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Abstract

We examine the expected number N crit
N,h of critical points of random holomorphic

sections of positive line bundles over compact Kähler manifolds. We show that,

on average, the critical points of minimal Morse index are the most plentiful for

holomorphic sections of O(N) → CPm and, in an asymptotic sense, for those of line

bundles over general compact Kähler manifolds. We calculate the expected number of

these critical points in both cases and use these to obtain growth rates and asymptotic

bounds for the total expected number of critical points. We also show that the

asymptotic expansion of N crit
N,h is non-topological in all dimensions and that Calabi

extremal metrics asymptotically minimize N crit
N,h, whenever they exist.

Readers: Steve Zelditch (Advisor) and Bernie Shiffman.
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Chapter 1

Introduction

In this dissertation we study the asymptotic behavior of the expected number N crit
N,h of

critical points of random holomorphic sections of the Nth tensor power of a positive

line bundle over a compact Kähler manifold. We obtain the growth rate as the

dimension of the manifold goes to infinity for the special case, O(N) → CPm. We

then use the asymptotic expansion of N crit
N,h in N and obtain upper and lower bounds

on the leading coefficient of the expansion for the general case. In both of these

cases we work with formulas for the expected number N crit
N,q,h of critical points of

Morse index q, obtaining exact formulas for the expected number of critical points

of minimal Morse index and showing that these are the most plentiful. We also

use the asymptotic expansion to show that N crit
N,h is non-topological and that it is

asymptotically minimized by Calabi extremal metrics whenever they exist.

While research into the statistics of random zeros goes back to at least 1943

([Kac]), research into the statistics of random critical points has only recently ap-

peared in the mathematics literature. It does, however, have a longer history in the

physics literature. These statistics are important in the study of the complicated

landscapes that show up in areas such as spin glasses, extremal black holes, and
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string/M theory. In an attempt to get a handle on the “vacuum selection problem”

in string/M theory, M. Douglas and his co-workers proposed a statistical approach

in [AD, DD, Dou] to count the number of possible vacua and determine the distrib-

utions of various physically relevant quantities within the set. This led to the series

of articles [DSZ1, DSZ2, DSZ3] with B. Shiffman and S. Zelditch, where the rigor-

ous mathematical foundation for the study of critical points of random holomorphic

sections was presented.

In [DSZ1] the authors laid out the basics of the study in the most general case,

that of the critical points of a random section within some subset S of the set of holo-

morphic sections of a Hermitian holomorphic line bundle over a complex manifold

relative to the Chern connection on the bundle and a Gaussian measure on S. They

derived the formulas for the expected density and number of these critical points and

obtained more explicit versions in the case of Riemann surfaces. In the second paper,

they turned their attention to the purely geometric considerations of studying the

metric dependence and asymptotic minimization of the expected number. In this pa-

per they restricted their attention to the case of a positive Hermitian line bundle over

a compact Kähler manifold. They derived the asymptotic expansion of the expected

number of critical points for this case as well as integral formulas for the universal

constants in the leading term and the first non-topological term. In this paper they

also derived a more explicit formula for the expected number of critical points in the

case of tensor powers of the hyperplane section line bundle over complex projective

space. Then, in [DSZ3], they turned to the physically relevant case for string/M the-

ory which is a discrete ensemble of sections (known as flux superpotentials) forming a

lattice of full rank in a real subspace of the set of holomorphic sections of a negative

line bundle over an incomplete Kähler manifold. They showed that the statistics of

critical points for this discrete lattice of sections is well approximated by those for the
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Gaussian measures studied in the previous two papers and were thus able to present

the first rigorous results on counting the number of vacua in string theory with re-

mainder estimates. They also presented heuristic estimates of the growth rate of the

number of vacua.

In this paper we will be working with the same setting as [DSZ2], a positive

Hermitian line bundle over a compact Kähler manifold. Our main results are proofs

of a series of conjectures from this paper.

We first present a brief discussion of the background material and define the

necessary notation in Chapter 2. We devote the next three chapters to proving

some technical lemmas. In Chapter 3 we derive an altenate formula for the leading

coefficient of the asymptotic expansion of N crit
N,q,h using an argument based on the

Itzykson-Zuber integral formula. This argument was used in [DSZ2] to simplify two

other formulas that we will make use of. In the next chapter we use an iterated

residues technique to evaluate an integral which we will need later on to further

simplify two of our formulas. Then, in Chapter 5, we discuss Selberg’s integral formula

and some extensions of it. We extend Aomoto’s integral formula and use it to derive

an extension of the exponential Selberg integral formula. This formula will play a key

role in the proofs of our main results.

The final three chapters in the paper are devoted to the proofs of our main the-

orems. In Chapter 6 we prove the following result which shows that the expected

number of critical points grows exponentially with the dimension for the case of the

hyperplane section line bundle over complex projective space, O(N) → CPm.

Main Theorem 1. Let N crit
N,q,h(CPm) denote the expected number of critical points

of Morse index q for random sections s ∈ H0(CPm,O(N)) so that N crit
N,h(CPm) =

3



∑2m
q=mN crit

N,q,h(CPm), then

N crit
N,m,h(CPm) =

2(m + 1)(N − 1)m+1

(m + 2)N − 2
,

and when N > 2

N crit
N,q+1,h(CPm) < N crit

N,q,h(CPm).

Therefore,

2(m + 1)(N − 1)m+1

(m + 2)N − 2
< N crit

N,h(CPm) <
2(m + 1)2(N − 1)m+1

(m + 2)N − 2
.

This result is of particular interest in string/M theory because, as was mentioned

in [DSZ3], the formula for the critical point density in this case is very similar to

the one given there for the density of vacua. In fact, the conjectured growth rate of

N crit
N,q,h(CPm) with the dimension, given in [DSZ2], which we have now proved, was

used as a basis for the heuristic estimate of the growth rate of the number of vacua

in [DSZ3].

In Chapter 7 we return to the more general setting of a positive Hermitian line

bundle over a compact Kähler manifold and consider the asymptotic expansions of

N crit
N,h and N crit

N,q,h. We prove our second result, which shows that critical points of

minimal Morse index are the most plentiful in an asymptotic sense and gives upper

and lower bounds on the leading coefficient of the asymptotic expansion of N crit
N,h in

N .

Main Theorem 2. Let nq(m) denote the universal constant in the leading order

term of the asymptotic expansion of N crit
N,q,h, and let n(m) =

∑2m
q=m nq(m), so that

N crit
N,q,h ∼ nq(m) c1(L)m Nm and N crit

N,h ∼ n(m) c1(L)m Nm.

Then

nm(m) = 2
m + 1

m + 2
and 0 < nq+1(m) <

(
2m− q

2m− q + 1

)2

nq(m) ,
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and thus

2
m + 1

m + 2
< n(m) <

2m + 3

3
.

In the final chapter we continue our analysis of the asymptotic expansion of N crit
N,h,

this time focusing on the term of order m−2. This term is the sum of a topological

invariant and the Calabi functional multiplied by the universal constant, β2(m). Since

the first two terms in the expansion are topological invariants of the bundle, it is easy

to see that the metric dependence of the expansion depends on the value of β2(m).

We prove that:

Main Theorem 3. The universal constant β2(m) is strictly positive in all dimen-

sions. Therefore, N crit
N,h is non-topological, having a metric dependence in the term

of order m−2 in its asymptotic expansion, in all dimensions. In addition, Calabi

extremal metrics asymptotically minimize N crit
N,h, whenever they exist.

These results have been submitted for publication in [Ba1] and [Ba2].
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Chapter 2

Critical Point Formulas

The setting throughout this paper will be a positive Hermitian line bundle (L, h) →

(Mm, ωh) over a compact Kähler manifold of dimension m. Here, h denotes the

hermitian metric on L and ωh is the Kähler form on M given by ωh = i
2
Θh, where

Θh = −∂∂̄ log h is the curvature form of the metric. This Kähler form always exists

for positive line bundles. In order to study the asymptotics we will need to take

tensor powers of these line bundles. We will let LN denote the Nth tensor power

of the bundle L. The metric on LN is just hN . The connection on the bundle is

always taken to be the Chern connection ∇ associated to h. The Chern connection is

the unique connection of type (1,0) on the bundle that is compatible with both the

metric and the complex structure. Relative to the connection, the critical points of

a holomorphic section s ∈ H0(M, LN) are given by ∇s(z) = 0, and the set of critical

points of s will be denoted by Crit(s, hN).

It is important to note that, in general, the critical point equation is not holo-

morphic, and thus the cardinality of Crit(s, hN) is a non-constant random variable

on the space H0(M, LN). Indeed, in a local frame e, we can write s = fe and then

∇s = (∂f − f∂K) ⊗ eL, where K = − log ‖e‖2
hN is the Kähler potential. From this
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we see that the critical point equation in the local frame is ∂f − f∂K = 0, which is

holomorphic only when K is.

In order to be able to make use of some of the results from [DSZ1] and [DSZ2],

we will need our bundle to satisfy a technical condition known as the 2-jet spanning

property. Although a formal definition would require a discussion beyond the scope

of this paper, what this requirement boils down to is that the global sections in

H0(M, LN) must attain all possible values and derivatives of order ≤ 2 at each point

of the manifold.

Next, we need a probability measure on the space of holomorphic sections in order

to have a notion of a random section. To this end, we endow the space H0(M, LN)

with the Gaussian measure γN given by

dγN(s) =
1

πd
e−‖c‖

2

dc , s =
d∑

j=1

cjej.

Here dc is Lebesgue measure and {ej} is an orthonormal basis of H0(M, LN) relative

to the inner product

〈s1, s2〉 =
1

m!

∫
M

hN(s1(z), s2(z)) ωm
h ,

which is induced by hN on H0(M, LN).

Now we are ready to make the following definitions.

Definition 2.1. The expected distribution of critical points of s ∈ H0(M, LN) with

respect to γN , is defined to be

Kcrit
N,h :=

∫
H0(M,L)

[ ∑
z∈Crit(s, hN )

δz

]
dγN(s),

where δz is the Dirac point mass at z. This is an un-normalized measure on M .

Definition 2.2. The density of Kcrit
N,h with respect to the volume form dVh := 1

m!
ωm

h

on M will be denoted by Kcrit
N,h and is defined by the equation, Kcrit

N,h = Kcrit
N,hdVh.
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Definition 2.3. The expected number of critical points of s ∈ H0(M, LN) with

respect to γN , is defined to be

N crit
N,h := Kcrit

N,h(M) =

∫
M

Kcrit
N,h dVh.

We recall that the Morse index q of a critical point of a real-valued function is

given by the number of negative eigenvalues of its Hessian at the point and that for

a positive line bundle m ≤ q ≤ 2m [Bo]. Since the critical points of s with respect

to ∇ are the same as those of the real-valued function log ‖s‖2
hN , we can consider the

Morse indices of the critical points in Crit(s, hN) by viewing them as critical points

of this function. To this end, we let Kcrit
N,q,h denote the expected distribution of critical

points of Morse index q, Kcrit
N,q,h denote the density of Kcrit

N,q,h with respect to dVh, and

N crit
N,q,h denote the expected number of these critical points. It follows that

Kcrit
N,h =

2m∑
q=m

Kcrit
N,q,h , Kcrit

N,h =
2m∑

q=m

Kcrit
N,q,h, and N crit

N,h =
2m∑

q=m

N crit
N,q,h .

Since the analysis is simplified by considering the contributions from critical points

of different Morse indices separately, we will be working mainly with formulas that

depend on the Morse indices of the critical points and will take the sum over the

Morse index at the end to obtain our main results, which are independent of q.

A critical point of s is a zero of ∇s, which is a C∞ section of the bundle T ∗M⊗L.

Therefore, in [DSZ1], the authors were able to apply the previous work by two of

the authors in [SZ, BSZ1, BSZ2] on the statistics of zeros of random C∞ sections

of complex vector bundles to the zeros of ∇s and derive formulas for the expected

density of critical points under varying assumptions. One of the formulas they derived

was for the special case of critical points of sections of a positive line bundle over a

complex manifold with the Morse indices of the critical points taken into account.

This formula was modified slightly in [DSZ2] in order to apply it to the asymptotic
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case where tensor powers of the bundle are considered. This is the formula that is

relevant for us.

Theorem 2.4 ([DSZ2]). Let (LN , hN) → M denote the N th tensor power of a

positive holomorphic line bundle with the 2-jet spanning property. Give M the volume

form dVh = 1
m!

(
i
2
Θh

)m
induced from the curvature of L. Then the density relative to

dVh of the expected distribution Kcrit
N,q,h of critical points of Morse index q of log ‖sN‖h

for random sections s ∈ H0(M, LN) is given by

Kcrit
N,q,h(z) =

π−(m+2
2 )

det AN(z) det ΛN(z)

×
∫

Sm,q−m

∣∣det(HH∗ − |x|2I)
∣∣ e−〈ΛN (z)−1(H,x),(H,x)〉 dH dx . (2.1)

where

Sm,k = {(H, x) ∈ Sym(m, C)× C : index(HH∗ − |x|2I) = k}

and

ΛN(z0) = CN(z0)−BN(z0)
∗AN(z0)

−1BN(z0) ,

AN(z0) =
[(
∇zj

∇w̄j′
ΠN

)]
,

BN(z0) =
[(

τj′q′∇zj
∇w̄q′

∇w̄j′
ΠN

) (
N ∇zj

ΠN

)]
,

CN(z0) =


(
τjqτj′q′∇zq∇zj

∇w̄q′
∇w̄j′

ΠN

) (
τjqN ∇zq∇zj

ΠN

)
(
τj′q′N ∇w̄q′

∇w̄j′
ΠN

)
N2 ΠN

 ,

τjq =
√

2 if j < q , τjj = 1 , 1 ≤ j ≤ m , 1 ≤ j ≤ q ≤ m , 1 ≤ j′ ≤ q′ ≤ m .

Here ΠN , the Szegö kernel of H0(M, LN), and its covariant derivatives are evaluated

at (z0, 0; z0, 0).

By differentiating the Tian-Yau-Zelditch asymptotic expansion of the Szegö kernel

(see [Ti, Ya, Ze]), the authors were able to derive the asymptotic expansion of N crit
N,q,h
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in [DSZ2]. After showing that the coefficients in the expansion are universal, they

also derived integral formulas for the leading coefficient and the coefficient of the first

non-topological term in the expansion by directly computing them in the case where

M is the tensor product of CP1 with m − 1 copies of an elliptic curve and L is the

tensor product of degree one line bundles on the two factors.

Theorem 2.5 ([DSZ2]). Let (L, h) → (M, ωh) be a positive holomorphic line bundle

on a compact Kähler manifold, with ωh = i
2
Θh. Then the expected number of critical

points of Morse index q (m ≤ q ≤ 2m) of random sections in H0(M, LN) has the

asymptotic expansion

N crit
N,q,h ∼

[
πmb0q

m!
c1(L)m

]
Nm +

[
πmβ1q

(m− 1)!
c1(M) · c1(L)m−1

]
Nm−1

+

[
β2q

∫
M

ρ2dVolh + β′2q c1(M)2 · c1(L)m−2

+β′′2q c2(M) · c1(L)m−2

]
Nm−2 + · · · ,

where b0q, β1q, β2q, β
′
2q, β

′′
2q are universal constants depending only on the dimension

m. In particular, we have the formulas

b0q = π−(m+2
2 )
∫

Sm,q−m

∣∣det(2HH∗ − |x|2I)
∣∣ e−〈(H,x),(H,x)〉 dH dx , (2.2)

and

β2q(m) =
1

4 π(m+2
2 )

∫
Sm,q−m

γ(H)
∣∣det(2HH∗ − |x|2I)

∣∣ e−〈(H,x),(H,x)〉 dH dx , (2.3)

where

γ(H) =
1

2
|H11|4 − 2|H11|2 + 1 .

For the remainder of this paper we will focus on the three formulas: (2.1), (2.2),

and (2.3). These formulas will be simplified by first applying an argument based on

the Itzykson-Zuber integral formula and then computing a subset of the resulting
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integrals using an iterated residues technique. After this, one of several variants of

the Selberg integral formula will be applied to get an exact formula for critical points

of minimal Morse index in each case. We will then utilize various change of variable

and symmetry arguments to manipulate the formulas for the other Morse index cases

to derive our main results. We will apply (2.1) to the special case, O(N) → CPm,

to obtain the growth rate of the expected number of critical points of sections of this

bundle as the dimension of the manifold goes to infinity. In the general case, we will

use (2.2) and (2.3) to derive the asymptotic growth rate, metric dependence, and

asymptotic minimization of the expected number of critical points.

As the reader has probably already noticed, these three formulas are very similar,

the only differences (other than the coefficients) being the presence of the function

γ(H) in the integrand in (2.3) and the presence of the operator ΛN(z)−1 in the

exponential in (2.1). Thus, initially, the simplification steps are very similar. In

addition, in [DSZ2], the Itzykson-Zuber calculation was done for (2.1) and (2.3) and

the iterated residues calculation was done for (2.1). Hence, our approach will be to

reproduce the results derived in [DSZ2], carry out the calculations for the cases that

were not done in that paper, and note any important differences between our proofs

and theirs. In the next chapter we will present alternate formulas for each of the

three cases, which were derived using the Itzykson-Zuber method, and present the

proof of the b0q formula. The following two chapters will be devoted to proving two

results that will be applied later to each of the three formulas.
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Chapter 3

Itzykson-Zuber Method

The absolute value that appears in the integrands of (2.1), (2.2), and (2.3), prevent

us from applying Wick’s formula, making the formulas difficult to evaluate directly.

Therefore, in [DSZ2], the authors used an argument based on the Itzykson-Zuber

integral formula and Gaussian integration to derive the following alternate formulas

for Kcrit
N,q,h(z) and β2q(m).

Theorem 3.1 ([DSZ2]). Under the same assumptions as before, the density of the

expected distribution of critical points of Morse index q of log ‖sN‖h is also given by:

Kcrit
N,q,h(z) =

(−i)m(m−1)/2

2m π2m
∏m−1

j=1 j! det AN

× lim
ε′→0+

∫
Y2m−q

lim
ε→0+

∫
Rm

∫
U(m)

∆(ξ) ∆(λ) |
∏

j λj| ei〈ξ,λ〉e−ε|ξ|2−ε′|λ|2

det
[
iD̂(ξ)ρ(g)ΛN(z)ρ(g)∗ + I

] dg dξ dλ,

where

• ∆(λ) = Πi<j(λi − λj),

• Yp = {λ ∈ Rm : λ1 > · · · > λp > 0 > λp+1 > · · · > λm} ,

• dg is unit mass Haar measure on U(m),
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• D̂(ξ) is the Hermitian operator on Sym(m, C)⊕ C given by

D̂(ξ)
(
(Hjk), x

)
=

((
ξj + ξk

2
Hjk

)
, −

(∑m
q=1 ξq

)
x

)
,

• ρ is the representation of U(m) on Sym(m, C)⊕ C given by

ρ(g)(H, x) = (gHgt, x) .

Lemma 3.2 ([DSZ2]).

β2q(m) =
(−i)m(m−1)/2

4 π2m
∏m−1

j=1 j!

∫
Y2m−q

∫
R
· · ·
∫

R
∆(λ) ∆(ξ)

m∏
j=1

|λj| ei〈λ,ξ〉 I(λ, ξ) dξ1 · · · dξm dλ ,

where

I(λ, ξ) =

F (D(λ)) +
[

4
Pm

j=1 λj

m(m+1)(m+3)
− 2

m+1

]
1

(1− i
2

P
j ξj)

+ 2

(m+1)(m+3)(1− i
2

P
j ξj)

2(
1− i

2

∑
j ξj

)∏
j≤k

[
1 + i

2
(ξj + ξk)

] .

Here, D(λ) is the diagonal matrix with diagonal entries λ = (λ1, . . . , λm),

F (P ) = 1− 4 Tr P

m(m + 1)
+

4(Tr P )2 + 8 Tr(P 2)

m(m + 1)(m + 2)(m + 3)
, (3.1)

for (Hermitian) m × m matrices P , and ∆(λ) and Yp are the same as in Theorem

3.1. The iterated dξj integrals are defined in the distribution sense.

In the β2q(m) case an additional argument was needed to show that γ(H) could be

replaced by F (HH∗) in the integrand of (2.3) prior to applying the Itzkson-Zuber

method.

While these new alternate formulas certainly look more complicated, they are now

in a form which can be calculated by computer programs in low dimensions. These

low dimensional calculations were important in formulating the conjectures that we

will prove in this paper. As we will see later, these alternate formulas will also yield

to further simplification in certain cases, by the evaluation of the ξ integrals using an

iterated residues technique.
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We will now apply the method, which was used in [DSZ2] to obtain the above

formulas, to (2.2) with very few modifications in order to obtain an alternate formula

for b0q(m) as well. The proof in this case differs somewhat towards the end from

the one given for Theorem 3.1 due to the difference in the phase, but is more or less

identical to the proof of Lemma 3.2.

Lemma 3.3.

b0q(m) =
(−i)m(m−1)/2

π2m
∏m−1

j=1 j!

×
∫

Y2m−q

∫
R
· · ·
∫

R

∆(λ) ∆(ξ)
∏m

j=1 |λj| ei〈λ,ξ〉(
1− i

2

∑
j ξj

)∏
j≤k

[
1 + i

2
(ξj + ξk)

] dξ1 · · · dξm dλ .

Here, ∆(λ) and Yp are as in Theorem 3.1, and the iterated dξj integrals are defined

in the distribution sense.

Proof. First, we let

Iε,ε′ =
1

πdm

∫
Hm

∫
Hm(m−q)

∫
Sym(m,C)×C

|det(2P )| ei〈Ξ,P−HH∗+ 1
2
|x|2I〉

× e−TrHH∗−|x|2 e−εTrΞΞ∗−ε′TrPP ∗
dH dx dP dΞ , (3.2)

where Hm is the space of m × m Hermitian matrices, Hm(m − q) = {P ∈ Hm :

index P = m− q}, and dm = dimC(Sym(m, C)× C) = 1
2
(m2 + m + 2). We note that

absolute convergence in the above integral is guaranteed by the Gaussian factors in

each of the variables (H, x, P, Ξ). It then follows that

b0q(m) =
1

πm (2π)m2 lim
ε′→0

lim
ε→0

Iε,ε′ . (3.3)

To see this, evaluate
∫

ei〈Ξ,P−HH∗+ 1
2
|x|2〉e−εTrΞΞ∗

dΞ first to obtain a dual Gaussian,

which approximates the delta function δHH∗− 1
2
|x|2(P ). As ε → 0, the dP integral then

yields the integrand at P = HH∗ − 1
2
|x|2I; then we let ε′ → 0 to obtain the original

integral.
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Next, we conjugate P to a diagonal matrix D(λ) with λ = (λ1, . . . , λm) by an

element h ∈ U(m). We recall that∫
Hm

φ(P ) dP = c′m

∫
Rm

∫
U(m)

φ(hD(λ)h∗)∆(λ)2 dh dλ , c′m =
(2π)(

m
2 )∏m

j=1 j!
, (3.4)

where dh is unit mass Haar measure on U(m) (see for example [ZZ, (1.9)]), and use

this to obtain

Iε,ε′ =
2m c′m
πdm

∫
U(m)

∫
Hm

∫
Y2m−q

∫
Sym(m,C)×C

∆(λ)2

m∏
j=1

|λj| e−TrHH∗−|x|2

× ei〈Ξ, hD(λ)h∗+ 1
2
|x|2I−HH∗〉e−[εTrΞΞ∗+ε′

P
λ2

j ] dH dx dλ dΞ dh .

Again using (3.4), applied this time to Ξ, we obtain

Iε,ε′ =
2m(c′m)2

πdm

∫
U(m)

∫
U(m)

∫
Rm

∫
Y2m−q

∫
Sym(m,C)×C

∆(λ)2 ∆(ξ)2

m∏
j=1

|λj|

× ei〈gD(ξ)g∗, hD(λ)h∗+ 1
2
|x|2I−HH∗〉

× e−TrHH∗−|x|2−
P

(εξ2
j +ε′λ2

j ) dH dx dλ dξ dh dg .

We then transfer the conjugation by g to the right side of the inner product in

the first exponent and make the change of variables h 7→ gh, H 7→ gHgt to eliminate

g from the integrand:

Iε,ε′ =
2m(c′m)2

πdm

∫
U(m)

∫
Rm

∫
Y2m−q

∫
Sym(m,C)×C

∆(λ)2 ∆(ξ)2

m∏
j=1

|λj|

× ei〈D(ξ), hD(λ)h∗+ 1
2
|x|2I−HH∗〉e−TrHH∗−|x|2−

P
(εξ2

j +ε′λ2
j ) dH dx dλ dξ dh .

Next, we recognize the integral
∫

U(m)
ei〈D(ξ),hD(λ)h∗〉dh as the well-known Itzykson-

Zuber-Harish-Chandra integral [Ha] (cf., [ZZ]):

J(D(λ), D(ξ)) = (−i)m(m−1)/2
(∏m−1

j=1 j!
) det[eiλjξk ]j,k

∆(λ)∆(ξ)
. (3.5)

We substitute (3.5) into the above integral and expand

det[eiξjλk ]jk =
∑

σ∈Sm

(−1)σ ei〈ξ,σ(λ)〉,
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obtaining a sum of m! integrals. However, by making the change of variables σ(λ) →

λ′ and noting that ∆(λ′) = (−1)σ∆(λ), we see that the integrals of all these terms

are equal, and so we obtain

Iε,ε′ = (−i)m(m−1)/2 c′′m
πdm

∫
Rm

∫
Y2m−q

∫
Sym(m,C)×C

∆(λ) ∆(ξ)
m∏

j=1

|λj| ei〈λ,ξ〉

× exp
(
i
〈
D(ξ), 1

2
|x|2I −HH∗〉− TrHH∗ − |x|2

)
× exp

(
−ε
∑

ξ2
j − ε′

∑
λ2

j

)
dH dx dλ dξ ,

where

c′′m =
2m2

πm(m−1)∏m
j=1 j!

.

The phase

Φ(H, x; ξ) := i

〈
D(ξ),

1

2
|x|2I −HH∗

〉
− TrHH∗ − |x|2

= −

[
‖H‖2

HS + i
m∑

j,k=1

ξj|Hjk|2 +

(
1− i

2

∑
j

ξj

)
|x|2
]

= −

[∑
j≤k

(
1 +

i

2
(ξj + ξk)

)
|Ĥjk|2 +

(
1− i

2

∑
j

ξj

)
|x|2
]

,

where

Ĥjk =


√

2 Hjk for j < k

Hjk for j = k

.

Thus,

Iε,ε′ = (−i)m(m−1)/2c′′m (3.6)

×
∫

Y2m−q

∫
Rm

∆(λ) ∆(ξ)
m∏

j=1

|λj| ei〈λ,ξ〉 I(λ, ξ) e−ε
P

ξ2
j−ε′

P
λ2

j dξ dλ ,
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where

I(λ, ξ) =
1

πdm

∫
C

∫
Sym(m,C)

eΦ(H,x;ξ) dH dx

=
1∏

j≤k

(
1 + i

2
(ξj + ξk)

) ∫
C

e−(1− i
2

P
j ξj)|x|2 dx

=
π(

1− i
2

∑
j ξj

)∏
j≤k

(
1 + i

2
(ξj + ξk)

) .
To evaluate limε,ε′→0+ Iε,ε′ , we first observe that the map

(ε1, . . . , εm) 7→
∫

Rm

∆(ξ) ei〈λ,ξ〉 I(λ, ξ) e−
P

εjξ2
j dξ

is a continuous map from [0, +∞)m to the tempered distributions. In addition, since

the integrand in (3.6) is invariant under identical simultaneous permutations of the

ξj and the λj, it follows that the integral equals m! times the corresponding integral

over Ym−k. Hence, by (3.3) and (3.6), we have

b0q(m) =
(−i)m(m−1)/2

π2m
∏m−1

j=1 j!
lim

ε′→0+
lim

ε1,...,εm→0+

∫
Y2m−q

dλ

×
∫

Rm

∆(λ) ∆(ξ)
m∏

j=1

|λj| ei〈λ,ξ〉 I(λ, ξ) e−
P

εjξ2
j−ε′

P
λ2

j dξ .

We obtain the desired result by letting ε1 → 0, . . . , εm → 0, ε′ → 0 sequentially.
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Chapter 4

Iterated Residues

In this chapter we compute the value of a fairly complicated integral over (R − i)m

using an iterated residues technique. The lemma we prove will be applied, after a

change of variables, to the above formulas for β2q and b0q in subsequent chapters. The

calculation of the integral below for s = 1 was carried out in [DSZ2] in order to apply

it to the expected density formula for the CPm case. Although the s = 1 calculation

is sufficient to simplify the b0q formula, in order to simplify the β2q formula we need

to calculate the s = 2 and s = 3 cases as well. For the sake of completeness, we will

present the proof for all three values of s.

Lemma 4.1. Let 0 ≤ p ≤ m, c > 0, s ∈ {1, 2, 3}, and

Iλ,s,c =

∫
(R−i)m

∆(t) ei〈λ,t〉

(
∑

tj + ic)s∏
1≤j≤k≤m(tj + tk)

dt .

Then for

λ1 > · · · > λp > 0 > λp+1 > · · · > λm ,

we have

Iλ,s,c =


im

2−s πm

cs
fs(λm) ecλm for p < m

im
2−s πm

cs
for p = m

,
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where

fs(λm) =



1 for s = 1

1− cλm for s = 2

c2λ2
m − 2cλm + 2

2
for s = 3

.

Proof. Let s ∈ {1, 2, 3} and

I(λ, t; s, c) =
∆(t) ei〈λ,t〉

(
∑

tj + ic)s∏
1≤j≤k≤m(tj + tk)

,

so that

Iλ,s,c =

∫
(R−i)m

I(λ, t; s, c) dt.

When p > 0, we start by evaluating the t1 integral. We close the contour of

integration in the upper half plane and pick up the poles at t1 = 0, and at t1 = −tj

for j 6= 1. The pole at t1 = −ic−
∑

j 6=1 tj is below the contour.

The t1 = −tj poles do not contribute to the integral. To see why, we compute the

residue at the pole t1 = −t2 to obtain

(−1)m−2ei[(λ2−λ1)t2+λ3t3+···λmtm]2t2(t2 + t3) · · · (t2 + tm)∆(t2, . . . , tm)

(t3 + · · ·+ tm + ci)s 2t2(−t2 + t3) · · · (−t2 + tm)
∏

2≤j≤k≤m(tj + tk)

=
ei(λ2−λ1)t2

2t2
I(λ3, . . . , λm, t3, . . . , tm; s, c) .

It is easy to see that the integral of the above formula is zero, since to calculate the

t2 integral we would need to close the contour in the lower half plane (λ2 − λ1 < 0),

and then the lone pole at t2 = 0 would be above the contour. By the symmetry in

I(λ, t; s, c) we could have replaced t2 in the above argument with any of the other

tj’s and obtained the same result.

This leaves only the pole at t1 = 0, and the residue of I(λ, t; s, c) at this pole is

(−1)m−1

2
I(λ2, . . . , λm, t2, . . . , tm; s, c) . (4.1)
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If we apply (4.1) recursively, we see that the integral with 0 < p < m is reduced to

the case with all λj ’s negative:

Iλ,s,c = (−1)(m−1)+(m−2)+···+(m−p)(πi)p

∫
(R−i)m−p

I(λp+1, . . . , λm, tp+1, . . . , tm; s, c) dt .

(4.2)

When p = m, we compute Res |tm=0 I(λm, tm; s, c) to obtain

Iλ,s,c =
(−1)m(m−1)/2(πi)m

(ic)s
.

To calculate the integral in (4.2), we start this time with the tm integral and

close the contour in the lower half plane, picking up the pole of order s at tm =

−ic−
∑

k<m tk. These residues are

R(λ1, . . . , λm−1, t1, . . . , tm−1; 1, c) :=

∆(t1, . . . , tm−1)
∏

k<m(ic +
∑

l<m tl + tk)e
cλm+i

P
j(λj−λm)tj

2(−ic−
∑

l<m tl)
∏

1≤j≤k≤m−1(tj + tk)
∏

k<m(−ic−
∑

l<m,l 6=k tl)
,

R(λp+1, . . . , λm, tp+1, . . . , tm−1; 2, c) :=

∆(tp+1, . . . , tm−1)
∏

k<m(ic + tk +
∑

l<m tl)e
cλm+i

P
j<m(λj−λm)tj

2(−ic−
∑

l<m tl)
∏

j≤k<m(tj+tk)
∏

k<m(−ic−
∑

l<m, l 6=k tl)

×

(
iλm −

∑
k<m

1

ic + tk +
∑

l<m tl
+
∑

k

1

ic +
∑

l<m, l 6=k tl

)
,

and

R(λp+1, . . . , λm, tp+1, . . . , tm−1; 3, c) :=

∆(tp+1, . . . , tm−1)
∏

k<m(ic + tk +
∑

l<m tl)e
cλm+i

P
j<m(λj−λm)tj

2(−ic−
∑

l<m tl)
∏

j≤k<m(tj+tk)
∏

k<m(−ic−
∑

l<m, l 6=k tl)

×

[(
iλm −

∑
k<m

1

ic + tk +
∑

l<m tl
+
∑

k

1

ic +
∑

l<m, l 6=k tl

)2

−
∑
k<m

1

(ic + tk +
∑

l<m tl)2
+
∑

k

1

(ic +
∑

l<m, l 6=k tl)2

]
,
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for s = 1, 2, and 3, respectively.

Next, we evaluate the tp+1 integral. We close the contour in the upper half plane

and see that all of the denominatorial factors in which the summand ic appears either

cancel out or give poles below the contour.

It can then be verified by a straightforward (if somewhat tedious) calculation that

the poles tp+1 = −tj do not contribute to the value of the integral. Indeed, after

computing the residue at the pole tp+1 = −tj, consider the tj integral. The coefficient

of tj in the exponential will be λj−λ1, which is always negative, and thus the contour

can be closed in the lower half plane. All of the poles will be above the contour, since

all of the denominatorial factors with an ic will have canceled out, and therefore the

integral will be zero.

This leaves only the pole at tp+1 = 0, and we calculate that

Res |tp+1=0 R(λp+1, . . . , λm, tp+1, . . . , tm−1; s, c)

=
(−1)m−p−1

2
R(λp+2, . . . , λm, tp+2, . . . , tm−1; s, c)

for s ∈ {1, 2, 3}. We apply this argument recursively and then compute the residue

of R(λm−1, λm, tm−1; s, c) at tm−1 = 0 to obtain∫
(R−i)m−p

I(λp+1, . . . , λm, tp+1, . . . , tm; 1, c) dt = (−1)m(m−1)/2 (πi)m

(
−i

c

)
ecλm ,

∫
(R−i)m−p

I(λp+1, . . . , λm, tp+1, . . . , tm; 2, c) dt

= (−1)(m−p)(m−p−1)/2(πi)m−p

(
1−cλm

(ic)2

)
ecλm ,

and∫
(R−i)m−p

I(λp+1, . . . , λm, tp+1, . . . , tm; 3, c) dt

= (−1)(m−p)(m−p−1)/2(πi)m−p

(
c2λ2

m − 2cλm + 2

2(ic)3

)
ecλm ,
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for s = 1, 2, and 3, respectively. Substituting these formulas into (4.2) and simplifying

gives the desired result.
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Chapter 5

Selberg Integral Formulas

In this chapter we will derive an extension of Aomoto’s integral formula (which is

itself an extension of Selberg’s integral formula) and use it to derive an extension of

the exponential Selberg integral formula. We will use this formula in the following

chapters to derive exact formulas in the case of critical points of minimal Morse index.

We start with Selberg’s well-known integral formula, a generalization of Euler’s

beta integral [Se].

Theorem 5.1 (Selberg’s Integral Formula). For any positive integer n, let

Φ(x) := Φ(x1, · · · , xn) = |∆(x)|2γ
n∏

j=1

xα−1
j (1− xj)

β−1.

Then ∫ 1

0

· · ·
∫ 1

0

Φ(x)dx =
n−1∏
j=0

Γ(1 + γ + jγ)Γ(α + jγ)Γ(β + jγ)

Γ(1 + γ)Γ(α + β + γ(n + j − 1))
, (5.1)

when α, β, γ ∈ C with Re α > 0, Re β > 0, Re γ > -min
(

1
n
, Reα

(n−1)
, Reβ

(n−1)

)
.

The exponential Selberg integral formula is a limiting case of the above formula

(see [As]).
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Corollary 5.2. For any positive integer n, let

Φ(x) := Φ(x1, · · · , xn) = |∆(x)|2γ
n∏

j=1

xα−1
j e−xj .

Then ∫ ∞

0

· · ·
∫ ∞

0

Φ(x)dx =
n−1∏
j=0

Γ(1 + γ + jγ)Γ(α + jγ)

Γ(1 + γ)
, (5.2)

valid for complex α, γ with Re α > 0, Re γ > -min
(

1
n
, Re α

(n−1)

)
.

This formula is obtained by making the change of variables xj → xj

m
, replacing β with

β + m, and then taking the limit as m →∞ in (5.1).

We will make use of the exponential Selberg integral formula in subsequent chap-

ters in the proofs of two of our main results, but we will need an extension of it to

prove the third. We could work directly with this formula to get a proof (see [Ba2]),

however in the proof that we present below we will instead extend Aomoto’s integral

formula and then take a limit as described above to achieve the result. Not only

does this method give an extension of Aomoto’s formula as an auxiliary result, it

also provides the reader with more insight into the important symmetries in these

integrals which we will exploit more in later proofs. In addition, since we actually use

a variant of Aomoto’s argument to extend his integral formula, the reader will also

see Aomoto’s method of proving his extension of Selberg’s integral formula.

In 1987 Aomoto found a simpler proof of a slightly more general integral which

contains Selberg’s integral as a subcase (see [Ao]).

Theorem 5.3 (Aomoto’s Integral Formula). For 1 ≤ ` ≤ n, let

Φ(x) := Φ(x1, · · · , xn) = |∆(x) |2γ
n∏

j=1

xα−1
j (1− xj)

β−1. (5.3)
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Then

I(α, β, γ; `, n) :=

∫ 1

0

· · ·
∫ 1

0

x1 · · ·x` Φ(x)dx

=
∏̀
j=1

α + γ(n− j)

α + β + γ(2n− j − 1)
(5.4)

×
n−1∏
j=0

Γ(1 + γ + jγ)Γ(α + jγ)Γ(β + jγ)

Γ(1 + γ)Γ(α + β + γ(n + j − 1))
,

valid for complex α, β, γ with Re α > 0, Re β > 0, Re γ > -min
(

1
n
, Reα

(n−1)
, Reβ

(n−1)

)
.

5.1 Extension of Aomoto’s Integral Formula

In this section we prove an extension of Aomoto’s integral by applying the same type

of argument that he used in his proof.

Lemma 5.4. Let

Φ(x) := Φ(x1, · · · , xn) = |∆(x) |2γ
n∏

j=1

xα−1
j (1− xj)

β−1. (5.5)

Then

I(α, β, γ; k, `, n) :=

∫ 1

0

. . .

∫ 1

0

(
k∏

i=1

xi

)(∏̀
i=1

xi

)
Φ(x)dx

=
I(α, β, γ; `, n)(

1+α+β
γ

+2n−k−1
)

k

(5.6)

×
k∑

i=0

(
k

i

)(−n+`+i−1)i

(
α
γ
+n−`−i

)
i

(
1+α
γ

+2n−`−k
)

k−i(
α+β
γ

+2n−`−i−1
)

i

,

where (a)n = a(a + 1) . . . (a + n − 1) is the rising factorial and I(α, β, γ; `, n) is

Aomoto’s integral. This is valid for integer k, `, n with 1 ≤ k ≤ ` < n and complex

α, β, γ with Re α > 0, Re β > 0, Re γ > -min
(

1
n
, Reα

(n−1)
, Reβ

(n−1)

)
.
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Proof. First, we let

Ik,` :=

∫
Cn

k∏
i=1

xiw`(x)dx =

∫
Cn

k∏
i=1

xi

∏̀
i=1

xiv(x)dx,

where

w`(x) := w(x; α, β, γ, `) = |∆(x)|2γ
∏̀
i=1

xi

n∏
i+1

xα−1
i (1− xi)

β−1,

v(x) := v(x; α, β, γ) = |∆(x)|2γ
n∏

i=1

xα−1
i (1− xi)

β−1,

and

Cn = (0, 1)× · · · × (0, 1)︸ ︷︷ ︸
n times

.

Then we make the claim:

Claim 5.5. With Ik,` and w`(x) defined by the above equations,

∫
Cn

∏k
i=1 xi w`(x)dx

x1 − xj

=


0, if 2 ≤ j ≤ k (5.7a)

1
2
Ik−1,`, if k < j ≤ ` (5.7b)

Ik−1,`, if ` < j ≤ n (5.7c)

and

∫
Cn

x1

∏k
i=1 xi w`(x)dx

x1 − xj

=


1
2
Ik,` if 2 ≤ j ≤ k (5.8a)

Ik,` if k < j ≤ ` (5.8b)

Ik,` + 1
2
Ik−1,`+1 if ` < j ≤ n (5.8c)

valid for integer j, k, l, n with 1 ≤ k ≤ l < n.

To prove the claim we will look at each of the six cases and consider the effect of

making the transposition x1 ↔ xj in each case. We will make use of the fact that

w`(x) and v(x) are symmetric under permutations of {x1, . . . , x`} and {x1, . . . , xn},

respectively.

For (5.7a), we have 2 ≤ j ≤ k, and we immediately see that the integral vanishes

since we have ∫
Cn

∏k
i=1 xi w`(x)dx

x1 − xj

= −
∫

Cn

∏k
i=1 xi w`(x)dx

x1 − xj
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after making the above transposition and utilizing the symmetry in w`(x). (The

numerator is unchanged by the transposition due to the symmetry in w`(x), but the

denominator changes sign.)

For (5.7b), k < j ≤ `, and the same transposition gives us the following∫
Cn

∏k
i=1 xi w`(x)dx

x1 − xj

=

∫
Cn

xj

∏k
i=2 xi w`(x)dx

xj − x1

=

∫
Cn

(
1− x1

x1 − xj

) k∏
i=2

xi w`(x)dx,

and therefore

2

∫
Cn

∏k
i=1 xi w`(x)dx

x1 − xj

=

∫
Cn

k∏
i=2

xi w`(x)dx =

∫
Cn

k−1∏
i=1

xi w`(x)dx = Ik−1,` .

For the second equality we merely made the transposition x1 ↔ xk.

In the case of (5.7c), we first note that∫
Cn

(
x2

1

x1 − xj

) k∏
i=2

xi

∏̀
i=2

xi v(x)dx =

∫
Cn

(
x1 +

x1xj

x1 − xj

) k∏
i=2

xi

∏̀
i=2

xi v(x)dx.

Then we make the transposition x1 ↔ xj, where ` < j ≤ n, in the second term on

the RHS of the above equation to obtain∫
Cn

(
x1xj

x1 − xj

) k∏
i=2

xi

∏̀
i=2

xi v(x)dx = −
∫

Cn

(
xjx1

x1 − xj

) k∏
i=2

xi

∏̀
i=2

xi v(x)dx

by the symmetry in v(x). Hence this integral also vanishes. Therefore∫
Cn

x2
1

∏k
i=2 xi

∏`
i=2 xi v(x)dx

x1 − xj

=

∫
Cn

k∏
i=2

xi w`(x)dx =

∫
Cn

k−1∏
i=1

xi w`(x)dx = Ik−1,` .

Next, for (5.8a) we have 2 ≤ j ≤ k again, and we see that the transposition

x1 ↔ xj leads to∫
Cn

x1

∏k
i=1 xi w`(x)dx

x1 − xj

=

∫
Cn

xj

∏k
i=1 xi w`(x)dx

xj − x1

=

∫
Cn

(
1− x1

x1 − xj

) k∏
i=1

xi w`(x)dx,

and thus

2

∫
Cn

x1

∏k
i=1 xi w`(x)dx

x1 − xj

=

∫
Cn

k∏
i=1

xi w`(x)dx = Ik,` .
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Then, for (5.8b) we have k < j ≤ `, and we apply the same argument used for

(5.7c) to obtain∫
Cn

x2
1

∏k
i=2 xi w`(x)dx

x1 − xj

=

∫
Cn

(
x1 +

x1xj

xj − x1

) k∏
i=2

xi w`(x)dx

=

∫
Cn

k∏
i=1

xi w`(x)dx = Ik,` .

Finally, for (5.8c) we have ` < j ≤ n, and we note that

∫
Cn

(
x3

1

x1−xj

) k∏
i=2

xi

∏̀
i=2

xi v(x)dx =

∫
Cn

(
x2

1+
x2

1xj

x1−xj

) k∏
i=2

xi

∏̀
i=2

xi v(x)dx

=

∫
Cn

k∏
i=1

xi w`(x)dx+

∫
Cn

∏k
i=1 xi

∏`+1
i=1 xi v(x)dx

x1−x`+1

.

In the second equality we made the transposition xj ↔ x`+1, which leaves the integral

unchanged due to the symmetry. We then apply (5.7b) to the second integral on the

RHS of the above equation to obtain the desired result for this last case, and the

claim is proved.

Returning to the proof of the lemma, we calculate that∫
Cn

∂

∂x1

[
(1− x1)

k∏
i=1

xi w`(x)

]
dx = (α + 1)

∫
Cn

(1− x1)
k∏

i=2

xi w`(x)dx (5.9)

− β

∫
Cn

k∏
i=1

xi w`(x)dx

+ 2γ
n∑

i=2

∫
Cn

(1− x1)
x1

∏k
i=1 xi w`(x)

x1 − xj

dx ,

but it is clear, by the Fundamental Theorem of Calculus, that the integral on the
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LHS vanishes. Therefore, by applying the above claim to (5.9) we see that

0 = (α + 1)Ik−1,` − (α + 1)Ik,` − βIk,` + 2γ

(
(`− k)Ik−1,`

2
+ (n− `)Ik−1,`

)
− 2γ

(
(k − 1)Ik,`

2
+ (`− k)Ik,` + (n− `)(Ik,` +

Ik−1,`+1

2
)

)
=

(
α− 1− β − γ(k − 1)− 2γ(`− k)− 2γ(n− `)

)
Ik,`

+
(
α + 1 + γ(`− k) + 2γ(n− `)

)
Ik−1,` − γ(n− `)Ik−1,`+1

= (α + 1− γ`− γk + 2γn)Ik−1,` − (1 + α + β − γ − γk + 2γn)Ik,`

−γ(n− `)Ik−1,`+1

=
(
1 + α + γ(2n− `− k)

)
Ik−1,` −

(
1 + α + β − γ(1 + k − 2n)

)
Ik,`

−γ(n− `)Ik−1,`+1,

and thus

Ik,` =

(
1 + α + γ(2n− `− k)

)
Ik−1,` − γ(n− `)Ik−1,`+1

1 + α + β − γ(1 + k − 2n)
. (5.10)

Our next step is to show that

Ik,` =
I0,`∏k
i=1 Ci

(
k∑

i=0

((
k

i

) k∏
a=i+1

Aa,`

i∏
b=1

E`+b

))
(5.11)

where

Ak,` = 1 + α + γ(2n− `− k), (5.12)

B` = γ(n− `), (5.13)

Ck = 1 + α + β + γ(2n− k − 1), (5.14)

D` =
α + γ(n− `)

α + β + γ(2n− `− 1)
, (5.15)

and

E` = −B`−1D`. (5.16)

We will prove this by induction. First, we compute that

I1,` =
A1,`I0,` −B`I0,`+1

C1

=
A1,`I0,` −B`D`+1I0,`

C1

,
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where the first equality follows from (5.10) and the second from Theorem 5.1. Thus

I1,` =
I0,`

C1

(A1,` + E`+1)

and the basis step is proved. Next we assume that

Im,` =
I0,`∏m
i−1 Ci

(
m∑

i−0

((
m

i

) m∏
a=i+1

Aa,`

i∏
b=1

E`+b

))
(5.17)

and then use (5.10), (5.17), and Theorem 5.1 to calculate that

Im+1,` =
Am+1,`Im,` −B`Im,`+1

Cm+1

=
Am+1,`

Cm+1

[
I0,`∏m
i=1 Ci

m∑
i=0

((
m

i

) m∏
a=i+1

Aa,`

i∏
b=1

E`+b

)]

− B`

Cm+1

[
I0,`+1∏m

i=1 Ci

m∑
i=0

((
m

i

) m∏
a=i+1

Aa,`+1

i∏
b=1

E`+b+1

)]

=
I0,`∏m+1
i=1 Ci

[
Am+1,`

m∑
i=0

((
m

i

) m∏
a=i+1

Aa,`

i∏
b=1

E`+b

)

+ E`+1

m∑
i=0

((
m

i

) m∏
a=i+1

Aa+1,`

i∏
b=1

E`+b+1

)]

=
I0,`∏m+1
i=1 Ci

m∑
i=0

[(
Am+1,`

(
m

i

) m∏
a=i+1

Aa,`

i∏
b=1

E`+b

)

+

(
E`+1

(
m

i

) m∏
a=i+1

Aa+1,`

i∏
b=1

E`+b+1

)]

=
I0,`∏m+1
i=1 Ci

m∑
i=0

((
m

i

) m+1∏
a=i+1

Aa,`

i∏
b=1

E`+b +

(
m

i

) m+1∏
a=i+2

Aa,`

i+1∏
b=1

E`+b

)

=
I0,`∏m+1
i=1 Ci

[(
m

0

)m+1∏
a=1

Aa,` +

((
m

0

)
+

(
m

1

))m+1∏
a=2

Aa,`

1∏
b=1

E`+b

+

((
m

1

)
+

(
m

2

))m+1∏
a=3

Aa,`

2∏
b=1

E`+b + · · ·+

+

((
m

m− 1

)
+

(
m

m

)) m+1∏
a=m+1

Aa,`

m∏
b=1

E`+b +

(
m

m

)m+1∏
b=1

E`+b

]

=
I0,`∏m+1
i=1 Ci

m+1∑
i=0

((
m + 1

i

) m+1∏
a=i+1

Aa,`

i∏
b=1

E`+b

)
.

30



This completes the induction step, thus proving equality in (5.11).

Finally, we note that I0,` is Aomoto’s integral, and we substitute (5.12) - (5.16)

into (5.11) to obtain

Ik,` = I(α, β, γ; `, n)
k∏

i=1

1

1+α+β+γ(2n−i−1)

×
k∑

i=0

((
k

i

) k∏
g=i+1

(1+α+γ(2n−`−g))
i∏

h=1

−γ(n−`−h+1)(α+γ(n−`−h))

α+β+γ(2n−`−h−1)

)
,

which we then simplify to obtain the desired result.

5.2 Extension of the Exponential Selberg Integral

Formula

In this section we will use Lemma 5.4 to prove an extension of the exponential Selberg

integral formula.

Lemma 5.6.∫ ∞

0

. . .

∫ ∞

0

(
k∏

i=1

xi

)(∏̀
i=1

xj

)
|∆(x)|2γ

n∏
j=1

(
xα−1

j e−xj
)
dx

= γk+`

(
1+α

γ
+2n−`−k

)
k

(
α

γ
+ n− `

)
`

n−1∏
j=0

Γ(1+γ+jγ)Γ(α+jγ)

Γ(1+γ)
,

where (a)n = a(a + 1) . . . (a + n − 1) is the rising factorial. This is valid for integer

k, `, n with 0 ≤ k ≤ ` < n and complex α and γ with Re α > 0, Re γ > -min(
1
n
, Re α

(n−1)

)
.

Proof. First, recall that by definition

I(α, β+m, γ; k, `, n) =

∫ 1

0

. . .

∫ 1

0

(
k∏

i=1

xi

)(∏̀
i=1

xi

)
Φ(x)dx ,

where

Φ(x) = |∆(x) |2γ
n∏

j=1

xα−1
j (1− xj)

β+m−1. (5.18)
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On the other hand, we just proved in Lemma 5.4 that

I(α, β+m, γ; k, `, n) =
I(α, β+m, γ; `, n)(
1+α+β+m

γ
+2n−k−1

)
k

×
k∑

i=0

(
k
i

)
(−n+`+i−1)i

(
α
γ
+n−`−i

)
i

(
1+α
γ

+2n−`−k
)

k−i(
α+β+m

γ
+2n−`−i−1

)
i

,

which becomes

I(α, β+m, γ; k, `, n)=
∏̀
j=1

α+γ(n−j)

α+β+m+γ(2n−j−1)

×
n−1∏
j=0

Γ(1+γ+jγ)Γ(α+jγ)Γ(β+m+jγ)

Γ(1+γ)Γ(α+β+m+γ(n+j−1))
(5.19)

×
k∑

i=0

(
k
i

)
(−n+`+i−1)i

(
α
γ
+n−`−i

)
i

(
1+α
γ

+2n−`−k
)

k−i(
1+α+β+m

γ
+2n−k−1

)
k

(
α+β+m

γ
+2n−`−i−1

)
i

after we apply (5.4).

Next, we make the change of variables

xj →
xj

m

in the original formula for I(α, β+m, γ; k, `, n), and thus

I(α, β+m, γ; k, `, n) =

m−k−`−αn−γn(n−1)

∫ m

0

. . .

∫ m

0

(
k∏

i=1

xi

)(∏̀
i=1

xj

)
Φ′(x)dx, (5.20)

where

Φ′(x) = |∆(x)|2γ
n∏

j=1

(
xα−1

j

(
1− xj

m

)β+m−1
)

.
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By combining (5.19) and (5.20) and then simplifying, we see that∫ m

0

. . .

∫ m

0

(
k∏

i=1

xi

)(∏̀
i=1

xj

)
Φ′(x)dx

=
1(

1
γ
+ 1+α+β+2n−k−1

m

)
k

×
k∑

i=0


(

k
i

)
(−n+`+i−1)i

(
α
γ
+n−`−i

)
i

(
1+α
γ

+2n−`−k
)

k−i(
α+β+m

γ
+2n−`−i−1

)
i


×
∏̀
j=1

α+γ(n−j)

1+ α+β+γ(2n−j−1)
m

n−1∏
j=0

Γ(1+γ+jγ)Γ(α+jγ)Γ(β+m+jγ)mα+γ(n−1)

Γ(1+γ)Γ(α+β+m+γ(n+j−1))
.

Then, we take the limit as m → ∞ on both sides of the equation and use the fact

that Γ(A+m)
Γ(B+m)

mB−A → 1 and
(
1− x

m

)A+m → e−x as m →∞, to obtain

∫ ∞

0

. . .

∫ ∞

0

(
k∏

i=1

xi

)(∏̀
i=1

xj

)
|∆(x)|2γ

n∏
j=1

(
xα−1

j e−xj
)
dx

= γk+`

(
1+α

γ
+2n−`−k

)
k

(
α

γ
+ n− `

)
`

n−1∏
j=0

Γ(1+γ+jγ)Γ(α+jγ)

Γ(1+γ)
.

The limit on the LHS can be justified by using cutoff functions and applying the

monotone convergence theorem.
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Chapter 6

Growth Rate of N crit
N,h(CPm) in m

In this chapter we will show that the expected number N crit
N,h(CPm) of critical points

of random holomorphic sections of O(N) → CPm grows exponentially with the di-

mension of the manifold. We will derive an exact formula for the expected number

of critical points of minimal Morse index that holds in all dimensions and then show

that the expected number N crit
N,q,h(CPm) of critical points of Morse index q decreases

as q increases. These two facts give an upper and lower bound on N crit
N,h(CPm). The

growth rate that we obtain was conjectured in [DSZ2, DSZ3] and was used as a basis

in [DSZ3, Sec. 7.3] for the heuristic estimate of the growth rate for the expected

density of vacua in string/M theory. This estimate was a means of tying the rigor-

ous results obtained in this paper together with previous estimates of the number of

vacua in the literature, such as in [BP]. This growth rate is also consistent with the

analogous estimates of the growth rate of the number of metastable states of spin

glasses [Fy].
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6.1 Critical Point Formulas for O(N)→CPm

The setting under consideration in this chapter is the Nth tensor power of the hyper-

plane section line bundle over m-dimensional complex projective space O(N) → CPm

with the Fubini-Study metric hN on the bundle. This metric and the Gaussian mea-

sure induced by it on H0(CPm,O(N)) are both invariant under the SU(m+1) action

on CPm, and therefore the expected density is constant on CPm. By taking the for-

mula for Kcrit
N,q,h given in Theorem 3.1 and computing the derivatives of the normalized

Szegö kernel of H0(CPm,O(N)) at the point z = 0 ∈ Cm ⊂ CPm, the following for-

mula for the expected density of critical points specific to this case was derived in

[DSZ2].

Lemma 6.1. The density of the expected distribution of critical points of Morse index

q for random sections s ∈ H0(CPm,O(N)) relative to dVh is given by

Kcrit
N,q,h(z) = im+1m! |cm|

Nm
lim

ε′→0+

∫
Y2m−q

dλ
∣∣∣∏j λj

∣∣∣ ∆(λ) e−ε′|λ|2

× lim
ε→0+

∫
Rm

∆(ξ) ei〈λ,ξ〉e−ε|ξ|2 dξ

(N2
∑

ξj + i)
∏

1≤j≤k≤m{i−N(N − 1)(ξj + ξk)}
,

where Yp is as in Theorem 3.1 and

cm =
(−i)m(m−1)/2

2m π2m
∏m

j=1 j!
.

Since the expected density is constant on CPm, it follows immediately from the

definitions that

N crit
N,q,h(CPm) =

πm

m!
Kcrit

N,q,h(z).

Therefore, by computing the ξ integrals in the above formula using the iterated residue

argument that was given in the proof of Lemma 4.1, the authors derived the following

formula for N crit
N,q,h(CPm).
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Theorem 6.2. The expected number of critical points of Morse index q for random

sections s ∈ H0(CPm,O(N)) is given by

N crit
N,q,h(CPm) =

2
m2+m+2

2∏m
j=1 j!

(N − 1)m+1

(m + 2)N − 2

×
∫

Y2m−q

dλ
∣∣∣∏m

j=1 λj

∣∣∣ ∆(λ) e−
Pm

j=1 λj ×


e(m+2−2/N)λm for q > m

1 for q = m

,

for N ≥ 2, where Yp is as in Theorem 3.1.

We will be working with this formula for the remainder of the chapter. In §6.2 we

will derive some intermediate lemmas, which we will then apply to the above formula

in §6.3 to prove Main Theorem 1.

6.2 Intermediate Lemmas

In this section we will derive two lemmas which will be used in the section below and

in the next chapter to prove two of our main theorems.

In our first lemma we evaluate an integral using the exponential Selberg integral

formula.

Lemma 6.3.

2
m2+m+2

2∏m
j=1 j!

∫
0<λm<···<λ1<∞

∏m
j=1 λj ∆(λ) e−

Pm
j=1 λj dλ = 2(m + 1) (6.1)

Proof. In order to simplify the notation we will use P (m) to denote the integral on

the LHS of (6.1). We first see that we can rewrite this integral as

P (m) =

∫
0<λm<···<λ1<∞

∏m
j=1 λj |∆(λ)| e−

Pm
j=1 λjdλ.

We then note that the integrand in the above equation is symmetric under permuta-

tions of λ. Therefore,

P (m) =
1

m!

∫
Rm

+

∏m
j=1 λj |∆(λ)| e−

Pm
j=1 λjdλ.
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Now, we can apply Corollary 5.2 to the above formula with α = 2, γ = 1
2
, and n = m

to obtain

P (m) =
1

m!

m−1∏
j=0

Γ(3
2

+ j
2
)Γ(2 + j

2
)

Γ(3
2
)

= (m + 1)
m∏

j=1

2−jj! ,

where the second equality follows from an application of Gauss’s multiplication for-

mula. The desired formula is then obtained by substituting P (m) back into (6.1) and

simplifying.

In our next lemma, we make a change of variables which takes Y2m−q → Rm
+ for

each q and then show that the value of a slightly more general form of the integral in

Theorem 6.2 decreases as q increases.

Lemma 6.4. For m ≥ 1 and 0 ≤ p ≤ m, let

Pc, p(m) =

∫
Yp

dλ

∣∣∣∣∣
m∏

j=1

λj

∣∣∣∣∣ ∆(λ) e−
Pm−1

j=1 λj ×


e(m+1+c)λm for p < m

e−λm for p = m

,

where Yp is as in Theorem 3.1. Then

P0, p(m) = P0, q(m)

for 0 ≤ p , q ≤ m, and for c > 0,

Pc, p−1(m) <

(
p

p + c

)2

Pc, p(m).

Proof. In order to simplify the discussion, we will examine the case where p = m

separately from the others. In this case

Pc, m(m) =

∫
0<λm<···<λ1<∞

(
m∏

j=1

λj

)(
m−1∏
i=1

m∏
j=i+1

(λi − λj)

)
e−
Pm

j=1 λjdλ.

We make the change of variables

λi →
m∑

j=i

λj,
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to obtain

Pc, m(m) =

∫
Rm

+

(
m∏

i=1

m∑
j=i

λj

)(
m−1∏
i=1

m−1∏
j=i

j∑
k=i

λk

)
e−
Pm

j=1 j λjdλ .

Next, we see that(
m∏

i=1

m∑
j=i

λj

)(
m−1∏
i=1

m−1∏
j=i

j∑
k=i

λk

)
= λm

(
m−1∏
i=1

m∑
j=i

λj

)(
m−1∏
i=1

m−1∏
j=i

j∑
k=i

λk

)

= λm

(
m−1∏
i=1

m∏
j=i

j∑
k=i

λk

)
(6.2)

=
m∏

i=1

m∏
j=i

j∑
k=i

λk

and so

Pc, m(m) =

∫
Rm

+

(
m∏

i=1

m∏
j=i

j∑
k=i

λk

)
e−
Pm

j=1 j λjdλ . (6.3)

Now, we consider Pc, p(m) when 0 ≤ p < m. For these cases

Pc, p(m) =

∫
Yp

∣∣∣∣∣
m∏

j=1

λj

∣∣∣∣∣
(

m−1∏
i=1

m∏
j=i+1

(λi − λj)

)
e−
Pm−1

j=1 λj+(m+c)λmdλ,

and we make the change of variables

λi →


∑p

j=i λj, for 1 ≤ i ≤ p

−
∑i

j=p+1 λj, for p < i ≤ m

,

to obtain

Pc, p(m) =

∫
Rm

+

(
p∏

i=1

p∑
j=i

λj

)(
m∏

i=p+1

i∑
j=p+1

λj

)(
p−1∏
i=1

p−1∏
j=i

j∑
k=i

λk

)

×

(
p∏

i=1

m∏
j=p+1

j∑
k=i

λk

)(
m∏

i=p+2

m∏
j=i

j∑
k=i

λk

)
e−
Pp

j=1 j λj−
Pm

j=p+1(j+c) λjdλ .

We can combine the first quantity with the third, and the second with the fifth, as

we did in (6.2), and thus

Pc, p(m) =

∫
Rm

+

(
p∏

i=1

p∏
j=i

j∑
k=i

λk

)(
m∏

i=p+1

m∏
j=i

j∑
k=i

λk

)

×

(
p∏

i=1

m∏
j=p+1

j∑
k=i

λk

)
e−
Pp

j=1 j λj−
Pm

j=p+1(j+c) λjdλ .
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Now, it is clear that(
p∏

i=1

p∏
j=i

j∑
k=i

λk

)(
p∏

i=1

m∏
j=p+1

j∑
k=i

λk

)
=

p∏
i=1

m∏
j=i

j∑
k=i

λk ,

and then (
p∏

i=1

m∏
j=i

j∑
k=i

λk

)(
m∏

i=p+1

m∏
j=i

j∑
k=i

λk

)
=

m∏
i=1

m∏
j=i

j∑
k=i

λk .

Therefore,

Pc, p(m) =

∫
Rm

+

(
m∏

i=1

m∏
j=i

j∑
k=i

λk

)
e−
Pp

j=1 j λj−
Pm

j=p+1(j+c) λjdλ. (6.4)

We note that in this formula the only dependence on p is in the exponential, and we

see from (6.3) that this formula covers the p = m case as well.

When c = 0, the formula does not depend on p at all, so we see that P0, r(m) =

P0, s(m) for 0 ≤ r, s ≤ m.

Next we let c > 0 and rewrite (6.4) as follows,

Pc, p(m) =

∫
Rm

+

I(λ1, . . . , λm)

(
m∏

i=1

λi

)
e−
Pp

j=1 j λj−
Pm

j=p+1(j+c) λjdλ ,

where

I(λ1, . . . , λm) =
m∏

i=1

m∏
j=i+1

j∑
k=i

λk.

Then we make the change of variable λp → p
p+c

λp in the formula for Pc, p−1 to obtain

Pc, p−1(m) =

(
p

p + c

)2 ∫
Rm

+

I(λ1, . . . ,
p

p+c
λp, . . . , λm)

×

(
m∏

i=1

λi

)
e−
Pp

i=1 i λi−
Pm

j=p+1(j+c) λjdλ

<

(
p

p + c

)2

Pc, p(m).
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6.3 Proof of Main Theorem 1

In this section we will use the two lemmas that were derived in the previous section

to prove Main Theorem 1. In the proof, we will first work out the exact formula

for the minimal Morse index case and then proceed to show that N crit
N,q,h(CPm) >

N crit
N,q+1,h(CPm) for m ≤ q ≤ 2m.

Main Theorem 1. Let N crit
N,q,h(CPm) denote the expected number of critical points

of Morse index q for random sections s ∈ H0(CPm,O(N)) so that N crit
N,h(CPm) =∑2m

q=mN crit
N,q,h(CPm), then

N crit
N,m,h(CPm) =

2(m + 1)(N − 1)m+1

(m + 2)N − 2
,

and when N > 2

N crit
N,q+1,h(CPm) < N crit

N,q,h(CPm).

Therefore,

2(m + 1)(N − 1)m+1

(m + 2)N − 2
< N crit

N,h(CPm) <
2(m + 1)2(N − 1)m+1

(m + 2)N − 2
.

Proof. First, when q = m, we see from Theorem 6.2 that

N crit
N,m,h(CPm) =

2
m2+m+2

2∏m
j=1 j!

(N − 1)m+1

(m + 2)N − 2

∫
Ym

∣∣∣∏m
j=1 λj

∣∣∣ ∆(λ) e−
Pm

j=1 λjdλ.

We then apply Lemma 6.3 to obtain

N crit
N,m,h(CPm) =

2(m + 1)(N − 1)m+1

(m + 2)N − 2
. (6.5)

For the general case, we recall, once again from Theorem 6.2, that

N crit
N,q,h(CPm) =

2
m2+m+2

2∏m
j=1 j!

(N − 1)m+1

(m + 2)N − 2

∫
Y2m−q

dλ
∣∣∣∏m

j=1 λj

∣∣∣ ∆(λ) e−
Pm

j=1 λj (6.6)

×


e(m+2−2/N)λm for q > m

1 for q = m

.

40



First, we see that for N = 2 we can apply Lemma 6.4 with p = 2m − q and c = 0

to the integral in (6.6). Thus, N crit
2,r,h(CPm) = N crit

2,s,h(CPm) for m ≤ r, s ≤ 2m. From

(6.5) we calculate that N crit
2,m,h(CPm) = 1, and therefore, for m ≥ 1,

N crit
2,h (CPm) :=

2m∑
q=m

N crit
2,q,h(CPm) = m + 1.

Then, when N > 2, we apply Lemma 6.4 with p = 2m− q and c = 1− 2
N

to (6.6)

and see that

N crit
N,q+1,h(CPm) <

(
2m− q

2m− q + 1− 2
N

)2

N crit
N,q,h(CPm).

Therefore,

2(m + 1)(N − 1)m+1

(m + 2)N − 2
< N crit

N,h(CPm) <
2(m + 1)2(N − 1)m+1

(m + 2)N − 2
.

Remark. The modulus of the spectral determinant shows up in the various inte-

gral formulas for the expected number of critical points ([AD], [BM], [DSZ2], [Fy]).

As the modulus presents a serious technical challenge in evaluating the integral, it is

often dropped from the calculation (see [AD] and [BM]), which results in counting

the critical points with signs. In string theory this is known as computing the “su-

pergravity index”, while in spin glass theory there is some debate over the validity

and implications of the calculation (see [ABM] and references therein). In our case,

Morse theory tells us that the number of critical points of each s ∈ H0(CPm,O(N))

counted with signs is a topological invariant and is given by

∑
z:∇s(z)=0

(−1)q = cm(T ∗1,0
CPm ⊗O(N))

=
m∑

j=0

(−1)j
(

m+1
j

)
Nm−j =

(N − 1)m+1 + (−1)m

N
,

where q is the Morse index of z. We see that this “index counting” provides a fairly

good estimate of the total expected number of critical points.

41



Chapter 7

Asymptotic Bounds of N crit
N,h as

N →∞

In this chapter we provide the proof of Main Theorem 2. We will use Lemmas 6.3 and

6.4 to derive an exact formula for the leading coefficient of the asymptotic expansion

in N of N crit
N,q,h when q = m and show that the coefficients gets smaller as q gets larger.

We then use these facts to derive upper and lower asymptotic bounds on the leading

coefficient of N crit
N,h .

Main Theorem 2. Let nq(m) denote the universal constant in the leading order

term of the asymptotic expansion of N crit
N,q,h, and let n(m) =

∑2m
q=m nq(m), so that

N crit
N,q,h ∼ nq(m) c1(L)m Nm and N crit

N,h ∼ n(m) c1(L)m Nm.

Then

nm(m) = 2
m + 1

m + 2
and 0 < nq+1(m) <

(
2m− q

2m− q + 1

)2

nq(m) ,

and thus

2
m + 1

m + 2
< n(m) <

2m + 3

3
.
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Proof. We start with the formula for b0q given in Lemma 3.3 and re-write this as

b0q(m) =
(−i)m(m−1)/2

π2m
∏m−1

j=1 j!

∫
Y2m−q

m∏
j=1

|λj|∆(λ) Iλdλ , (7.1)

where

Iλ =

∫
Rm

∆(ξ) ei〈λ,ξ〉 dξ(
1− i

2

∑
ξj

)∏
j≤k

[
1 + i

2
(ξj + ξk)

] .
In order to simplify the formula, we make the change of variables ξj → tj + i to obtain

Iλ = −(−2i)
m2+m+2

2 e−
P

λj Iλ,1,m+2 ,

where

Iλ,s,c =

∫
(R−i)m

∆(t) ei〈λ,t〉

(
∑

tj + ic)s∏
1≤j≤k≤m(tj + tk)

dt .

Putting this together we have

b0q(m) =
(−i)m2−12

m2+m+2
2

π2m
∏m−1

j=1 j!

∫
Y2m−q

dλ
m∏

j=1

|λj|∆(λ) e−
P

λj Iλ,1,m+2 . (7.2)

We apply Lemma 4.1 with s = 1 and c = m + 2 to obtain

b0q(m) =
2

m2+m+2
2

πm(m + 2)
∏m−1

j=1 j!

×
∫

Y2m−q

dλ
∣∣∣∏m

j=1 λj

∣∣∣ ∆(λ) e−
Pm

j=1 λj ×


e(m+2)λm for q > m

1 for q = m

.

Then, from Theorem 2.5 we see that

nq :=
πmb0q

m!
,

and thus

nq(m) =
2

m2+m+2
2

(m + 2)
∏m

j=1 j!

×
∫

Y2m−q

dλ

∣∣∣∣∣
m∏

j=1

λj

∣∣∣∣∣ ∆(λ) e−
Pm

j=1 λj ×


e(m+2)λm for q > m

1 for q = m

. (7.3)
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When q = m, we can apply Lemma 6.3 directly to the above integral and simplify

to obtain

nm(m) = 2
m + 1

m + 2
. (7.4)

Then, for m ≤ q ≤ 2m, we apply Lemma 6.4 with p = 2m − q and c = 1 to the

integral in (7.3) to obtain the relation

nq+1(m) <

(
2m− q

2m− q + 1

)2

nq(m). (7.5)

By definition n(m) =
∑2m

q=m nq(m), and thus it follows from (7.4) and (7.5) that

n(m) < 2
m + 1

m + 2
+ 2

m + 1

m + 2

2m−1∑
i=m

i∏
j=m

(
2m− j

2m− j + 1

)2

= 2
m + 1

m + 2

(
1 +

2m−1∑
i=m

(
2m− i

m + 1

)2
)

= 2
m + 1

m + 2

(
1 +

m(2m + 1)

6(m + 1)

)
=

2m + 3

3
.
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Chapter 8

Metric Dependence of N crit
N,h

In this chapter we will prove Main Theorem 3, showing that the asymptotic expansion

of N crit
N,h has a metric dependence in the term of order m−2 in all dimensions and that

N crit
N,h is asymptotically minimized by Calabi extremal metrics, whenever they exist.

While it is clear that the number of critical points of a given holomorphic section

will vary with the metric, it is not clear whether the same is true for the expected

number of critical points of a random section. Therefore, we consider the asymptotic

expansion of N crit
N,h in order to determine the metric dependence of this statistic.

We have the following obvious corollary of Theorem 2.5:

Corollary 8.1. Under the same conditions as Theorem 2.5, the expected number of

critical points of random sections in H0(M, LN) has the asymptotic expansion

N crit
N,h ∼

[
πmb0

m!
c1(L)m

]
Nm +

[
πmβ1

(m− 1)!
c1(M) · c1(L)m−1

]
Nm−1

+

[
β2

∫
M

ρ2
hdVolh + β′2 c1(M)2 · c1(L)m−2 + β′′2 c2(M) · c1(L)m−2

]
Nm−2 + · · · ,

where b0, β1, β2, β
′
2, β

′′
2 denote the sum over q of b0q, β1q, β2q, β

′
2q, β

′′
2q, respectively.

It is easy to see from this corollary that the asymptotic expansion of N crit
N,h is

topologically invariant to two orders in N , but that the third term in the expansion has
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a non-topological summand, the universal constant β2(m) times the Calabi functional∫
M

ρ2
hdVolh. Here, ρh is the scalar curvature of the Kähler form ωh := i

2
Θh. Therefore,

as long as β2(m) does not vanish, the expansion is non-topological; it will have a metric

dependence due to the presence of the Calabi functional in the third term. In this

chapter we will prove that β2(m) > 0 for all m and show that this implies that Calabi

extremal metrics asymptotically minimize N crit
N,h , whenever they exist.

As mentioned before, the analysis is simplified by treating the contributions from

critical points of different Morse indices separately, and so we will start by working

with the integral formula for β2q from Lemma 3.2.

Our first step is to use Lemma 4.1 to further simplify this formula.

Lemma 8.2.

β2q(m) =
2

m2+m
2

4 πm
∏m−1

j=1 j!

∫
Y2m−q

Iq(λ) ∆(λ)
m∏

j=1

|λj| e−
Pm

j=1 λj dλ ,

where

Im(λ) =
2F (D(λ))

m + 2
+

16(m + 2)
(∑m

j=1 λj

)
+ 16m

m(m + 1)(m + 2)3(m + 3)
− 8

(m + 1)(m + 2)2

and, for m < q ≤ 2m,

Iq(λ) =

(
2F (D(λ))

m + 2
+

8 ((m + 2)2λ2
m − 2(m + 2)λm + 2)

(m + 1)(m + 2)3(m + 3)
(8.1)

− 4((m + 2)λm − 1)

(m + 2)2

(
4
∑m

j=1 λj

m(m + 1)(m + 3)
− 2

m + 1

))
e(m+2)λm .

Proof. We rewrite β2q(m) as

β2q(m) =
(−i)m(m−1)/2

4 π2m
∏m−1

j=1 j!

∫
Y2m−q

dλ

m∏
j=1

|λj|∆(λ)

×

(
F (D(λ))Iλ,1+

[
4
∑m

j=1 λj

m(m+1)(m+3)
− 2

m+1

]
Iλ,2+

2Iλ,3

(m+1)(m+3)

)
,
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where

Iλ,s =

∫
Rm

∆(ξ) ei〈λ,ξ〉 dξ(
1− i

2

∑
ξj

)s∏
j≤k

[
1 + i

2
(ξj + ξk)

] .
Then we make the change of variables ξj → tj + i to obtain

Iλ,s = (−1)
m2+m

2 (2i)
m2+m+2s

2 e−
P

λj Iλ,s,m+2 ,

where

Iλ,s,c =

∫
(R−i)m

∆(t) ei〈λ,t〉

(
∑

tj + ic)s∏
1≤j≤k≤m(tj + tk)

dt .

Putting this together we have

β2q(m) =
2

m2+m
2

4 π2m
∏m−1

j=1 j!

∫
Y2m−q

dλ
m∏

j=1

|λj|∆(λ) e−
Pm

j=1 λj

×

(
F (D(λ))

2Iλ,1,m+2

im2−1
+

24Iλ,3,m+2

im2−3(m + 1)(m + 3)
(8.2)

+

(
4
∑m

j=1 λj

m(m + 1)(m + 3)
− 2

m + 1

)
22Iλ,2,m+2

im2−2

)
.

To complete the proof we apply Lemma 4.1 with p = 2m− q and c = m + 2 to (8.2)

and simplify to obtain the desired formula.

In the next section we will derive an exact formula for the case q = m by applying

our extension of the exponential Selberg integral formula to the formula for β2m given

in the lemma above. Then in §8.2 we will consider the other Morse indices and

derive a formula for the sum over q 6= m, which we will then show is positive in all

dimensions. In §8.3 we will complete the proof of Main Theorem 3.

8.1 Exact Formula when q = m

Lemma 8.3. For m ≥ 1 and q = m,

β2m(m) =
4 m!

πm(m + 2)3(m + 3)
.
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Proof. We see from Lemma 8.2 that

β2m(m) =
2

m2+m−4
2

πm
∏m−1

j=1 j!

∫
Ym

dλ ∆(λ)
m∏

j=1

|λj| e−
Pm

j=1 λj

×

(
2F (D(λ))

m + 2
+

16(m + 2)
∑m

j=1 λj + 16m

m(m + 1)(m + 2)3(m + 3)
− 8

(m + 1)(m + 2)2

)
.

Using (3.1), we can rewrite this as

β2m(m) = c

∫
Ym

dλ ∆(λ)
m∏

j=1

|λj| e−
Pm

j=1 λj

(
m(m + 1)(m(m + 3)(m + 4)− 4)

+ 4(m + 2)

(
−(m + 1)(m + 4)

m∑
j=1

λj +

(
m∑

j=1

λj

)2

+ 2
m∑

j=1

λ2
j

))
,

where

c =
2

m2+m−2
2

m(m + 1)(m + 2)3(m + 3)πm
∏m−1

j=1 j!
.

We then see that making the change ∆(λ)
∏m

j=1 |λj| → |∆(λ)|
∏m

j=1 λj in the integrand

above does not change its value on the region over which we are integrating. After

doing this, we notice that the integrand is now symmetric under permutations of λ,

allowing us to take the integral over Rm
+ and replace each of the sums with a multiple

of one of the summands. Thus,

β2m(m) =
c

m!

∫
Rm

+

dλ |∆(λ)|
m∏

j=1

λj e−
Pm

j=1 λj

(
m(m + 1)(m(m + 3)(m + 4)− 4)

+ 4(m + 2)

(
−m(m + 1)(m + 4)λ1 + m(m− 1)λ1λ2 + 3mλ2

1

))
. (8.3)

Next, we apply Lemma 5.6 to (8.3), with n = m, α = 2, and γ = 1
2
, for each of the

four cases: (k, l) = (0, 0), (k, l) = (0, 1), (k, l) = (0, 2), and (k, l) = (1, 1), to obtain

β2m(m) =
c

m!

m−1∏
j=0

Γ(3
2

+ j
2
)Γ(2 + j

2
)

Γ(3
2
)

(
m(m + 1)(m(m + 3)(m + 4)− 4)

+ 4m(m + 2)(m + 3)

(
−(m + 1)(m + 4)

2
+

(m− 1)(m + 2)

4
+

3(2m + 4)

4

))
.
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After applying Gauss’s multiplication formula and simplifying, we have

β2m(m) =
m(m + 1)

∏m
j=1 j!

2
m2+m−6

2

c .

Substituting in for c gives the desired result.

8.2 Positivity of β′2(m)

Unfortunately, due to the presence of the additional exponential term in Iq(λ) when

m < q ≤ 2m, direct application of a variant of the Selberg integral formula is not

possible for the other cases. Although it would be possible to calculate the exact

formulas for one or two more cases, these would be extremely complicated and we

would be no closer to our goal of showing that β2 > 0 for all m. Instead, we will

consider the sum over the other indices and will show that this quantity is positive.

Lemma 8.4. Let β′2(m) :=
∑2m

q=m+1 β2q(m), then β′2(m) > 0 for m ≥ 1.

Proof. From Lemma 8.2 we immediately see that

β′2(m) =
2

m2+m
2

4 πm
∏m−1

j=1 j!

(
2m∑

q=m+1

∫
Y2m−q

Iq(λ) ∆(λ)
m∏

j=1

|λj| e−
Pm

j=1 λj dλ

)
,

where Iq(λ) is given by (8.1).

Now we need the following lemma, which we will prove in §8.2.1.

Lemma 8.5.

β′2(1) = 32c

∫
R+

λ1 e−2λ1dλ , (8.4)

β′2(2) = 48c

∫
R2

+

(
λ2

1 − 6λ1 + 7
)
λ1λ2|(λ1−λ2)| e−λ1−2λ2dλ , (8.5)
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and for m ≥ 3,

β′2(m) = c

∫
Rm

+

dλ |∆(λ)|
m∏

j=1

λj e−
Pm

j=1 λj e−λm

(
m(m + 1)(m(m + 3)(m + 4)− 4)

+ 4(m− 1)(m + 2)
(
−(m + 1)(m + 4)λ1 + (m− 2)λ1λ2 + 3λ2

1

))
, (8.6)

where

c =
2

m2+m−2
2

πm(m + 1)(m + 2)3(m + 3)
∏m

j=1 j!
.

When m = 1, there is nothing to prove since the integrand in (8.4) is clearly

positive. For the other cases we need another lemma, which we will prove in §8.2.2.

Lemma 8.6. Let I(λ) = |∆(λ)|
∏m

j=1

(
λj eλj

)
, then we have the following identities:∫

Rm
+

λ1 e−λmI(λ)dλ =

∫
Rm

+

(
m + 2

2
+

λ1

λ1 − λm

)
e−λmI(λ)dλ , (8.7)

∫
Rm

+

λ2
1 e−λmI(λ)dλ

=

∫
Rm

+

(
(m + 1)(m + 2)

2
+ (m + 1)

λ1

λ1 − λm

+
λ2

1

λ1 − λm

)
e−λmI(λ)dλ , (8.8)

∫
Rm

+

λ2
1

λ1 − λm

e−λmI(λ)dλ

=

∫
Rm

+

(
3λ1

λ1−λm

+
(m− 2)λ2

1

(λ1−λ2)(λ1−λm)
+

2λ2
1 δ(λ1−λm)

|λ1−λm|

)
e−λmI(λ)dλ , (8.9)

where δ(x) is the Dirac delta function,∫
Rm

+

λ1λ2 e−λmI(λ)dλ

=

∫
Rm

+

(
(m + 1)(m + 2)

4
+

(
m + 1

2

)
λ1

λ1 − λm

+
λ1λ2

λ1 − λm

)
e−λmI(λ)dλ , (8.10)

∫
Rm

+

λ1λ2

λ1−λm

e−λmI(λ)dλ

=

∫
Rm

+

((
m+1

2

)
λ1

λ1−λm

+
λ1λ2

(λ1−λm)(λ2−λm)
− λ1λ2

(λ1−λ2)(λ1−λm)

)
e−λmI(λ)dλ ,

(8.11)
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∫
Rm

+

λ1λ
2
2 + λ2

1λ2 − 2λ1λ2λm

(λ1 − λ2) (λ1 − λm) (λ2 − λm)
e−λmI(λ)dλ = 0 . (8.12)

The first three identities hold for m ≥ 2 and the last three for m ≥ 3.

When m = 2, we can apply (8.7) and (8.8) to (8.5) to obtain

β′2(2) = 48c

∫
R2

+

(
λ2

1

λ1 − λ2

− 3
λ1

λ1 − λ2

+ 1

)
λ1λ2|(λ1−λ2)| e−λ1−2λ2dλ .

Applying (8.9) to this gives

β′2(2) = 48c

∫
R2

+

(
2λ2

1 δ(λ1−λ2) + 1
)
λ1λ2 e−λ1−2λ2dλ . (8.13)

When m ≥ 3, we apply (8.7), (8.8), and (8.10) to (8.6) to obtain

β′2(m) = c

∫
Rm

+

dλ |∆(λ)|
m∏

j=1

(
λj eλj

)
e−λm

(
16(m + 1)

+ 2(m− 1)(m + 2)

(
−(m + 1)(m + 4)λ1 + 2(m− 2)λ1λ2 + 6λ2

1

λ1 − λm

))
.

We then apply (8.9) and (8.11) to this, and we have

β′2(m) = c

∫
Rm

+

dλ |∆(λ)|
m∏

j=1

(
λj eλj

)
e−λm

(
16(m + 1)

+ 4(m− 1)(m + 2)

(
(m− 2) (λ1λ

2
2 + λ2

1λ2 − 2λ1λ2λm)

(λ1 − λ2) (λ1 − λm) (λ2 − λm)
+

6λ2
1 δ(λ1−λm)

|λ1−λm|

))
.

By (8.12), the middle term vanishes and therefore

β′2(m) = c

∫
Rm

+

dλ |∆(λ)|
m∏

j=1

(
λj eλj

)
e−λm

(
16(m+1) + 24(m−1)(m+2)

λ2
1 δ(λ1−λm)

|λ1−λm|

)
.

(8.14)

It is now clear that β′2(m) is positive. Indeed, by computing the λ1 integral we see

that∫
Rm

+

λ2
1 δ(λ1−λm)

|λ1−λm|
|∆(λ)|

m∏
j=1

(
λj eλj

)
e−λmdλ

=

∫
Rm−1

+

λ3
m |∆(λ2, . . . , λm−1)|

m∏
j=2

λj

m−1∏
j=2

(λm − λj)
2 e−

Pm
j=2 λj e−2λmdλ2 . . . dλm.
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8.2.1 Proof of Lemma 8.5

We recall that from Lemma 8.2 we have

β′2(m) =
2

m2+m
2

4 πm
∏m−1

j=1 j!

(
2m∑

q=m+1

∫
Y2m−q

Iq(λ) ∆(λ)
m∏

j=1

|λj| e−
Pm

j=1 λj dλ

)
,

where

Iq(λ) =

(
1

m+2
+

4
(∑m

j=1 λj

)2

+ 8
∑m

j=1 λ2
j

m(m+1)(m+2)2(m+3)
+

8 ((m+2)2λ2
m − 2(m+2)λm + 2)

(m+1)(m+2)3(m+3)

−
4
∑m

j=1 λj

m(m+1)(m+2)
− 4((m+2)λm−1)

(m+2)2

(
4
∑m

j=1 λj

m(m+1)(m+3)
− 2

m+1

))
e(m+2)λm .

For each q we make the change of variables

λi →



λi − λ2m−q+1, for 1 ≤ i ≤ 2m− q

λi+1 − λ2m−q+1, for 2m− q < i < m

−λ2m−q+1, for i = m

in the integral over Y2m−q above. This change of variables is a composition of the

following two changes of variables:

λi →


∑2m−q

j=i λj, for 1 ≤ i ≤ 2m− q

−
∑i

j=2m−q+1 λj, for 2m− q < i ≤ m

and

λi → λi − λi+1.

These changes take Y2m−q → Rm
+ and Rm

+ → Ym, respectively, and thus all of the

integrals will now be over a common region of integration, Ym.

Under this change of variables we see that ∆(λ)
∏m

j=1 |λj| is unchanged and that

m∑
j=1

λj →
m∑

j=1

λj − (m + 1)λp ,
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(
m∑

j=1

λj

)2

→

(
m∑

j=1

λj

)2

− 2(m + 1)λp

(
m∑

j=1

λj

)
+ (m + 1)2λ2

p ,

and
m∑

j=1

λ2
j →

m∑
j=1

λ2
j − 2λp

(
m∑

j=1

λj

)
+ (m + 1)λ2

p .

Here we have let p = 2m−q+1 to simplify the notation. Therefore, since the absolute

value of the Jacobian is 1, we have

β′2(m) = c

∫
Ym

∆(λ)
m∏

j=1

|λj| e−
Pm

j=1 λj

m∑
p=1

Pp(λ) dλ , (8.15)

where

c =
2

m2+m−2
2

πmm(m + 1)(m + 2)3(m + 3)
∏m−1

j=1 j!

and

Pp(λ) =

(
−4(m+2)λ2

p+4(m+2)

(
(m+1)(m+4)−2

m∑
i=1

λi

)
λp

+m(m+1)(m(m+3)(m+4)−4)−4(m+1)(m+2)(m+4)
m∑

i=1

λi

+4(m+2)

(
m∑

i=1

λi

)
2+8(m+2)

m∑
i=1

λ2
i

)
e−λp

=

(
m(m+1)(m(m+3)(m+4)−4)

−4(m+1)(m+2)(m+4)
m∑

i=1
i6=p

λi+4(m+2)

 m∑
i=1
i6=p

λi

2

+8(m+2)
m∑

i=1
i6=p

λ2
i

)
e−λp .

Next we see that making the change ∆(λ)
∏m

j=1 |λj| → |∆(λ)|
∏m

j=1 λj in (8.15)

does not change the value of the integrand on the region over which we are integrating.

We make this change and now the integrand is symmetric under permutations of λ,

so we can take the integral over Rm
+ . Thus,

β′2(m) =
c

m!

∫
Rm

+

|∆(λ)|
m∏

j=1

(
λj eλj

) m∑
p=1

Pp(λ) dλ .
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The symmetry also allows us to replace any symmetric sum with a multiple of one of

its summands. Therefore,

β′2(m) =
c

(m− 1)!

∫
Rm

+

|∆(λ)|
m∏

j=1

(
λj eλj

)
Pm(λ) dλ .

To obtain the desired formulas, we see that

Pm(λ) = (m(m + 1)(m(m + 3)(m + 4)− 4)) e−λ1 = 32e−λ1

for m = 1,

Pm(λ) =
(
m(m+1) (m(m+3)(m+4)−4)+4(m+2)

(
−(m+1)(m+4)λ1+3λ2

1

))
e−λ2

= 48
(
λ2

1 − 6λ1 + 7
)
e−λ2

for m = 2, and finally for m ≥ 3, we compute that

β′2(m) =
c

(m−1)!

∫
Rm

+

dλ |∆(λ)|
m∏

j=1

(
λj eλj

)
e−λm

(
m(m+1)(m(m+3)(m+4)−4)

−4(m+1)(m+2)(m+4)
m−1∑
i=1

λi+4(m+2)

(
m−1∑
i=1

λi

)2

+8(m+2)
m−1∑
i=1

λ2
i

)

=
c

(m−1)!

∫
Rm

+

dλ |∆(λ)|
m∏

j=1

(
λj eλj

)
e−λm

(
m(m+1)(m(m+3)(m+4)−4)

+4(m−1)(m+2)
(
−(m+1)(m+4)λ1+(m−2)λ1λ2+3λ2

1

))

where once again we have replaced symmetric sums with multiples of one of their

summands.

8.2.2 Proof of Lemma 8.6

For each of the identities, the proof will consist of taking a partial derivative with

respect to some λi inside of the integral on the LHS of the equation. By the Funda-

mental Theorem of Calculus this will integrate to zero. We compute the derivative
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and manipulate the result, utilizing the symmetry in I(λ), to achieve the desired

formula. We will also make use of the fact that

∂

∂x
|x− y| = |x− y|

x− y
and

∂2

∂x2
|x− y| = 2 δ (x− y).

First, for (8.7) we have

0 =

∫
Rm

+

∂

∂λ1

(
λ1 e−λmI(λ)

)
dλ

=

∫
Rm

+

(
2− λ1 +

m∑
i=2

λ1

λ1 − λi

)
e−λmI(λ)dλ . (8.16)

Since I(λ) is symmetric under permutations of λ, for 1 < i < m, we make the

transposition λ1 ↔ λi and see that∫
Rm

+

λ1 e−λmI(λ)dλ

λ1 − λi

=

∫
Rm

+

λi e
−λmI(λ)dλ

λi − λ1

=

∫
Rm

+

(
1− λ1

λ1 − λi

)
e−λmI(λ)dλ,

and therefore ∫
Rm

+

λ1 e−λmI(λ)dλ

λ1 − λi

=
1

2

∫
Rm

+

e−λmI(λ)dλ. (8.17)

Combining (8.16) and (8.17) gives the desired result.

Next we have

0 =

∫
Rm

+

∂

∂λ1

(
λ2

1 e−λmI(λ)
)
dλ

=

∫
Rm

+

(
3λ1 − λ2

1 +
m∑

i=2

λ2
1

λ1 − λi

)
e−λmI(λ)dλ

=

∫
Rm

+

(
(m + 1)λ1 − λ2

1 +
λ2

1

λ1 − λm

)
e−λmI(λ)dλ . (8.18)

In the last equality we used the fact that, for 1 < i < m,∫
Rm

+

(
λ2

1

λ1 − λi

)
e−λmI(λ)dλ =

∫
Rm

+

(
λ1 +

λ1λi

λ1 − λi

)
e−λmI(λ)dλ =

∫
Rm

+

λ1 e−λmI(λ)dλ .

Here the second term in the second integral vanishes since the transposition λ1 ↔ λi

just changes the sign of the integrand. We then apply (8.7) to (8.18) to obtain (8.8).
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To obtain (8.9), we see that

0 =

∫
Rm

+

∂

∂λ1

(
λ2

1

λ1 − λm

e−λmI(λ)

)
dλ

=

∫
Rm

+

(
3λ1

λ1−λm

− λ2
1

λ1−λm

+
m−1∑
i=2

λ2
1

(λ1−λi)(λ1−λm)
+

2λ2
1 δ(λ1−λm)

|λ1−λm|

)
e−λmI(λ)dλ

=

∫
Rm

+

(
3λ1

λ1−λm

− λ2
1

λ1−λm

+
(m−2)λ2

1

(λ1−λ2)(λ1−λm)
+

2λ2
1 δ(λ1−λm)

|λ1−λm|

)
e−λmI(λ)dλ .

Here we used the fact that for 2 < i < m, the symmetry in I(λ) implies that∫
Rm

+

λ2
1

(λ1−λ2)(λ1−λm)
e−λmI(λ)dλ =

∫
Rm

+

λ2
1

(λ1−λi)(λ1−λm)
e−λmI(λ)dλ .

For the fourth identity we have

0 =

∫
Rm

+

∂

∂λ1

(
λ1λ2 e−λmI(λ)

)
dλ

=

∫
Rm

+

(
2λ2 − λ1λ2 +

m∑
i=2

λ1λ2

λ1 − λi

)
e−λmI(λ)dλ

=

∫
Rm

+

(
m + 1

2
λ1 − λ1λ2 +

λ1λ2

λ1 − λm

)
e−λmI(λ)dλ . (8.19)

This time we applied (8.17) and used the following facts which follow from the sym-

metry in I(λ) as was demonstrated above:∫
Rm

+

λ2 e−λmI(λ)dλ =

∫
Rm

+

λ1 e−λmI(λ)dλ

and ∫
Rm

+

λ1λ2 e−λmI(λ)dλ

λ1 − λ2

= 0 .

Once again we apply (8.7) to (8.19) to obtain (8.10).
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To prove (8.11) we see that

0 =

∫
Rm

+

∂

∂λ2

(
λ1λ2

λ1−λm

e−λmI(λ)

)
dλ

=

∫
Rm

+

dλ I(λ) e−λm

×

(
2λ1

λ1−λm

− λ1λ2

λ1−λm

− λ1λ2

(λ1−λ2)(λ1−λm)
+

m∑
i=3

λ1λ2

(λ1−λm)(λ2−λi)

)

=

∫
Rm

+

dλ I(λ) e−λm

×
(

(m+1)λ1

2(λ1−λm)
− λ1λ2

λ1−λm

− λ1λ2

(λ1−λ2)(λ1−λm)
+

λ1λ2

(λ1−λm)(λ2−λm)

)
,

where we applied (8.17) to obtain the last equality.

Finally, for (8.12), we first see that∫
Rm

+

λ1λ2λm

(λ1 − λ2) (λ1 − λm) (λ2 − λm)
e−λmI(λ)dλ = 0 ,

since the transposition λ1 ↔ λ2 just changes the sign of the integrand. Then we use

the same transposition in the second term to obtain

∫
Rm

+

(λ1λ
2
2 + λ2

1λ2) e−λmI(λ)dλ

(λ1−λ2) (λ1−λm) (λ2−λm)
=

∫
Rm

+

(λ1λ
2
2 − λ2

2λ1) e−λmI(λ)dλ

(λ1−λ2) (λ1−λm) (λ2−λm)
= 0 .

8.3 Proof of Main Theorem 3

The results of the previous two sections show that β2 is strictly positive in all di-

mensions, so now all that is needed to complete the proof of Main Theorem 3 is to

define the notion of asymptotic minimization and cite the relevant results from the

literature to show that the remainder of the theorem follows from the positivity of

β2.

We let P (M, L) denote the class of positively curved metrics, i.e. metrics for which

i
2
Θh is a positive (1,1)-form. As was noted in [DSZ2], we would not expect N crit

N,h to
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have an upper bound as h varies over P (M, L), however it is bounded from below by

|cm(L⊗T ∗1,0)|. It is therefore of interest to determine when a metric which minimizes

N crit
N,h, at least in an asymptotic sense, exists. To this end we make the definition:

Definition 8.7. Let L → M be an ample holomorphic line bundle over a compact

Kähler manifold. For h ∈ P (M, L), we say that N crit
N,h is asymptotically minimal if

for all h1 6= h in P (M, L), there exists N0 = N0(h1) such that

N crit
N,h ≤ N crit

N,h1
for N ≥ N0 . (8.20)

As we noted before, the first non-topological term in the asymptotic expansion

of N crit
N,h is β2 multiplied by the Calabi functional,

∫
M

ρ2
hdVolh. Since β2 is strictly

positive, in order to find minimizers of N crit
N,h, we need to find minimizers of the Calabi

functional.

We note that by results in [Ca1, Ca2, Hw], all critical points of the Calabi func-

tional are local minima. Those that obtain the absolute minimum in a fixed Kähler

class are called Calabi extremal metrics. Therefore, the following theorem is an im-

mediate consequence of Lemma 8.2 and Lemma 8.4.

Main Theorem 3. The universal constant β2(m) is strictly positive in all dimen-

sions. Therefore, N crit
N,h is non-topological, having a metric dependence in the term

of order m−2 in its asymptotic expansion, in all dimensions. In addition, Calabi

extremal metrics asymptotically minimize N crit
N,h, whenever they exist.

We would like to point out that the positivity of β2q, for each q, was also conjec-

tured in [DSZ2]. Although it seems almost certain that this is true, this remains an

open problem.

By a result of Calabi in [Ca2], metrics with constant scalar curvature are extremal,

and by a result of Donaldson in [Don], there is at most one Kähler metric of constant
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scalar curvature in the cohomology class 2π c1(L). Therefore, we have the following

corollary:

Corollary 8.8. Suppose that L possesses a metric h for which the scalar curvature

of ωh = i
2
Θh is constant, then h is the unique metric on L such that N crit

N,h is asymp-

totically minimal.

Thus, for example, the Fubini-Study metric on the hyperplane section bundle

O(1) → CPm is the unique asymptotic minimizer of N crit
N,h(CPm).

8.4 Baugher’s Conjecture

In this section we will briefly discuss the conjecture that was referred to as Baugher’s

conjecture in [DSZ2] and provide a proof for the case q = m.

The following conjecture was formulated after studying patterns in the computer

assisted calculations of the integrals of the individual terms in the formula for β2q given

in Lemma 3.2, and it was hoped that it would be useful in proving the positivity of

β2.

Conjecture 8.9.

β2q(m) =
(−i)m(m−1)/2

4 π2m
∏m−1

j=1 j!

∫
Y2m−q

∫
R
· · ·
∫

R
∆(λ) ∆(ξ)

m∏
j=1

|λj| ei〈λ,ξ〉 J (ξ) dξ1 · · · dξm dλ ,

where Y2m−q is as in Theorem 3.1 and

J (ξ) =
4

(m + 1)(m + 2)(m + 3)
(
1− i

2

∑
j ξj

)2∏
j≤k

[
1 + i

2
(ξj + ξk)

] .

Equivalently,∫
Sm,q−m

(
1− 2 |H11|2 +

1

2
|H11|4

)
G(H, x)dH dx

=
4∏3

i=1(m + i)

∫
Sm,q−m

|x|2 G(H, x)dH dx , (8.21)

59



where Sm,q−m is as in Theorem 2.4 and

G(H, x) =
1

4 π(m+2
2 )

∣∣det(2HH∗ − |x|2I)
∣∣ e−〈(H,x),(H,x)〉 . (8.22)

The equivalence of the two formulations of the conjecture follows from Lemma 3.2

and the lemma given below. The proof of this lemma is almost identical to that of

Lemma 3.3, and we will not repeat the entire argument here.

Lemma 8.10.∫
Sm,q−m

|x|2 G(H, x)dH dx =

∫
Y2m−q

∫
R
· · ·
∫

R
H(λ, ξ)dξ1· · ·dξm dλ ,

where G(H, x) is given by (8.22) and

H(λ, ξ) =
(−i)m(m−1)/2∆(λ) ∆(ξ)

∏m
j=1 |λj| ei〈λ,ξ〉

4 π2m
∏m−1

j=1 j!
(
1− i

2

∑
j ξj

)2∏
j≤k

[
1 + i

2
(ξj + ξk)

] .
Proof. Follow the proof of Lemma 3.3 all the way through to (3.6), inserting the

factor |x|2 into the integrand at each step. Then, for this lemma we have

I(λ, ξ) =
1

πdm

∫
C

∫
Sym(m,C)

|x|2 eΦ(H,x;ξ) dH dx

=
1∏

j≤k

(
1 + i

2
(ξj + ξk)

) ∫
C
|x|2 e−(1− i

2

P
j ξj)|x|2 dx

=
π(

1− i
2

∑
j ξj

)2∏
j≤k

(
1 + i

2
(ξj + ξk)

) .
Observing, as in Chapter 3, that the map

(ε1, . . . , εm) 7→
∫

Rm

∆(ξ) ei〈λ,ξ〉 I(λ, ξ) e−
P

εjξ2
j dξ

is a continuous map from [0, +∞)m to the tempered distributions, we have∫
Sm,q−m

|x|2 G(H, x)dH dx =
(−i)m(m−1)/2

4 π2m
∏m

j=1 j!
lim

ε′→0+
lim

ε1,...,εm→0+
m!

∫
Y2m−q

dλ

×
∫

Rm

∆(λ)∆(ξ)
m∏

j=1

|λj| ei〈λ,ξ〉 I(λ, ξ) e−
P

εjξ2
j−ε′

P
λ2

j dξ ,
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and then we obtain the desired result by letting ε1 → 0, . . . , εm → 0, ε′ → 0 sequen-

tially.

It is easy to see from (8.21) that Conjecture 8.9 implies the positivity of β2q for

each q. Unfortunately, we were unable to prove the conjecture for all q, and instead

used the method detailed in previous chapters to prove the positivity of β2, which was

the most important thing to show. Although our intial interest in this conjecture was

as a means of proving our positivity result, it seems to us that the matrix integral

identity may be of interest independent of this result. Of course the conjecture may

still prove useful in establishing the positivity of β2q for q > m.

We will now utilize our work in the above sections to prove the q = m case of the

conjecture.

Theorem 8.11.

β2m(m) =
(−i)m(m−1)/2

4 π2m
∏m−1

j=1 j!

∫
Ym

∫
R
· · ·
∫

R
∆(λ) ∆(ξ)

m∏
j=1

|λj| ei〈λ,ξ〉 J (ξ) dξ1 · · · dξm dλ ,

(8.23)

where

J (ξ) =
4

(m + 1)(m + 2)(m + 3)
(
1− i

2

∑
j ξj

)2∏
j≤k

[
1 + i

2
(ξj + ξk)

] .

Equivalently,

∫
Sm,0

(
1− 2 |H11|2 +

1

2
|H11|4

)
G(H, x)dH dx

=
4∏3

i=1(m + i)

∫
Sm,0

|x|2 G(H, x)dH dx ,

where

G(H, x) =
1

4 π(m+2
2 )

∣∣det(2HH∗ − |x|2I)
∣∣ e−〈(H,x),(H,x)〉 .
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Proof. Let Γ2m denote the integral on the RHS of (8.23). We first apply the change

of variable argument as in the proof of Lemma 8.3, followed by Lemma 4.1 with s = 1

and c = m + 2 to obtain

Γ2m(m) =
2

m2+m
2

4 πm
∏m−1

j=1 j!

∫
Ym

dλ
m∏

j=1

|λj|∆(λ) e−
P

λj

(
16

(m + 1)(m + 2)3(m + 3)

)
.

Then, we apply Lemma 6.3 to the above equation and simplify to obtain

Γ2m(m) =
4m!

πm(m + 2)3(m + 3)
,

which agrees with the formula for β2m given in Lemma 8.2.
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