Statistics & Regression Tools for Excel

Duke MBA Computer Preparation

Excel Statistics & Regression Tools Review Focus

The focus of this assignment is on understanding the mechanics of running a regression analysis using Excel. In addition, Excel's descriptive statistics generator is briefly explored.

Excel includes a built-in regression tool in its Analysis ToolPak. Although the regression tool is relatively easy to use it has some limitations. For example, if you use multiple variables for the X range in the regression, the variables must be located next to one another in the worksheet. And, the regression outputs this tool generates are tightly packed into a worksheet making them relatively hard to read, especially if you choose to generate charts.

Skills

- The Data Analysis ToolPak Excel Regression
- Naming Ranges
- Excel Data Analysis ToolPak Descriptive Statistics

Files You Need

To complete the work for this assignment, download this file from the class "Review Files" web page: **StatsRegr.xlsx**.

Deliverable

Complete the Statistics and Regression Tools for Excel Review online quiz.

Notes

For your convenience the instructions in this assignment are divided into these sections:

Completing the Assignment: Summary Descriptions

Short descriptions of the assignment requirements, useful if you are already familiar with the core skills.

Completing the Assignment: Detailed Descriptions

More detailed descriptions of the assignment tasks and techniques, useful if you are unfamiliar with the assignment topics. You may find it helpful to have a good Excel reference guide on hand or to become familiar with Excel's online help.

A Skills Review Summary for this Assignment

Excel Statistics & Regression Tools Review Table of Contents

Page

Statistics & Regression Tools Review - Summary Descriptions

Task 1: Use Excel to Run a Multiple Regression and	
Create a Chart of Results	1
Task 2: Use Excel's Descriptive Statistics Generator to	
Analyze Data	1

Statistics & Regression Tools Review – *Detailed Descriptions*

Task 1: Use Excel to Run a Multiple Regression and	
Create a Chart of Results	.3
Range Naming Note	. 10
Task 2: Use Excel's Descriptive Statistics Generator to	
Analyze Data	. 12

Excel Statistics & Regression Tools

kills Summary 16

Statistics and Regression Tools Review – Summary Descriptions

Task 1: Use Excel to Run a Multiple Regression & Create a Chart of Results

Use Excel's built-in regression tool to analyze whether a variety of information about price, advertising, income, etc. collected by the Mrs. Smyth's Gourmet Frozen Fruit Pie Company can predict company pie sales. Make the "Task 1–Pie Data" worksheet current. Then:

- Run the regression using Excel's Analysis ToolPak regression option. Use the data in the Unit Sales column as the dependent, Y variable. Use the data in the Price, Ads, Comp_Price, Income, Population, and Time Var columns as the independent, X variables.
- 2. Choose to output "Residuals" and "Standardized Residuals" and send the output to a new worksheet. Name the new worksheet "Task 2". Position this sheet to the left of the "Task 2 Pie Data" worksheet.
- 3. Create a line chart comparing Unit Sales from the "Task 2–Pie Data" worksheet with the "Predicted (Q)" output in Excel's "Residual Output" section of results. Locate the line chart to the right of the "Residual Output" section of Excel's regression results.

End of the Task 1 Summary Description

Task 2: Use Excel's Descriptive Statistics Generator to Analyze Data

Make the "Task 2-Auto Imports" worksheet current. This sheet contains data on imports into the U.S. passenger car market from 1971 to 1997, comparing Korean, Japanese, and German import sales with sales of passenger cars manufactured in North America.

1. Run Excel's Analysis ToolPak "Descriptive Statistics" analysis on the data located in this worksheet. Do not include the "Year" column in the analysis. Select column headers for the rest of the data and make sure the "Labels in first row" option is checked. Send the descriptive statistics report to a "New Worksheet Ply" and request all the available outputs: Summary statistics, Confidence Level for Mean, Kth Largest, and Kth Smallest. Leave the settings for the confidence level, Kth largest, and Kth smallest at the defaults.

Summary statistics			
Confidence Level for Mean:	95	%	
Kth Largest:	1		
✓ Kth S <u>m</u> allest:	1		

Task 2 Intermediate Check

In the set of initial results, many columns are not wide enough to display their data completely. In addition, Excel generates a column of descriptive statistics labels (Mean, Standard Error, Median, etc.) for each country/region analyzed (Columns A, C, E, and G). This label redundancy makes the output more difficult to read.

Korea		Japan		Germany	N	orth Americ	a
Mean	101097.1	Mean	1459132	Mean	356176.2	Mean	7470701
Standard E	24773.69	Standard E	108339.5	Standard E	31866.44	Standard E	202393.6
Median	0	Median	1476038	Median	301123.5	Median	7191147
Mode	0	Mode	#N/A	Mode	#N/A	Mode	#N/A
Standard [126321.5	Standard E	552425.2	Standard [162487.6	Standard [1032009
Sample Va	1.6E+10	Sample Va	3.05E+11	Sample Va	2.64E+10	Sample Va	1.07E+12
Kurtosis	0.134265	Kurtosis	-1.22913	Kurtosis	1.832032	Kurtosis	-0.47534
Skewness	0.990079	Skewness	-0.18657	Skewness	1.438401	Skewness	0.515567
Range	419099	Range	1803637	Range	601385	Range	3917204
Minimum	0	Minimum	578977	Minimum	186177	Minimum	5758586
Maximum	419099	Maximum	2382614	Maximum	787562	Maximum	9675790
Sum	2628525	Sum	37937442	Sum	9260582	Sum	1.94E+08
Count	26	Count	26	Count	26	Count	26
Largest(1)	419099	Largest(1)	2382614	Largest(1)	787562	Largest(1)	9675790
Smallest(1		Smallest(1		Smallest(1	186177	Smallest(1	5758586
Confidence	51022.37	Confidence	223129.3	Confidence	65630.17	Confidence	416837.5

2. Edit the output so it has a *single* labels column at the left of the data and so that country/region names are above their data. Widen columns so all the data is visible and so your worksheet looks like the illustration below.

	Korea	Japan	Germany	North America
Mean	101097.1154	1459132.385	356176.2308	7470700.846
Standard Error	24773.69004	108339.4856	31866.44492	202393.6268
Median	0	1476037.5	301123.5	7191147
Mode	0	#N/A	#N/A	#N/A
Standard Deviation	126321.5289	552425.1513	162487.6245	1032009.053
Sample Variance	15957128675	3.05174E+11	26402228113	1.06504E+12
Kurtosis	0.134265053	-1.229126977	1.832032364	-0.475338779
Skewness	0.990079421	-0.186566776	1.438401394	0.515566924
Range	419099	1803637	601385	3917204
Minimum	0	578977	186177	5758586
Maximum	419099	2382614	787562	9675790
Sum	2628525	37937442	9260582	194238222
Count	26	26	26	26
Largest(1)	419099	2382614	787562	9675790
Smallest(1)	0	578977	186177	5758586
Confidence Level(95.0%)	51022.33399	223129.1911	65630.12587	416837.1852

End of the Task 2 Summary Description

End of the Statistics and Regression Tools Review Summary Description

Statistics & Regression Tools Review – Detailed Descriptions

Task 1: Run a Multiple Regression with Excel & Create a Chart of Results

Introduction

Use Excel's built-in regression tool to analyze whether information collected by the Mrs. Smyth's Gourmet Frozen Fruit Pie Company about price, advertising, competitors' pricing, etc. can predict company pie sales. Make the "Task 1–Pie Data" worksheet current and review the data. There are ten columns of data with forty-eight records.

				(\$)	(\$)	(\$)	(\$)		(T)
City	Yr/Qtr	Row	Unit Sales	Price	Ads	Comp_Price	Income	Population	Time Var
Atlanta, GA	2003-1	1	193,334	6.39	15,827	6.92	33,337	4,116,250	1
	2003-2	2	170,041	7.21	20,819	4.84	33,390	4,140,338	2
	2003-3	3	247,709	5.75	14,062	5.28	33,599	4,218,965	3
	2003-4	4	183,259	6.75	16,973	6.17	33,797	4,226,070	4
	2004-1	5	282,118	6.36	18,815	6.36	33,879	4,278,912	5
	2004-2	6	203,396	5.98	14,176	4.88	34,186	4,359,442	6
	2004-3	7	167,447	6.64	17,030	5.22	35,691	4,363,494	7
	2004-4	8	361,677	5.30	14,456	5.80	35,950	4,380,084	8
Chicago, IL -	2003-1	9	401,805	6.08	27,183	4.99	34,983	9,184,926	1
Gary, IN -	2003-2	10	412,312	6.13	27,572	6.13	35,804	9,237,683	2
Kenosha, WI	2003-3	11	321,972	7.24	34,367	5.82	35,898	9,254,182	3
	2003-4	12	445,236	6.08	26,895	6.05	36,113	9,272,758	4
	2004-1	13	479,713	6.40	30,539	5.37	36,252	9,300,401	5
	2004-2	14	459,379	6.00	26,679	4.86	36,449	9,322,168	6
	2004-3	15	444,040	5.96	26,607	5.29	37,327	9,323,331	7
	2004-4	16	376,046	7.21	32,760	4.89	37,841	9,348,725	8
Dallas-Fort	2003-1	17	255,203	6.55	19,880	6.97	34,870	5,294,645	1
Worth, TX	2003-2	18	270,881	6.11	19,151	6.25	35,464	5,335,816	2
	2003-3	19	330,271	5.62	15,743	6.03	35,972	5,386,134	3

The illustration below shows a partial view of the data.

For this regression operation:

Use as the predictor variables (the independent or X variables) the data for **Price**, **Ads**, **Comp_Price**, **Income**, **Population**, and **Time Var**.

Use as the predicted variable (the dependent or Y variable) the data for **Unit Sales**. Unit Sales holds actual sales data.

Steps to Follow When Running a Regression with Excel

1. Rearrange the Data as Necessary

With Excel's regression tool the independent X variables you use in your analysis must be *located together* in the worksheet. There must be no blank columns or columns-withnon-relevant data interrupting the range of X variables. The dependent Y variable need not be located adjacent to the X variables, but all Y variable values must be in a single unbroken column. These location specifications are required by Excel's built-in regression tool.

Statistics and Regression Tools Review: Detailed Descriptions

For the data in the "Task 1–Pie Data" worksheet, you need not rearrange the data. The X variables are together in Columns F through K and the Y variable values are all in Column E.

А	В	С	D	E	F	G	Н	l l	J	K
	Mrs. Smyth	's Gour	met Fr	ozen Fr	uit Pie	Region	al Marke	t Demand	l Data, 200	03-1 to 2
					(\$)	(\$)	(\$)	(\$)		(T)
	City	Yr/Qtr	Row	Unit Sales	Price	Ads	Comp_Price	Income	Population	Time Var
	Atlanta, GA	2003-1	1	193,334	6.39	15,827	6.92	33,337	4,116,250	1
		2003-2	2	170,041	7.21	20,819	4.84	33,390	4,140,338	2
		2003-3	3	247,709	5.75	14,062	5.28	33,599	4,218,965	3
		2003-4	4	183,259	6.75	16,973	6.17	33,797	4,226,070	4
		2004-1	5	282,118	6.36	18,815	6.36	33.879	4.278.912	5
Columns not used in the regression. The dependent,						pendent, > ated togeti	X variables, her in the			
	the reg	378551071.	1	Y variab				worksh		

2. Run the Regression Analysis

In the "Data" tab on Excel's ribbon find the "Analysis" group and choose "Data Analysis".

Stats	Regr07 Co	mpleted.x	lsx - Microsoft	t Excel			-	= x
Data Re	eview V	iew A	dd-Ins				🥑 -	a x
Clear Reapply Advanced	Text to Column	Remove s Duplicate Da	Data Valid Consolidat S What-If Ar ta Tools	te	Group * Ungroup * Subtotal	Analysis		
						Data Analysis Tools		*
E	F	G	Н	I	J	Tools for financial and scientific data analysis.		a
Excel's Re	gressior	Tool				FUNCRES.XLAM Press F1 for more h	nelp.	

Excel opens its "Data Analysis" dialog. Scroll down and find the "Regression" option. Click *OK*.

Data Analysis	? 🛛
<u>A</u> nalysis Tools	ОК
Descriptive Statistics Exponential Smoothing F-Test Two-Sample for Variances Fourier Analysis Histogram Moving Average Random Number Generation Rank and Percentile	Cancel
Regression Sampling	~

The "Regression" dialog displays. This is the sole interface to Excel's regression tool. All your interaction with Excel's regression tool happens in this dialog.

Regression		
Input Input <u>Y</u> Range: Input <u>X</u> Range: <u>Labels</u> <u>Confidence Level</u> : 95 Output options <u>Output options</u> <u>Output Range</u> : <u>O New Worksheet Ply</u> : <u>New Worksheet Ply</u> : <u>New Workbook</u> <u>Residuals</u>	onstant is Zero	OK Cancel <u>H</u> elp
Residuals Standardized Residuals	Resi <u>d</u> ual Plots	
Normal Probability		

Complete the "Regression" dialog box as follows:

- Specify "Unit Sales" as the "Input Y Range". We will be turning on the "Labels" option in this dialog, so include the column header cell (Cell E9) in your Unit Sales range specification¹. This range is E9:E57.
- Specify the range of data in Columns F through K as the "Input X Range". Include only *one* row of column headers with your range specification. That is, include the labels in Row 9 but *not* those in Row 8. This range is F9:K57.
- In the "Regression" dialog box make sure the *Labels* box is checked. Excel will recognize that the first cell in each column of data is that column's label.
- Direct Excel to put its results on a new worksheet by choosing the option *New Worksheet Ply.*
- For outputs, select Residuals, and Standardized Residuals.

With data ranges and choices specified, your dialog should now look like the one below.

¹ In this selection operation be careful to select *data and header only* and not an entire column. Here's an easy way to select just the contiguous data from a column of data: Click the top cell. Depress the SHIFT key. Tap the End key and then tap the down arrow key. Excel selects all data down the column until it reaches the first empty cell in the column.

Regression		
Input Input <u>Y</u> Range: Input <u>X</u> Range: ✓ Labels □ (\$E\$9:\$E\$57	OK Cancel <u>H</u> elp
Confidence Level: 95 Output options Output Range: New Worksheet Ply:	Constant is Zero	
 New <u>W</u>orkbook Residuals ✓ <u>R</u>esiduals ✓ <u>S</u>tandardized Residuals Normal Probability <u>N</u>ormal Probability Plots 	Resi <u>d</u> ual Plots	

- Click *OK* to execute the regression.

The *New Worksheet Ply* default output option means that Excel locates the regression outputs on a new, separate worksheet that it creates and puts to the left of the worksheet that holds the original data.

Excel completes the regression analysis leaving a large range of the worksheet selected. Click any cell to turn off the range selection. Because the Regression tool generates many outputs on a single sheet, you may want to use Excel's Zoom Control option to reduce the new worksheet size in order to get a view of how the outputs are arranged.

Widen the columns on the new worksheet in order to see all the text results properly.

	A	В	С	D	E	F	G	Н	1	J
1	SUMMARY	OUTPUT								
2										
3	Regression	Statistics								
4	Multiple R	0.94656								
5	R Square	0.895975								
6	Adjusted F									
7	Standard E	60699.81								
8	Observatio	48								
9										
10	ANOVA									
11		df	SS	MS	F	ignificance	F			
12	Regressior	6	1.3E+12	2.17E+11	58.85609	1.39E-18				
13	Residual	41	1.51E+11	3.68E+09						
14	Total	47	1.45E+12							
15										
16	C	Coefficients	tandard Err	t Stat	P-value	Lower 95%	Upper 95%	ower 95.0%	pper 95.0%	5
17	Intercept	646957.8	154146.9	4.197022	0.000142	335651.9	958263.8	335651.9	958263.8	
18	Price	-127443	15112.6	-8.43288	1.7E-10	-157963	-96922.3	-157963	-96922.3	
19	Ads	5.352977	1.113918	4.805541	2.09E-05	3.103374	7.602579	3.103374	7.602579	
20	Comp_Pric	29337.34	12388.59	2.368093	0.022677	4318.069	54356.61	4318.069	54356.61	
21	Income	0.344133	3.186721	0.10799	0.914531	-6.09158	6.779846	-6.09158	6.779846	
22	Population		0.002349	10.20232	8.12E-13	0.019222	0.02871	0.019222	0.02871	
23	Time Var	4405.94	4400.397	1.00126	0.322574	-4480.84	13292.72	-4480.84	13292.72	
24										
25										
26										
27	RESIDUAL	OUTPUT								
28										
14 4	→ >IInt	roduction	Sheet1	Task 2 - F	Pie Data 🏑	Task 3 - A	uto Imports			4

A quick way to do this is to select the blank square at the intersection of the row numbers and column headers (to select the entire worksheet), and then double-click the dividing line between any two column headers. Excel widens each column so the widest entry in that column displays completely. To rename this worksheet "Task 1" right-click the worksheet tab and enter the name in place of the default worksheet name.

Task 1 Intermediate Check

Selecting the *Residuals*, and *Standardized Residuals* options in the "Regression" dialog produces the output partially shown below.

In this view columns have been widened to show the results completely.

	A	В	С	D	E	F	G	Н	- I
1	SUMMARY OUTPUT								
2									
3	Regressio	n Statistics							
4	Multiple R	0.946559629							
5	R Square	0.895975132							
6	Adjusted R Square	0.880751981							
7	Standard Error	60699.8107							
8	Observations	48							
9									
10	ANOVA								
11		df	SS	MS	F	Significance F			
12	Regression	6	1.30112E+12	2.16853E+11	58.8560875	1.39375E-18			
13		41	1.51063E+11	3684467019					
14	Total	47	1.45218E+12						
15									
16		Coefficients	Standard Error	t Stat	P-value	Lower 95%	Upper 95%	Lower 95.0%	Upper 95.0%
17	Intercept	646957.8174	154146.8797	4.197021819	0.00014152	335651.8818		335651.8818	
18	Price	-127442.8033	15112.59845	-8.432884903	1.699E-10	-157963.3147	-96922.2919	-157963.315	-96922.2919
19	Ads	5.352976863	1.113917711	4.805540671	2.0919E-05	3.103374433	7.602579293	3.103374433	7.602579293
20	Comp Price	29337.34026	12388.5933	2.368092934	0.02267716	4318.0688	54356.61171	4318.0688	54356.6117
21	Income	0.344132846	3.186720717	0.107989647	0.91453065	-6.091580132	6.779845825	-6.09158013	6.77984582
22	Population	0.023965666	0.002349041	10.20232045	8.1243E-13	0.019221682	0.02870965	0.019221682	0.0287096
23	Time Var	4405.940135	4400.39741	1.001259596	0.32257427	-4480.842623	13292.72289	-4480.84262	13292.7228
24									
25									
26									
27	RESIDUAL OUTPUT								
28									
29	Observation	Predicted Unit Sales	Residuals	Standard Residuals					
30	1	234861.2336	-41527.23358	-0.732491627					
31	2	101059.9918	68981.00824	1.216743968					
32	3		-22518.06199	-0.397192166					
33	4	189121.3616	-5862.361642	-0.103405174					
34	5	259958.8857	22159.11427	0.39086075					
	Introduct	ion Sheet1	Task 2 - Pie Da	ta 🖌 Task 3 - Aut		/ 🔁 /		1	

Excel labels the output areas "SUMMARY OUTPUT", "ANOVA", and "RESIDUAL OUTPUT".

3. Create a Chart

Create a line chart comparing the actual **Unit Sales** in the "Task 1–Pie Data" worksheet with the **Predicted Unit Sales** produced by the regression analysis.

26					
27	RESIDUAL OUTPUT				
28			7		
29	Observation	Predicted U	nit Sales	Residuals	Standard Residuals
30	1	234	361.2336	-41527.23358	-0.732491627
31	2	1010	059.9918	68981.00824	1.216743968
32	3	270	0227.062	-22518.06199	-0.397192166
33	4	1891	121.3616	-5862.361642	-0.103405174
34	5	2599	958.8857	22159.11427	0.39086075
Î.	Introduct	ion She	et1	Task 2 - Pie Da	ta 🖌 Task 3 - Aut

L

_					
	С	D		F	G
8			•	(\$)	(\$)
9	Yr/Qtr	Row	Unit Sales	Price	Ads
10	2003-1	1	193,334	6.39	15,827
11	2003-2	2	170,041	7.21	20,819
12	2003-3	3	247,709	5.75	14,062
13	2003-4	4	183,259	6.75	16,973
14	2004-1	5	282,118	6.36	18,815
15	2004-2	6	203,396	5.98	14,176

Partial view of Excel's regression output showing the "Predicted Unit Sales".

Partial view of the "Task 1 - Pie Data" worksheet showing "Unit Sales".

Statistics and Regression Tools Review: Detailed Descriptions

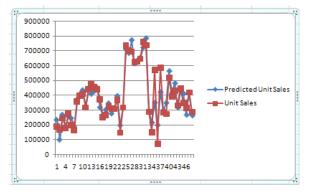
The data needed to create this chart are located on two different worksheets. The **Unit Sales** data is on the original "Task 1-Pie Data" worksheet. The **Predicted Unit Sales** data – output by the regression analysis – is under the "Residual Output" header on the worksheet of outputs you just generated and now named "Task 1".

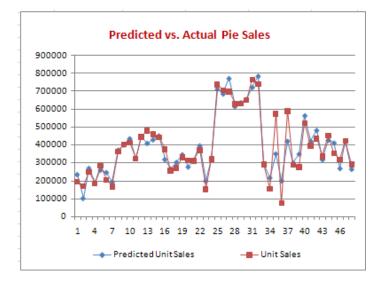
To create a chart using data from two different sheets:

1. Select the **Predicted Unit Sales** (Predicted Y) header cell and the data beneath it from the regression output. Click the "Insert" tab and from the "Charts" group select a line chart style from the "2-D Line" group.

Drag the chart to the right of the RESIDUAL OUTPUT section of the worksheet. The basic chart and its location in relation to the outputs on your "Task 1" worksheet should look like the illustration below.

0	Home	nsert Page Layou	t Formula:	a Data	Revie	ew View	Add-Ins	
Piv	votTable Table	Picture Clip Shape	s SmartArt		e Pie	Bar	Area Scatter	Othe
	Tables	Illustrations		2-	D Line			
	B29		Predicted	Unit S				
-	A	В	С		\sim	\approx		
8	Observations	48		E E		F		
9	o o o o o o o o o o o o o o o o o o o			-	1			
10	ANOVA				w/	A. 11.		
11		df	SS	1		\sim 11/	Annos E	·
12	Regression	6	1.30112E+12		Line w	ith Markers		
13	Residual	41	1.51063E+11	3-	D			
14	Total	47	1.45218E+12		Displ	ay trend over		
15					years) or ordered	categories.	
16		Coefficients	Standard Error		Licofi	ul when there	e are only a few	. 8
17	Intercept	646957.8174	154146.8797			points.	are only area	·
18	Price	-127442.8033	15112.59845	3	1		100:01 11	000
19	Ads	5.352976863	1.113917711	ilb	All Cha	rt Types	3374433	7.602
20	Comp_Price	29337.34026	12388.5933	2.36	8092934	0.02267716	4318.0688	
21	Income	0.344132846	3.186720717	0.10	7989647	0.91453065	-6.091580132	6.779
22	Population	0.023965666	0.002349041		0232045	8.1243E-13	0.019221682	0.02
23	Time Var	4405.940135	4400.39741	1.00	1259596	0.32257427	-4480.842623	1329
24								
25								
26								
27	RESIDUAL OUTPUT							
28								
29	Observation	Predicted Unit Sales	Residuals	Standard Re				
30		1 234861.2336	-41527.23358		2491627			
31		2 101059.9918	68981.00824		6743968			
32		3 270227.062	-22518.06199		7192166			
33		4 189121.3616	-5862.361642		3405174			
34		5 259958 8857	22159 11427	0.3	9086075			


	A	В	C	D	E	F	G	H		J	
	RESIDUAL OUTPUT										
28			8								
29	Observation	Predicted Unit Sales	Residuals	Standard Residuals	12-						
30	1	234861.2336	-41527.23358	-0.732491627							
31	2	101059.9918	68981.00824	1.216743968			Predicte	d Unit Sa	les		
32	3	270227.062	-22518.06199	-0.397192166							
33	4	189121.3616	-5862.361642	-0.103405174	90000	100					
34	5	259958.8857	22159.11427	0.39086075	80000	0	+ 1				
35	6	246576.9718	-43180.97176	-0.761661626	70000	0	10 1				
36	7	192737.7822	-25290.78216	-0.446099693	60000	0					
37	8	371640.8945	-9963.894465	-0.175751396	: 50000	0		1			
38	9	400576.4806	1228.519384	0.021669639			A	- 18mm			
39	10	435684.0462	-23372.04619	-0.412255445	40000			ATV AA	Predicte	dUnitSale	e
40	. 11	326335.135	-4363.134954	-0.076960576	30000		8817	AVA			
41	12	445844.0469	-608.0468606	-0.010725232	20000			1			
42	13	409735.4636	69977.53638	1.234321554	10000	0					
43	14	430083.4457	29295.55431	0.516739171							
44	15	452146.7606	-8106.760641	-0.142993736							
45	16	319236.5956	56809.40444	1.002051172		1 4 7 101	3161922252831	3437404346			
46	17	266401.4441	-11198.44409	-0.197527401	:				1		-
47	18	303048.1179	-32167.11792	-0.56739018							
48	19	346584.5956	-16313.59555	-0.287752665							
49	20	277370.7717	36114.22834	0.637012572							


- 2. Make your "Task 1–Pie Data" worksheet current. Select the **Unit Sales** header cell and the data beneath it from this worksheet. Copy the selection to the Windows Clipboard using *Edit, Copy* (or CTRL+C).
- 3. Make your "Task 1" worksheet current. Select the outside edge of the line chart you just created. Small, empty circles and squares should appear around the edges of the chart to show it's properly selected.

4. With the chart selected, use the *Edit, Paste* commands (or CTRL+V) to copy the data from the Clipboard to the chart. Excel adds the data from the clipboard to the existing chart as a second line.

Task 1 Check

A simple line chart with sales data from the two worksheets should appear similar to the chart shown at right. You need not make any formatting changes to this cart. In the illustration here, it's a bit hard to see both lines, but the legend at right indicates that two data series are included in the chart.

Optional Enhancement At left is a chart modified to include a title, formatted X and Y axes, and a modified legend.

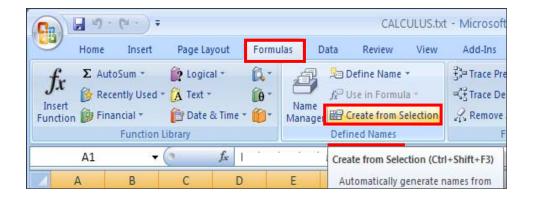
You need not reproduce these modifications in your own chart.

End of the Task 1 Detailed Description

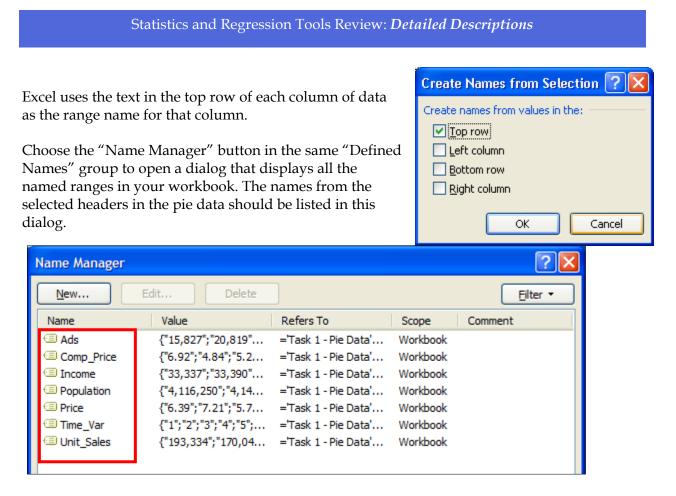
Range Naming Note

You need not name the ranges of data you plan to use in an Excel analysis, but being able to work with named ranges can be helpful. When the data already has headers (as does the data we used in Task 1), a quick way to assign names to all the variables is to:

1) Select *all* the headers from the "Unit Sales" header to through "Time Var". Note that some of the data columns have 2-row headers, but Excel allows only the contents of a single cell to be a range name, so select the single row of headers closest to the data.


	А	В	С	D	E	F	G	Н	I	J	К	
1												
2		Statistics and F	Regressio	n Tools								
3		Task 1: Run a F	Regressio	n Using	Excel's Re	gression	Tool					
4												
5												
6		Mrs. Smyth	's Gour	met F	rozen Fr	uit Pie	Region	al Market	Demand	Data, 200)3-1 to 2	004
7												
8						(\$)	(\$)	(\$)	(\$)		(T)	
9		City	Yr/Qtr	Row	Unit Sales	Price	Ads	Comp Price	Income	Population	Time Var 🔹	
10		Atlanta, GA	2003-1	1	193,334	6.39	15,827	6.92	33,337	4,116,250	1	
11			2003-2	2	170,041	7.21	20,819	4.84	33,390	4,140,338	2	
12			2003-3	3	247,709	5.75	14,062	5.28	33,599	4,218,965	3	
12									33 797			

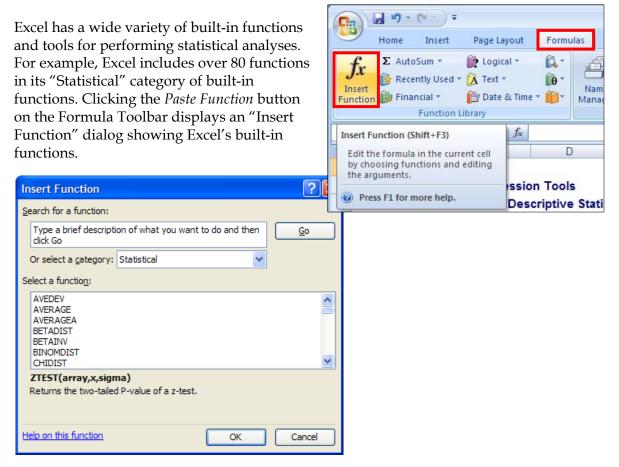
Depress and hold down the Shift key, tap and release the End key, and tap and release the down arrow key. Release the Shift key. Excel selects all the data beneath the selected headers for you.


8					(\$)	(\$)	(\$)	(\$)		(T)	
9	City	Yr/Qtr	Row	Unit Sales	Price	Ads	Comp_Price	Income	Population	Time Var	
10	Atlanta, GA	2003-1	1	193,334	6.39	15,827	6.92	33,337	4,116,250	1	Par
11		2003-2	2	170,041	7.21	20,819	4.84	33,390	4,140,338	2	1 1 11
12		2003-3	3	247,709	5.75	14,062	5.28	33,599	4,218,965	3	
13		2003-4	4	183,259	6.75	16,973	6.17	33,797	4,226,070	4	
14		2004-1	5	282,118	6.36	18,815	6.36	33,879	4,278,912	5	
15		2004-2	6	203 396	5.98	14,176	4.88	34,186	4.359.442	6	

Partial view.

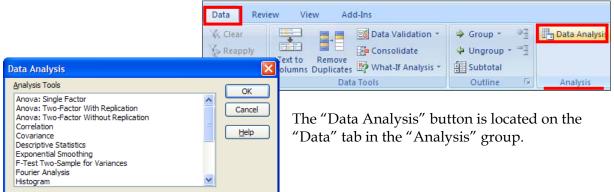
- 2) Next, click the "Formulas" tab and find the "Defined Names" group.
- 3) Choose the "Create from Selection" button. Excel opens a "Create Names from Selection" dialog.

4) Choose the "Top row" option in this dialog and click *OK*.



You can now use any of these names in place of their corresponding range references to refer to those ranges. For example, the range E10:E57 can be referred to by the range name "Unit Sales".

Additional Notes


- A range named in this way (using create from selection) does *not* include the header cell that provides the name.
- If a header consists of two or more words separated by spaces, Excel automatically replaces the spaces with underscores in the range names.
- Two other ways to create a range name:
 - Use the "Define Name" option in the "Defined Names" group on the Formulas " tab.
 - Use the "name box" at the left-hand side of the formula bar.

Task 2: Use Excel's Descriptive Statistics Generator to Analyze Data

These functions in particular are often used for projections: FORECAST, TREND, GROWTH, LINEST, and LOGEST. In addition to the built-in functions, a number of statistical analysis tools besides regression are included in Excel's Analysis ToolPak add-in (*Tools, Data Analysis*).

In this task you use the "Descriptive Statistics" data analysis tool to generate descriptive statistics about a set of car import data and rearrange the results to make the data more readable.

Make the "Task 2 - Auto Imports" worksheet current. This worksheet contains data on imports into the U.S. passenger car market from 1971 to 1997, comparing Korean, Japanese, and German import sales with sales of passenger cars manufactured in North America.

Choose the "Data" tab and find the "Analysis" group. Click the "Data Analysis" button. Select the "Descriptive Statistics" option to open the dialog for that tool. Complete the "Descriptive Statistics" dialog as follows:

- 1. For "Input Range" specify all columns of data *except for* the "Year" column in the analysis. Do not include the "Year" data. Include column headers when you select the Input Range (the range **C9:F35**).
- 2. Check the "Labels in first row" option.
- 3. For "Output options" choose "Output Range" and specify a cell below the data (for example, Cell B38).
- 4. Request all the available outputs: Summary statistics, Confidence Level for Mean, Kth Largest, and Kth Smallest. (Leave the defaults for these last three output options as they are, at 95%, 1, and 1.)
- 5. Click OK.

Descriptive Statistics		? 🗙
Input Input Range: Grouped By: Iabels in first row	<pre>\$C\$9:\$F\$35</pre> ③ Columns Rows	OK Cancel <u>H</u> elp
Output options Output Range: New Worksheet <u>Ply</u> : New <u>W</u> orkbook	\$B\$38	
 Summary statistics Confidence Level for Mean: Kth Largest: Kth Smallest: 	95 % 1 1	

Excel automatically converts any cell references you enter in this dialog to absolute references.

Excel generates a complete set of descriptive statistics for the data that looks like the illustration that follows.

Task 2 Intermediate Check

The initial results remain selected; click any cell to deselect the range. In this "raw" output, many columns are not wide enough to display their data completely. In addition, Excel generates a column of descriptive statistics labels (Mean, Standard Error, Median, etc.) for each country/region analyzed (Columns B, D, F, and H). This label redundancy makes the output more difficult to read.

	Columns with redundant labels									
				Ļ		Ļ		Ļ		
	А	B	С	D	E	F	G	Н	1	
31		1993	134,764	1,328,448	186,177	6,741,667				
32		1994	173,214	1,239,450	192,275	7,255,303				
33		1995	183,214	981,462	207,555	7,128,712				
34		1996	172,193	726,940	237,984	7,253,582				
35		1997	181,923	726,104	297,028	6,916,769				
36										
37										
38		Korea		Japan		Germany	N	orth Americ	9	
39										
40		Mean	101097.1154	Mean	1459132.385		356176.2		7470701	
41		Standard Err	2	Standard Error		Standard Error		Standard E		
42		Median	-	Median	1476037.5		301123.5	Median	7191147	
43		Mode	-	Mode	#N/A	Mode	#N/A	Mode	#N/A	
44		Standard De		Standard Deviati		Standard Deviation			1032009	
45		Sample Varia	15957128675	Sample Variance	3.05174E+11	Sample Variance	2.64E+10	Sample Va	1.07E+12	
46		Kurtosis	0.134265053		-1.229126977		1.832032		-0.47534	
47		Skewness	0.990079421		-0.186566776			Skewness	0.515567	
48		Range	419099	<u> </u>	1803637		601385		3917204	
49		Minimum	-	Minimum		Minimum		Minimum	5758586	
50		Maximum		Maximum		Maximum		Maximum	9675790	
51		Sum	2628525		37937442		9260582		1.94E+08	
52		Count		Count		Count		Count	26	
53		Largest(1)		Largest(1)		Largest(1)		Largest(1)	9675790	
54		Smallest(1)		Smallest(1)		Smallest(1)		Smallest(1	5758586	
55		Confidence L	51022.36931	Confidence Leve	223129.3456	Confidence Level(9	65630.17	Confidence	416837.5	
4 4	► H -	Introduction	Task 2 📈 Tas	k 2 - Pie Data 🔒 T	ask 3 - Auto Ir	nports 🛛 🕲		(

Widen columns so all the data is visible and edit the output so it has a *single* labels column at the left of the data. Arrange the output so country/region names are above their data. Use Excel's delete and move options to rearrange the data.

_	Korea	Japan	Germany	North America
Mean	101097.1154	1459132.385	356176.2308	7470700.846
Standard Err	24773.69004	108339.4856	31866.44492	202393.6268
Median	0	1476037.5	301123.5	7191147
Mode	0	#N/A	#N/A	#N/A
Standard De	126321.5289	552425.1513	162487.6245	1032009.053
Sample Varia	15957128675	3.05174E+11	26402228113	1.06504E+12
Kurtosis	0.134265053	-1.229126977	1.832032364	-0.475338779
Skewness	0.990079421	-0.186566776	1.438401394	0.515566924
Range	419099	1803637	601385	3917204
Minimum	0	578977	186177	5758586
Maximum	419099	2382614	787562	9675790
Sum	2628525	37937442	9260582	194238222
Count	26	26	26	26
Largest(1)	419099	2382614	787562	9675790
Smallest(1)	0	578977	186177	5758586
Confidence L	51022.36931	223129.3456	65630.17131	416837.4738

For example, select the data for Japan and drag it to the left.

Task 2 Check

With these changes complete, your output will look like the illustration below.

	А	В	С	D	E	F
37						
38			Korea	Japan	Germany	North America
39						
40		Mean	101097.1154	1459132.385	356176.2308	7470700.846
41		Standard Error	24773.69004	108339.4856	31866.44492	202393.6268
42		Median	0	1476037.5	301123.5	7191147
43		Mode	0	#N/A	#N/A	#N/A
44		Standard Deviation	126321.5289	552425.1513	162487.6245	1032009.053
45		Sample Variance	15957128675	3.05174E+11	26402228113	1.06504E+12
46		Kurtosis	0.134265053	-1.229126977	1.832032364	-0.475338779
47		Skewness	0.990079421	-0.186566776	1.438401394	0.515566924
48		Range	419099	1803637	601385	3917204
49		Minimum	0	578977	186177	5758586
50		Maximum	419099	2382614	787562	9675790
51		Sum	2628525	37937442	9260582	194238222
52		Count	26	26	26	26
53		Largest(1)	419099	2382614	787562	9675790
54		Smallest(1)	0	578977	186177	5758586
55		Confidence Level(95.0%)	51022.36931	223129.3456	65630.17131	416837.4738
56						

End of the Task 2 Detailed Description

End of the Statistics and Regression Tools Review Detailed Descriptions

Duke University The Fuqua School of Business

Statistics & Regression Tools Review Skills Summary

Import a Text File into Excel

Use Excel's normal *File, Open* commands. A 3-step "Text Import Wizard" dialog opens. Complete the wizard steps to specify the data type, characteristics, and import formats. Also use the wizard to determine which columns of data to import and the import starting row. Once a text file is imported into Excel it remains a text file until converted to Excel format by clicking the Office button, then *Save As*, and then *Excel Workbook*.

Excel's Analysis ToolPak

To Access

From the "Data" tab and the "Analysis" group, click the "Data Analysis" button to open the "Data Analysis" dialog.

Stats	Regr07 Co	mpleted.x	lsx - Microsoft	Excel		- =	x
Data R	eview V	iew A	dd-Ins			0 - 6	x
Clear Reapply Advanced	Taut to Damanua		te	Group * Ungroup * Subtotal Outline	Analysis		
E	F	G	Н		J	Data Analysis Tools Tools for financial and scientific data analysis.	
Excel's Re	gressior	n Tool				FUNCRES.XLAM Press F1 for more help.	

The Analysis ToolPak is a part of MS Excel. It's packaged as an add-in. It's available if you have loaded the add-in during your Excel installation and if you've turned it on as an available add-in.

Tools

Provides functions and interfaces for financial and scientific data analyses.

Operation

From the "Data Analysis" dialog select the analysis you want to perform and then complete the dialog that displays. The dialog prompts for input data, output specifications, and (in many cases) run-time options.

Run a Regression Analysis Using Excel's Built-In Regression Tool

- Excel's built-in regression analysis tool is part of its Analysis ToolPak add-in.
- 1) Open the "Data Analysis" dialog (see the notes above.)
- Choose Regression from the list of options in the "Data Analysis" dialog that displays. A "Regression" dialog opens.
- Complete the "Regression" dialog, specifying inputs (the dependent (Y) variable and the independent (X) variables and outputs. Note that range of X variable values must be located together in the worksheet.
- 4) Choose *OK* to run. Excel generates regression results.

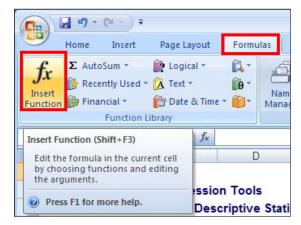

Regression	
Input Input Y Range: Input X Range: Labels Confidence Level: 95 Output options Qutput Range: New Worksheet Ply: New Workbook Residuals Residuals	OK Cancel Help
Standardized Residuals Line Fit Plots Normal Probability	

Chart Data from Different Worksheets

- 1) Create a chart using the data from one worksheet.
- 2) Select and copy the data from the other worksheet.
- 3) Go back to the initial worksheet-with-chart and click the chart's edge to select it.
- 4) Edit, Paste the copied data onto the chart.

Find a List of Excel's Statistical Functions

On the "Formulas" tab choose the "Function Library" group and click the "Insert Function" button. Choose "Statistical" from the category list to see a list of built-in functions that handle statistical operations.

Excel Statistics & Regression Tools Review Skills Summary

Ir	sert Function	? 🗙									
<u>S</u> e	Search for a function:										
	Type a brief descripti click Go	Go									
	Or select a <u>c</u> ategory:	Statistical	*								
Se	Select a functio <u>n</u> :										
	AVEDEV AVERAGE AVERAGEA BETADIST BETAINV BINOMDIST CHIDIST										
ZTEST(array,x,sigma) Returns the two-tailed P-value of a z-test.											
H	elp on this function		ОК	Cancel							

End of the Excel Statistics & Regression Tools Skills Review Summary