
for the kernel density estimator with continuous kernel K, and assuming that F
has a continuous density f = DF . In this case we can replace D([0,∞)) by the
space C1(R) of bounded continuously differentiable functions on R, still equipped
with the supnorm. We give the details for this simpler case, and leave the case of
D([0,∞)), which applies to the empirical distribution function, to Exercise 44.

Theorem 24. Suppose X is a nonnegative random variable with distribution
function F : [0,∞) → R that has a continuous density DF , and let t be a
point such that 1 − F (t) > 0. Let further FK

n (t, hn) be as in Theorem 20 where
hn = o(n−1/2) and where the kernel K : R → R is a continuous function. Then√
n(Λ(FK

n )−Λ(F )) is asymptotically normally distributed with limit as in Theorem
15.

Proof. On S := (C1(R), ‖ · ‖∞) the functional Λ : S → R is given by

Λ(F ) =

∫ u

0

(1− F (x))−1DF (x)dx,
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and can be viewed as the composition of the mappings

F 7→ (F, 1− F ) 7→ (F, (1− F )−1) 7→
∫ u

0

(1− F (x))−1DF (x)dx. (124)

If C(R) is the space of bounded continuous functions on R, then the first map-
ping is bi-linear and continuous, hence Fréchet differentiable from C(R) to C(R)2

(meaning the Cartesian product here), and then also Fréchet-differentiable at any
point in S ⊂ C(R). Next, let B(ζ) = {f ∈ C(R) : sup0≤x≤u f(x) < 1 − ζ}, which
is open in C(R). The second mapping in (124) is then Fréchet differentiable for
every (F,G) ∈ C(R) × B(ζ) ⊂ C(R)2 and every ζ > 0, by the chain rule (since
x 7→ 1/x is differentiable on (ζ,∞)). By the chain rule for Hadamard-differentiable
mappings (Theorem 20.9 in [81]) it remains to prove Hadamard-differentiability of
the third mapping in (124), namely the mapping

Φ : (F,G) 7→
∫ u

0

G(x)DF (x)dx,

defined on SD × SD ⊂ S × S where SD = {F ∈ C1(R) : ‖DF‖1 ≤ 1}. To
achieve this, recall Definition 4 above and take uniformly convergent sequences
h1t → h1 ∈ S and h2t → h2 ∈ S such that G + th1t and F + th2t are all in SD,
which implies that both th1t and th2t are contained in 2SD for every t. Then, for
s0 = (F,G) and ht = (h2t, h1t) we have, using integration by parts that

Φ(s0 + tht)− Φ(s0)

t
=

∫ u

0
(G+ th1t)(DF + tDh2t)−

∫ u

0
GDF

t

=

∫

h1tDF +

∫

GDh2t + t

∫

h1tDh2t

=

∫

h1tDF −
∫

h2tDG+Gh2t|u0 + o(1)

→
∫

h1DF −
∫

h2DG+Gh2|u0 =: Dφs0(h)

as t → 0 since (recalling that h1 ∈ S = C1(R), and using integration by parts
again)

∣

∣

∣

∣

t

∫

h1tDh2t

∣

∣

∣

∣

≤ t

∣

∣

∣

∣

∫

h1Dh2t

∣

∣

∣

∣

+

∣

∣

∣

∣

∫

(h1t − h1)tDh2t

∣

∣

∣

∣

≤ t

∣

∣

∣

∣

∫

Dh1h2t − h1h2t|u0
∣

∣

∣

∣

+ 2‖h1t − h1‖∞ = O(t) + o(1).

This completes the proof of Hadamard-differentiability of Λ on the domain SD ∩
B(ζ) ⊂ S. To apply Proposition 16, note that F = s0 and Xn = FK

n are both
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contained in SD: Clearly ‖DF‖1 = 1, ‖DFK
n ‖1 = 1 (since DFK

n and DF are
densities) and also F (t) ≤ 1− ζ/2 for some ζ > 0 which implies FK

n (t) ≤ 1− ζ on
a set whose probability approaches one by combining Theorem 20 with Theorem 8.
Finally, the second part of Theorem 20 implies that

√
n(Xn−s0) =

√
n(FK

n −F ) →
GF in S, so that Proposition 16 gives the result.

3.7.2 The ’Plug-in’ property of density estimators

In Proposition 16 we have assumed that rn(Xn − s0) converges in law in the
normed space S. This is useful when convergence in law actually holds, such as in
Theorems 3, 10 and 20. However, in other cases, in particular in density estimation,
convergence in law might not hold, and one might just have a rate of convergence
in some norm. Another problem with using the empirical distribution function Fn

as a plug-in estimator is that some functionals are only defined for densities. For
instance, if Φ is defined on a set of square-integrable densities, and Φ : L2 → R is
Fréchet differentiable, then we can estimate Φ(f) by the kernel-plug-in-estimator
Φ(fK

n ), but Φ(Fn) does not necessarily make sense here.
Clearly under Fréchet-differentiability the derivative DΦf is a bounded linear

map, so

|Φ(fK
n )− Φ(f)| = DΦf [f

K
n − f ] + o(‖fK

n − f‖2) = O(‖fK
n − f‖2),

and a rate of convergence of fK
n to f in L2 carries over to Φ(fK

n )− Φ(f).
However we might be missing a substantial point here! On the one hand, the

linear termDΦf [f
K
n −f ] might have a much faster convergence rate (the functional-

analytic intuition is that the ’topology’ of convergence of linear functionals is
’weaker’ than the norm topology), and the remainder in the linear approximation
might be much smaller than just o(‖fK

n −f‖2), so that Φ(fK
n )−Φ(f) could actually

converge at a much faster rate than ‖fK
n − f‖2, potentially in law, with a nice

limiting distribution. An example for this is the functional Φ(f) =
∫

R
f 2(x)dx,

where we can obtain an exact limit theorem for Φ(fK
n )− Φ(f) at rate 1/

√
n in a

situation where ‖fK
n − f‖2 is only of order n−1/3.

Proposition 17. Let X1, ..., Xn be i.i.d. with density f , and let fK
n (x) be the

kernel density estimator from (87) with hn ≃ n−1/3 and with bounded, symmetric
and compactly supported kernel K. Suppose f is continuously differentiable with
derivative Df ∈ L1 ∩ L∞. Let Φ : L2 → R be the mapping

f 7→ Φ(f) =

∫

R

f 2(x)dx.

Then √
n(Φ(fK

n )− Φ(f)) →d N(0, σ(f))
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where σ(f) = 4
[

∫

R
f 3(x)dx−

(∫

R
f 2(x)dx

)2
]

.

Proof. The fundamental theorem of calculus and Df ∈ L1 implies f ∈ L∞, which
in turn implies, for densities f , that f ∈ L2 and that lim|x|→∞ f(x) = 0 (the latter
fact is not necessary in this proof but useful). Moreover, for DΦf [h] = 2 < f, h >,
we have

|Φ(f + h)− Φ(f)−DΦf [h]| = | < f + h, f + h > − < f, f > −2 < f, h > |
= < h, h >= O(‖h‖22).

Hence, using Exercise 33 to control the remainder

E|Φ(fK
n )− Φ(f)−DΦf [f

K
n − f ]| = E‖fK

n − f‖22 = O(n−2/3) = o(n−1/2)

so that
√
n(Φ(fK

n )− Φ(f)) has the same limiting distribution as

√
nDΦf [f

K
n − f ] =

√
n

∫

R

2f(x)(fK
n − f)(x)dx.

Furthermore, writing f(x) =
∫ x

−∞Df(t)dt =
∫

R
1(−∞,x)(t)Df(t)dt and using Fu-

bini’s theorem

E

∣

∣

∣

∣

∣

∫

R

2f(x)fK
n (x)dx− 2

n

n
∑

i=1

f(Xi)

∣

∣

∣

∣

∣

= E

∣

∣

∣

∣

∣

∫

R

2

(

∫

R

1(−∞,x)(t)f
K
n (x)dx− 1

n

n
∑

i=1

1(−∞,Xi)(t)

)

Df(t)dt

∣

∣

∣

∣

∣

= E

∣

∣

∣

∣

∣

∫

R

2

(

∫

R

1(t,∞)(x)f
K
n (x)dx− 1

n

n
∑

i=1

1(t,∞)(Xi)

)

Df(t)dt

∣

∣

∣

∣

∣

≤ 2E sup
t∈R

|FK
n (t)− Fn(t)|‖Df‖1 = O(n−2/3

√

log n) = o(n−1/2)

where we have used Theorem 20. We finally conclude that
√
n(Φ(fK

n )−Φ(f)) has
the same limiting distribution as

√
n

(

2

n

n
∑

i=1

f(Xi)− 2

∫

R

f 2(x)dx

)

=
2√
n

n
∑

i=1

(f(Xi)−Ef(X))

which converges to the required limit by the central limit theorem, completing the
proof.

While
√
n-consistent estimators for

∫

f 2 can be constructed by different means
(e.g., Hall and Marron (1987)), the plug-in approach presented here has more the
flavour of a refined functional delta method. More details on this and examples
can be found in Section 3.3 in [61] and Exercise 45.
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3.7.3 Exercises

Exercise 43. + Let D([a, b]) be the space of bounded right-continuous real-valued
functions on [a, b] with left limits, equipped with the supnorm. For p ∈ [a, b], let
SD be the subset of D([a, b]) consisting of all nondecreasing functions F such that
F (F−1(p)−) ≤ p ≤ F (F−1(p)) where F−1 is the generalized inverse function.
Let F0 ∈ SD be differentiable at xp where F (xp) = p, with positive derivative.
Show that the mapping φ(F ) = F−1(p), φ : SD ⊂ D([a, b]) → R is Hadamard-
differentiable at F0 tangentially to the set of functions in D([a, b]) that are contin-
uous at xp.

Exercise 44. + A function f : [a, b] → R is of bounded variation if it can be
written as f(x) = f(a) +

∫ x

a
dµf(u) for some finite (signed) measure µf . Consider

the functional φ fromD([a, b])×BV0([a, b]) → R given by (F,G) 7→
∫ y

0
F (x)dµG(x),

where BV0([a, b]) is the space of functions f of total variation on [a, b] bounded
by one satisfying also f(a) = 0. Prove that φ is Hadamard-differentiable at every
pair of functions (F1, F2) ∈ BV0([a, b])×BV0([a, b]).

Exercise 45. Show that the mapping φ : f 7→
∫ b

a
f(x) log f(x)dx is Fréchet differ-

entiable as a mapping from L∞([a, b]) to R at any density f ∈ L∞ that is bounded
away from zero on [a, b]. What is the derivative? How would you estimate it using a
kernel (or wavelet) plug-in-density estimator φ(fK

n ), and what rate of convergence
do you expect if you assume, e.g., that f is also once differentiable?
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[39] Giné, E., Koltchinskii, V. and Sakhanenko, L. (2004). Kernel den-
sity estimators: convergence in distribution for weighted sup-norms. Probab.
Theory Related Fields 130 167-198.

[40] Giné, E. and Nickl, R. (2009a). An exponential inequality for the distri-
bution function of the kernel density estimator, with applications to adaptive
estimation. Probab. Theory and Related Fields 143 569-596.

[41] Giné, E. and Nickl, R. (2009b). Uniform limit theorems for wavelet density
estimators. Annals of Probability 37 1605-1646.
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