

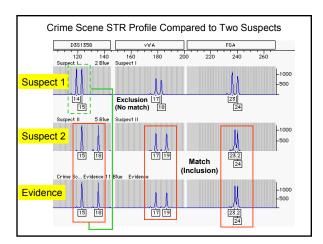
Outline for This Section

- Result interpretation possibilities: exclusion, inconclusive, match with frequency estimate
- · How allele frequency databases are generated
- · Use of the product rule to determine RMP
- OmniPop program

Forensic DNA Typing, 2nd Edition:

Biology, Technology, and Genetics of STR Markers (John M. Butler, Elsevier Science/Academic Press, 2005)

5 chapters on statistical issues


- Basic Genetic Principles and Statistics
- STR Database Analyses
- Profile Frequency Estimates
- Approaches to Statistical Analysis of Mixtures
- Kinship and Paternity Testing

Examples are carefully worked through using the same U.S. population database to illustrate concepts

Three Possible Outcomes of a DNA Result

Butler, J.M. (2005) Forensic DNA Typing, 2nd Edition, p. 385

- Exclusion (Non-match) The genotype comparison shows profile differences that can only be explained by the two samples originating from different sources.
- Inconclusive The data does not support a conclusion as to whether the profiles match. This finding might be reported if two analysts remain in disagreement after review and discussion of the data and it is felt that insufficient information exists to support any conclusion.
- Match (inclusion) Peaks between the compared STR profiles have the same genotypes and no unexplainable differences exist between the samples. Statistical evaluation of the significance of the match is usually reported with the match report.

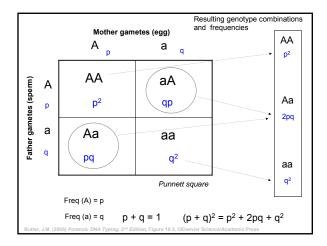
Single Source Samples

Calculating a Random Match Probability (RMP)

Why Compute a Match Statistic?

- It would not be scientifically justifiable to speak of a match as proof of identity in the absence of underlying data that permit some reasonable estimate of how rare the matching characteristics actually are (NRC II, p. 192).
- Significance or weight of the evidence...

Population Genetics

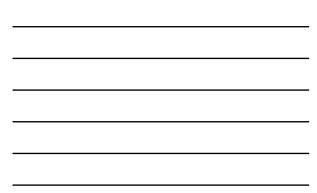

- Population genetics seeks to understand genetic variation among individuals within and between population groups
- How can we estimate the frequency of a particular DNA profile?
- Random match probability The probability that the DNA in a random sample from the population has the same profile as the DNA in the evidence sample. (Officers of the Court CD)

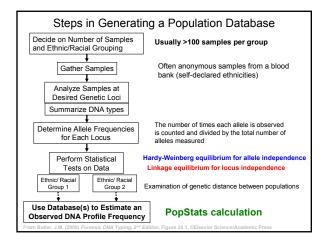
How Statistical Calculations are Made

- Generate data with set(s) of samples from desired population group(s)
 - Generally only 100-150 samples are needed to obtain reliable allele frequency estimates
- Determine allele frequencies at each locus
 Count number of each allele seen
- Allele frequency information is used to estimate the rarity of a particular DNA profile
 - Homozygotes (p²), Heterozygotes (2pq)
 - Product rule used (multiply locus frequency estimates)

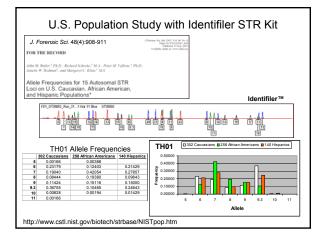
For more information, see Chapters 20 and 21 in Forensic DNA Typing, 2nd Edition

http://www.cstl.nist.gov/biotech/strbase/training.htm

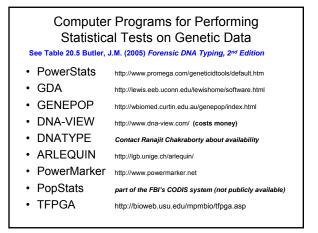




Assumptions behind the Product Rule


- Independence between alleles (Hardy-Weinberg equilibrium)
 - permits correlation of allele frequency with genotype frequency
- Independence between loci (linkage equilibrium)
 permits multiplication of genotype frequencies across all tested loci
- Typically only match probabilities <u>for unrelated</u> individuals are reported

	ו Hardy-Weinberg Equilibrium
The Assumption	The Reason
Large population	Lots of possible allele combinations
No natural selection	No restriction on mating so all alleles have equa chance of becoming part of next generation
No mutation	No new alleles being introduced
No immigration/emigration	No new alleles being introduced or leaving
Random mating	Any allele combination is possible

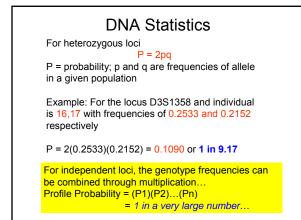


										nmarizeo quencies	
Genotype											Observed
Array	8	9	10	11	12	13	14	15		Allele Count	Frequency
	8,8	8,9	8,10	8,11	8,12	8,13	8,14	8,15			
8	9	9	1	17	13	10	0	0	8	68	0.11258
		9,9	9,10	9,11	9,12	9,13	9,14	9,15			
9		1	2	15	10	4	3	0	9	45	0.07450
			10,10	10,11	10,12	10,13	10,14	10,15			
10			2	12	6	3	2	1	10	31	0.05132
				11,11	11,12	11,13	11,14	11,15			
11				37	54	21	12	0	11	205	0.33940
				-	12,12	12,13	12,14	12,15			
12					21	18	7	0	12	150	0.2483
						13,13	13,14	13,15			
13						7	5	0	13	75	0.1241
							14,14	14,15			
14			4 geno			en	0	0	14	29	0.0480
			in 302					15,15			
15	(604	1 exar	mined	chrom	iosom	es)		0	15	1	0.00166
										604	
Butler, J.M. (2	2005) Fo	orensic I	DNA Typ	ing, 2 nd E	Edition, T	able 20.	2, ©Elsev	/ier Scie	nce/Ac	ademic Press	

😫 Dnatype

File Database Tests NRC Results References GettingStarted Help

0 0 0


Figure 20.2, J.M. Butler (2005) Forensic DNA Typing, 2nd Edition © 2005

Dnatvpe

Testing for Independence within a Locus

- Hardy-Weinberg equilibrium (HWE) predicts stability of allele and genotype frequencies from one generation to the next
- Small p values (p < 0.05) cast doubt on the validity of the null hypothesis

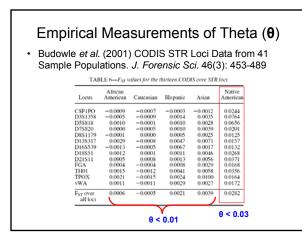
	DNA Profile	26 160		00 j226		276 30	0 325	350
AmpFISTR® Identifile (Applied Biosystem			rho1 VWA	TPOX D21 D FGA		D16 D18	CSF D2	·
	Locus	allele 1	frequency	allele 2	frequency	1 in	Combined	
2pq	D3S1358	16	0.2533	17	0.2152]	9.17	Ρ
2pq	VWA	17		18]	81	R
2pq	FGA	21		22			1005	0
2pq	D8S1179	12		14			16,364	D
2pq	D21S11	28		30			185,073	UC
2pq	D18S51	14		16			4,845,217	Ť
2pq	D5S818	12		13			44,818,259	
2pq	D13S317	11		14			1.38 x 10 ⁹	R
p ²	D7S820	9					4.38 x 1010	U
2pq	D16S539	9		11			6.05 x 1011	L
p ²	THO1	6					1.13 x 10 ¹³	Е
p ²	TPOX	8					3.94 x 1013	
p²	CSF1PO	10					8.37 x 1014	
The Ran	dom Match			profile in rillion (1		Caucasi	ian populat	ion

							(a)
U.S. Caucasians (N = 302	Frequency	Genotype for Locus	64	from Databa	Allele Freque	rofile	DNA P
	Number	Formula	puency	e of Freq tabase		Alleles	Locus
	0.03	2pq	0.34 0.05	р- q-	205 29	11 14	D135317
	0.05	\mathbb{P}^2	0.23	p -	540	6	TH01
	0.04	2pq	0.14 0.14	p- q-	83 84	14 16	D18551
	0.000060 1 in 17.000	Frequency-	Profile				
							(b)
U.S. Hispanics (N = 140)	e Frequency	Genotype for Locus	154	y from Databa	Allele Freque	rofile	DNA P
	Number	Formula	brench	e of Preq tabase	Times Aliele Observed	Alleles	Locus
	0.02	Sbd	0.24 0.05	p = q = q =	66 13	11 14	D135317
	0.04	\mathbf{p}^{2}	0.21	p =	60	6 6	TH01
	0.04	2pq	0.14		39 38	14	D18551

NRC II Recommendations for Estimating Random-Match Probabilities

Recommendation 4.1

- Use the product rule to calculate profile frequency
- If perpetrator's race is unknown, report calculations on racial groups for all possible suspects
- For *heterozygotes*: use $2p_ip_j$ or $2p_ip_j(1-\theta)$ (eq. 4.4b)
- For homozygotes: use $p^2 + p(1-p)\theta$ instead of p^2
- With US population, use $\pmb{\theta} \text{=} 0.01$
- With small, isolated populations, use $\pmb{\theta}\text{=}0.03$


Why a Theta (**θ**) Correction?

 Used as a measure of the effects of population subdivision; due to co-ancestry (inbreeding) of alleles
 Is essentially an attempt to correct for the degree of relatedness of alleles that have a common ancestry

• Basis in fixation indices (F-statistics) described by Sewall Wright in 1951 – F_{ST} , F_{IT} , F_{IS} If the subpopulations are distinct and in HW proportions, then θ = F_{ST}

 Calculations typically performed as described by Weir and Cockerham (1984) Estimating F-statistics for the analysis of population structure. *Evolution* 38: 1358-1370

With US population groups (African Americans, Caucasians, etc.), USE θ = 0.01 With small, isolated populations (Native Americans), USE θ = 0.03

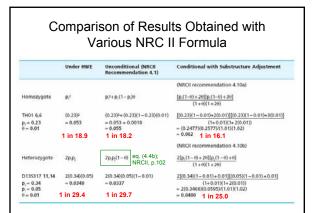
Empirical Measurements of Theta (**θ**)

- Budowle and Chakraborty (2001) Population variation at the CODIS core short tandem repeat loci in Europeans. *Legal Med.* 3: 29-33
- "Because of the low value for theta, whether independence is assumed or an adjustment for substructure is employed, there is little practical consequence for forensic purposes for estimating the frequency of a multiple locus DNA profile. If theta is used, a value of 0.01 is very conservative for Europeans."
- F_{ST} over all loci = 0.0028

Basis of PopStats Calculations

Budowle et al. (2001) J. Forensic Sci. 46(3): 453-489

Bruce Budowle,¹ Ph.D.; Brendan Shea,² M.S.; Stephen Niezgoda,² M.B.A.; and Ranajit Chakraborty,³ Ph.D.


- The F_{ST} estimates over all thirteen STR loci are 0.0006 for African Americans, -0.0005 for Caucasians, 0.0021 for Hispanics, 0.0039 for Asians,
 - and 0.0282 for Native Americans.

NRC II Recommendations for Estimating Random-Match Probabilities When Sub-Group Data Are Not Available

Recommendation 4.2. If the particular subpopulation from which the evidence sample came is known, the allele frequencies for the specific subgroup should be used as described in Recommendation 4.1. If allele frequencies for the subgroup are not available, although data for the full population are, then the calculations should use the population-structure equations 4.10 for each locus, and the resulting values should then be multiplied.

$$\begin{split} & \text{Homozygote: } P(A_iA_j|A_jA_j) = \frac{[2\theta + (1 - \theta)p_i][3\theta + (1 - \theta)p_i]}{(1 + \theta)(1 + 2\theta)} \end{split} \tag{4.10a} \\ & \text{Heterozygote: } P(A_iA_j|A_jA_j) = \frac{2[\theta + (1 - \theta)p_i][\theta + (1 - \theta)p_j]}{(1 + \theta)(1 + 2\theta)} \tag{4.10b}$$

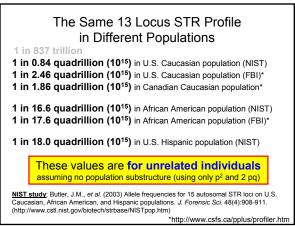
J.M. (2005) Forensic DNA Typing, 2nd Edition, Table 21.4, ©Elsevier Science/Academic Press

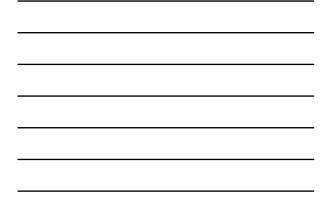
GAL 21.5 Sumple cub	slation	r with 30					e Adji				11 and 0.03 an	constant.
From U.S.	Caucas	lan (N=	302): Append	ltx II - sample		ase dar MNE	NRCH INC	ommundation	4.1	NRCV Ra	commendation	4.10
	A1	A2	Allefe 1 freq (p)	Allele 2 freq (q)		Calc freq		0~0.01	+-0.03		6-0.01	6-0.03
D135317	11	14	0.33940	0.04801	2pq	0.0326	299	0.0326	0.0326	eq. 4.10b	0.0386	0.0504
TH01	6	6	0.23179	-	p ²	0.0537	$p^2 + p(1-p) =$	0.0555	0.0591	eq. 4.10a	0.0628	0.0621
D10551	14	16	0.13742	0.13907	2pg	0.0382	20Q	0.0382	0.0382	eq. 4.10b	0.0419	0.0493
D21511	28	30	0.15894	0.27015	29-3	0.0864	2010	0.0884	0.0864	eg. 4.10b	0.0927	0.1011
D351358	14	17	0.25331	0.21523	2pq	0.1090	2pq	0.1090	0.1090	eq. 4.10b	0.1129	0.1206
DSSB18	12	13	0.36411	0.14073	2pq	0.1081	2010	0.1051	0.1081	eg. 4.10b	0.1131	0.1228
D75620	. 9	. 9	0.17715	-	pi .	0.0314	$p^2 + p(1-p) =$	0.0328	0.0358	40.4.10a	0.0390	0.0556
D051179	12	14	0.18543	0.16556	214	0.0614	2010	0.0614	0.0614	eg. 4.10b	0.0654	0.0733
C\$#1#0	10	10	0.21689	-	gii	0.0470	$p^2 + p(1-p) = 0$	0.0467	0.0521	erg. 4.10a	0.0558	0.0744
FGA	21	22	0.18543	0.21054	202	0.0610	2013	0.0810	0.0610	92.4.100	0.0851	0.0930
D165539		33	0.11258	0.32119	2pq	0.0723	200	0.0723	0.0723	eq. 4.10b	0.0773	0.0671
TPOX			0.53477	-	D ²	0.2860	$p^{2}+p(3{-}\rho)~\theta$	0.2885	0.2934	03.4.102	0.2943	0.3227
VNA	17	18	0.28146	0.20033	Jpg	0.1128	2pq	0.1128	0.1128	eq. 4.10b	0.1167	0.1245
AMEL	×	x										

NRC II Recommendations for Estimating Random-Match Probabilities

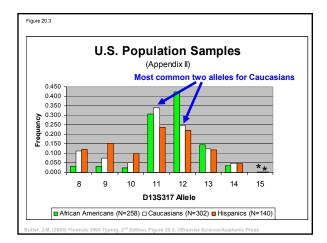
 Recommendation 4.3. If the person who contributed the evidence sample is from a group or tribe for which no adequate database exists, data from several other groups or tribes thought to be closely related to it should be used. The profile frequency should be calculated as described in Recommendation 4.1 for each group or tribe.

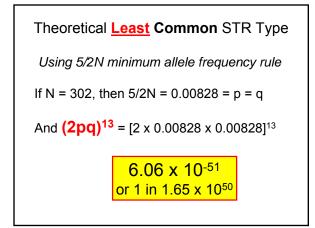
For heterozygotes: use 2p_ip_j


For homozygotes: use p² + p(1-p)θ instead of p²

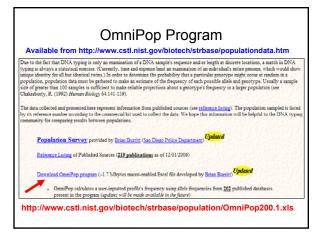

A	But	e Frequ	Einum et al. (2		S an as 5/2N recom Rese The E	frequencies deno terisk (*) are belo minimum allele to mended by the N arch Council repo Evaluation of Fore once published in	w the threshold lational rt (NRCII) nsic DNA
D0040		Caucasian	JFS 49(6) Caucasian		African American	African American	
D3S13	58	N=302	N= 7,636		N=258	N= 7,602	>25X
	Allele		,	Allele	11-200		number of
	11	0.0017*	0.0009	11		0.0003*	samples
	12	0.0017*	0.0007	12		0.0045	
	13		0.0031	13	0.0019*	0.0077	
Most	14	0.1027	0.1240	14	0.0892	0.0905	
common	15	0.2616	0.2690	15	0.3023	0.2920	
allele	15.2	-		15.2	0.0019*	0.0010	
	16	0.2533	0.2430	16	0.3353	0.3300	
	17	0.2152	0.2000	17	0.2054	0.2070	
	18	0.15232	0.1460	18	0.0601	0.0630	
	19	0.01160	0.0125	19	0.0039*	0.0048	
	20	0.0017*	0.0001*	20			

AmpFISTR® Identifile (Applied Biosystem What would	r™		гнот	00 225 TPOX 21 FGA	D7	276 90 D16 D18	CSF D2	350
be entered into a DNA	Locus	allele	frequency	allele	frequency	1 in	Combined]
database for	D3S1358	16	0.2533	17	0.2152	9.17	9.17	Р
searching:	VWA	17	0.2815	18	0.2003	8.87	81	R
16,17- 17,18-	FGA	21	0.1854	22	0.2185	12.35	1005	0
21,22-	D8S1179	12	0.1854	14	0.1656	16.29	16,364	D
12,14-	D21S11	28	0.1589	30	0.2782	11.31	185,073	UC
28,30-	D18S51	14	0.1374	16	0.1391	26.18	4,845,217	т
14,16- 12,13-	D5S818	12	0.3841	13	0.1407	9.25	44,818,259	1
11,14-	D13S317	11	0.3394	14	0.0480	30.69	1.38 x 10 ⁹	R
9,9-	D7S820	9	0.1772			31.85	4.38 x 1010	U
9,11-	D16S539	9	0.1126	11	0.3212	13.8	6.05 x 1011	L
6,6- 8,8-	THO1	6	0.2318			18.62	1.13 x 10 ¹³	Е
10,10	TPOX	8	0.5348			3.50	3.94 x 1013	
	CSF1PO	10	0.2169			21.28	8.37 x 1014	



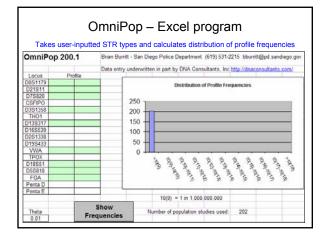


Locus	A1	A2	Allele 1	Allele 2		Most Common	
			Freq (p)	Freq (q)		Genotype Frequency	
D135317	11	12	0.339-00	0.24834	2pq	0,1686	
D165539	12	11	0.32616	0.32119	Zpq	0.2095	Calculations for the
018551	15	16	0.15894	0.1.7907	Zpq	0.0442	theoretically most common genotype frequencies and
021511	30	29	0.27815	0.19536	2pq	0.1067	profile frequency based on
0351358	15	16	0.26159	0.25331	2pq	0.1325	two most common alleles
055010	12	11	0.36411	0.36093	2pq	0.2773	found in a U.S. Caucasian
075820	10	11	0.24338	0.20695	2pq	0.1007	allele frequency database
D051179	13	12	0.30464	0.18543	2pq	0.1130	
CSF1PO	12	11	0.36093	0.30132	2pq	0.2175	
FGA	22	21	0.21854	0.18543	2pq	0.0810	
THOS	9.3	6	0.36755	0.23179	2pq	0.1204	6.26 × 10 ⁻¹²
TPOX	8	11	0.53477	0.24338	2pq	0.2603	
VWA	17	18	0.28146	0.20033	2pq	0.1128	or 1 in 160 billio
						6.26×10-11	

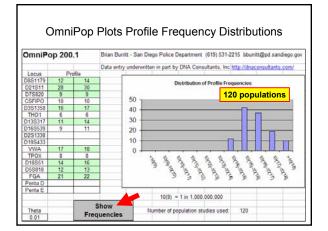


Websites for Software Used in Match Probability Calculations

- OmniPop (http://www.cstl.nist.gov/biotech/strbase/populationdata.htm)
 is an Excel-based program developed by a forensic scientist named Brian Burritt of
 the San Diego Police Department. OmniPop calculates a user-inputed STR
 profile's frequency using allele frequencies from 202 published databases. The
 program is freely available for download from the NIST STRBase website.
- European Network of Forensic Science Institutes DNA Working Group STR Population Database (http://www.str-base.org/index.php)
 uses 5,699 samples from 24 European populations in order to make match probability calculation on user-inputed STR profiles containing the 10 STR loci present in the SGM Plus kit (Applied Biosystems) that is widely used in Europe.
- Canadian Random Match Calculator (http://www.csfs.ca/pplus/profiler.htm)

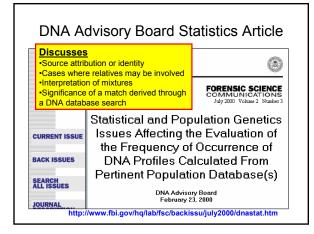

•


enables calculation of user-inputed STR profiles for the 13 U.S. core STR loci amplified by the Profiler Plus and COfiler kits sold by Applied Biosystems. This program enables comparison of results from limited FBI and Canadian collected allele frequencies.



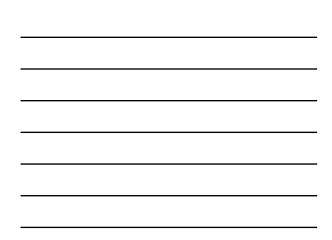
OmniPop 200.1

- · Published allele frequencies
 - From 120 populations containing all 13 CODIS loci
 From 202 populations with 9 loci (Profiler Plus)
- Based on 89 publications
- Available from Brian Buritt (San Diego Police Dept)
 - (619) 531-2215
 - bburritt@pd.sandiego.gov



		equency Calculation Populations	ons						
Most Common Profile Frequencies Least Common Profile Frequencies									
Serbian (157)	1.42E+14	Athabaskan (Alaska) (60)	9.65E+18						
Portuguese (6)	3.43E+14	Inupiat (Alaska) (60)	1.71E+20						
Belgian (99)	6.76E+14	Yupik (Alaska) (60)	2.02E+20						
Caucasian (64)	Caucasian (64) 7.43E+14 PC/BT-Asian (4) 3.77E								
Swiss Caucasian (3)	7.59E+14	Canadian Aboriginal (56)	6.54E+20						
Azores (82)	7.68E+14	Navajo (2)	7.09E+20						
Scottish (11)	7.89E+14	Apache (2)	2.65E+21						
 60 - Population studies o 64 - Allele Frequencies for Populations, JFS, 2003, p 	n three Native Alas or 15 Autosomal ST 908-911 of the 15 AmpFISTI	pulations, J Forensic Sci, 2001, 46(3), 45 ka population groups using STR loci, FSI. R Loci In U.S. Caucasian, African Americ R Identifiler loci in the population of Vojvo 5	, 2002, p51-57 an, and Hispanic						

STR Locus	Profile Computed	Number of Popula- tions Used	Cumulative Profile Frequency Range (1 in)	Cumulative Profile Frequenc against U.S. Caucasians (Appendix II)	у
D351358	16,17	166	5.24 to 62.6	9.19	
VWA	17,18	166	37.6 to 1080	81.8	Theoretical DMD Dana
FGA	21,22	166	737 to 119000	1010	Theoretical RMP Rang
D851179	12,14	166	8980 to 5 430 000	16-400	6.26 × 10 ⁻¹²
D21511	28,30	166	165 000 to 248 000 000	186 000	or 1 in 160 billion
D18551	14,16	166	3.85×10^4 to 2.68×10^{10}	$4.88\!\times\!10^6$	
D55818	12,13	166	$2.28\times~10^3$ to 4.22×10^m	4.51×10 ⁹	6.06 x 10 ⁻⁵¹
D135317	11,14	166	$4.32{\times}10^{6}$ to $1.69{\times}10^{13}$	1.38×10 ⁹	or 1 in 1.65 x 10 ⁵⁰
D75820	9,9	166	$1.17{\times}10^{10}\text{to}2.98{\times}10^{16}$	4.22×10 ¹⁰	
D165539	9,11	97	$4.06{\times}10^{11}$ to $1.11{\times}10^{16}$	5.82×10**	
TH01	6,6	97	9.30×10^{12} to 1.45×10^{19}	$1.05\!\times\!10^{12}$	Observed RMP Range
TPOX	8,8	97	3.33×1019 to 1.54×1020	3.63×10 ¹⁰	
CSF1PO	10,10	97	3.43×1014 to 2.65×1021	7.43×10 ¹⁴	10 ¹⁴ to 10 ²¹



Impact of Relatedness on Match Probabilities

J.M. Butler - NJSP 2006 Training Workshop

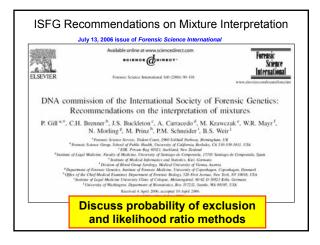
The Exclusion of Energie (EA) Foldowy	Estimating Ra	ecommendation andom-Match Prot t <mark>ives May Be Inv</mark>	abilities		
	Recommendation 4.4. If the possible contributors of the evidence sample include relatives of the suspect, DNA profiles of those relatives should be obtained. If these profiles cannot be obtained, the probability of finding the evidence profile in those relatives should be calculated with Formulae 4.8 or 4.9.				
	Genotype of suspect	Probability of same genotype in a	relative		
	Homozygote: $A_i A_i$	$\mathbf{p_i^2} + 4\mathbf{p_i}~(1-\mathbf{p_i})\mathbf{F}$	(4.8a)		
	Heterozygote: $\mathrm{A}_{i}\mathrm{A}_{j}$	$2\mathbf{p_i}\mathbf{p_j}+2(\mathbf{p_i}+\mathbf{p_j}-4\mathbf{p_i}\mathbf{p_j})\mathbf{F}$	(4.8b)		
	For parent and offspring, $F = 1/4$; for half-siblings, 1/8; for uncle and nephew, 1/8; for first cousins, 1/16. Full siblings, being bilineal rather than unilineal, require different formulae:				
	А	$_{q}A_{i}$ $(1 + 2 p_{i} + p_{i}^{2})/4$	(4.9a)		
	А	$A_j: (1 + p_i + p_j + 2 p_i p_j)/4$	(4.9b)		
Butler, J.M. (2005) Forensic DNA	yping: Biology, Technology, and Genetic	s of STR Markers, 2 nd Edition, Elsevier: New York;	Appendix VI, pp.623-625		

		Table 22.6 Example calculations with corrections for relation using the NRC II reconstructed formula.										
From U.S. Caucastan (N = 302): Appendix II – sample in databas Under Hi						NRCI facommendation 4.4						
	A1	43	Allale 1 freq (p)	Alfele 3 freq (q)		Calc freq		F= 1/4 (parent)	F= UR (half sib)	F= 1/16 (1st cousin)		Full sib
D135317	11	14	0.33940	0.04801	204	0.0326	PQ 4.85	0.1937	0.1131	0.0729	0q.4.9b	0.3550
THOI	6	6	0.23179	-	pł	0.0537	eq. 4.8a	0.2318	0.1428	0.09492	60.4.94	0.3793
D165539		11	0.11258	0.32119	204	0.0723	10.4.85	0.2169	0.1446	0.1085	02.4.90	0.3765
D18551	14	16	0.13742	0.13907	200	0.0362	HQ 4.00	0.1382	0.0662	0.0632	40, 4,90	0.3287
D21511	28	30	0.15894	0.27815	204	0.0004	eq 4.85	0.2165	0.1535	0.1209	92.4.90	0.3814
D351358	16	17	0.25331	0.21523	2pq	0.1090	eq. 4.6b	0.2343	0.1717	0.1403	eq. 4.9b	0.3944
DSS818	12	13	0.36411	0.14073	204	0.1001	HQ. 4.00	0.2624	0.1853	0.1457	42.4.90	0.4082
D75830	9		0.17715	-	pa	6.0314	49.4.R3	0.1772	0.1043	0.0678	69.4.95	0.3464
D851179	12	14	0.18543	0.16556	abd	0.0614	49, 4.8b	0.1755	0.1584	0.0899	aq. 4.9b	0.3531
CSF1PO	10	50	0.21689	-	p2	0.0470	49.4.83	0.2165	0.1320	0.0895	49.4.94	0.3762
FGA	21	22	0.18543	0.21854	2pq	0.0810	eq. 4.8b	0.2020	0.1415	0.1113	og. 4.9b	0.3713
TPOX			0.53477	-	pi	0.2860	eq. 4.83	0.5348	0.4104	0.3482	oq. 4.90	0.5889
VWA	17	18	0.28146	0.20038	3pq	0.1128	19.4.8b	0.2409	0.1768	0.1448	40.4.90	0.3966

Г

Relationship	Match probability formula			
	Homozygotes (A,A.)		Result with TH01 6,6	p = 0.23179
Full siblings	$\frac{(1\!+\!p)^2\!+\!(7\!+\!7p,\!-\!2p^2)\!\theta\!+\!(16\!-\!9p,\!+p^2)\!\theta^2}{4(1\!+\!\theta(1\!+\!2\theta)}$		0.38921	
Parent and child	$\frac{2\theta + (1 - \theta)p_1}{(1 + \theta)}$		0.24700	
Half siblings	$\frac{[20+(1-0)p][2+40+(1-0)p]}{2(1+0)(1+20)}$		0.27479	
First cousine	$\frac{[20+(1-0)p][2+110+3(1-0)p]}{4(1+0)[1+20]}$		0.10888	
Unrelated	$\frac{[29+(1-0)p][39+(1-0)p]}{4(1+0)(1+20)}$	(NRC 8, 4.10a)	0.06283	
			p ² =0.05373	
	Heterozygotes (A,A,)		Result with D13 11,14	p = 0.33940 a = 0.04801
Full siblings	$\frac{(1\!+\!p_i\!+\!p_j\!+\!2p_jp_j)\!+\!(5\!+\!3p_j\!+\!3p_j\!-\!4p_jp_j)\!+\!2}{4(3\!+\!0)(3\!+\!20)}$	0.35955	q - 0.0400	
Parent and child	$\frac{2\theta * (1 - \theta)(p, * p_i)}{2(1 + \theta)}$		0.19977	
Half siblings	$\frac{(p_1+p_2+4p_1p_2)+(2+5p_1+5p_2+8p_2p_2)(0+(B-1))}{4(1+0)(1+20)}$	lptp+4pp)∉	0.11921	
First cousins	$\frac{(p_1+p_1+12p_1p_2)+(2+13p_1+13p_2-24p_1p_2)0}{8(1+0)(1+20)}$	2(B-7p,-7p,+6p,p) ∉	0.07893	
Unrelated	$\frac{20[+(1-0)p][0+(1-0)p]}{(1+0)(1+20)}$	(NRC II, 4.10b)	0.03864 2pg=0.03259	

Obtain DNA from All Possible Suspects


- As expressed by NRC II Recommendation 4.4, "if possible contributors of the evidence sample include relatives of the suspect, DNA profiles of those relatives should be obtained."
- In other words, avoid the hypothetical and test the related individual in order to see if a direct match occurs between the evidence and the suspect...

Mixture Statistics

Approaches to Mixture Analysis and Statistics

Ladd et al. (2001) Croatian Med. J. 42(3): 244-246

- Qualitative Assessment (inclusion or exclusion of suspect)
- Deduction of Component Profiles followed by Calculation of Match Probabilities
- Probability of Exclusion (or Inclusion)
- Likelihood Ratio

Statistical Calculations for Lineage Markers

Y-Chromosome and Mitochondrial DNA

Counting Method Typically Used for Lineage Markers

- Number of times that a particular DNA type occurs in a population database (frequency point estimate)
- Sampling corrections can be made with 95% confidence interval around the frequency point estimate