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5.  Linear regression and correlation 

 
If we measure a response variable 𝑦 at various values of a controlled variable 𝑥, linear 

regression is the process of fitting a straight line 

to the mean value of 𝑦 at each 𝑥. For example 

you might measure fuel efficiency 𝑦 at various 

values of an experimentally controlled external 

temperature 𝑥, and then try to fit a straight line 
to the results (assuming you think there is an 
underlying linear relationship). 
 

 

e.g. the plot of y against x suggests that it is 

reasonable to fit a straight line. 

 

Model 

 

Say we take n measurements of a function 𝑦(𝑥)  obtaining for each 𝑥 i a value 𝑦 . 
When plotted on a scatter diagram, there is a straight line relationship between y and x, 

apart from random variation in each 𝑦 measurement. 

 

Model: 𝑦      𝑥     
 

where a + bxi  is the linear relation and ei is the random error. We assume     (   
 ) 

for all i, and   's are independent, and want to estimate a and b, using the data. 

 

The likelihood P(D|a,b) can be found since ei are Normal, i.e.  (  )    
 
  
 

   , hence since 

   𝑦      𝑥  we have the log likelihood 

 

    (*𝑥  𝑦 +|   )   ∑
(𝑦     𝑥 )

 

   
 

  

 

The maximum likelihood estimator can be found by maximizing this log likelihood. This 

is equivalent to minimizing  

  ∑  
  

 

∑(𝑦     𝑥 )
 

 

 

since σ
2
 is a constant. Minimizing E is minimizing the squared error.  

 

Even when the random error is more complicated than a simple Normal, E can still be 

defined, and least-squared values can be calculated, though they may not have a very 

clear interpretation. In fact regression is often used completely blindly, without knowing 

the model the samples are drawn from, and can still be useful to identify correlations 

between variables. 
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Least squares estimates of a and b 

 

The least-squares estimates  ̂ and  ̂ must 

satisfy 
  

  
   and 

  

  
  , i.e. 

 

(1) 
  

  
   ∑ (𝑦     𝑥 )    

 

(2) 
  

  
    ∑ 𝑥 (𝑦     𝑥 )    

 

 

Therefore,  a b and  satisfy: 

 

  

( )  ∑(𝑦    ̂   ̂ 𝑥 )   (𝑦̅    ̂   ̂ 𝑥̅)

 

   

 

( )  ∑𝑥 (𝑦    ̂   ̂ 𝑥 )  ∑𝑥 𝑦   𝑥̅ ̂    ̂∑𝑥 
 

 

  

  

 

 

 

Solving (1) gives:  ̂  𝑦̅   ̂ 𝑥̅. Substituting into (2)  then gives:  

 

∑𝑥 𝑦   𝑥̅(𝑦̅   ̂ 𝑥̅)    ̂∑𝑥 
 

 

 

 

∑𝑥 𝑦 
 

  𝑥̅𝑦̅    ̂ (∑𝑥 
 

 

   𝑥̅ +    

 

Solving for  ̂ gives the final answer  

 

 ̂  
   

   
      ̂  𝑦̅   ̂ 𝑥̅ 

 

 

Here 

 

     ∑𝑥 𝑦 
 

  
∑ 𝑥 ∑ 𝑦   

 
 ∑(𝑥  𝑥̅)(𝑦  𝑦̅)

 

 

     ∑𝑥 
 

 

 
(∑ 𝑥  ) 

 
 ∑(𝑥   𝑥̅)

 

 

 

 

It can be shown that a and b  are unbiased. Note    is just proportional to the sample 

variance.  
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The fitted regression line is: 

𝑦̂   ̂   ̂𝑥 

    𝑦̅   ̂𝑥̅   ̂𝑥 
 

 𝑦̂  𝑦̅   ̂(𝑥  𝑥̅) 
 

i.e. the regression line passes through (𝑥̅ 𝑦̅) 
 

 

Example:  

 

The data y has been observed for various values of x, as follows: 

 

y 240 181 193 155 172 110 113 75 94 

x 1.6 9.4 15.5 20.0 22.0 35.5 43.0 40.5 33.0 

 

Fit the simple linear regression model using least squares. 

 

 

Answer : 

 

n = 9 

∑ 𝑥         ,  ∑ 𝑦         ,   

∑ 𝑥 
         ,  ∑ 𝑥 𝑦        , ∑ 𝑦 

 
         

 

           
             

 
         

 

            
      

 
         

 

Hence 

 

 ̂  
   

   
  

      

       
         

 

 ̂  𝑦̅   ̂𝑥̅  
      

 
 (       )  

(      )

 
       

 

So the fit is approximately 

 

𝑦             𝑥 
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Estimating   : variance of y about the fitted line   
 

Estimated error is:  ̂  𝑦  𝑦̂  
 

The mean error is zero, so the ordinary sample variance of the   's is  
 

   
∑  ̂ 

 
 

 
 

 

In fact, this is biased since two parameters, a and b have been estimated. The unbiased 

estimate is: 

 

 ̂  
 

   
 ∑ ̂ 

  
 

   
∑(𝑦   𝑦̂ )

   

 

Using 𝑦̂  𝑦̅   ̂(𝑥  𝑥̅) then 

 

 ̂  
 

   
∑((𝑦   ̅)    ̂(𝑥   ̅))

 

 
 

   
∑((𝑦   ̅)

    (𝑦   ̅)(𝑥   ̅)    ̂
 (𝑥   ̅)

 ) 

 
 

   
(        ̂     ̂

    )  
 

   
(        ̂      ̂

   

   
    *  

      ̂   

   
 

 

   

 

Confidence interval for the slope, b 

 

Recall that for Normal data with unknown variance, confidence interval for  is: 

 

   X t
s

n
n 1

2

  to  X t
s

n
n 1

2

 

 

The quantity       is the estimate of     , the variance of X  

 

It can be shown that var( b ) = 2/Sxx, estimated by  2 /Sxx  (n-2 df). 

 

Confidence interval for b is 


b t
S

n

xx

 2

2
  to 


b t

S
n

xx

 2

2
 

 

 



Statistics for Engineers   5-5 

Predictions 

 

One common reason for fitting a 

linear regression model is to predict 

y given x. 

 

Predicted value for the mean 𝑦 at 𝑥 

is  𝑦̂   ̂   ̂𝑥.  

 

 

 

Confidence interval for mean y at 

given x 

 

It can be shown that  

var( y |x) = var(  a bx ) = 

 
 2

2
1

n

x x

Sxx












  

 

Therefore, confidence interval for mean 

y is: 
 

 y t
n

x x

S
i n

xx

 










2

2

2
1

  

 

Extrapolation: using the fitted model to 

predict 𝑦 outside the range of x's used 

estimating a and b. This may be misleading, as the approximate linear relation may not 

continue to hold beyond the range for which you have observations. 

 

Example:  Using the previous data, what is the mean value of 𝑦 at 𝑥     and the 95% 

confidence interval? 

 

Answer 

 

The expected value is 𝑦̂   ̂   ̂𝑥                     

 

For the confidence interval need (with    )  

 ̂  
      ̂   

   
        

 

For 95% confidence need         for Q=0.975, i.e.          .  
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Hence confidence interval is 
 

𝑦̂    √ ̂ (
 

 
 
(   𝑥̅ ) 

   
)              √      (

 

 
 
(   

     
 )

 

       
,    

        

 

Confidence interval for a prediction 
 

Often we want to predict the range a future data point might lie, rather than just calculate 

the mean.  This confidence interval for a single response (measurement of 𝑦 at 𝑥 ) is 

given by 

 

 ̂   ̂𝑥      √ ̂ (  
 

 
 
(𝑥  𝑥̅) 

   
) 

 

This is larger because it is a combination of the uncertainty in the mean, and the expected 

scatter of a given point about the mean. 

 

Example:  Using the previous data, what is the 95% confidence interval for a 

measurement of 𝑦 at 𝑥      
 

Answer 

 

𝑦̂    √ ̂ (  
 

 
 
(   𝑥̅) 

   
)          √      (  

 

 
 
(   

     
 )

 

       
, 

        
 

Correlation 

 
Regression tries to model the relation between y and x. Correlation tries to measure the 

strength of the linear association between y and x. 
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Same fitted line in both cases, but stronger linear association in case B. 

 

What does correlation mean? If x and y are positively correlated, then if x is high y is 

expected to be high, if x is low then y is expected to be low. In other words, on average 

(𝑥  𝑥̅)(𝑦  𝑦̅) is expected to be positive: both if x and y are below the mean, or if x and 

y are above the mean. Similarly for a negative correlation (𝑥  𝑥̅)(𝑦  𝑦̅) is expected to 

be negative.  

 

We can therefore use     ∑  (𝑥  𝑥̅)(𝑦  𝑦̅)  to quantify the correlation. It is often 

convenient to normalize by the variance of the x and y, giving the definition of the 

correlation coefficient:  

 

  
   

√      
 

 

This is sometimes called the Pearson product-moment.  The range is:       : 

 

r = 1: there is a line with positive slope going through all the points; 

 

r = -1: there is a line with negative slope going through all the points; 

 

r = 0:  there is no linear association between y and x. 

 

 

Example: from the previous data,                              hence 

 

  
     

√          
       

 

 

The magnitude of r measures how noisy the data is, but not the slope.  Also     only 

means that there is no linear relationship, and does not imply the variables are 

independent – there could be many more complicated relationships that do not fit a 

straight line: 
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In general it is not easy to quantify the error on the estimated correlation coefficient. 

Possibilities include subdividing the points and assessing the spread in r values. 

 

Also, of course     does not imply that changes in x cause changes in y - additional 

types of evidence are needed.  

 

Example: Earnings and height:

 

Correlation r error 

J Polit Econ. 2008; 116(3): 499–532. 

http://www.journals.uchicago.edu/doi/abs/10.1086/589524 
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So there is strong evidence for a 2-3% correlation. This doesn’t mean being tall causes 

you earn more (though it could). For example height could be correlated with cognitive 

ability, and cognitive ability causes you to earn more. In fact this appears to be the case: 

height is correlated with intelligence, both higher height and higher intelligence being 

caused by better health and nutrition during development. There could also be a genetic 

component (maybe smart women slightly prefer tall men – perhaps because it is an 

indicator of health and nutrion – and they then have tall smart children). Determining the 

the reason for an empirical correlation is usually extremely difficult. 


