# Stator Insulation Aging and Design for Reliability

IRMC 2019 New Orleans, Louisiana

May 7, 2019

William Chen





# **Insulation Stresses and Machine Service Life**



# Motor Efficiency & Service Life vs. Insulation Design A E L

- Design Quality Ac Q = ------As
  - A<sub>c</sub>: total copper cross section A<sub>s</sub>: total slot cross section dA = A<sub>s</sub> -A<sub>c</sub> Insulation filling





### Turn To Turn Failure





Surface PD damages due to poor stress grading system

www.tecowes

## **Design/Manufacture for Reliability to Minimize the Winding Aging Processes**

- Electrical
- Thermal
- Mechanical (Vibration, Movement)
- Environment (Contamination: oil, dirt, water, chemical, salt, radiation....)
- Manufacturing Process Issues
- VFD operation





## Basic Insulation Components in Large Form Wound Motor Stator Windings COIL INSULATION





- Strand Insulation Daglass, Enamel, Kapton, Mica tape
- Turn Insulation Mica tape, or same as
  - strand insulation
- Ground Wall Insul. Mica tape
- Stress Grading System Conducting coating; Semi-conducting coating

Strand/Turn Insulation

Dedicated Turn Insulation

#### High Voltage Coil Voltage Stress Grading System





equivalent circuit of typical end turn

#### Function

To smooth the voltage distribution along the coil endturn (from HV to GND)

#### **Design Considerations**

- Non-Linear V-I characters for grading coating
- Compatible between conducting/grading layers;
- Proper design of the length and overlapping between two layers;
- Solid electrical contacts between two layers
- Mechanical fatigue stress



### **Insulation Materials Systems**

Vacuum Pressure Impregnation (VPI)

- Mica tapes with low binder resin content (6-10%)

- Solventless VPI resin (Epoxy or Polyester)



 Mica tapes with high binder resin content (37 -45%)

|               | RR                                                                                                                                                                                                                                                                                                                                                                                                                                  | VPI                                                                                                                                                                                                                                                                                                            |
|---------------|-------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|----------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|
| advantages    | <ul> <li>high dielectric strength         (= absence of voids in the pressed         slot part)</li> <li>control of the flexibility in the end-turn         region</li> <li>complete electrical testing of the coils         is possible before assembling them</li> <li>low capital investment</li> <li>easy to service (easily removable)</li> <li>negligible expenditure for resin control         measurements, etc.</li> </ul> | <ul> <li>sealing of the complete<br/>stator, good thermal and<br/>electrical coupling between<br/>the coil and the core</li> <li>with large numbers: lower<br/>costs as compared to RR-t</li> <li>to RR-w</li> <li>short overhang possible<br/>with high rated voltage</li> <li>smaller frame sizes</li> </ul> |
| disadvantages | <ul> <li>increased number of process steps</li> <li>with RR-W:         <ul> <li>discontinuous insulation</li> <li>lower surge voltage strength</li> <li>longer overhang at higher voltages</li> <li>&gt; larger frame sizes</li> <li>no automation</li> </ul> </li> <li>with RR-t:         <ul> <li>high cost compared to VPI for large numbers</li> </ul> </li> </ul>                                                              | <ul> <li>removal of coils after<br/>impregnation is difficult</li> <li>high capital investment</li> <li>final electrical testing of the<br/>individual coils is not<br/>possible before assembling<br/>and impregnating them</li> <li>sophisticated laboratory<br/>tests (resin quality control)</li> </ul>    |
|               |                                                                                                                                                                                                                                                                                                                                                                                                                                     | shouse SGS @                                                                                                                                                                                                                                                                                                   |

## Good VPI'ed Coil



### **Poor VPI'ed Coil**





## **Basic Insulation Components in Large Form Wound Motor Stator Windings**

## WINDING INSULATION



- Coil lead joints insulation Mica Tape
- Main lead (cable) insulation Silicon Rubber
- Leads & cable spacers Felt & Micarta







### **Design Limits of Winding Insulation Allowance**

- Strand Insulation: Withstand 120 V AC test voltage;
- Turn Insulation: Based on actual winding electrical design and operating voltage stress at Surge Voltage Condition: NEMA std./IEEE std. 522:

Typical: 2 p.u. Severe: 3.5 p.u.

- Ground Wall Insulation:
  - Typical: 50 70 Volts/Mil (single side) Some designs: 100 Volts/Mil

## **Mfg Process and Material Dependent**







AC breakdown strength in kV and single wall insulation thickness in mils for different turn insulation systems

- 1. Heavy film enamel
- 2. SDG & heavy film enamel
- 3. DDG & heavy film enamel
- 4. Single layer half lapped Kapton
- 5. Single layer half lapped mica tape
- 6. Double layer of edge lapped mica tape
- 7. Single layer edge lapped mica tape over heavy film enamel
- 8. Double layer edge lapped mica tape over heavy film enamel
- 9. Single layer half lapped mica tape over single layer half lapped Kapton
- 10.Double layer half lapped Kapton







#### Effect of Coil Shape Design (Aspect Ratio) on the Insulation Stress



## **Various Insulation Qualification Tests**

- IEEE 275 & 429 (new 1776) for thermal classification.
- IEEE 1043 & 1553 for high voltage (> 4 kV) endurance.
- IEEE 1310 for thermal cycling.
- IEEE 1434 for PD (partial discharge).
- Thermal and voltage endurance.
- Darkness test for stress grading materials.
- Water immersion test for moisture resistance.
- IEEE 286 for power factors tip-up test.
- IEC 60034-18-41,42 for inverter drive application.
- Other IEC standards.









## **Partial Discharge Analysis**

#### 6 kV and above machines



## Conclusion

Advanced Materials/Designs and Manufacturing Technologies Help to Improve the Stator Winding Insulation Quality and Service Life





# Questions?

# Comments?



