SAMPLE CONTENT

Perfect

MATHEMATILSS-II

Target Publications Pvt. Ltd.

Written as per the latest textbook prescribed by the Maharashtra State Bureau of Textbook Production and Curriculum Research, Pune.

PERFECT MATHEMATICS -II Std. XI Sci. \& Arts

Salient Features

- Written as per the new textbook

E Exhaustive coverage of entire syllabus
© Topic-wise distribution of textual questions and practice problems at the start of every chapter.
e Precise theory for every topic
© Covers answers to all exercises and miscellaneous exercises given in the textbook.
\& All derivations and theorems covered
© Includes additional problems for practice and MCQs

- Illustrative examples for selective problems
- Recap of important formulae at the end of the book
© Activity Based Questions covered in every chapter
- Smart Check to enable easy rechecking of solutions
© 'Competitive Corner' presents questions from prominent Competitive Examinations

No part of this book may be reproduced or transmitted in any form or by any means, C.D. ROM/Audio Video Cassettes or electronic, mechanical including photocopying; recording or by any information storage and retrieval system without permission in writing from the Publisher.
"The only way to learn Mathematics is to do Mathematics" - Paul Halmos
"Mathematics - II : Std. XI" forms a part of 'Target Perfect Notes' prepared as per the New Textbook. It is a complete and thorough guide critically analysed and extensively drafted to boost the students' confidence.

The book provides answers to all textbook questions included in exercises as well as miscellaneous exercises. Apart from these questions, we have provided ample questions for additional practice to students based on each every exercise of the textbook. Only the final answer has been provided for such additional practice questions. At the start of the chapter, we have provided a table to birfucate the textbook questions and additional practice questions as per the different type of problems/concepts in the chapter. This will help in systematic study of the entire chapter.
Precise theory has been provided at the required places for better understanding of concepts. Further, all derivations and theorems have been covered wherever required. A recap of all important formulae has been provided at the end of the book for quick revision. We have also included activity based questions in every chapter. We have newly introduced 'competitive corner' in this book wherein we have included questions from prominent competitive exams. It will help students to get an idea about the type of questions that are asked in Competitive Exams. We all know that there are certain sums that can be solved by multiple methods. Besides, there are also other ways to check your answer in Maths. 'Smart Check' has been included to help you understand how you can check the correctness of your answer.
The journey to create a complete book is strewn with triumphs, failures and near misses. If you think we've nearly missed something or want to applaud us for our triumphs, we'd love to hear from you. Pls write to us on: mail@targetpublications.org

A book affects eternity; one can never tell where its influence stops.

Best of luck to all the aspirants!
From,
Publisher
Edition: First

Disclaimer

[^0]
CONTENTS

Chapter No.	Chapter Name	Page No.
1	Complex Numbers	1
2	Sequences and Series	51
3	Permutations and Combinations	96
4	Method of Induction and Binomial Theorem	139
5	Sets and Relations	180
6	Functions	210
7	Limits	253
8	Continuity	307
9	Differentiation	
	Important formulae	

Type of Problems	Exercise	Q. Nos.
Examine the Continuity of a Function at a given point	8.1	Q. $1,2,4,5,10,12,13$
	Practice Problems (Based on Exercise 8.1)	Q.1, 2, 3, 4, 5, 6, 7, 20
	Miscellaneous Exercise 8	Q.II, IV
	Practice Problems (Based on Miscellaneous Exercise 8)	Q.1, 2, 8
Types of Discontinuity (Removable Discontinuity/ Irremovable Discontinuity)	8.1	Q.6, 7, 8, 9
	Practice Problems (Based on Exercise 8.1)	Q.8, 9, 10, 11, 12
	Miscellaneous Exercise 8	Q. III
	Practice Problems (Based on Miscellaneous Exercise 8)	Q. 3
Find the value of Function if it is Continuous at given point	8.1	Q. 10
	Practice Problems (Based on Exercise 8.1)	Q.13, 14
	Miscellaneous Exercise 8	Q. VII
	Practice Problems (Based on Miscellaneous Exercise 8)	Q. 4
Find the value of $\mathrm{k} / \mathrm{a} / \mathrm{b}$ if the Function is Continuous at a given point/points.	8.1	Q.11, 14, 17
	Practice Problems (Based on Exercise 8.1)	Q. 15, 16, 17, 18, 19
	Miscellaneous Exercise 8	Q. V, VI
	Practice Problems (Based on Miscellaneous Exercise 8)	Q.5, 6, 7
Find the points of Discontinuity for the given Functions	8.1	Q. 3
Intermediate value theorem	8.1	Q.15, 16
	Miscellaneous Exercise 8	Q.VIII

Syllabus

- Continuity of a function at a point.
- Continuity of a functiuon over an interval.

Let's Study

Continuous and Discontinuous Functions

Continuity is 'the state of being continuous' and continuous means 'without any interruption or disturbance'.
An activity that takes place gradually, without interruption or abrupt change is called a continuous process

For example, the flow time in human life is continuous, i.e., we are getting older continuously, the flow of water in the river.

Note:

There are no jumps, breaks, gaps or holes in the graph of the function.

Continuity of a function at a point:

Consider the functions indicated by following graphs where $y=\mathrm{f}(x)$:

Fig. (i)

Fig. (ii)

Fig. (iii)
i. The function in figure (i) has a hole at $x=\mathrm{a}$.
$\therefore \quad \mathrm{f}(x)$ is not defined at $x=\mathrm{a}$.
ii. \quad The function in figure (ii) has a break at $x=\mathrm{a}$.
iii. For the function in figure (iii), $f(a)$ is not in the continuous line.

Definition of Continuity :

1. A function $\mathrm{f}(x)$ is said to be continuous at a point $x=\mathrm{a}$, if the three conditions are satisfied:
i. $\quad \mathrm{f}$ is defined at every point on an open interval containing a.
ii. $\quad \lim _{x \rightarrow \mathrm{a}} \mathrm{f}(x)$ exists
iii. $\lim _{x \rightarrow \mathrm{a}} \mathrm{f}(x)=\mathrm{f}(\mathrm{a})$.

Example:

Consider $\mathrm{f}(x)=x^{2}-4$ and let us discuss the continuity of f at $x=3$

Solution:

i. Here, $\mathrm{f}(x)$ is a polynomial function
$\therefore \quad$ It is defined at every point on an open interval containing $x=3$
ii. $\quad \lim _{x \rightarrow 3} \mathrm{f}(x)=\lim _{x \rightarrow 3} x^{2}-4=3^{2}-4=5$
$\therefore \quad \lim _{x \rightarrow 3} \mathrm{f}(x)$ exists.
iii. $\quad \mathrm{f}(x)=x^{2}-4$
$\therefore \quad f(3)=3^{2}-4=5$
$\therefore \quad \lim _{x \rightarrow 3} \mathrm{f}(x)=\mathrm{f}(3)=5$
Here, all the 3 conditions are satisfied.
$\therefore \quad \mathrm{f}(x)$ is continuous at a point $x=3$
2. The condition in above fig. (iii) can be reformulated and the continuity of $\mathrm{f}(x)$ at $x=\mathrm{a}$, can be restated as follows:
A function $\mathrm{f}(x)$ is said to be continuous at a point $x=\mathrm{a}$ if it is defined in some nighborhood of ' a ' and if $\lim _{h \rightarrow 0}[f(a+h)-f(a)]=0$.

Continuity from the right and from the left:

i. There are some functions, which are defined in two different ways on either side of a point. In such cases we have to consider the limits of function from left as well as right of that point.
ii. A function $\mathrm{f}(x)$ is said to be continuous from the right at $x=\mathrm{a}$ if $\lim _{x \rightarrow \mathrm{a}^{+}} \mathrm{f}(x)=\mathrm{f}(\mathrm{a})$
iii. A function $\mathrm{f}(x)$ is said to be continuous from the left at $x=$ a if $\lim _{x \rightarrow \mathrm{a}^{-}} \mathrm{f}(x)=\mathrm{f}(\mathrm{a})$
iv. If a function is continuous on the right and also on the left of a then it is continuous at a because
$\lim _{x \rightarrow \mathrm{a}^{+}} \mathrm{f}(x)=\lim _{x \rightarrow \mathrm{a}^{-}} \mathrm{f}(x)=\mathrm{f}(\mathrm{a})$

Example:

Consider the function,
$\mathrm{f}(x)=2 x+7, \quad x<4$
$=5 x-5, x \geq 4$
Since, $\mathrm{f}(x)$ has different expressions for the value of x
left hand and right hand limits have to be found out.
$\lim _{x \rightarrow 4^{+}} \mathrm{f}(x)=\lim _{x \rightarrow 4}(5 x-5)=5 \times 4-5=15$
Also, $\mathrm{f}(4)=5(4)-5=15$
and $\lim _{x \rightarrow 4^{-}} \mathrm{f}(x)=\lim _{x \rightarrow 4}(2 x+7)=2 \times 4+7=15$
$\lim _{x \rightarrow 4^{-}} \mathrm{f}(x)=\lim _{x \rightarrow 4^{+}} \mathrm{f}(x)=\mathrm{f}(4)$
$\therefore \quad \mathrm{f}(x)$ is continuous at $x=4$.

Examples of continuous functions:

1. Constant function: The constant function $\mathrm{f}(x)=\mathrm{k}$ (where $\mathrm{k} \in \mathrm{R}$ is a constant). The function is continuous for all x belonging to its domain.

Example:

$\mathrm{f}(x)=10, \mathrm{f}(x)=\log _{10} 100, \mathrm{f}(x)=\mathrm{e}^{7}$
2. Polynomial function: The function $\mathrm{f}(x)=\mathrm{a}_{0}+\mathrm{a}_{1} x+\mathrm{a}_{2} x^{2}+\ldots .+\mathrm{a}_{\mathrm{n}} x^{\mathrm{n}}$, where $\mathrm{n} \in \mathrm{N}, \mathrm{a}_{0}, \mathrm{a}_{1} \ldots \mathrm{a}_{\mathrm{n}} \in \mathrm{R}$ is continuous for all x belonging to domain of x.

Example:

$\mathrm{f}(x)=x^{2}+5 x+9, \mathrm{f}(x)=x^{3}-5 x+9$, $\mathrm{f}(x)=x^{4}-16, \forall x \in \mathrm{R}$.
3. Rational function: If f and g are two polynomial functions having same domain then the rational function $\frac{f}{g}$ is continuous in its domain at points where $\mathrm{g}(x) \neq 0$.
Example:
Consider the function, $\frac{x^{2}+5 x+6}{x^{2}-9}$
Here, $\mathrm{f}(x)=x^{2}+5 x+6$ and $\mathrm{g}(x)=x^{2}-9$

Given function is continuous on its domain, where $x^{2}-9 \neq 0$
i.e., $(x+3)(x-3) \neq 0$
i.e., $x+3 \neq 0, x-3 \neq 0$
i.e., $x \neq-3, x \neq 3$
$\therefore \quad$ The function is continuous on its domain except at $x=3,-3$.
4. Trigonometric function: $\sin (a x+b)$ and $\cos (a x+b)$, where $a, b \in R$ are continuous functions for all $x \in \mathrm{R}$.

Example:

$\sin (5 x+2), \cos (7 x-11) \forall x \in \mathrm{R}$.
Note: Tangent, cotangent, secant and cosecant functions are continuous on their respective domains.
5. Exponential function: $\mathrm{f}(x)=\mathrm{a}^{x}, \mathrm{a}>0, \mathrm{a} \neq 1$, $x \in \mathrm{R}$ is an exponential function, which is continuous for all $x \in \mathrm{R}$.
Example:
$\mathrm{f}(x)=3^{x}, \mathrm{f}(x)=\left(\frac{1}{2}\right)^{x}, \mathrm{f}(x)=\mathrm{e}^{x} \forall x \in \mathrm{R}$,
where $\mathrm{a}>0, \mathrm{a} \neq 1$.
6. Logarithmic function: $\mathrm{f}(x)=\log _{\mathrm{a}} x$ where $\mathrm{a}>0, \mathrm{a} \neq 1$ is a logarithmic function which is continuous for every positive real number i.e. for all $x \in \mathrm{R}^{+}$

Example:

$\mathrm{f}(x)=\log _{\mathrm{a}} 7 x, \mathrm{f}(x)=\log _{\mathrm{a}} 9 x^{2} \forall x \in \mathrm{R}$, where $\mathrm{a}>0, \mathrm{a} \neq 1$.

Properties of Continuous Functions

If the functions f and g are continuous at $x=\mathrm{a}$, then,

1. their sum, that is $(\mathrm{f}+\mathrm{g})$ is continuous at $x=\mathrm{a}$.
2. their difference, that is $(\mathrm{f}-\mathrm{g})$ or $(\mathrm{g}-\mathrm{f})$ is continuous at $x=\mathrm{a}$
3. the constant multiple of $\mathrm{f}(x)$, that is k.f, for any $\mathrm{k} \in \mathrm{R}$, is continuous at $x=\mathrm{a}$.
4. their product, that is (f.g) is continuous at $x=\mathrm{a}$.
5. their quotient, that is $\frac{f}{g}$, if $g(a) \neq 0$, is continuous at $x=\mathrm{a}$.
6. their composite function, $\mathrm{f}[\mathrm{g}(x)]$ or $\mathrm{g}[\mathrm{f}(x)]$, that is fog (x) or $\operatorname{gof}(x)$, is continuous at $x=\mathrm{a}$.

Types of discontinuities

i. Jump discontinuity:

A function $\mathrm{f}(x)$ has a Jump Discontinuity at $x=0$. If the left hand and right hand limits both exist but are different, that is $\lim _{x \rightarrow \mathrm{a}^{+}} \mathrm{f}(x) \neq \lim _{x \rightarrow \mathrm{a}^{-}} \mathrm{f}(x)$

Example:

i. Examine the continuity of the following functions at the given point.
(All functions are defined on $\mathrm{R} \rightarrow \mathrm{R}$)
$\mathrm{f}(x)=x^{2}-x+9$, for $x \leq 3$

$$
=4 x-3, \quad \text { for } x>3 ; \text { at } x=3
$$

Solution:

$$
\begin{aligned}
\lim _{x \rightarrow 3^{-}} \mathrm{f}(x) & =\lim _{x \rightarrow 3}\left(x^{2}-x+9\right) \\
& =(3)^{2}-3+9=15
\end{aligned}
$$

and $\lim _{x \rightarrow 3^{+}} \mathrm{f}(x)=\lim _{x \rightarrow 3}(4 x+3)$

$$
=4(3)-3=9
$$

Here, $\lim _{x \rightarrow \mathrm{a}^{+}} \mathrm{f}(x)$ and $\lim _{x \rightarrow \mathrm{a}^{-}} \mathrm{f}(x)$ both exist.
But, $\lim _{x \rightarrow 3^{-}} \mathrm{f}(x) \neq \lim _{x \rightarrow 3^{+}} \mathrm{f}(x)$
$\therefore \quad \mathrm{f}(x)$ has jump discontinuity at $x=3$.

ii. Removable discontinuity:

A function $\mathrm{f}(x)$ has a discontinuity at $x=\mathrm{a}$, and $\lim _{x \rightarrow \mathrm{f}} \mathrm{f}(x)$ exists, but either $\mathrm{f}(\mathrm{a})$ is not defined or $\lim _{x \rightarrow \mathrm{a}} \mathrm{f}(x) \neq \mathrm{f}(\mathrm{a})$. In such case we define or redefine $\mathrm{f}(\mathrm{a})$ as $\lim _{x \rightarrow \mathrm{a}} \mathrm{f}(x)$. Then with new definition, the function $\mathrm{f}(x)$ becomes continuous at $x=\mathrm{a}$. Such a discontinuity is called as Removable discontinuity.

Example:

Consider the function,
$\mathrm{f}(x)=\frac{x^{2}-5 x+6}{x-2}, x \neq 2$

$$
=2, \quad x=2
$$

Here, $\lim _{x \rightarrow 2} \mathrm{f}(x)=\lim _{x \rightarrow 2} \frac{x^{2}-5 x+6}{x-2}$

$$
\begin{aligned}
& =\lim _{x \rightarrow 2} \frac{(x-3)(x-2)}{(x-2)} \\
& =\lim _{x \rightarrow 2} x-3
\end{aligned}
$$

$$
\ldots[\because x \rightarrow 2, \therefore x \neq 2
$$

$$
\therefore x-2 \neq 0]
$$

$$
=2-3
$$

$$
=-1
$$

$\therefore \quad \lim _{x \rightarrow 2} \mathrm{f}(x)$ exists
Also, $\mathrm{f}(2)=2 \quad \ldots$ (given)
$\therefore \quad \lim _{x \rightarrow 2} \mathrm{f}(x) \neq \mathrm{f}(2)$
$\therefore \quad$ function f is discontinuous at $x=2$,
This discontinuity can be removed by redefining f as follows:

$$
\begin{aligned}
\mathrm{f}(x) & =\frac{x^{2}-5 x+6}{x-2}, & x \neq 2 \\
& =-1 & , x=2
\end{aligned}
$$

$\therefore \quad x=2$ is a point of removable discontinuity.

Extension of the original function:

If the original function is not defined at a and the new definition of f makes it continuous at a, then the new definition is called the extension of the original function.

Infinite discontinuity:

Consider the graph of $x y=1$

$$
\text { i.e., } y=\mathrm{f}(x)=\frac{1}{x}
$$

Here, $\mathrm{f}(x) \rightarrow \infty$ as $x \rightarrow 0^{+}$and
$\mathrm{f}(x) \rightarrow-\infty$ as $x \rightarrow 0^{-}$.
$\therefore \quad f(0)$ is not defined
$\therefore \quad$ function is discontinuous at $x=0$.
A function $\mathrm{f}(x)$ is said to have an infinite discontinutiy at $x=\mathrm{a}$,
If $\lim _{x \rightarrow \mathrm{a}^{-}} \mathrm{f}(x)= \pm \infty$ or $\lim _{x \rightarrow \mathrm{a}^{+}} \mathrm{f}(x)= \pm \infty$
Then, from the figure, $\mathrm{f}(x)$ has an infinite discontinutiy.

Continuity over an interval

Let (a, b) be an open interval.
If for every $x \in(\mathrm{a}, \mathrm{b})$, f is continuous at x then f is continuous on (a, b).
i. Consider f defined on $[a, b)$. If f is continuous on (a, b) and f is continuous to the right of a , $\lim _{x \rightarrow \mathrm{a}^{+}} \mathrm{f}(x)=\mathrm{f}(\mathrm{a})$ then f is continuos on $[\mathrm{a}, \mathrm{b}$)
ii. Consider f defined on (a, b]. If f is continuous on (a, b) and f is continuous to the left of b , $\lim _{\mathrm{f}} \mathrm{f}(x)=\mathrm{f}(\mathrm{b})$ then f is continuos on $(\mathrm{a}, \mathrm{b}]$
iii. Consider a function f continuous on the open interval (a, b). If $\lim _{x \rightarrow a^{+}} \mathrm{f}(x)$ and $\lim _{x \rightarrow a^{-}} \mathrm{f}(x)$ exists, then we can extend the fuction to $[a, b]$ so that it is continuous on [a, b].

The intermediate value theorem for continuous function

Theorem : If f is a continuous function on a closed interval $[\mathrm{a}, \mathrm{b}]$, and if y_{0} is any value between $\mathrm{f}(\mathrm{a})$ and $\mathrm{f}(\mathrm{b})$ then $y_{0}=\mathrm{f}(\mathrm{c})$ for some c in $[\mathrm{a}, \mathrm{b}]$

Geometrically, Theorem says that any horizontal line $y=y_{0}$ crossing the Y -axis between the numbers $\mathrm{f}(\mathrm{a})$ and $\mathrm{f}(\mathrm{b})$ will cross the curve $y=\mathrm{f}(x)$ at least once over the interval $[\mathrm{a}, \mathrm{b}]$.

Textual Activity

1. Discuss the continuity of $f(x)$ where

$$
\text { for } x=5
$$

(Textbook page no. 171)

Solution:

Given, $\mathrm{f}(5)=\frac{1}{5}$
$\therefore \quad \lim _{x \rightarrow 5} \mathrm{f}(x)=\lim _{x \rightarrow 5}\left[\frac{\log x-\log 5}{x-5}\right]$
Put $x-5=\mathrm{t}, x=5+\mathrm{t}$.
As $x \rightarrow 5, \mathrm{t} \rightarrow 0$
$=\lim _{t \rightarrow 0}\left[\frac{\log (\sqrt{5+\mathbf{t}})-\log 5}{\mathrm{t}}\right]$
$=\lim _{t \rightarrow 0}\left[\frac{\log \left[\frac{\underline{5+\mathbf{t}}}{5}\right]}{t}\right]=\lim _{t \rightarrow 0}\left[\frac{\log \left(1+\frac{t}{5}\right)}{t}\right]$
$=\lim _{t \rightarrow 0}\left[\frac{\log \left(1+\frac{t}{5}\right)}{\frac{t}{5}}\right] \times \frac{1}{5}$
$=1 \times \frac{1}{5} \quad \ldots\left[\because \lim _{x \rightarrow 0}\left[\frac{\log (1+\mathrm{p} x)}{\mathrm{p} x}\right]=1\right]$
$\therefore \quad \lim _{x \rightarrow 0} \mathrm{f}(x)=\frac{1}{5}$
$\therefore \quad$ From (i) and (ii),

$$
\lim _{x \rightarrow 5} \mathrm{f}(x)=\mathrm{f}(5)
$$

$\therefore \quad$ The function $\mathrm{f}(x)$ is continuous at $x=5$.

Exercise 8.1

1. Examine the continuity of
i. $\quad f(x)=x^{3}+2 x^{2}-x-2$ at $x=-2$.
ii. $\quad f(x)=\sin x, \quad$ for $x \leq \frac{\pi}{4}$

$$
=\cos x, \quad \text { for } x>\frac{\pi}{4}, \text { at } x=\frac{\pi}{4}
$$

iii. $\quad f(x)=\frac{x^{2}-9}{x-3}$, for $x \neq 3$

$$
=8 \quad \text { for } x=3
$$

Solution :

i. Given, $\mathrm{f}(x)=x^{3}+2 x^{2}-x-2$
$\mathrm{f}(x)$ is a polynomial function and hence
it is continuous for all $x \in \mathrm{R}$.
$\therefore \quad \mathrm{f}(x)$ is continuous at $x=-2$
ii. $\quad \mathrm{f}(x)=\sin x ; \quad x \leq \frac{\pi}{4}$

$$
=\cos x ; \quad x>\frac{\pi}{4}
$$

$\lim _{x \rightarrow \frac{\pi^{-}}{4}} \mathrm{f}(x)=\lim _{x \rightarrow \frac{\pi^{-}}{4}}(\sin x)$

$$
\begin{aligned}
& =\sin \frac{\pi}{4} \\
& =\frac{1}{\sqrt{2}}
\end{aligned}
$$

$\lim _{x \rightarrow \frac{\pi^{+}}{4}} \mathrm{f}(x)=\lim _{x \rightarrow \frac{\pi^{+}}{4}}(\cos x)$

$$
=\cos \frac{\pi}{4}
$$

$$
=\frac{1}{\sqrt{2}}
$$

Also $f\left(\frac{\pi}{4}\right)=\sin \frac{\pi}{4}$

$$
=\frac{1}{\sqrt{2}}
$$

$\therefore \quad \lim _{x \rightarrow \frac{\pi^{-}}{4}} \mathrm{f}(x)=\lim _{x \rightarrow \frac{\pi^{+}}{4}} \mathrm{f}(x)=\mathrm{f}\left(\frac{\pi}{4}\right)$
$\mathrm{f}(x)$ is continuous at $x=\frac{\pi}{4}$
$f(3)=8$
...(given)
$\lim _{x \rightarrow 3} \mathrm{f}(x)=\lim _{x \rightarrow 3} \frac{x^{2}-9}{x-3}$

$$
\begin{aligned}
& =\lim _{x \rightarrow 3} \frac{(x+3)(x-3)}{x-3} \\
& =\lim _{x \rightarrow 3}(x+3)
\end{aligned}
$$

$$
\ldots[\because x \rightarrow 3, x \neq 3 \therefore x-3 \neq 0]
$$

$$
=3+3=6
$$

$\therefore \quad \lim _{x \rightarrow 3} \mathrm{f}(x) \neq \mathrm{f}(3)$
$\therefore \quad \mathrm{f}(x)$ is discontinuous at $x=3$
2. Examine whether the function is continuous at the points indicated against them.
i. $\quad f(x)=x^{3}-2 x+1, \quad$ if $x \leq 2$

$$
=3 x-2, \quad \text { if } x>2, \text { at } x=2
$$

ii. $\quad f(x)=\frac{x^{2}+18 x-19}{x-1}$, for $x \neq 1$

$$
=20
$$

for $x=1$, at $x=1$
iii. $f(x)=\frac{x}{\tan 3 x}+2, \quad$ for $x<0$

$$
=\frac{7}{3}, \quad \text { for } x \geq 0, \text { at } x=0
$$

Solution :

i. $\quad \lim _{x \rightarrow 2^{-}} \mathrm{f}(x)=\lim _{x \rightarrow 2^{-}}\left(x^{3}-2 x+1\right)$

$$
=(2)^{3}-2(2)+1
$$

$$
=5
$$

$\lim _{x \rightarrow 2^{+}} \mathrm{f}(x)=\lim _{x \rightarrow 2^{+}}(3 x-2)$

$$
\begin{aligned}
& =3(2)-2 \\
& =4
\end{aligned}
$$

$\lim _{x \rightarrow 2^{-}} \mathrm{f}(x) \neq \lim _{x \rightarrow 2^{+}} \mathrm{f}(x)$
$\mathrm{f}(x)$ is discontinuous at $x=2$
ii. $\quad \lim _{x \rightarrow 1} \mathrm{f}(x)=\lim _{x \rightarrow 1} \frac{x^{2}+18 x-19}{x-1}$
$=\lim _{x \rightarrow 1} \frac{x^{2}+19 x-x-19}{x-1}$
$=\lim _{x \rightarrow 1} \frac{x(x+19)-1(x+19)}{(x-1)}$
$=\lim _{x \rightarrow 1} \frac{(x-1)(x+19)}{(x-1)}$
$=\lim _{x \rightarrow 1}(x+19)$
$\ldots[\because x \rightarrow 1, \therefore x \neq 1, \therefore x-1 \neq 0]$

$$
=1+19=20
$$

Also, $\mathrm{f}(1)=20$
$\therefore \quad \lim _{x \rightarrow 1} \mathrm{f}(x)=\mathrm{f}(1)$
$\therefore \quad \mathrm{f}(x)$ is continuous at $x=1$
iii. $\quad \lim _{x \rightarrow 0^{+}} \mathrm{f}(x)=\frac{7}{3}$
...(given)
$\lim _{x \rightarrow 0^{-}} \mathrm{f}(x)=\lim _{x \rightarrow 0^{-}}\left(\frac{x}{\tan 3 x}+2\right)$
$=\lim _{x \rightarrow 0^{-}} \frac{x}{\tan 3 x}+\lim _{x \rightarrow 0^{-}} 2$

$$
\begin{aligned}
&=\lim _{x \rightarrow 0^{-}} \frac{1}{\frac{\tan 3 x}{x}}+\lim _{x \rightarrow 0^{-}} 2 \\
&=\lim _{x \rightarrow 0^{-}}\left(\frac{1}{\frac{\tan 3 x}{3 x} \times 3}\right)+\lim _{x \rightarrow 0^{-}} 2 \\
&=\frac{\lim _{x \rightarrow 0^{-}} 1}{3 \lim _{x \rightarrow 0^{-}}\left(\frac{\tan 3 x}{3 x}\right)}+\lim _{x \rightarrow 0^{-}} 2 \\
&=\frac{1}{3(1)}+2 \\
&=\frac{7}{3} \\
& \therefore \quad \lim _{x \rightarrow 0^{+}} \mathrm{f}(x)=\lim _{x \rightarrow 0^{-}} \mathrm{f}(x) \\
& \therefore \quad \mathrm{f}(x) \text { is continuous at } x=0 .
\end{aligned}
$$

3. Find all the points of discontinuities of $f(x)=\lfloor x\rfloor$ on the interval $(-3,2)$.

Solution :

$\mathrm{f}(x)=\lfloor x\rfloor, x \in(-3,2)$
i.e. $\mathrm{f}(x)=-3, x \in(-3,-2)$

$$
\begin{aligned}
& =-2, x \in[-2,-1) \\
& =-1, x \in[-1,0) \\
& =0, x \in[0,1) \\
& =1, x \in[1,2)
\end{aligned}
$$

At $x=-2$,
$\lim _{x \rightarrow--^{-}} \mathrm{f}(x)=\lim _{x \rightarrow-2^{-}}\lfloor x\rfloor$

$$
=-3
$$

$\lim _{x \rightarrow-2^{+}} \mathrm{f}(x)=\lim _{x \rightarrow-2^{+}}\lfloor x\rfloor$

$$
=-2
$$

$\therefore \quad \lim _{x \rightarrow-2^{-}} \mathrm{f}(x) \neq \lim _{x \rightarrow-2^{+}} \mathrm{f}(x)$
$\therefore \quad \mathrm{f}(x)$ is discontinuous at $x=-2$
similarly $\mathrm{f}(x)$ is discontinuous at the point $x=-1, x=0, x=1$.

Thus all the integer values of x in the interval $(-3,2)$ i.e. the points $x=-2, x=-1, x=0$ and $x=1$ are the required points of discontinuities.
4. Discuss the continuity of the function
$f(x)=|2 x+3|$, at $x=\frac{-3}{2}$.

Solution :

$$
=0
$$

$$
\lim _{x \rightarrow \frac{-3^{+}}{2}} \mathrm{f}(x)=\lim _{x \rightarrow \frac{-3^{+}}{2}}|2 x+3|
$$

$$
=\lim _{x \rightarrow \frac{-3^{+}}{2}}(2 x+3)
$$

$$
=2\left(\frac{-3}{2}\right)+3
$$

$$
=0
$$

$$
\mathrm{f}\left(\frac{-3}{2}\right)=\left|2\left(\frac{-3}{2}\right)+3\right|
$$

$$
=|0|
$$

$$
=0
$$

$\therefore \quad \lim _{x \rightarrow \frac{-3^{-}}{2}} \mathrm{f}(x)=\lim _{x \rightarrow \frac{-3^{+}}{2}} \mathrm{f}(x)=\mathrm{f}\left(\frac{-3}{2}\right)$
$\therefore \quad \mathrm{f}(x)$ is continuous at $x=\frac{-3}{2}$.
5. Test the continuity of the following functions at the points or interval indicated against them.
i. $\quad f(x)=\frac{\sqrt{x-1}-(x-1)^{\frac{1}{3}}}{x-2}$, for $x \neq 2$

$$
=\frac{1}{5}, \quad \text { for } x=2 ; \text { at } x=2
$$

ii. $\quad \mathrm{f}(\mathrm{x})=\frac{x^{3}-8}{\sqrt{x+2}-\sqrt{3 x-2}}$, for $x \neq 2$

$$
=-24 \quad \text { for } x=2 \text { at } x=2
$$

iii. $\quad f(x)=4 x+1, \quad$ for $x \leq \frac{8}{3}$

$$
=\frac{59-9 x}{3}, \quad \text { for } x>\frac{8}{3}, \text { at } x=\frac{8}{3}
$$

$$
\begin{aligned}
& \mathrm{f}(x)=|2 x+3|, x=\frac{-3}{2} \\
& |2 x+3|=2 x+3 \quad ; x \geq \frac{-3}{2} \\
& =-(2 x+3) ; x<\frac{-3}{2} \\
& \lim _{x \rightarrow \frac{-3^{-}}{2}} \mathrm{f}(x)=\lim _{x \rightarrow \frac{-3^{-}}{2}}|2 x+3| \\
& \begin{array}{l}
=\lim _{x \rightarrow \frac{3^{-}}{2}}[-(2 x+3)] \\
=-\left[2\left(\frac{-3}{2}\right)+3\right]
\end{array}
\end{aligned}
$$

iv. $\quad \mathrm{f}(x)=\frac{(27-2 x)^{\frac{1}{3}}-3}{9-3(243+5 x)^{\frac{1}{5}}}, \quad$ for $x \neq 0$

$$
=\mathbf{2}
$$

$$
\text { for } x=0, \text { at } x=0
$$

v. $\mathrm{f}(x)=\frac{x^{2}+8 x-20}{2 x^{2}-9 x+10}$, for $0<x<3 ; x \neq 2$

$$
\begin{aligned}
& =12, \\
& =\frac{2-2 x-x^{2}}{x-4}
\end{aligned}
$$

$$
\text { for } x=2
$$

$$
\text { for } 3 \leq x<4 \text { at } x=2
$$

Solution :

i. $\quad f(2)=\frac{1}{5}$
...(given)
$\lim _{x \rightarrow 2} \mathrm{f}(x)=\lim _{x \rightarrow 2} \frac{\sqrt{x-1}-(x-1)^{\frac{1}{3}}}{x-2}$
Put $x-1=y$
$\therefore \quad x=1+y$
As $x \rightarrow 2, y \rightarrow 1$
$\therefore \quad \lim _{x \rightarrow 2} \mathrm{f}(x)=\lim _{y \rightarrow 1} \frac{\sqrt{y}-y^{\frac{1}{3}}}{1+y-2}$

$$
\begin{aligned}
& =\lim _{y \rightarrow 1} \frac{\left(y^{\frac{1}{2}}-1\right)-\left(y^{\frac{1}{3}}-1\right)}{y-1} \\
& =\lim _{y \rightarrow 1}\left(\frac{y^{\frac{1}{2}}-1}{y-1}-\frac{y^{\frac{1}{3}}-1}{y-1}\right) \\
& =\lim _{y \rightarrow 1} \frac{y^{\frac{1}{2}}-1^{\frac{1}{2}}}{y-1}-\lim _{y \rightarrow 1} \frac{y^{\frac{1}{3}}-1^{\frac{1}{3}}}{y-1} \\
& =\frac{1}{2}(1)^{\frac{-1}{2}}-\frac{1}{3}(1)^{\frac{-2}{3}} \\
& =\frac{1}{2}-\frac{1}{3} \\
& =\frac{1}{6}
\end{aligned}
$$

$\therefore \quad \lim _{x \rightarrow 2} \mathrm{f}(x) \neq \mathrm{f}(2)$
$\therefore \quad \mathrm{f}(x)$ is discontinuous at $x=2$
ii. $\quad f(2)=-24$

> ...(given)
$\lim _{x \rightarrow 2} \mathrm{f}(x)=\lim _{x \rightarrow 2} \frac{x^{3}-8}{\sqrt{x+2}-\sqrt{3 x-2}}$
$=\lim _{x \rightarrow 2} \frac{x^{3}-8}{\sqrt{x+2}-\sqrt{3 x-2}} \times \frac{\sqrt{x+2}+\sqrt{3 x-2}}{\sqrt{x+2}+\sqrt{3 x-2}}$
$=\lim _{x \rightarrow 2} \frac{\left(x^{3}-8\right)(\sqrt{x+2}+\sqrt{3 x-2})}{(x+2)-(3 x-2)}$
$=\lim _{x \rightarrow 2} \frac{\left(x^{3}-2^{3}\right)(\sqrt{x+2}+\sqrt{3 x-2})}{-2 x+4}$

$$
\begin{aligned}
& =\lim _{x \rightarrow 2} \frac{(x-2)\left(x^{2}+2 x+4\right)(\sqrt{x+2}+\sqrt{3 x-2})}{-2(x-2)} \\
& =\lim _{x \rightarrow 2} \frac{\left(x^{2}+2 x+4\right)(\sqrt{x+2}+\sqrt{3 x-2})}{-2}
\end{aligned}
$$

$$
\ldots\left[\begin{array}{l}
\because x \rightarrow 2, x \neq 2 \\
\therefore x-2 \neq 0
\end{array}\right]
$$

$$
=\frac{-1}{2} \lim _{x \rightarrow 2}\left(x^{2}+2 x+4\right)(\sqrt{x+2}+\sqrt{3 x-2})
$$

$$
=\frac{-1}{2} \lim _{x \rightarrow 2}\left(x^{2}+2 x+4\right) \lim _{x \rightarrow 2}(\sqrt{x+2}+\sqrt{3 x-2})
$$

$$
=\frac{-1}{2} \times\left[2^{2}+2(2)+4\right] \times(\sqrt{2+2}+\sqrt{3(2)-2})
$$

$$
=\frac{-1}{2} \times 12 \times(2+2)
$$

$$
=-24
$$

$\therefore \quad \lim _{x \rightarrow 2} \mathrm{f}(x)=\mathrm{f}(2)$
$\therefore \mathrm{f}(x)$ is continuous at $x=2$

$$
\text { iii. } \begin{aligned}
\lim _{x \rightarrow \frac{8^{-}}{3}} \mathrm{f}(x) & =\lim _{x \rightarrow \frac{8^{-}}{3}}(4 x+1) \\
& =4\left(\frac{8}{3}\right)+1 \\
& =\frac{35}{3} \\
\lim _{x \rightarrow \frac{8^{+}}{3}} \mathrm{f}(x) & =\lim _{x \rightarrow \frac{8^{+}}{3}} \frac{59-9 x}{3} \\
& =\frac{59-9\left(\frac{8}{3}\right)}{3} \\
& =\frac{59-24}{3} \\
& =\frac{35}{3}
\end{aligned}
$$

$$
f(x)=4 x+1
$$

$$
\therefore \quad f\left(\frac{8}{3}\right)=4\left(\frac{8}{3}\right)+1=\frac{35}{3}
$$

$$
\therefore \quad \lim _{x \rightarrow \frac{8^{-}}{3}} \mathrm{f}(x)=\lim _{x \rightarrow \frac{8^{+}}{3}} \mathrm{f}(x)=\mathrm{f}\left(\frac{8}{3}\right)
$$

$\mathrm{f}(x)$ is continuous at $x=\frac{8}{3}$.
iv. $f(0)=2$
...(given)

$$
\begin{aligned}
\lim _{x \rightarrow 0} \mathrm{f}(x) & =\lim _{x \rightarrow 0} \frac{(27-2 x)^{\frac{1}{3}}-3}{9-3(243+5 x)^{\frac{1}{5}}} \\
& =\lim _{x \rightarrow 0} \frac{(27-2 x)^{\frac{1}{3}}-3}{-3\left[(243+5 x)^{\frac{1}{5}}-3\right]}
\end{aligned}
$$

$$
\begin{aligned}
& =\frac{-1}{3} \lim _{x \rightarrow 0} \frac{(27-2 x)^{\frac{1}{3}}-(27)^{\frac{1}{3}}}{(243+5 x)^{\frac{1}{5}}-(243)^{\frac{1}{5}}} \\
& =\frac{-1}{3} \lim _{x \rightarrow 0} \frac{\frac{(27-2 x)^{\frac{1}{3}}-27^{\frac{1}{3}}}{(27-2 x)-27} \times[(27-2 x)-27]}{\frac{(243+5 x)^{\frac{1}{5}}-(243)^{\frac{1}{5}}}{(243+5 x)-243} \times[(243+5 x)-243]} \\
& \cdots\left[\begin{array}{l}
\text { As } x \rightarrow 0,-2 x \rightarrow 0 \text { and } 5 x \rightarrow 0 \\
\therefore(27-2 x)-27 \rightarrow 0 \text { and }(243+5 x)-243 \rightarrow 0 \\
\therefore(27-2 x)-27 \neq 0 \text { and }(243+5 x)-243 \neq 0
\end{array}\right] \\
& =\frac{-1}{3} \frac{\lim _{x \rightarrow 0} \frac{(27-2 x)^{\frac{1}{3}}-27^{\frac{1}{3}}}{(27-2 x)-27} \times(-2 x)}{\lim _{x \rightarrow 0} \frac{(243+5 x)^{\frac{1}{5}}-(243)^{\frac{1}{5}}}{(243+5 x)-243} \times(5 x)} \\
& =\frac{-1}{3} \times \frac{-2}{5} \times \frac{\lim _{x \rightarrow 0} \frac{(27-2 x)^{\frac{1}{3}}-27^{\frac{1}{3}}}{(27-2 x)-27}}{\lim _{x \rightarrow 0} \frac{(243+5 x)^{\frac{1}{5}}-(243)^{\frac{1}{5}}}{(243+5 x)-243}} \\
& \ldots[\because x \rightarrow 0, x \neq 0] \\
& =\frac{2}{15} \times \frac{\frac{1}{3}(27)^{\frac{-2}{3}}}{\frac{1}{5}(243)^{\frac{-4}{5}}} \quad \ldots\left[\because \lim _{x \rightarrow \mathrm{a}} \frac{x^{\mathrm{n}}-\mathrm{a}^{\mathrm{n}}}{x-\mathrm{a}}=\mathrm{na}^{\mathrm{n}-1}\right] \\
& =\frac{2}{15} \times \frac{5}{3} \times \frac{\left(3^{3}\right)^{\frac{-2}{3}}}{\left(3^{5}\right)^{\frac{-4}{5}}} \\
& =\frac{2}{9} \times \frac{(3)^{-2}}{(3)^{-4}}=\frac{2}{9} \times(3)^{2} \\
& =2 \\
& \therefore \quad \lim _{x \rightarrow 0} \mathrm{f}(x)=\mathrm{f}(0) \\
& \therefore \mathrm{f}(x) \text { is continuous at } x=0
\end{aligned}
$$

v. $f(2)=12$
...(given)
$\lim _{x \rightarrow 2} \mathrm{f}(x)=\lim _{x \rightarrow 2} \frac{x^{2}+8 x-20}{2 x^{2}-9 x+10}$

$$
\begin{aligned}
& =\lim _{x \rightarrow 2} \frac{(x+10)(x-2)}{(2 x-5)(x-2)} \\
& =\lim _{x \rightarrow 2} \frac{x+10}{2 x-5} \quad \ldots\left[\begin{array}{l}
\because x \rightarrow 2, x \neq 2 \\
\therefore x-2 \neq 0
\end{array}\right] \\
& =\frac{\lim _{x \rightarrow 2}(x+10)}{\lim _{x \rightarrow 2}(2 x-5)}=\frac{2+10}{2(2)-5} \\
& =\frac{12}{-1}=-12
\end{aligned}
$$

$\therefore \quad \lim _{x \rightarrow 2} \mathrm{f}(x) \neq \mathrm{f}(2)$
$\therefore \quad \mathrm{f}(x)$ is discontinuous at $x=2$.
6. Identify discontinuities for the following functions as either a jump or a removable discontinuity.
i. $\quad f(x)=\frac{x^{2}-10 x+21}{x-7}$
ii. $\quad f(x)=x^{2}+3 x-2$, for $x \leq 4$

$$
=5 x+3 \quad, \text { for } x>4
$$

iii. $\quad f(x)=x^{2}-3 x-2$, for $x<-3$
$=3+8 x \quad$, for $x>-3$.
iv. $f(x)=4+\sin x$, for $x<\pi$

$$
=3-\cos x \quad \text { for } x>\pi
$$

Solution:

i. Given, $\mathrm{f}(x)=\frac{x^{2}-10 x+21}{x-7}$

It is rational function and is discontinuous if $x-7=0$ i.e., $x=7$
$\therefore \quad \mathrm{f}(x)$ is continuous for all $x \in \mathrm{R}$, except at $x=7$.
$\therefore \quad f(7)$ is not defined.

$$
\text { Now, } \begin{aligned}
\lim _{x \rightarrow 7} \mathrm{f}(x) & =\lim _{x \rightarrow 7} \frac{x^{2}-10 x+21}{x-7} \\
& =\lim _{x \rightarrow 7} \frac{(x-7)(x-3)}{x-7} \\
& =\lim _{x \rightarrow 7}(x-3) \ldots\left[\begin{array}{l}
\because x \rightarrow 7, \therefore x \neq 7 \\
\therefore x-7 \neq 0
\end{array}\right] \\
& =7-3 \\
& =4
\end{aligned}
$$

Thus $\lim _{x \rightarrow 7} \mathrm{f}(x)$ exist but $\mathrm{f}(7)$ is not defined
$\therefore \quad \mathrm{f}(x)$ has a removable discontinuity.
ii. $\quad \mathrm{f}(x)=x^{2}+3 x-2, x \leq 4$

$$
=5 x+3, \quad x>4
$$

$\mathrm{f}(x)$ is a polynomial function for both the intervals.
$\therefore \quad \mathrm{f}(x)$ is continuous for both the open intervals $(-\infty, 4)$ and $(4, \infty)$.
Let us test the continuity at $x=4$

$$
\begin{aligned}
\lim _{x \rightarrow 4^{-}} \mathrm{f}(x) & =\lim _{x \rightarrow 4^{-}}\left(x^{2}+3 x-2\right) \\
& =(4)^{2}+3(4)-2 \\
& =26 . \\
\lim _{x \rightarrow 4^{+}} \mathrm{f}(x) & =\lim _{x \rightarrow 4^{+}}(5 x+3) \\
& =5(4)+3 \\
& =23 .
\end{aligned}
$$

$\therefore \quad \lim _{x \rightarrow 4^{-}} \mathrm{f}(x) \neq \lim _{x \rightarrow 4^{+}} \mathrm{f}(x)$
$\therefore \quad \lim _{x \rightarrow 4} \mathrm{f}(x)$ does not exist.
$\therefore \mathrm{f}(x)$ is discontinuous at $x=4$
$\therefore \quad \mathrm{f}(x)$ has a jump discontinuity at $x=4$
iii. $\mathrm{f}(x)=x^{2}-3 x-2, x<-3$

$$
=3+8 x, \quad x>-3
$$

$\mathrm{f}(x)$ is a polynomial function for both the intervals.
$\therefore \quad \mathrm{f}(x)$ is continuous for both the given intervals.
Let us test the continuity at $x=-3$
$\lim _{x \rightarrow-3^{-}} \mathrm{f}(x)=\lim _{x \rightarrow-3^{-}}\left(x^{2}-3 x-2\right)$

$$
=(-3)^{2}-3(-3)-2
$$

$$
=9+9-2
$$

$$
=16
$$

$$
\lim _{x \rightarrow-3^{+}} \mathrm{f}(x)=\lim _{x \rightarrow-3^{+}}(3+8 x)
$$

$$
=3+8(-3)
$$

$$
=-21
$$

$\therefore \quad \lim _{x \rightarrow-3^{-}} \mathrm{f}(x) \neq \lim _{x \rightarrow-3^{+}} \mathrm{f}(x)$
$\therefore \quad \lim _{x \rightarrow-3} \mathrm{f}(x)$ does not exist.
$\therefore \mathrm{f}(x)$ is discontinuous at $x=-3$
$\therefore \quad \mathrm{f}(x)$ has a jump discontinuity at $x=-3$.
iv. $\mathrm{f}(x)=4+\sin x, x<\pi$

$$
=3-\cos x, x>\pi
$$

$\sin x$ and $\cos x$ are continuous for all $x \in \mathrm{R}$.
4 and 3 are constant functions.
$\therefore \quad 4+\sin x$ and $3-\cos x$ are continuous for all $x \in \mathrm{R}$.
$\therefore \quad \mathrm{f}(x)$ is continuous for both the given intervals.
Let us test the continuity at $x=\pi$.
$\therefore \quad \lim _{x \rightarrow \pi^{-}} \mathrm{f}(x)=\lim _{x \rightarrow \pi^{-}}(4+\sin x)$
$=4+\sin \pi$

$$
=4+0
$$

$$
=4
$$

$\lim _{x \rightarrow \pi^{+}} \mathrm{f}(x)=\lim _{x \rightarrow \pi^{+}}(3-\cos x)$
$=3-\cos \pi$
$=3-(-1)$
$=4$
$\therefore \quad \lim _{\mathrm{f}} \mathrm{f}(x)=\lim _{\mathrm{C}^{+}} \mathrm{f}(x)$
$\therefore \quad \lim _{x \rightarrow \pi} \mathrm{f}(x)=4$
But $\mathrm{f}(\pi)$ is not defined.
$\therefore \quad \mathrm{f}(x)$ has a removable discontinuity at $x=\pi$.
7. Show that following functions have continuous extension to the point where $f(x)$ is not defined. Also find the extension
i. $\quad \mathrm{f}(x)=\frac{1-\cos 2 x}{\sin x}$, for $x \neq 0$.
ii. $\quad f(x)=\frac{3 \sin ^{2} x+2 \cos x(1-\cos 2 x)}{2\left(1-\cos ^{2} x\right)}$, for $x \neq 0$.
iii. $\quad f(x)=\frac{x^{2}-1}{x^{3}+1}, \quad$ for $x \neq-1$.

Solution :

i. $\mathrm{f}(x)=\frac{1-\cos 2 x}{\sin x}$, for $x \neq 0$

Here, $\mathrm{f}(0)$ is not defined.
Consider,

$$
\begin{aligned}
\lim _{x \rightarrow 0} \mathrm{f}(x) & =\lim _{x \rightarrow 0} \frac{1-\cos 2 x}{\sin x} \\
& =\lim _{x \rightarrow 0} \frac{2 \sin ^{2} x}{\sin x} \\
& =2 \lim _{x \rightarrow 0}(\sin x) \quad \ldots\left[\begin{array}{l}
\because x \rightarrow 0, \therefore x \neq 0 \\
\therefore \sin x \neq 0
\end{array}\right] \\
& =2(\sin 0)=2 \times 0 \\
& =0
\end{aligned}
$$

$\therefore \quad \lim _{x \rightarrow 0} \mathrm{f}(x)$ exists.
But $f(0)$ is not been defined.
$\therefore \quad \mathrm{f}(x)$ has a removable discontinuity at $x=0$.
$\therefore \quad$ The extension of the original function is
$\mathrm{f}(x)=\frac{1-\cos 2 x}{\sin x} ;$ for $x \neq 0$

$$
=0 \quad ; \text { for } x=0
$$

$\mathrm{f}(x)$ is continuous at $x=0$
ii. $\quad \mathrm{f}(x)=\frac{3 \sin ^{2} x+2 \cos x(1-\cos 2 x)}{2\left(1-\cos ^{2} x\right)} ; x \neq 0$

Here $f(0)$ is not defined.
Consider,

$$
\begin{aligned}
\lim _{x \rightarrow 0} \mathrm{f}(x) & =\lim _{x \rightarrow 0} \frac{3 \sin ^{2} x+2 \cos x(1-\cos 2 x)}{2\left(1-\cos ^{2} x\right)} \\
& =\lim _{x \rightarrow 0} \frac{3 \sin ^{2} x+2 \cos x \cdot\left(2 \sin ^{2} x\right)}{2 \sin ^{2} x} \\
& =\lim _{x \rightarrow 0} \frac{\sin ^{2} x(3+4 \cos x)}{2 \sin ^{2} x} \\
& =\lim _{x \rightarrow 0} \frac{3+4 \cos x}{2}
\end{aligned}
$$

$$
\ldots[\because x \rightarrow 0, \therefore x \neq 0,
$$

$$
\left.\therefore \sin x \neq 0, \therefore \sin ^{2} x \neq 0\right]
$$

$$
=\frac{1}{2} \lim _{x \rightarrow 0}(3+4 \cos x)=\frac{1}{3}(3+4 \cos 0)
$$

$$
=\frac{1}{2}(3+4)=\frac{7}{2}
$$

$\lim _{x \rightarrow 0} \mathrm{f}(x)$ exists but $\mathrm{f}(0)$ is not defined.
$\therefore \quad \mathrm{f}(x)$ has a removable discontinuity at $x=0$
$\therefore \quad$ The extension of the original function is
$\mathrm{f}(x)=\frac{3 \sin ^{2} x+2 \cos x(1-\cos 2 x)}{2\left(1-\cos ^{2} x\right)} ; x \neq 0$

$$
=\frac{7}{2} \quad ; x=0
$$

$\therefore \quad \mathrm{f}(x)$ is continuous at $x=0$
iii. $\quad \mathrm{f}(x)=\frac{x^{2}-1}{x^{3}+1} \quad ; x \neq-1$.

Here $f(-1)$ has not been defined.
Consider

$$
\begin{aligned}
\lim _{x \rightarrow-1} \mathrm{f}(x) & =\lim _{x \rightarrow-1}\left(\frac{x^{2}-1}{x^{3}+1}\right) \\
& =\lim _{x \rightarrow-1} \frac{(x+1)(x-1)}{(x+1)\left(x^{2}-x+1\right)} \\
& =\lim _{x \rightarrow-1} \frac{x-1}{x^{2}-x+1} \\
& \ldots[\because x \rightarrow-1, \therefore x \neq-1, \therefore x+1 \neq 0] \\
& =\frac{-1-1}{(-1)^{2}-(-1)+1}=-\frac{2}{3}
\end{aligned}
$$

Thus $\lim _{x \rightarrow-1} \mathrm{f}(x)$ exists but $\mathrm{f}(-1)$ is not defined.
$\therefore \quad \mathrm{f}(x)$ has a removable discontinuity at $x=-1$
$\therefore \quad$ The extension of the original function is
$\mathrm{f}(x)=\frac{x^{2}-1}{x^{3}+1} \quad ; x \neq-1$

$$
=-\frac{2}{3} \quad ; x=-1
$$

$\mathrm{f}(x)$ is continuous at $x=-\frac{2}{3}$.
8. Discuss the continuity of the following functions at the points indicated against them.
i. $\quad f(x)=\frac{\sqrt{3}-\tan x}{\pi-3 x}, x \neq \frac{\pi}{3}$

$$
=\frac{3}{4}, \quad \text { for } x=\frac{\pi}{3}, \text { at } x=\frac{\pi}{3}
$$

ii. $\quad \mathrm{f}(x)=\frac{\mathrm{e}^{\frac{1}{x}}-1}{\mathrm{e}^{\frac{1}{x}}+1}$, for $x \neq 0$

$$
=1 \quad, \quad \text { for } x=0, \text { at } x=0
$$

iii. $\mathrm{f}(x)=\frac{4^{x}-2^{x+1}+1}{1-\cos 2 x}$, for $x \neq 0$

$$
=\frac{(\log 2)^{2}}{2}, \quad \text { for } x=0, \text { at } x=0 .
$$

Solution :

i. $\mathrm{f}\left(\frac{\pi}{3}\right)=\frac{3}{4}$

$$
\lim _{x \rightarrow \frac{\pi}{3}} \mathrm{f}(x)=\lim _{x \rightarrow \frac{\pi}{3}} \frac{\sqrt{3}-\tan x}{\pi-3 x}
$$

Put $\frac{\pi}{3}-x=\mathrm{h}$,
$\therefore \quad x=\frac{\pi}{3}-\mathrm{h}$
$\therefore \quad \lim _{x \rightarrow \frac{\pi}{3}} \frac{\sqrt{3}-\tan x}{\pi-3 x}=\lim _{h \rightarrow 0} \frac{\sqrt{3}-\tan \left(\frac{\pi}{3}-\mathrm{h}\right)}{\pi-3\left(\frac{\pi}{3}-h\right)}$
$=\lim _{h \rightarrow 0} \frac{\sqrt{3}-\frac{\tan \frac{\pi}{3}-\tan h}{1+\tan \frac{\pi}{3} \tan h}}{3 h}$
$=\lim _{h \rightarrow 0} \frac{\sqrt{3}-\frac{\sqrt{3}-\tan h}{1+\sqrt{3} \tanh }}{3 h}$
$=\lim _{h \rightarrow 0} \frac{\sqrt{3}(1+\sqrt{3} \tanh)-(\sqrt{3}-\tanh)}{3 h(1+\sqrt{3} \tanh)}$
$=\lim _{h \rightarrow 0} \frac{\sqrt{3}+3 \tanh -\sqrt{3}+\tanh }{3 h(1+\sqrt{3} \tanh)}$
$=\lim _{h \rightarrow 0} \frac{4 \tan h}{3 h(1+\sqrt{3} \tan h)}$
$=\lim _{h \rightarrow 0} \frac{4}{3(1+\sqrt{3} \tan h)} \times \frac{\tan h}{h}$
$=\frac{4}{3}\left(\lim _{h \rightarrow 0} \frac{1}{1+\sqrt{3} \tan h}\right)\left(\lim _{h \rightarrow 0} \frac{\tan h}{h}\right)$
$=\frac{4}{3}\left[\frac{1}{1+\sqrt{3}(0)}\right](1)=\frac{4}{3}$
$\therefore \quad \lim _{x \rightarrow \frac{\pi}{3}} \mathrm{f}(x) \neq \mathrm{f}\left(\frac{\pi}{3}\right)$
$\therefore \quad \mathrm{f}(x)$ is discontinuous at $x=\frac{\pi}{3}$.
ii. $\quad f(0)=1$
...(given)

$$
\begin{aligned}
\lim _{x \rightarrow 0^{-}} \mathrm{f}(x) & =\lim _{\mathrm{h} \rightarrow 0} \frac{\mathrm{e}^{\frac{1}{(0-\mathrm{h})}}-1}{\mathrm{e}^{\frac{1}{(0-\mathrm{h})}}+1} \\
& =\lim _{\mathrm{h} \rightarrow 0} \frac{\mathrm{e}^{\frac{-1}{\mathrm{~h}}}-1}{\mathrm{e}^{\frac{-1}{\mathrm{~h}}}+1}
\end{aligned}
$$

$$
=\lim _{h \rightarrow 0} \frac{\frac{1}{e^{\frac{1}{h}}}-1}{\frac{1}{e^{\frac{1}{h}}}+1}
$$

$$
=\frac{0-1}{0+1}=-1
$$

$\lim _{x \rightarrow 0^{+}} \mathrm{f}(x)=\lim _{\mathrm{h} \rightarrow 0} \frac{\mathrm{e}^{\frac{1}{(0+\mathrm{h})}}-1}{\mathrm{e}^{\frac{1}{0+\mathrm{h}}}+1}$

$$
=\lim _{h \rightarrow 0} \frac{e^{\frac{1}{h}}-1}{e^{\frac{1}{h}}+1}
$$

$$
\begin{aligned}
& =\lim _{\mathrm{h} \rightarrow 0} \frac{\mathrm{e}^{\frac{1}{h}}\left(1-\frac{1}{\mathrm{e}^{\frac{1}{h}}}\right)}{\mathrm{e}^{\frac{1}{h}}\left(1+\frac{1}{\mathrm{e}^{\frac{1}{h}}}\right)} \\
& \quad=\frac{1-0}{1+0}=1 \\
& \quad \lim _{x \rightarrow 0^{-}} \mathrm{f}(x) \neq \lim _{x \rightarrow 0^{+}} \mathrm{f}(x) \\
& \therefore \quad \mathrm{f}(x) \text { is discontinuous at } x=0
\end{aligned}
$$

iii. $\mathrm{f}(0)=\frac{(\log 2)^{2}}{2}$
...(given)

$$
\begin{aligned}
\lim _{x \rightarrow 0} \mathrm{f}(x) & =\lim _{x \rightarrow 0} \frac{4^{x}-2^{x+1}+1}{1-\cos 2 x} \\
& =\lim _{x \rightarrow 0} \frac{\left(2^{2}\right)^{x}-2^{x} \cdot 2^{1}+1}{2 \sin ^{2} x} \\
& =\lim _{x \rightarrow 0} \frac{\left(2^{x}\right)^{2}-2\left(2^{x}\right)+1}{2 \sin ^{2} x} \\
& =\lim _{x \rightarrow 0} \frac{\left(2^{x}-1\right)^{2}}{2 \sin ^{2} x}
\end{aligned}
$$

$$
\ldots\left[\because a^{2}-2 a b+b^{2}=(a-b)^{2}\right]
$$

$$
=\lim _{x \rightarrow 0} \frac{\frac{\left(2^{x}-1\right)^{2}}{x^{2}}}{\frac{2 \sin ^{2} x}{x^{2}}}
$$

$$
\ldots\left[\because x \rightarrow 0, \therefore x \neq 0, \therefore x^{2} \neq 0\right]
$$

$$
=\frac{\lim _{x \rightarrow 0}\left(\frac{2^{x}-1}{x}\right)^{2}}{2 \lim _{x \rightarrow 0}\left(\frac{\sin x}{x}\right)^{2}}
$$

$$
=\frac{(\log 2)^{2}}{2(1)^{2}}=\frac{(\log 2)^{2}}{2}
$$

$\therefore \quad \lim _{x \rightarrow 0} \mathrm{f}(x)=\mathrm{f}(0)$
$\therefore \quad \mathrm{f}(x)$ is continuous at $x=0$.
9. Which of the following functions has a removable discontinuity? If it has a removable discontinuity, redefine the function so that it becomes continuous.
$\mathrm{f}(x)=\frac{\mathrm{e}^{5 \sin x}-\mathrm{e}^{2 x}}{5 \tan x-3 x} \quad$, for $x \neq 0$

$$
=\frac{3}{4}, \quad \text { for } x=0, \text { at } x=0
$$

ii. $\quad f(x)=\log _{(1+3 x)}(1+5 x)$ for $x>0$

$$
=\frac{32^{x}-1}{8^{x}-1}, \quad \text { for } x<0, \text { at } x=0
$$

iii. $\quad f(x)=\left(\frac{3-8 x}{3-2 x}\right)^{\frac{1}{x}}$, for $x \neq 0$.
iv. $f(x)=3 x+2 \quad$, for $-4 \leq x \leq-2$
$=2 x-3 \quad$, for $-2<x \leq 6$.
v. $f(x)=\frac{x^{3}-8}{x^{2}-4} \quad$, for $x>2$

$$
\begin{aligned}
& =3 \quad, \text { for } x=2 \\
& =\frac{\mathrm{e}^{3(x-2)^{2}}-1}{2(x-2)^{2}}, \text { for } x<2
\end{aligned}
$$

Solution :

i. $\quad \mathrm{f}(0)=\frac{3}{4}$
(given)

$$
\left.\begin{array}{l}
\lim _{x \rightarrow 0} \mathrm{f}(x)=\lim _{x \rightarrow 0} \frac{\mathrm{e}^{5 \sin x}-\mathrm{e}^{2 x}}{5 \tan x-3 x} \\
=\lim _{x \rightarrow 0} \frac{\left(\mathrm{e}^{5 \sin x}-1\right)-\left(\mathrm{e}^{2 x}-1\right)}{5 \tan x-3 x} \\
=\lim _{x \rightarrow 0}\left[\frac{\left(\mathrm{e}^{5 \sin x}-1\right)-\left(\mathrm{e}^{2 x}-1\right)}{x}\right. \\
\frac{5 \tan x-3 x}{x}
\end{array}\right]
$$

$$
\ldots\left[\begin{array}{l}
\text { Divide numerator and denominator by } x \\
\because x \rightarrow 0, \therefore x \neq 0
\end{array}\right]
$$

$$
=\frac{\lim _{x \rightarrow 0}\left(\frac{\mathrm{e}^{5 \sin x}-1}{x}-\frac{\mathrm{e}^{2 x}-1}{x}\right)}{\lim _{x \rightarrow 0}\left(\frac{5 \tan x}{x}-3\right)}
$$

$$
=\frac{\lim _{x \rightarrow 0}\left(\frac{\mathrm{e}^{5 \sin x}-1}{5 \sin x} \frac{5 \sin x}{x}\right)-\lim _{x \rightarrow 0}\left(\frac{\mathrm{e}^{2 x}-1}{2 x} \times 2\right)}{\lim _{x \rightarrow 0} \frac{5 \tan x}{x}-\lim _{x \rightarrow 0} 3}
$$

$$
=\frac{5 \lim _{x \rightarrow 0}\left(\frac{\mathrm{e}^{5 \sin x}-1}{5 \sin x}\right) \cdot \lim _{x \rightarrow 0}\left(\frac{\sin x}{x}\right)-2 \lim _{x \rightarrow 0} \frac{\mathrm{e}^{2 x}-1}{2 x}}{5 \lim _{x \rightarrow 0} \frac{\tan x}{x}-\lim _{x \rightarrow 0}(3)}
$$

$$
=\frac{5(1)(1)-2(1)}{5(1)-3}
$$

$$
\cdots\left[\begin{array}{l}
\because x \rightarrow 0,2 x \rightarrow 0, \sin x \rightarrow 0,5 \sin x \rightarrow 0 \text { and } \\
\lim _{x \rightarrow 0}\left(\frac{e^{x}-1}{x}\right)=1, \lim _{x \rightarrow 0} \frac{\sin x}{x}=1
\end{array}\right]
$$

$$
=\frac{3}{2}
$$

$\therefore \quad \lim _{x \rightarrow 0} \mathrm{f}(x) \neq \mathrm{f}(0)$
$\therefore \mathrm{f}(x)$ is continuous at $x=0$.
$\therefore \quad \mathrm{f}(x)$ has a removable discontinuity at $x=0$
This discontinuity can be removed by redefining $\mathrm{f}(0)=\frac{3}{2}$.
$\therefore \quad \mathrm{f}(x)$ can be redefined as

$$
\begin{aligned}
\mathrm{f}(x) & =\frac{\mathrm{e}^{5 \sin x}-\mathrm{e}^{2 x}}{5 \tan x-3 x} \\
& =\frac{3}{2} \quad, x \neq 0 \\
& , x=0
\end{aligned}
$$

ii. $\quad \mathrm{f}(x)=\log _{(1+3 x)}(1+5 x), x>0$

$$
=\frac{32^{x}-1}{8^{x}-1} \quad, x<0
$$

Here, $\mathrm{f}(0)$ is not defined.

$$
\begin{aligned}
\lim _{x \rightarrow 0^{+}} \mathrm{f}(x) & =\lim _{x \rightarrow 0^{+}} \log _{(1+3 x)}(1+5 x) \\
& =\lim _{x \rightarrow 0^{+}} \frac{\log (1+5 x)}{\log (1+3 x)} \\
& =\lim _{x \rightarrow 0^{+}}\left[\frac{\frac{\log (1+5 x)}{x}}{\frac{\log (1+3 x)}{x}}\right] \\
& =\frac{\lim _{x \rightarrow 0^{+}} \frac{\log (1+5 x)}{5 x} \times 5}{\lim _{x \rightarrow 0^{+}} \frac{\log (1+3 x)}{3 x} \times 3} \\
& =\frac{1 \times 5}{1 \times 3} \quad \ldots[\because x \rightarrow 0,3 x \rightarrow 0,5 x \rightarrow 0] \\
& =\frac{5}{3}
\end{aligned}
$$

$\lim _{x \rightarrow 0^{-}} \mathrm{f}(x)=\lim _{x \rightarrow 0^{-}} \frac{32^{x}-1}{8^{x}-1}$

$$
=\lim _{x \rightarrow 0^{-}}\left[\frac{\frac{32^{x}-1}{x}}{\frac{8^{x}-1}{}}\right] \ldots[\because x \rightarrow 0, \therefore x \neq 0]
$$

$$
=\frac{\lim _{x \rightarrow 0^{-}} \frac{32^{x}-1}{x}}{\lim _{x \rightarrow 0^{-}} \frac{8^{x}-1}{x}}
$$

$$
=\frac{\log 32}{\log 8} \quad \ldots\left[\because \lim _{x \rightarrow 0} \frac{\mathrm{a}^{x}-1}{x}=\log \mathrm{a}\right]
$$

$$
=\frac{\log (2)^{5}}{\log (2)^{3}}
$$

$$
=\frac{5 \log 2}{3 \log 2}
$$

$$
=\frac{5}{3}
$$

$\therefore \quad \lim _{x \rightarrow 0^{+}} \mathrm{f}(x)=\lim _{x \rightarrow 0^{-}} \mathrm{f}(x)$
$\therefore \quad \lim _{x \rightarrow 0} \mathrm{f}(x)$ exists
But $\mathrm{f}(0)$ is not defined.
$\therefore \quad \mathrm{f}(x)$ has a removable discontinuity at $x=0$.

This discontinuity can be removed by defining
$\mathrm{f}(0)=\frac{5}{3}$
$\therefore \quad \mathrm{f}(x)$ can be redefined as

$$
\begin{aligned}
\mathrm{f}(x) & =\log _{(1+3 x)}(1+5 x) & & ; x>0 \\
& =\frac{5}{3} & & ; x=0 \\
& =\frac{32^{x}-1}{8^{x}-1} & & ; x<0
\end{aligned}
$$

iii. $\mathrm{f}(x)=\left(\frac{3-8 x}{3-2 x}\right)^{\frac{1}{x}} \quad ; x \neq 0$

Here, $\mathrm{f}(0)$ is not defined.
Consider, $\lim _{x \rightarrow 0} \mathrm{f}(x)=\lim _{x \rightarrow 0}\left(\frac{3-8 x}{3-2 x}\right)^{-}$
$=\lim _{x \rightarrow 0}\left[\frac{3\left(1-\frac{8 x}{3}\right)}{3\left(1-\frac{2 x}{3}\right)}\right]^{\frac{1}{x}}$
$=\lim _{x \rightarrow 0} \frac{\left(1-\frac{8 x}{3}\right)^{\frac{1}{x}}}{\left(1-\frac{2 x}{3}\right)^{\frac{1}{x}}}$
$=\frac{\lim _{x \rightarrow 0}\left[\left(1-\frac{8 x}{3}\right)^{\frac{-3}{8 x}}\right]^{\frac{-8}{3}}}{\lim _{x \rightarrow 0}\left[\left(1-\frac{2 x}{3}\right)^{\frac{-3}{2 x}}\right]^{\frac{-2}{3}}}$
$=\frac{\mathrm{e}^{\frac{-8}{3}}}{\mathrm{e}^{\frac{-2}{3}}} \quad \ldots\left[\begin{array}{l}\because x \rightarrow 0, \frac{-8 x}{3} \rightarrow 0, \frac{-2 x}{3} \rightarrow 0 \\ \text { and } \lim _{x \rightarrow 0}(1+x)^{\frac{1}{x}}=\mathrm{e}\end{array}\right]$
$=\mathrm{e}^{\frac{-6}{3}}=\mathrm{e}^{-2}$
$\therefore \quad \lim _{x \rightarrow 0} \mathrm{f}(x)$ exists
But $f(0)$ is not defined.
$\therefore \quad \mathrm{f}(x)$ has a removable discontinuity at $x=0$.
This discontinuity can be removed by defining
$f(0)=e^{-2}$.
$\therefore \quad \mathrm{f}(x)$ can be redefined as

$$
\begin{aligned}
\mathrm{f}(x) & =\left(\frac{3-8 x}{3-2 x}\right)^{\frac{1}{x}} & & ; x \neq 0 \\
& =\mathrm{e}^{-2} & & ; x=0
\end{aligned}
$$

iv. $\mathrm{f}(x)=3 x+2$, for $-4 \leq x \leq-2$

$$
\begin{aligned}
&=2 x-3 \quad, \quad \text { for }-2<x \leq 6 \\
& \lim _{x \rightarrow-2^{-}} \mathrm{f}(x)=\lim _{x \rightarrow-2^{-}}(3 x+2) \\
&=3(-2)+2=-4
\end{aligned}
$$

$$
\begin{aligned}
\lim _{x \rightarrow-2^{+}} \mathrm{f}(x) & =\lim _{x \rightarrow-2^{+}}(2 x-3) \\
& =2(-2)-3 \\
& =-7
\end{aligned}
$$

$\therefore \quad \lim _{x \rightarrow-2^{-}} \mathrm{f}(x) \neq \lim _{x \rightarrow-2^{+}} \mathrm{f}(x)$
$\therefore \quad \lim _{x \rightarrow-2^{-}} \mathrm{f}(x)$ does not exist
$\therefore \quad \mathrm{f}(x)$ is discontinuous at $x=-2$.
This discontinuity is irremovable.
v. $f(2)=3$
...(Given)
$\lim _{x \rightarrow 2^{-}} \mathrm{f}(x)=\lim _{x \rightarrow 2^{-}} \frac{x^{3}-8}{x^{2}-4}=\lim _{x \rightarrow 2^{-}} \frac{x^{3}-2^{3}}{x^{2}-2^{2}}$

$$
=\lim _{x \rightarrow 2^{-}} \frac{(x-2)\left(x^{2}+2 x+4\right)}{(x-2)(x+2)}
$$

$$
=\lim _{x \rightarrow 2^{-}} \frac{x^{2}+2 x+4}{x+2}
$$

$$
=\frac{\lim _{x \rightarrow 2^{-}}\left(x^{2}+2 x+4\right)}{\lim _{x \rightarrow 2^{-}}(x+2)}
$$

$$
=\frac{(2)^{2}+2(2)+4}{2+2}=\frac{12}{4}
$$

$$
=3
$$

$\lim _{x \rightarrow 2^{+}} \mathrm{f}(x)=\lim _{x \rightarrow 2^{+}} \frac{\mathrm{e}^{3(x-2)^{2}}-1}{2(x-2)^{2}}$
Put $x-2=\mathrm{h}$
$\therefore \quad x=2+\mathrm{h}$
As $x \rightarrow 2, \mathrm{~h} \rightarrow 0$
$\therefore \quad \lim _{x \rightarrow 2^{+}} \mathrm{f}(x)=\lim _{\mathrm{h} \rightarrow 0} \frac{\mathrm{e}^{3 \mathrm{~h}^{2}}-1}{2 \mathrm{~h}^{2}}$
$=\frac{1}{2} \lim _{\mathrm{h} \rightarrow 0} \frac{\mathrm{e}^{3 \mathrm{~h}^{2}}-1}{3 \mathrm{~h}^{2}} \times 3$
$=\frac{1}{2} \times 1 \times 3 \quad \cdots\left[\begin{array}{l}\because \mathrm{h} \rightarrow 0 \therefore \mathrm{~h}^{2} \rightarrow 0 \\ \text { and } \lim _{x \rightarrow 0} \frac{\mathrm{e}^{x}-1}{x}=1\end{array}\right]$
$=\frac{3}{2}$
$\therefore \quad \lim _{x \rightarrow 2^{-}} \mathrm{f}(x) \neq \lim _{x \rightarrow 2^{+}} \mathrm{f}(x)$
$\therefore \quad \lim _{x \rightarrow 2} \mathrm{f}(x)$ does not exist
$\therefore \quad \mathrm{f}(x)$ is discontinuous at $x=2$
This discontinuity is irremovable.
10.
i. If $f(x)=\frac{\sqrt{2+\sin x}-\sqrt{3}}{\cos ^{2} x}$, for $x \neq \frac{\pi}{2}$, Is continuous at $x=\frac{\pi}{2}$ then find $\mathrm{f}\left(\frac{\pi}{2}\right)$.
ii. If $f(x)=\frac{\cos ^{2} x-\sin ^{2} x-1}{\sqrt{3 x^{2}+1-1}}$ for $x \neq 0$,
is continuous at $\boldsymbol{x}=0$ then find $\mathrm{f}(0)$.
iii. If $\mathrm{f}(x)=\frac{4^{x-\pi}+4^{\pi-x}-2}{(x-\pi)^{2}}$ for $x \neq \pi$,
is continuous at $x=\pi$, then find $f(\pi)$.

Solution :

i. $\quad \mathrm{f}(x)$ is continuous at $x=\frac{\pi}{2}$
...(given)
$\therefore \quad \mathrm{f}\left(\frac{\pi}{2}\right)=\lim _{x \rightarrow \frac{\pi}{2}} \mathrm{f}(x)$
$=\lim _{x \rightarrow \frac{\pi}{2}} \frac{\sqrt{2+\sin x}-\sqrt{3}}{\cos ^{2} x}$
$=\lim _{x \rightarrow \frac{\pi}{2}}\left[\frac{\sqrt{2+\sin x}-\sqrt{3}}{1-\sin ^{2} x} \times \frac{\sqrt{2+\sin x}+\sqrt{3}}{\sqrt{2+\sin x}+\sqrt{3}}\right]$
$=\lim _{x \rightarrow \frac{\pi}{2}} \frac{2+\sin x-3}{(1-\sin x)(1+\sin x)(\sqrt{2+\sin x}+\sqrt{3})}$
$=\lim _{x \rightarrow \frac{\pi}{2}} \frac{\sin x-1}{-(\sin x-1)(1+\sin x)(\sqrt{2 \sin x}+\sqrt{3})}$
$=\lim _{x \rightarrow \frac{\pi}{2}} \frac{1}{-(1+\sin x)(\sqrt{2+\sin x}+\sqrt{3})}$
$\ldots\left[\begin{array}{l}\because x \rightarrow \frac{\pi}{2}, \therefore \sin x \rightarrow 1 \\ \therefore \sin x \neq 1 \therefore \sin x-1 \neq 0\end{array}\right]$
$=\frac{-1}{\lim _{x \rightarrow \frac{\pi}{2}}(1+\sin x)(\sqrt{2+\sin x}+\sqrt{3})}$
$=\frac{-1}{\lim _{x \rightarrow \frac{\pi}{2}}(1+\sin x) \cdot \lim _{x \rightarrow \frac{\pi}{2}}(\sqrt{2+\sin x}+\sqrt{3})}$
$=\frac{-1}{(1+1)(\sqrt{2+1}+\sqrt{3})}=\frac{-1}{2 \times 2 \sqrt{3}}$
$\therefore \quad f\left(\frac{\pi}{2}\right)=\frac{-1}{4 \sqrt{3}}$
ii. $\quad \mathrm{f}(x)$ is continuous at $x=0$
...(given)
$\therefore \quad \mathrm{f}(0)=\lim _{x \rightarrow 0} \mathrm{f}(x)$

$$
=\lim _{x \rightarrow 0} \frac{\cos ^{2} x-\sin ^{2} x-1}{\sqrt{3 x^{2}+1}-1}
$$

$$
=\lim _{x \rightarrow 0} \frac{\cos 2 x-1}{\sqrt{3 x^{2}+1}-1} \times \frac{\sqrt{3 x^{2}+1}+1}{\sqrt{3 x^{2}+1}+1}
$$

$$
=\lim _{x \rightarrow 0} \frac{-(1-\cos 2 x)\left(\sqrt{3 x^{2}+1}+1\right)}{\left(3 x^{2}+1\right)-1}
$$

$$
=\lim _{x \rightarrow 0} \frac{-2 \sin ^{2} x \cdot\left(\sqrt{3 x^{2}+1}+1\right)}{3 x^{2}}
$$

$$
=\frac{-2}{3} \lim _{x \rightarrow 0} \frac{\sin ^{2} x}{x^{2}}\left(\sqrt{3 x^{2}+1}+1\right)
$$

$$
\begin{aligned}
& =\frac{-2}{3} \lim _{x \rightarrow 0}\left(\frac{\sin x}{x}\right)^{2} \times \lim _{x \rightarrow 0}\left(\sqrt{3 x^{2}+1}+1\right) \\
& =\frac{-2}{3}(1)^{2} \times(\sqrt{3(0)+1}+1) \\
& =\frac{-2}{3} \times(1+1) \\
\therefore \quad \mathrm{f}(0) & =\frac{-4}{3}
\end{aligned}
$$

iii. $\quad \mathrm{f}(x)$ is continuous at $x=\pi$
...(given)
$\therefore \mathrm{f}(\pi)=\lim _{x \rightarrow \pi} \frac{4^{x-\pi}+4^{\pi-x}-2}{(x-\pi)^{2}}$
Put $x-\pi=\mathrm{h}$
As $x \rightarrow \pi, h \rightarrow 0$
$\therefore \quad f(\pi)=\lim _{h \rightarrow 0} \frac{4^{h}+4^{-h}-2}{h^{2}}$
$=\lim _{\mathrm{h} \rightarrow 0} \frac{4^{\mathrm{h}}+\frac{1}{4^{\mathrm{h}}}-2}{\mathrm{~h}^{2}}$
$=\lim _{\mathrm{h} \rightarrow 0} \frac{\left(4^{\mathrm{h}}\right)^{2}+1-2\left(4^{\mathrm{h}}\right)}{4^{\mathrm{h}} \cdot\left(\mathrm{h}^{2}\right)}$
$=\lim _{h \rightarrow 0} \frac{\left(4^{h}-1\right)^{2}}{4^{h} \cdot h^{2}}$

$$
\ldots\left[\because a^{2}-2 a b+b^{2}=(a-b)^{2}\right]
$$

$=\lim _{h \rightarrow 0}\left(\frac{4^{h}-1}{h}\right)^{2} \times \frac{1}{4^{h}}$
$=\lim _{h \rightarrow 0}\left(\frac{4^{h}-1}{h}\right)^{2} \times \lim _{h \rightarrow 0} \frac{1}{4^{h}}$
$=(\log 4)^{2} \times \frac{1}{4^{\circ}}$
$=\left(\log 2^{2}\right)^{2} \times \frac{1}{1}$
$=(2 \log 2)^{2}$
$\therefore \quad \mathrm{f}(\pi)=4(\log 2)^{2}$
11. i. If $f(x)=\frac{24^{x}-8^{x}-3^{x}+1}{12^{x}-4^{x}-3^{x}+1}$, for $x \neq 0$

$$
=\mathbf{k}, \quad \text { for } x=0
$$

is continuous at $x=0$, find k.
ii. If $\mathrm{f}(x)=\frac{5^{x}+5^{x}-2}{x^{2}}$, for $x \neq 0$

$$
=\mathbf{k}, \quad \text { for } x=\mathbf{x}
$$

is continuous at $\boldsymbol{x}=0$, find k .
iii. If $\mathrm{f}(x)=\frac{\sin 2 x}{5 x}-\mathrm{a}$, for $x>0$

$$
\begin{aligned}
& =4 \text { for } x=0 \\
& =x^{2}+b-3 \quad, \text { for } x<0
\end{aligned}
$$

is continuous at $x=0$, find a and b.
iv. For what values of a and b is the function

$$
\begin{array}{rlrl}
f(x) & =\mathbf{a x}+2 b+18 & & , \\
& =f^{2}+3 a-b \leq 0 \\
& =x^{2}+3 a- & & \text { for } 0<x \leq 2 \\
& =8 x-2 & & , \\
\text { for } x>2,
\end{array}
$$

continuous for every \boldsymbol{x} ?
v. For what values of a and b is the function

$$
\begin{aligned}
& \mathrm{f}(x)=\frac{x^{2}-4}{x-2}, \\
&=\mathrm{a} x^{2}-\mathrm{b} x+3, \quad \text { for } x<2 \\
&=2 x-a+b, \quad \text { for } 2 \leq x<3 \\
& \text { continuous for every } x \text { on } R ? 3
\end{aligned}
$$

Solution :

i. $\quad \mathrm{f}(x)$ is continuous at $x=0$

$$
\therefore \quad \mathrm{f}(0)=\lim _{x \rightarrow 0} \mathrm{f}(x)
$$

$$
\therefore \quad \mathrm{k}=\lim _{x \rightarrow 0} \frac{24^{x}-8^{x}-3^{x}+1}{12^{x}-4^{x}-3^{x}+1}
$$

$=\lim _{x \rightarrow 0} \frac{8^{x} \cdot 3^{x}-8^{x}-3^{x}+1}{4^{x} \cdot 3^{x}-4^{x}-3^{x}+1}$
$=\lim _{x \rightarrow 0} \frac{8^{x}\left(3^{x}-1\right)-1\left(3^{x}-1\right)}{4^{x}\left(3^{x}-1\right)-1\left(3^{x}-1\right)}$
$=\lim _{x \rightarrow 0} \frac{\left(3^{x}-1\right)\left(8^{x}-1\right)}{\left(3^{x}-1\right)\left(4^{x}-1\right)} \quad \ldots\left[\begin{array}{l}\because x \rightarrow 0,3 x \rightarrow 3^{0} \\ \therefore 3^{x} \rightarrow 1 \therefore 3^{x} \neq 1 \\ \therefore 3^{x}-1 \neq 0\end{array}\right]$
$=\lim _{x \rightarrow 0} \frac{8^{x}-1}{4^{x}-1}$
$=\lim _{x \rightarrow 0}\left(\frac{\frac{8^{x}-1}{x}}{\frac{4^{x}-1}{x}}\right)$
$\ldots[\because x \rightarrow 0, \therefore x \neq 0]$
$=\frac{\lim _{x \rightarrow 0} \frac{8^{x}-1}{x}}{\lim _{x \rightarrow 0} \frac{4^{x}-1}{x}}$
$=\frac{\log 8}{\log 4}$
$\ldots\left[\because \lim _{x \rightarrow 0}\left(\frac{\mathrm{a}^{x}-1}{x}\right)=\log \mathrm{a}\right]$
$=\frac{\log (2)^{3}}{\log (2)^{2}}$
$=\frac{3 \log 2}{2 \log 2}$
$\therefore \quad \mathrm{f}(0)=\frac{3}{2}$
ii. $\quad \mathrm{f}(x)$ is continuous at $x=0$
$\therefore \quad \mathrm{f}(0)=\lim _{x \rightarrow 0} \mathrm{f}(x)$

$$
=\lim _{x \rightarrow 0} \frac{5^{x}+5^{-x}-2}{x^{2}}
$$

$$
\begin{aligned}
& =\lim _{x \rightarrow 0} \frac{5^{x}+\frac{1}{5^{x}}-2}{x^{2}} \\
& =\lim _{x \rightarrow 0} \frac{\left(5^{x}\right)^{2}+1-2\left(5^{x}\right)}{5^{x} \cdot x^{2}} \\
& =\lim _{x \rightarrow 0} \frac{\left(5^{x}-1\right)^{2}}{5^{x} \cdot x^{2}} \\
& \quad \ldots\left[\because \mathrm{a}^{2}-2 \mathrm{ab}+\mathrm{b}^{2}=(\mathrm{a}-\mathrm{b})^{2}\right] \\
& =\lim _{x \rightarrow 0}\left(\frac{5^{x}-1}{x}\right)^{2} \cdot \frac{1}{5^{x}} \\
& =\lim _{x \rightarrow 0}\left(\frac{5^{x}-1}{x}\right)^{2} \times \lim _{x \rightarrow 0} \frac{1}{5^{x}} \\
& =(\log 5)^{2} \times \frac{1}{5^{\circ}} \\
& =(\log 5)^{2}
\end{aligned}
$$

iii. $\mathrm{f}(x)$ is continuous at $x=0$
$\therefore \quad \lim _{x \rightarrow 0^{+}} \mathrm{f}(x)=\mathrm{f}(0)$
$\therefore \quad \lim _{x \rightarrow 0^{+}}\left(\frac{\sin 2 x}{5 x}-\mathrm{a}\right)=4$
$\therefore \quad \lim _{x \rightarrow 0^{+}} \frac{\sin 2 x}{5 x}-\lim _{x \rightarrow 0^{+}} \mathrm{a}=4$
$\therefore \quad \frac{1}{5} \lim _{x \rightarrow 0^{+}} \frac{\sin 2 x}{2 x} \times(2)-\lim _{x \rightarrow 0^{+}} \mathrm{a}=4$
$\therefore \quad \frac{1}{5}(1)(2)-\mathrm{a}=4 \quad \ldots\left[\begin{array}{l}\because x \rightarrow 0,2 x \rightarrow 0 \\ \lim _{x \rightarrow 0^{+}} \frac{\sin \theta}{\theta}=1\end{array}\right]$
$\therefore \quad \frac{2}{5}-\mathrm{a}=4$
$\therefore \quad \frac{2}{5}-4=\mathrm{a}$
$\therefore \quad a=-\frac{18}{5}$
Also, $\lim _{x \rightarrow 0^{+}} \mathrm{f}(x)=\mathrm{f}(0)$
$\therefore \quad \lim _{x \rightarrow 0^{+}}\left(x^{2}+\mathrm{b}-3\right)=4$
$\therefore \quad b-3=4$
$\therefore \quad b=7$
iv. $\quad \mathrm{f}(x)$ is continuous for every x.
$\mathrm{f}(x)$ is continuous at $x=0$ and $x=2$
As $\mathrm{f}(x)$ is continuous at $x=0$.
$\lim _{x \rightarrow 0^{-}} \mathrm{f}(x)=\lim _{x \rightarrow 0^{+}} \mathrm{f}(x)$
$\therefore \quad \lim _{x \rightarrow 0}(\mathrm{a} x+2 \mathrm{~b}+18)=\lim _{x \rightarrow 0}\left(x^{2}+3 \mathrm{a}-\mathrm{b}\right)$
$\therefore \quad a(0)+2 b+18=(0)^{2}+3 a-b$
$\therefore \quad 3 a-3 b=18$
$\therefore \quad a-b=6$
$\because \quad \mathrm{f}(x)$ is continous at $x=2$
$\lim _{x \rightarrow 2^{-}} \mathrm{f}(x)=\lim _{x \rightarrow 2^{+}} \mathrm{f}(x)$
$\therefore \quad \lim _{x \rightarrow 2}\left(x^{2}+3 \mathrm{a}-\mathrm{b}\right)=\lim _{x \rightarrow 2}(8 x-2)$
$\therefore \quad(2)^{2}+3 a-b=8(2)-2$
$\therefore \quad 4+3 a-b=14$
$\therefore \quad 3 a-b=10$
Subtracting (i) from (ii), we get
$2 a=4$
$\therefore \quad a=2$
Substituting $\mathrm{a}=2$ in (i), we get
$2-b=6$
$\therefore \quad \mathrm{b}=-4$
$\therefore \quad a=2$ and $b=-4$
v. $\quad \mathrm{f}(x)$ is continuous for every x on R .
$\therefore \quad \mathrm{f}(x)$ is continuous at $x=2$ and $x=3$.
$\mathrm{f}(x)$ is continuous at $x=2$.
$\lim _{x \rightarrow 2^{-}} \mathrm{f}(x)=\lim _{x \rightarrow 2^{+}} \mathrm{f}(x)$
$\therefore \quad \lim _{x \rightarrow 2} \frac{x^{2}-4}{x-2}=\lim _{x \rightarrow 2}\left(a x^{2}-\mathrm{b} x+3\right)$
$\therefore \quad \lim _{x \rightarrow 2} \frac{(x-2)(x+2)}{x-2}=\lim _{x \rightarrow 2}\left(\mathrm{a} x^{2}-\mathrm{b} x+3\right)$
$\therefore \quad \lim _{x \rightarrow 2}(x+2)=\lim _{x \rightarrow 2}\left(\mathrm{a} x^{2}-\mathrm{b} x+3\right) \quad \ldots\left[\begin{array}{l}\because x \rightarrow 2 \therefore x \neq 2 \\ \therefore x-2 \neq 0\end{array}\right]$
$\therefore \quad 2+2=\mathrm{a}(2)^{2}-\mathrm{b}(2)+3$
$4 \mathrm{a}-2 \mathrm{~b}+3=4$
$\therefore \quad 4 a-2 b=1$
Also $\mathrm{f}(x)$ is continuous at $x=3$
$\therefore \quad \lim _{x \rightarrow 3^{-}} \mathrm{f}(x)=\lim _{x \rightarrow 3^{+}} \mathrm{f}(x)$
$\therefore \quad \lim _{x \rightarrow 3}\left(\mathrm{ax}^{2}-\mathrm{b} x+3\right)=\lim _{x \rightarrow 3}(2 x-\mathrm{a}+\mathrm{b})$
$\therefore \quad a(3)^{2}-b(3)+3=2(3)-a+b$
$\therefore \quad 9 a-3 b+3=6-a+b$
$\therefore \quad 10 \mathrm{a}-4 \mathrm{~b}=3$
Multiply (i) by 2 and (ii) by 1 , we get
$8 a-4 b=2$
$10 a-4 b=3$
Subtracting (iv) from (iii)
$-2 a=-1$
$\therefore \quad \mathrm{a}=\frac{1}{2}$
Substituting $\mathrm{a}=\frac{1}{2}$ in (i), we get
$4\left(\frac{1}{2}\right)-2 b=1$
$\therefore \quad 2-2 b=1$
$\therefore \quad 1=2 b$
$\therefore \quad \mathrm{b}=\frac{1}{2}$
$\therefore \quad \mathrm{a}=\frac{1}{2}$ and $\mathrm{b}=\frac{1}{2}$
12. Discuss the continuity of f on its domain, where

$$
\begin{aligned}
f(x) & =|x+1|, & & \text { for }-3 \leq x \leq 2 \\
& =|x-5|, & & \text { for } 2 \leq x \leq 7
\end{aligned}
$$

Solution:

$$
\left.\begin{array}{rlrl}
\begin{array}{rl}
|x+1| & =x+1
\end{array} & ; & x \geq-1 \\
& =-(x+1) & ; & x<-1 \\
|x-5| & =x-5 & ; & x \geq 5 \\
& =-(x-5) & ; & x<5
\end{array}\right\} \begin{array}{rll}
\lim _{x \rightarrow 2^{-}} \mathrm{f}(x) & =\lim _{\substack{x \rightarrow 2 \\
x<2}}|x+1| &
\end{array}
$$

$\lim _{x \rightarrow 2^{+}} \mathrm{f}(x)=\lim _{\substack{x \rightarrow 2 \\ x>2}}|x-5|$

$$
=\lim _{x \rightarrow 2}-(x-5)
$$

$$
=-(2-5)
$$

$$
=3
$$

$f(2)=|2+1|$

$$
=3
$$

$\therefore \quad \lim _{x \rightarrow 2^{-}} \mathrm{f}(x)=\lim _{x \rightarrow 2^{+}} \mathrm{f}(x)=\mathrm{f}(2)$
$\therefore \quad \mathrm{f}(x)$ is continuous at $x=2$
13. Discuss the continuity of $f(x)$ at
$x=\frac{\pi}{4}$ where,
$\mathrm{f}(x)=\frac{(\sin x+\cos x)^{3}-2 \sqrt{2}}{\sin 2 x-1}$, for $x \neq \frac{\pi}{4}$

$$
=\frac{3}{\sqrt{2}}, \quad \text { for } x=\frac{\pi}{4}
$$

Solution:

$$
f\left(\frac{\pi}{4}\right)=\frac{3}{\sqrt{2}}
$$

$\lim _{x \rightarrow \frac{\pi}{4}} \mathrm{f}(x)=\lim _{x \rightarrow \frac{\pi}{4}} \frac{(\sin x+\cos x)^{3}-2 \sqrt{2}}{\sin 2 x-1}$
$(\sin x+\cos x)^{3}=\left[(\sin x+\cos x)^{2}\right]^{\frac{3}{2}}$

$$
=(1+\sin 2 x)^{\frac{3}{2}}
$$

$\lim _{x \rightarrow \frac{\pi}{4}} \mathrm{f}(x)=\lim _{x \rightarrow \frac{\pi}{4}} \frac{(1+\sin 2 x)^{\frac{3}{2}}-2^{\frac{3}{2}}}{\sin 2 x-1}$
Put $1+\sin 2 x=\mathrm{t}$
$\sin 2 x=\mathrm{t}-1$
As $x \rightarrow \frac{\pi}{4}, \mathrm{t} \rightarrow 1+\sin 2\left(\frac{\pi}{4}\right)$
i.e. $\mathrm{t} \rightarrow 1+\sin \frac{\pi}{2}$
i.e. $\mathrm{t} \rightarrow 1+1$
i.e. $\mathrm{t} \rightarrow 2$

$$
\begin{aligned}
& \therefore \quad \begin{aligned}
& \begin{aligned}
\lim _{x \rightarrow \frac{\pi}{4}} \mathrm{f}(x) & =\lim _{\mathrm{t} \rightarrow 2} \frac{\mathrm{t}^{\frac{3}{2}}-2^{\frac{3}{2}}}{\mathrm{t}-1-1} \\
& =\lim _{\mathrm{t} \rightarrow 2} \frac{\mathrm{t}^{\frac{3}{2}}-2^{\frac{3}{2}}}{\mathrm{t}-2} \\
& =\frac{3}{2}(2)^{\frac{1}{2}} \quad \ldots \\
& =\frac{3 \sqrt{2}}{2}=\frac{3}{\sqrt{2}}
\end{aligned} \\
& \therefore \quad \lim _{x \rightarrow \frac{\pi}{4}} \mathrm{f}(x)=\mathrm{f}\left(\frac{\pi}{4}\right)
\end{aligned} \\
& \therefore \quad \mathrm{f}(x) \text { is continuous at } x=\frac{\pi}{4}
\end{aligned}
$$

14. Determine the values of p and q such that the following function is continuous on the entire real number line.

$$
\begin{aligned}
f(x) & =x+1, \quad \text { for } 1<x<3 \\
& =x^{2}+p x+q, \text { for }|x-2| \geq 1
\end{aligned}
$$

Solution:

$|x-2| \geq 1$
$\begin{array}{lll}\therefore & x-2 \geq 1 & \text { or } \\ \therefore & x \geq 3 & \text { or } \\ \therefore & f(x) & x \leq 1\end{array}$
$\therefore \quad \mathrm{f}(x)=x^{2}+\mathrm{p} x+\mathrm{q}$ for $x \geq 3$ as well as $x \leq 1$
Thus $\mathrm{f}(x)=x^{2}+\mathrm{p} x+\mathrm{q} ; \quad x \leq 1$

$$
\begin{array}{lll}
=x+1 & ; & 1<x<3 \\
=x^{2}+\mathrm{p} x+\mathrm{q} & ; & x \geq 3
\end{array}
$$

$\mathrm{f}(x)$ is continuous for all $x \in \mathrm{R}$
$\therefore \quad \mathrm{f}(x)$ is continuous at $x=1$ and $x=3$
As $\mathrm{f}(x)$ is continuous at $x=1$
$\therefore \quad \lim _{x \rightarrow 1^{-}} \mathrm{f}(x)=\lim _{x \rightarrow 1^{+}} \mathrm{f}(x)$
$\therefore \quad \lim _{x \rightarrow 1^{-}}\left(x^{2}+\mathrm{p} x+\mathrm{q}\right)=\lim _{x \rightarrow 1^{+}}(x+1)$
$\therefore \quad(1)^{2}+\mathrm{p}(1)+\mathrm{q}=1+1$
$\therefore \quad 1+\mathrm{p}+\mathrm{q}=2$
$\therefore \quad \mathrm{p}+\mathrm{q}=1$
Also $\mathrm{f}(x)$ is continuous at $x=3$
$\therefore \quad \lim _{x \rightarrow 3^{-}} \mathrm{f}(x)=\lim _{x \rightarrow 3^{+}} \mathrm{f}(x)$
$\therefore \quad \lim _{x \rightarrow 3^{-}}(x+1)=\lim _{x \rightarrow 3^{+}}\left(x^{2}+\mathrm{p} x+\mathrm{q}\right)$
$\therefore \quad 3+1=(3)^{2}+3 \mathrm{p}+\mathrm{q}$
$\therefore \quad 3 \mathrm{p}+\mathrm{q}+9=4$
$\therefore \quad 3 \mathrm{p}+\mathrm{q}=-5$
Subtracting (i) from (ii), we get
$2 p=-6$
$\therefore \quad \mathrm{p}=-3$
Substituting $\mathrm{p}=-3$ in (i), we get
$-3+q=1$
$\therefore \quad \mathrm{q}=4$
$\therefore \quad \mathrm{p}=-3$ and $\mathrm{q}=4$
15. Show that there is a root for the equation $2 x^{2}-x-16=0$ between 2 and 3.

Solution:

Let $\mathrm{f}(x)=2 x^{2}-x-16$
$\mathrm{f}(x)$ is a polynomial function and hence it is continuous for all $x \in \mathrm{R}$
A root of $\mathrm{f}(x)$ exists if $\mathrm{f}(x)=0$ for at least one value of x

$$
\begin{aligned}
\mathrm{f}(2) & =2(2)^{3}-2-16 \\
& =-2<0 \\
\mathrm{f}(3) & =2(3)^{3}-3-16 \\
& =35>0
\end{aligned}
$$

$\therefore \quad \mathrm{f}(2)<0$ and $\mathrm{f}(3)>0$
$\therefore \quad$ By intermediate value theorem, there has to be point ' c ' between 2 and 3 such that $\mathrm{f}(\mathrm{c})=0$
$\therefore \quad$ There is a root of the given equation between 2 and 3.
16. Show that there is a root for the equation $x^{3}-3 x=0$ between 1 and 2.

Solution:

Let $\mathrm{f}(x)=x^{3}-3 x$
$\mathrm{f}(x)$ is a polynomial function and hence
it is continuous for all $x \in \mathrm{R}$
A root of $\mathrm{f}(x)$ exists if $\mathrm{f}(x)=0$ for at least one value of x

$$
\begin{aligned}
f(1) & =(1)^{3}-3(1) \\
& =-2<0
\end{aligned}
$$

$$
f(2)=(2)^{3}-3(2)
$$

$$
=2>0
$$

$\therefore \quad \mathrm{f}(1)<0$ and $\mathrm{f}(2)>0$
$\therefore \quad$ By intermediate value theorem, there has to be point ' c ' between 1 and 2
Such that $f(c)=0$
$\therefore \quad$ There is a root of the given equation between 1 and 2.
17. Activity: Let $f(x)=a x+b$ (where a and b are unknown)
$=x^{2}+5 \quad$ for $x \geq 1$
Find the values of a and b, so that $f(x)$ is continuous at $x=1$.

Solution:

$$
\begin{aligned}
\mathrm{f}(x) & =\mathrm{a} x+\mathrm{b} & & x<1 \\
& =x^{2}+5 & & x \geq 1 \\
& \mathrm{f}(x) & =x^{2}+5 & \\
\therefore & \mathrm{f}(1) & =1+5=6 &
\end{aligned}
$$

L.H.L. $=\lim _{x \rightarrow 1^{-}} \mathrm{f}(x)=\lim _{x \rightarrow 1^{-}}(\mathrm{a} x+\mathrm{b})=\mathrm{a}+\mathrm{b}$
R.H.L. $=\lim _{x \rightarrow 1^{+}} \mathrm{f}(x)=\lim _{x \rightarrow 1^{+}}\left(x^{2}+5\right)=1+5=6$ given, $\mathrm{f}(x)$ is continuous at $\mathrm{n}=1$
$\therefore \quad$ L.H.L. $=$ R.H.L.
$\therefore \quad \mathrm{a}+\mathrm{b}=6 \quad$ where, $\mathrm{a}, \mathrm{b} \in \mathrm{R}$
18. Suppose $f(x)=p x+3$ for $a \leq x \leq b$

$$
=5 x^{2}-q \text { for } b<x \leq c
$$

Find the condition on p, q, so that $f(x)$ is continuous on [a, c], by filling in the boxes.

Solution:

$$
\begin{aligned}
& \mathrm{f}(\mathrm{~b})=\mathbf{\mathbf { p b } + \mathbf { 3 }} \\
& \lim _{x \rightarrow \mathrm{~b}^{+}} \mathrm{f}(x)=\mathbf{5 \mathbf { b } ^ { 2 }}-\mathrm{q} \\
& \mathrm{pb}+3=5 \mathbf{5 \mathbf { b } ^ { 2 }}-\mathrm{q} \\
& \mathrm{p}=\frac{\mathbf{5 \mathbf { b } ^ { 2 } - \mathbf { q } - \mathbf { 3 }}}{\mathrm{b}}
\end{aligned}
$$

Miscellaneous Exercise - 8

I. Select the correct answer from the given alternatives.

1. $\mathrm{f}(x)=\frac{2^{\cot x}-1}{\pi-2 x}, \quad$ for $x \neq \frac{\pi}{2}$

$$
=\log \sqrt{2}, \quad \text { for } x=\frac{\pi}{2}
$$

(A) f is continuous at $x=\frac{\pi}{2}$
(B) f has a jump discontinuity at $x=\frac{\pi}{2}$
(C) f has a removable discontinuity
(D) $\quad \lim _{x \rightarrow \frac{\pi}{2}} \mathrm{f}(x)=2 \log 3$
2. If $\mathrm{f}(x)=\frac{1-\sqrt{2} \sin x}{\pi-4 x}$, for $x \neq \frac{\pi}{2}$ is continuous at $x=\frac{\pi}{4}$, then $\left(\frac{\pi}{4}\right)=$
(A) $\frac{1}{\sqrt{2}}$
(B) $-\frac{1}{\sqrt{2}}$
(C) $-\frac{1}{4}$
(D) $\frac{1}{4}$
3. If $\mathrm{f}(x)=\frac{(\sin 2 x) \tan 5 x}{\left(\mathrm{e}^{2 x}-1\right)^{2}}$, for $x \neq 0$ is continuous at $x=0$, then $\mathrm{f}(0)$ is
(A) $\frac{10}{\mathrm{e}^{2}}$
(B) $\frac{10}{\mathrm{e}^{4}}$
(C) $\frac{5}{4}$
(D) $\frac{5}{2}$
4. $\mathrm{f}(x)=\frac{x^{2}-7 x+10}{x^{2}+2 x-8}$, for $x \in[-6,-3]$
(A) f is discontinuous at $x=2$.
(B) f is discontinuous at $x=-4$.
(C) f is discontinuous at $x=0$.
(D) f is discontinuous at $x=2$ and $x=-4$.
5. If $\mathrm{f}(x)=\mathrm{a} x^{2}+\mathrm{b} x+1$, for $|x-1| \geq 3$ and

$$
=4 x+5, \quad \text { for }-2<x<4 \text { is }
$$

continuous everywhere then,
(A) $\mathrm{a}=-\frac{1}{2}, \mathrm{~b}=5$
(B) $\mathrm{a}=-\frac{1}{2}, \mathrm{~b}=-5$
(C) $\mathrm{a}=\frac{1}{2}, \mathrm{~b}=-5$
(D) $\mathrm{a}=\frac{1}{2}, \mathrm{~b}=3$
[Note: The option has been modified.]
6. $\mathrm{f}(x)=\frac{\left(16^{x}-1\right)\left(9^{x}-1\right)}{\left(27^{x}-1\right)\left(32^{x}-1\right)}$, for $x \neq 0$

$$
=\mathrm{k}, \quad \text { for } x=0
$$

is continuous at $x=0$, then ' k ' $=$
(A) $\frac{8}{3}$
(B) $\frac{8}{15}$
(C) $-\frac{8}{15}$
(D) $\frac{20}{3}$
7. $\mathrm{f}(x)=\frac{32^{x}-8^{x}-4^{x}+1}{4^{x}-2^{x+1}+1}$, for $x \neq 0$ is continuous at $x=0$, then value of ' k ' is
(A) 6
(B) 4
(C) $(\log 2)(\log 4)$
(D) $3 \log 4$
8. If $\mathrm{f}(x)=\frac{12^{x}-4^{x}-3^{x}+1}{1-\cos 2 x}$, for $x \neq 0$ is continuous at $x=0$ then the value of $\mathrm{f}(0)$ is
(A) $\frac{\log 12}{2}$
(B) $\log 2 \cdot \log 3$
(C) $\frac{\log 2 \cdot \log 3}{2}$
(D) None of these
9. If $\mathrm{f}(x)=\left(\frac{4+5 x}{4-7 x}\right)^{\frac{4}{x}}$, for $x \neq 0$ and $\mathrm{f}(0)=\mathrm{k}$, is continuos at $x=0$, then k is
(A) e^{7}
(B) e^{3}
(C) e^{12}
(D) $\mathrm{e}^{\frac{3}{4}}$
10. If $\mathrm{f}(x)=\lfloor x\rfloor$ for $x \in(-1,2)$ then f is discontinuous at
(A) $x=-1,0,1,2$
(B) $x=-1,0,1$
(C) $x=0,1$
(D) $x=2$

Answers:

1. (A)
2. (D)
3. (D)
4. (B)
5. (D)
6. (B)
7. (A) 8.
(B)
8. (C)
9. (C)

Hints:

1. $\mathrm{f}\left(\frac{\pi}{2}\right)=\log \sqrt{2}$

$$
\begin{aligned}
\lim _{x \rightarrow \frac{\pi}{2}} \mathrm{f}(x) & =\lim _{x \rightarrow \frac{\pi}{2}} \frac{2^{\cot x}-1}{\pi-2 x} \\
& =\lim _{x \rightarrow \frac{\pi}{2}} \frac{2^{\tan \left(\frac{\pi}{2}-x\right)}-1}{2\left(\frac{\pi}{2}-x\right)}
\end{aligned}
$$

$$
\text { Put } \frac{\pi}{2}-x=\mathrm{h}
$$

$$
\text { As } x \rightarrow \frac{\pi}{2}, \mathrm{~h} \rightarrow 0
$$

$$
\lim _{x \rightarrow \frac{\pi}{2}} f(x)=\lim _{h \rightarrow 0} \frac{2^{\tan h}-1}{2 h}
$$

$$
=\frac{1}{2} \lim _{\mathrm{h} \rightarrow 0}\left(\frac{2^{\tan \mathrm{h}}-1}{\tan \mathrm{~h}} \times \frac{\tanh }{\mathrm{h}}\right)
$$

$$
\ldots(\because \mathrm{h} \rightarrow 0, \therefore \tan \mathrm{~h} \rightarrow 0 \therefore \tan \mathrm{~h} \neq 0)
$$

$$
=\frac{1}{2} \lim _{h \rightarrow 0} \frac{2^{\tan h}-1}{\tan h} \times \lim _{h \rightarrow 0} \frac{\tan h}{h}
$$

$$
=\frac{1}{2} \cdot \log 2 \cdot(1)
$$

$$
=\log \sqrt{2}=\mathrm{f}\left(\frac{\pi}{2}\right)
$$

$\therefore \mathrm{f}(x)$ is continuous at $x=\frac{\pi}{2}$
2. $\mathrm{f}(x)$ is continuous at $x=\frac{\pi}{4}$

$$
\begin{aligned}
\therefore \quad & \mathrm{f}\left(\frac{\pi}{4}\right)=\lim _{x \rightarrow \frac{\pi}{4}} \mathrm{f}(x) \\
& =\lim _{x \rightarrow \frac{\pi}{4}} \frac{1-\sqrt{2} \sin x}{\pi-4 x} \\
& =\lim _{x \rightarrow \frac{\pi}{4}} \frac{\sqrt{2}\left(\sin x-\frac{1}{\sqrt{2}}\right)}{4\left(x-\frac{\pi}{4}\right)} \\
& =\frac{\sqrt{2}}{4} \lim _{x \rightarrow \frac{\pi}{4}} \frac{\sin x-\sin \frac{\pi}{4}}{x-\frac{\pi}{4}}
\end{aligned}
$$

$=\frac{\sqrt{2}}{4} \lim _{x \rightarrow \frac{\pi}{4}} \frac{2 \cos \left(\frac{x+\frac{\pi}{4}}{2}\right) \cdot \sin \left(\frac{x-\frac{\pi}{4}}{2}\right)}{x-\frac{\pi}{4}}$
$=\frac{\sqrt{2}}{4} \cdot \lim _{x \rightarrow \frac{\pi}{4}} \cos \left(\frac{x}{2}+\frac{\pi}{8}\right) \cdot \lim _{x \rightarrow \frac{\pi}{4}} \frac{\sin \left(\frac{x-\frac{\pi}{4}}{2}\right)}{\frac{x-\frac{\pi}{4}}{2}}$

$$
=\frac{\sqrt{2}}{4} \cdot \cos \left(\frac{x}{8}+\frac{\pi}{8}\right) \times 1
$$

$$
\cdots\left[\begin{array}{l}
\because x \rightarrow \frac{\pi}{4}, x-\frac{\pi}{4} \rightarrow 0 \\
\therefore \frac{x-\frac{\pi}{4}}{2} \rightarrow 0 \text { and } \lim _{\theta \rightarrow 0} \frac{\sin \theta}{\theta}=1
\end{array}\right]
$$

$=\frac{\sqrt{2}}{4} \times \cos \frac{\pi}{4}$
$=\frac{1}{4}$
3. $\mathrm{f}(x)$ is continuous at $x=0$

$$
\mathrm{f}(0)=\lim _{x \rightarrow 0} \mathrm{f}(x)
$$

$$
\therefore \quad=\lim _{x \rightarrow 0} \frac{(\sin 2 x)(\tan 5 x)}{\left(\mathrm{e}^{2 x}-1\right)^{2}}
$$

$$
=\frac{\lim _{x \rightarrow 0} \frac{\sin 2 x}{2 x} \times \lim _{x \rightarrow 0} \frac{\tan 5 x}{5 x} \times 2 \times 5}{\left(\lim _{x \rightarrow 0} \frac{\mathrm{e}^{2 x}-1}{2 x}\right) \times(2)^{2}}
$$

$$
=\frac{1 \times 1 \times 2 \times 5}{(1)^{2} \times 4}
$$

$$
\left[\begin{array}{l}
\because x \rightarrow 0,2 x \rightarrow 0,5 x \rightarrow 0 \\
\text { and } \lim _{\theta \rightarrow 0} \frac{\sin \theta}{\theta}=1, \lim _{\theta \rightarrow 0} \frac{\tan \theta}{\theta}=1
\end{array}\right]
$$

4. $\mathrm{f}(x)=\frac{x^{2}-7 x+10}{x^{2}+2 x-8} ; x \in[-6,-3]$

$$
=\frac{x^{2}-7 x+10}{(x+4)(x-2)}
$$

Here $\mathrm{f}(x)$ is a rational function and is continuous everywhere except at the points Where denominator becomes zero.
Here, denominator becomes zero when $x=-4 \quad$ OR $\quad x=2$
But $x=2$ does not lie in the given interval $\therefore \quad x=-4$ is the point of discontinuity
5. $\mathrm{f}(x)=\mathrm{a} x^{2}+\mathrm{b} x+1,|x-1| \geq 3$

$$
=4 x+5 \quad ;-2<x<4
$$

The first interval is
$|x-1| \geq 3$
$\therefore \quad x-1 \geq 3 \quad$ OR $\quad x-1 \leq-3$
$\therefore x \geq 4 \quad$ OR $x \leq-2$
$\therefore \quad \mathrm{f}(x)$ is same for $x \leq-2$ as well as $x \geq 4$
$\therefore \quad \mathrm{f}(x)$ is defined as:

$$
\begin{array}{rlrl}
\mathrm{f}(x) & =\mathrm{a} x^{2}+\mathrm{b} x+1 ; & & \\
& =4 x+5 \\
& =\mathrm{a} x^{2}+\mathrm{b} x+1 ; & ; & \\
\hline
\end{array}
$$

$\mathrm{f}(x)$ is continuous everywhere
$\therefore \quad \mathrm{f}(x)$ is continuous at $x=-2$ and $x=4$
As $\mathrm{f}(x)$ is continuous at $x=-2$
$\lim _{x \rightarrow-2^{-}} \mathrm{f}(x)=\lim _{x \rightarrow-2^{+}} \mathrm{f}(x)$
$\therefore \quad \lim _{x \rightarrow-2}\left(\mathrm{a} x^{2}+\mathrm{b} x+1\right)=\lim _{x \rightarrow-2}(4 x+5)$
$\therefore \quad \mathrm{a}(-2)^{2}+\mathrm{b}(-2)+1=4(-2)+5$
$\therefore \quad 4 a-2 b+1=-3$
$4 \mathrm{a}-2 \mathrm{~b}=-4$
$2 \mathrm{a}-\mathrm{b}=-2$
Also $\mathrm{f}(x)$ is continuous at $x=4$
$\lim _{x \rightarrow 4^{-}} \mathrm{f}(x)=\lim _{x \rightarrow 4^{+}} \mathrm{f}(x)$
$\therefore \quad \lim _{x \rightarrow 4}(4 x+5)=\lim _{x \rightarrow 4}\left(\mathrm{a} x^{2}+\mathrm{b} x+1\right)$
$4(4)+5=(4)^{2}+b(4)+1$
$\therefore \quad 16 a+4 b+1=21$
$\therefore \quad 16 a+4 b=20$
$\therefore \quad 4 a+b=5$
Adding (i) and (ii)
$6 \mathrm{a}=3$
$\therefore \quad \mathrm{a}=\frac{1}{2}$
Substitute $\mathrm{a}=\frac{1}{2} \mathrm{in}(\mathrm{ii})$
$4\left(\frac{1}{2}\right)+b=5$
$\therefore \quad 2+\mathrm{b}=5$
$\therefore \quad b=3$
$\therefore \quad \mathrm{a}=\frac{1}{2}, \mathrm{~b}=3$
6. $\mathrm{f}(x)$ is continuous at $x=0$
$\therefore \quad \mathrm{f}(0)=\lim _{x \rightarrow-0} \mathrm{f}(x)$
$\therefore \quad \mathrm{k}=\lim _{x \rightarrow-0} \frac{\left(16^{x}-1\right)\left(9^{x}-1\right)}{\left(27^{x}-1\right)\left(32^{x}-1\right)}$
$=\frac{\lim _{x \rightarrow-0}\left(\frac{16^{x}-1}{x}\right) \times \lim _{x \rightarrow-0}\left(\frac{9^{x}-1}{x}\right)}{\lim _{x \rightarrow-0}\left(\frac{27^{x}-1}{x}\right) \times \lim _{x \rightarrow-0}\left(\frac{32^{x}-1}{x}\right)}$

$$
\begin{aligned}
& =\frac{\log 16 \times \log 9}{\log 27 \times \log 32} \quad \ldots\left[\because \lim _{x \rightarrow 0} \frac{\mathrm{a}^{x}-1}{x}=\log \mathrm{a}\right] \\
& =\frac{4 \log 2 \times 2 \log 3}{3 \log 3 \times 5 \log 2} \\
& =\frac{8}{15}
\end{aligned}
$$

7. $\mathrm{f}(x)$ is continuous at $x=0$
$\therefore \mathrm{f}(0)=\lim _{x \rightarrow 0} \mathrm{f}(x)$
$\therefore \quad \mathrm{k}=\lim _{x \rightarrow 0} \frac{32^{x}-8^{x}-4^{x}+1}{4^{x}-2^{x+1}+1}$
$=\lim _{x \rightarrow 0} \frac{\left(4^{x}-1\right)\left(8^{x}-1\right)}{\left(2^{x}-1\right)^{2}}$
$=\frac{\lim _{x \rightarrow 0}\left(\frac{4^{x}-1}{x}\right)\left(\frac{8^{x}-1}{x}\right)}{\lim _{x \rightarrow 0}\left(\frac{2^{x}-1}{x}\right)^{2}}$
$=\frac{\lim _{x \rightarrow 0}\left(\frac{4^{x}-1}{x}\right) \cdot \lim _{x \rightarrow 0}\left(\frac{8^{x}-1}{x}\right)}{\left(\lim _{x \rightarrow 0} \frac{2^{x}-1}{x}\right)^{2}}$

$$
=\frac{\log 4 \times \log 8}{(\log 2)^{2}}
$$

$$
=\frac{2 \log 2 \times 3 \log 2}{(\log 2)^{2}}=6
$$

8. If $\mathrm{f}(x)$ is continuous at $x=0$ (given)
$\therefore \mathrm{f}(0)=\lim _{x \rightarrow 0} \mathrm{f}(x)$
$=\lim _{x \rightarrow 0} \frac{12^{x}-4^{x}-3^{x}+1}{1-\cos 2 x}$
$=\frac{1}{2} \lim _{x \rightarrow 0} \frac{4^{x}\left(3^{x}-1\right)\left(3^{x}-1\right)}{\sin ^{2} x}$
$=\frac{1}{2} \lim _{x \rightarrow 0} \frac{\left(3^{x}-1\right)\left(4^{x}-1\right)}{\sin ^{2} x}$
$=\frac{1}{2} \frac{\lim _{x \rightarrow 0}\left(\frac{3^{x}-1}{x}\right) \cdot \lim _{x \rightarrow 0}\left(\frac{4^{x}-1}{x}\right)}{\left(\lim _{x \rightarrow 0} \frac{\sin x}{x}\right)^{2}}$

$$
\begin{aligned}
& =\frac{1}{2} \times \frac{(\log 3) \times(\log 4)}{(1)^{2}} \\
& =\frac{1}{2} \times \log 3 \times \log (2)^{2} \\
& =\log 3 . \log 2
\end{aligned}
$$

9. $\mathrm{f}(x)$ is continuous at $x=0$
$\therefore \mathrm{f}(0)=\lim _{x \rightarrow 0} \mathrm{f}(x)$

$$
=\lim _{x \rightarrow 0}\left(\frac{4+5 x}{4-7 x}\right)^{\frac{4}{x}}
$$

$$
\begin{aligned}
& =\lim _{x \rightarrow 0}\left[\frac{4\left(1+\frac{5 x}{4}\right)}{4\left(1-\frac{7 x}{4}\right)}\right]^{\frac{4}{x}} \\
& =\frac{\lim _{x \rightarrow 0}\left[\left(1+\frac{5 x}{4}\right)^{\frac{4}{5 x}}\right]^{5}}{\left[\left(1-\frac{7 x}{4}\right)^{\frac{-4}{7 x}}\right]^{-7}} \\
& =\frac{\mathrm{e}_{x \rightarrow 0}^{5}}{\mathrm{e}^{-7}} \cdots\left[\because x \rightarrow 0, \frac{5 x}{4} \rightarrow 0, \frac{-7 x}{4} \rightarrow 0\right] \\
& =\mathrm{e}^{12}
\end{aligned}
$$

10. $\mathrm{f}(x)=\lfloor x\rfloor, x \in(-1,2)$

This function is discontinuous at all integer values of x between -1 and 2 .
$\therefore \quad \mathrm{f}(x)$ is discontinuous at $x=0$ and $x=1$.
II. Discuss the continuity of the following functions at the point (s) or no the interval indicated against them.

1. $f(x)=\frac{x^{2}-3 x-10}{x-5}$, for $3 \leq x \leq 6$,

$$
\begin{array}{ll}
=10, & \text { for } x=5 \\
=\frac{x^{2}-3 x-10}{x-5}, & \text { for } 6<x \leq 9
\end{array}
$$

Solution:

$$
\begin{aligned}
& \frac{x^{2}-3 x-10}{x-5} \text { is not defined at } x=5 \\
\therefore \quad & \mathrm{f}(x)=\frac{x^{2}-3 x-10}{x-5} \text { where } x \in[3,5) \cup(5,6]
\end{aligned}
$$

We can write $\mathrm{f}(x)$ explicitly, as follows:
$\mathrm{f}(x)=\frac{x^{2}-3 x-10}{x-5}, 3 \leq x<5$

$$
=10 \quad, x=5
$$

$$
=\frac{x^{2}-3 x-10}{x-5}, 5<x \leq 6
$$

$$
=\frac{x^{2}-3 x-10}{x-5}, 6<x \leq 9
$$

$\because \quad x^{2}-3 x-10=(x-5)(x+2)$
$\therefore \mathrm{f}(x)=x+2, \quad 3<x<5$

$$
\begin{array}{ll}
=10, & x=5 \\
=x+2, & 5<x
\end{array}
$$

$\mathrm{f}(5)=10$
$\lim _{x \rightarrow 5^{-}} \mathrm{f}(x)=\lim _{x \rightarrow 5^{-}}(x+2)=5+2=7$
$\lim _{x \rightarrow 5^{+}} \mathrm{f}(x)=\lim _{x \rightarrow 5^{+}}(x+2)=5+2=7$
$\therefore \mathrm{f}(5) \neq \lim _{x \rightarrow 5} \mathrm{f}(x)$
$\therefore \quad \mathrm{f}(x)$ is continuous on its domain except at $x=5$
2. $f(x)=2 x^{2}-2 x+5$, for $0 \leq x \leq 2$

$$
\begin{aligned}
& =\frac{1-3 x-x^{2}}{1-x}, \quad \text { for } 2<x<4 \\
& =\frac{x^{2}-25}{x-5}, \quad \text { for } 4 \leq x 7 \text { and } x \neq 5 \\
& =7 \text { for } x=5
\end{aligned}
$$

Solution:

2. The domain of $\mathrm{f}(x)$ is [0, 7]
i. For $0 \leq x<2$
$\mathrm{f}(x)=2 x^{2}-2 x+5$
It is a polynomial function and is
Continuous at all point in $[0,2)$
ii. For $2<x<4$
$\mathrm{f}(x)=\frac{1-3 x-x^{2}}{1-x}$
It is a rational function and is continuous everwhere except at points where its denominator becomes zero.
Denominator becomes zero at $x=1$
But $x=1$ does not lie in the interval.
$\mathrm{f}(x)$ is continuous at all points in $(2,4)$
iii. For $4<x \leq 7, x \leq 5$
$\mathrm{f}(x)=\frac{x^{2}-25}{x-5}$
It is a rational function and is continuous everwhere except at points where its denominator becomes zero.
Denominator becomes zero at $x=5$
But $x=5$ does not lie in the interval.
$\therefore \quad \mathrm{f}(x)$ is continuous at all points in $(4,7]-\{5\}$.
iv. For continuity at $x=2$:

$$
\begin{aligned}
\lim _{x \rightarrow 2^{-}} \mathrm{f}(x) & =\lim _{x \rightarrow 2^{-}} \mathrm{f}(x)\left(2 x^{2}-2 x+5\right) \\
& =2(2)^{2}-2(2)+5 \\
& =8-4+5 \\
& =9 \\
\lim _{x \rightarrow 2^{+}} \mathrm{f}(x) & =\lim _{x \rightarrow 2^{+}} \frac{1-3 x-x^{2}}{1-x} \\
& =\frac{\lim _{x \rightarrow 2^{+}}\left(1-3 x-x^{2}\right)}{\lim _{x \rightarrow 2^{+}}(1-x)} \\
& =\frac{1-3(2)-(2)^{2}}{1-2} \\
& =\frac{1-6-4}{-1} \\
& =\frac{-9}{-1} \\
& =9
\end{aligned}
$$

Also $f(2)=2(2)^{2}-2(2)+5$

$$
=8-4+5
$$

$$
=9
$$

$\therefore \quad \lim _{x \rightarrow 2^{-}} \mathrm{f}(x)=\lim _{x \rightarrow 2^{+}} \mathrm{f}(x)=\mathrm{f}(2)$
$\therefore \quad \mathrm{f}(x)$ is continuous at $x=2$
v. For continuity at $x=4$:

$$
\begin{aligned}
\lim _{x \rightarrow 4^{-}} \mathrm{f}(x) & =\lim _{x \rightarrow 4^{-}} \frac{1-3 x-x^{2}}{1-x} \\
& =\frac{\lim _{x \rightarrow 4^{-}}\left(1-3 x-x^{2}\right)}{\lim _{x \rightarrow 4^{-}}(1-x)} \\
& =\frac{1-3(4)-(4)^{2}}{1-4} \\
& =\frac{1-12-16}{1-4}=\frac{-27}{-3} \\
& =9 \\
\lim _{x \rightarrow 4^{+}} \mathrm{f}(x) & =\lim _{x \rightarrow 4^{+}} \frac{x^{2}-25}{x-5} \\
& =\frac{\lim _{x \rightarrow 4^{+}}\left(x^{2}-25\right)}{\lim _{x \rightarrow 4^{+}}(x-5)} \\
& =\frac{(4)^{2}-25}{4-5} \\
& =\frac{16-25}{-1} \\
& =9
\end{aligned}
$$

$$
\text { Also } f(4)=\frac{(4)^{2}-25}{4-5}
$$

$$
=\frac{16-25}{-1}
$$

$$
=9
$$

$\therefore \quad \lim _{x \rightarrow 4^{-}} \mathrm{f}(x)=\lim _{x \rightarrow 4^{+}} \mathrm{f}(x)=\mathrm{f}(4)$
$\therefore \quad \mathrm{f}(x)$ is continuous at $x=4$
vi. For continuity at $x=5$
$f(5)=7$

$$
\begin{aligned}
\lim _{x \rightarrow 5} f(x) & =\lim _{x \rightarrow 5} \frac{x^{2}-25}{x-5} \\
& =\lim _{x \rightarrow 5} \frac{(x-5)(x+5)}{x-5} \\
& =\lim _{x \rightarrow 5}(x+5) \quad \ldots\binom{\text { As } x \rightarrow 5, x \neq 5}{\therefore x-5 \neq 0} \\
& =5+5 \\
& =10
\end{aligned}
$$

$\therefore \quad \lim _{x \rightarrow 5} \mathrm{f}(x) \neq \mathrm{f}(5)$
$\therefore \quad \mathrm{f}(x)$ is discontinuous at $x=5$
Thus $\mathrm{f}(x)$ is continuous at all points on its domain except at $x=5$
3. $\mathrm{f}(x)=\frac{\cos 4 x-\cos 9 x}{1-\cos x}$, for $x \neq 0$
$f(0)=\frac{68}{15}$, at $x=0$ on $-\frac{\pi}{2} \leq x \leq \frac{\pi}{2}$

Solution:

The domain of $\mathrm{f}(x)$ is $\left[-\frac{\pi}{2}, \frac{\pi}{2}\right]$
i. For $\left[-\frac{\pi}{2}, \frac{\pi}{2}\right]-\{0\}$
$\mathrm{f}(x)=\frac{\cos 4 x-\cos 9 x}{1-\cos x}$
It is a rational function and is continuous everwhere except at points where its denominator becomes zero.
Denominator becomes zero when $\cos x=1$
i.e. $x=0$

But $x=0$ does not lie in the interval
$\therefore \mathrm{f}(x)$ is continuous at all points in $\left[-\frac{\pi}{2}, \frac{\pi}{2}\right]-\{0\}$
ii. For continuity at $x=0$

$$
\begin{aligned}
& \mathrm{f}(0)=\frac{68}{15} \\
& \lim _{x \rightarrow 0} \mathrm{f}(x)=\lim _{x \rightarrow 0} \frac{\cos 4 x-\cos 9 x}{1-\cos x} \\
& =\lim _{x \rightarrow 0} \frac{2 \sin \left(\frac{4 x+9 x}{2}\right) \cdot \sin \left(\frac{9 x-4 x}{2}\right)}{2 \sin ^{2} \frac{x}{2}} \\
& =\lim _{x \rightarrow 0} \frac{\sin \left(\frac{13 x}{2}\right) \cdot \sin \left(\frac{5 x}{2}\right)}{\frac{\left(\sin \frac{x}{2}\right)^{2}}{2}} \\
& =\lim _{x \rightarrow 0}\left[\frac{\sin \left(\frac{13 x}{2}\right) \cdot \sin \left(\frac{5 x}{2}\right)}{x^{2}}\right] \\
& \left.\frac{\left.\sin \frac{x}{2}\right)^{2}}{x^{2}}\right]
\end{aligned}
$$

$\cdots\left[\begin{array}{l}\text { Divide numerator and denominator by } x^{2} \\ \text { As } x \rightarrow 0, x \neq 0 \quad \therefore \quad x^{2} \neq 0\end{array}\right]$
$=\frac{\lim _{x \rightarrow 0} \frac{\sin \left(\frac{13 x}{2}\right)}{x} \cdot \frac{\sin \left(\frac{5 x}{2}\right)}{x}}{\lim _{x \rightarrow 0}\left(\frac{\sin \frac{x}{2}}{x}\right)^{2}}$

$$
=\frac{\lim _{x \rightarrow 0} \frac{\sin \left(\frac{13 x}{2}\right)}{\frac{13 x}{2}} \times \frac{13}{2} \cdot \lim _{x \rightarrow 0} \frac{\sin \left(\frac{5 x}{2}\right)}{\frac{5 x}{2}} \times \frac{5}{2}}{\lim _{x \rightarrow 0}\left(\frac{\sin \frac{x}{2}}{\frac{x}{2}}\right)^{2} \times \frac{1}{4}}
$$

$$
=\frac{1 \times \frac{13}{2} \times 1 \times \frac{5}{2}}{(1)^{2} \times \frac{1}{4}} \cdots\left[\begin{array}{l}
\because x \rightarrow 0, \frac{13 x}{2} \rightarrow 0, \\
\frac{5 x}{2} \rightarrow 0 \text { and } \lim _{\theta \rightarrow 0} \frac{\sin \theta}{\theta}=1
\end{array}\right]
$$

$$
=65
$$

$$
\therefore \quad \lim _{x \rightarrow 0} \mathrm{f}(x) \neq \mathrm{f}(0)
$$

$\therefore \mathrm{f}(x)$ is discontinuous at $x=0$
4. $f(x)=\frac{\sin ^{2} \pi x}{3(1-x)^{2}}, \quad$ for $\quad x \neq 1$

$$
=\frac{\pi^{2} \sin ^{2}\left(\frac{\pi x}{2}\right)}{3+4 \cos ^{2}\left(\frac{\pi x}{2}\right)}
$$

for $x=1$, at $x=1$

Solution:

$$
\begin{aligned}
& \begin{aligned}
f(1) & =\frac{\pi^{2} \sin \left(\frac{\pi}{2}\right)}{3+4 \cos ^{2}\left(\frac{\pi}{2}\right)} \\
& =\frac{\pi^{2} \times 1}{3+4(0)^{2}} \\
& =\frac{\pi^{2}}{3}
\end{aligned} \\
& \lim _{x \rightarrow 1} f(x)=\lim _{x \rightarrow 1} \frac{\sin ^{2} \pi x}{3(1-x)^{2}}
\end{aligned}
$$

$$
\text { Put } 1-x=\mathrm{h} \quad \therefore \quad x=1-\mathrm{h}
$$

$$
\text { As } x \rightarrow 1, \mathrm{~h} \rightarrow 0
$$

$$
\therefore \quad \lim _{x \rightarrow 1} f(x)=\lim _{h \rightarrow 0} \frac{\sin ^{2} \pi(1-h)}{3[1-(1-h)]^{2}}
$$

$$
=\lim _{\mathrm{h} \rightarrow 0} \frac{[\sin (\pi-\pi \mathrm{h})]^{2}}{3 \mathrm{~h}^{2}}
$$

$$
=\frac{1}{3} \lim _{h \rightarrow 0} \frac{(\sin \pi h)^{2}}{h^{2}}=\frac{1}{3} \lim _{h \rightarrow 0} \frac{(\sin \pi h)^{2}}{h}
$$

$$
=\frac{1}{3} \lim _{\mathrm{h} \rightarrow 0} \frac{(\sin \pi \mathrm{~h})^{2}}{\pi \mathrm{~h}} \times \pi^{2}
$$

$$
=\frac{1}{3} \times(1)^{2} \times \pi^{2} \ldots\left[\begin{array}{l}
\because \mathrm{h} \rightarrow 0, \therefore \pi \mathrm{~h} \rightarrow 0 \\
\text { and } \lim _{\theta \rightarrow 0} \frac{\sin \theta}{\theta}=1
\end{array}\right]
$$

$$
=\frac{\pi^{2}}{3}
$$

$$
\therefore \quad \lim _{x \rightarrow 1} \mathrm{f}(x)=\mathrm{f}(1)
$$

$\therefore \quad \mathrm{f}(x)$ is continuous at $x=1$
5. $\quad f(x)=\frac{|x+1|}{2 x^{2}+x-1}$, for $x \neq-1$

$$
=0 \text { for } x=-1 \text { at } x=-1
$$

Solution:
$\lim _{x \rightarrow-1^{+}} \mathrm{f}(x)=\lim _{x \rightarrow-1^{+}} \frac{x+1}{2 x^{2}+x-1}$

$$
=\lim _{x \rightarrow-1^{+}} \frac{x+1}{(x+1)(2 x-1)}
$$

$$
=\lim _{x \rightarrow-1^{+}} \frac{-1}{2 x-1} \cdots\binom{\text { As } x \rightarrow-1, x \neq-1}{\therefore x+1 \neq 0}
$$

$$
=\frac{1}{2(-1)-1}
$$

$$
=\frac{-1}{3}
$$

$\therefore \quad \lim _{x \rightarrow-1^{-}} \mathrm{f}(x) \neq \lim _{x \rightarrow-1^{+}} \mathrm{f}(x)$
$\therefore \quad \mathrm{f}(x)$ is discontinuous at $x=-1$
6. $f(x)=[x+1]$ for $x \in[-2,2)$

Where [] is greatest integer function.

Solution:

$$
\begin{array}{rlrlrl}
\mathrm{f}(x) & =[x+1] & & ; & & x \in[-2,2) \\
\therefore & \mathrm{f}(x) & =-1 & & & ; \\
& =0 & & x \in[-2,-1) \\
& =1 & & ; & & x \in[-1,0) \\
& =2 & & & x \in[0,1) \\
& & & x \in[1,2)
\end{array}
$$

$$
\begin{aligned}
& |x+1|=x+1 \quad ; x \geq-1 \\
& =-(x+1) \quad ; x<-1 \\
& \therefore \quad \mathrm{f}(x)=\frac{-(x+1)}{2 x^{2}+x-1} \quad ; x<-1 \\
& =0 \quad ; x=-1 \\
& =\frac{x+1}{2 x^{2}+x-1} \quad ; x>-1 \\
& f(-1)=0 \\
& \lim _{x \rightarrow-1^{-}} \mathrm{f}(x)=\lim _{x \rightarrow-1^{-}} \frac{-(x+1)}{2 x^{2}+x-1} \\
& =\lim _{x \rightarrow-1^{-}} \frac{-(x+1)}{(x+1)(2 x-1)} \\
& =\lim _{x \rightarrow-1^{-}} \frac{-1}{2 x-1} \quad \ldots\left[\begin{array}{l}
\because x \rightarrow-1, \therefore x \neq-1 \\
\therefore x+1 \neq 0
\end{array}\right] \\
& =\frac{-1}{2(-1)-1} \\
& =\frac{1}{3}
\end{aligned}
$$

For continuity at $x=-1$

$$
\begin{aligned}
\lim _{x \rightarrow-1^{-}} \mathrm{f}(x) & =\lim _{x \rightarrow 1^{-}}[x+1] \\
& =-1
\end{aligned}
$$

$\lim _{x \rightarrow-+^{+}} \mathrm{f}(x)=\lim _{x \rightarrow-1^{+}}[x+1]$

$$
=0
$$

$\therefore \quad \lim _{x \rightarrow 1^{-}} \mathrm{f}(x)=\lim _{x \rightarrow-1^{+}} \mathrm{f}(x)$
$\mathrm{f}(x)$ is discontinuous at $x=-1$
Similarly $\mathrm{f}(x)$ is discontinuous at
The points $x=0$ and $x=1$
7. $\mathrm{f}(x)=2 x^{2}+x+1$, for $|x-3| \geq 2$

$$
=x^{2}+3, \quad \text { for } 1<x<5
$$

Solution:

$$
|x-3| \geq 2
$$

$$
\therefore \quad x-3 \geq 2 \text { or } x-3 \leq-2
$$

$$
\therefore \quad x \geq 5 \quad \text { or } \quad x \leq 1
$$

$$
\therefore \quad \mathrm{f}(x)=2 x^{2}+x+1 ; \quad x \leq 1
$$

$$
\begin{array}{lll}
=x^{2}+3 ; & ; & 1<x<5 \\
=2 x^{2}+x+1 & ; & x \geq 5
\end{array}
$$

Consider the intervals
$x<1 \quad$ i.e. $(-\infty, 1)$
$1<x<5$ i.e. $(1,5)$
$x>5 \quad$ i.e. $(5, \infty)$
In all these intervals $\mathrm{f}(x)$ is a polynomial function and hence is continuous at all points.
For continuity at $x=1$:

$$
\begin{aligned}
\lim _{x \rightarrow 1^{-}} \mathrm{f}(x) & =\lim _{x \rightarrow 1^{-}}\left(2 x^{2}+x+1\right) \\
& =2(1)^{2}+1+1 \\
& =4 \\
\lim _{x \rightarrow 1^{+}} \mathrm{f}(x) & =\lim _{x \rightarrow)^{+}}\left(x^{2}+3\right) \\
& =(1)^{2}+3 \\
& =4
\end{aligned}
$$

Also $f(1)=2(1)^{2}+1+1$

$$
=4
$$

$\therefore \quad \lim _{x \rightarrow 1^{-}} \mathrm{f}(x)=\lim _{x \rightarrow 1^{+}} \mathrm{f}(x)=\mathrm{f}(1)$
$\therefore \mathrm{f}(x)$ is continuous at $x=1$

For continuity at $x=5$:

$$
\begin{aligned}
\lim _{x \rightarrow 5^{-}} \mathrm{f}(x) & =\lim _{x \rightarrow 5^{-}}\left(x^{2}+3\right) \\
& =(5)^{2}+3 \\
& =28
\end{aligned}
$$

$$
\begin{aligned}
\lim _{x \rightarrow 5^{+}} \mathrm{f}(x) & =\lim _{x \rightarrow 5^{+}}\left(2 x^{2}+x+1\right) \\
& =2(5)^{2}+5+1 \\
& =56
\end{aligned}
$$

$\therefore \quad \lim _{x \rightarrow 5^{-}} \mathrm{f}(x) \neq \lim _{x \rightarrow 5^{+}} \mathrm{f}(x)$
$\therefore \quad \mathrm{f}(x)$ is discontinuous at $x=5$
$\therefore \quad \mathrm{f}(x)$ is continuous for all $x \in \mathrm{R}$, except at $x=5$
III. Identify discontinuous if any for the following functions as either a jump of a removable discontinuity in their respective domains.

1. $f(x)=x^{2}+x-3, \quad$ for $x \in[-5,-2)$

$$
=x^{2}-5, \quad \text { for } \quad x \in(-2,5]
$$

Solution:

$\mathrm{f}(-2)$ has not been defined

$$
\begin{aligned}
\lim _{x \rightarrow-2} \mathrm{f}(x) & =\lim _{x \rightarrow-2}\left(x^{2}+x-3\right) \\
& =(-2)^{2}+(-2)-3 \\
& =4-2-3 \\
& =-1 \\
\lim _{x \rightarrow-2^{+}} \mathrm{f}(x) & =\lim _{x \rightarrow-2^{+}}\left(x^{2}-5\right) \\
& =(-2)^{2}-5 \\
& =4-5 \\
& =-1 \\
\therefore \quad \lim _{x \rightarrow-2^{-}} \mathrm{f}(x) & =\lim _{x \rightarrow-2^{+}} \mathrm{f}(x) \\
\therefore \quad \lim _{x \rightarrow-2} \mathrm{f}(x) & =-1
\end{aligned}
$$

But $f(-2)$ has not been defined
$\therefore \quad \mathrm{f}(x)$ has a removable discontinuity at $x=-2$
2. $f(x)=x^{2}+5 x+1$, for $0 \leq x \leq 3$

$$
=x^{3}+x+5, \quad \text { for } \quad 3<x \leq 6
$$

Solution:

$$
\begin{aligned}
\lim _{x \rightarrow 3^{-}} f(x) & =\lim _{x \rightarrow 3^{-}}\left(x^{2}+5 x+1\right) \\
& =\lim _{x \rightarrow 3^{-}}(3)^{2}+5(3)+1 \\
& =9+15+1 \\
& =25
\end{aligned}
$$

$$
\begin{aligned}
\lim _{x \rightarrow 3^{+}} \mathrm{f}(x) & =\lim _{x \rightarrow 3^{+}}\left(x^{3}+x+5\right) \\
& =(3)^{3}+3+5 \\
& =35
\end{aligned}
$$

$\therefore \quad \lim _{x \rightarrow 3^{-}} \mathrm{f}(x) \neq \lim _{x \rightarrow 3^{+}} \mathrm{f}(x)$
$\therefore \quad \lim _{x \rightarrow 3} \mathrm{f}(x)$ does not exist
$\therefore \quad \mathrm{f}(x)$ is discontinuous at $x=3$
$\therefore \quad \mathrm{f}(x)$ has a jump discontinuity at $x=3$
3. $f(x)=\frac{x^{2}+x+1}{x+1}$, for $x \in[0,3)$

$$
=\frac{3 x+4}{x^{2}-5}, \text { for } x \in[3,6] .
$$

Solution:

$$
\begin{aligned}
& \lim _{x \rightarrow 3^{-}} \mathrm{f}(x)=\lim _{x \rightarrow 3^{-}} \frac{x^{2}+x+1}{x+1} \\
&=\frac{\lim _{x \rightarrow 3^{-}}\left(x^{2}+x+1\right)}{\lim _{x \rightarrow 3^{-}}(x+1)} \\
&=\frac{(3)^{2}+3+1}{3+1} \\
&=\frac{13}{4} \\
&=\frac{\lim _{x \rightarrow 3^{+}}(3 x+4)}{\lim _{x \rightarrow 3^{+}}\left(x^{2}-5\right)}=\frac{3(3)+4}{(3)^{2}-5} \\
&=\frac{13}{4} \\
&=\frac{\lim _{x \rightarrow 3^{+}} \frac{3 x+4}{x^{2}-5}}{4} \\
& \begin{array}{ll}
\operatorname{Also} \mathrm{f}(3) & =\frac{3(3)+4}{(3)^{2}-5} \\
& =\quad \frac{13}{4} \\
\therefore \quad & \lim _{x \rightarrow 3^{-}} \mathrm{f}(x)
\end{array} \\
& \therefore \mathrm{f}(x) \text { is continuous at } x=3 .
\end{aligned}
$$

IV. Discuss the continuity of the following functions at the point or on the interval indicated against them. If the function is discontinuous, identify the type of discontinuity and state whether the discontinuity is removable. If it has a removable discontinuity, redefine the function so that it becomes continuous.

1. $\mathrm{f}(x)=\frac{(x+3)\left(x^{2}-6 x+8\right)}{x^{2}-x-12}$

Solution:

$$
\begin{aligned}
& \mathrm{f}(x)=\frac{(x+3)\left(x^{2}-6 x+8\right)}{x^{2}-x-12} \\
& \mathrm{f}(x)=\frac{(x+3)\left(x^{2}-6 x+8\right)}{(x-4)(x+3)}
\end{aligned}
$$

$\therefore \quad \mathrm{f}(x)$ is not defined at for $x=4$ and $x=-3$
$\therefore \quad$ The domain of function $\mathrm{f}=\mathrm{R}-\{-3,4\}$
For $x \neq-3,4$
$\mathrm{f}(x)=\frac{(x+3)(x-2)(x-4)}{(x-4)(x+3)}$
$\therefore \quad \mathrm{f}(x)=x-2 \quad x \neq-3,4$
$\therefore \quad \mathrm{f}(-3)=-5$ and $\mathrm{f}(4)=2$
$\mathrm{f}(x)$ is discontinuous $x=4$ and $x=-3$
This discontinuity is removable.
$\therefore \quad \mathrm{f}(x)$ can be redefined as

$$
\begin{array}{rlrl}
\mathrm{f}(x) & =\frac{(x+3)\left(x^{2}-6 x+8\right)}{x^{2}-x-12} \\
& =-5 & \text { for } x=-3 \\
& =2 & & \text { for } x=4
\end{array}
$$

2. $\mathrm{f}(x)=x^{2}+2 x+5$, for $x \leq 3$

$$
=x^{2}-2 x^{2}-5, \text { for } x>3
$$

Solution:

$$
\begin{aligned}
\lim _{x \rightarrow 3^{-}} \mathrm{f}(x) & =\lim _{x \rightarrow 3^{-}}\left(x^{2}+2 x+5\right) \\
& =(3)^{2}+2(3)+5 \\
& =9+6+5 \\
& =20 \\
\lim _{x \rightarrow 3^{+}} \mathrm{f}(x) & =\lim _{x \rightarrow 3^{+}}\left(x^{3}-2 x^{2}-5\right) \\
& =(3)^{3}+2(3)^{2}-5 \\
& =27-18-5 \\
& =4
\end{aligned}
$$

$\therefore \quad \lim _{x \rightarrow 3^{-}} \mathrm{f}(x) \neq \lim _{x \rightarrow 3^{+}} \mathrm{f}(x)$
$\therefore \quad \lim _{x \rightarrow 3} \mathrm{f}(x)$ does not exist
$\therefore \quad \mathrm{f}(x)$ is discontinuous at $x=3$
This continuity is irremovable.
V. Find k if following functions are continuous at the points indicated against them.

1. $\mathrm{f}(x)=\left(\frac{5 x-8}{8-3 x}\right)^{\frac{3}{2 x-4}}$, for $x \neq 2$

$$
=\mathrm{k}, \quad \text { for } x=2 \text { at } x=2 .
$$

Solution:

1. $\mathrm{f}(x)$ is continuous at $x=2$
$\therefore \quad \mathrm{f}(2)=\lim _{x \rightarrow 2} \mathrm{f}(x)$
$\therefore \quad \mathrm{k}=\lim _{x \rightarrow 2}\left(\frac{5 x-8}{8-3 x}\right)^{\frac{2}{2 x-1}}$
Put $x-2=\mathrm{h}$
$x=2+h$
As $x \rightarrow 2, \mathrm{~h} \rightarrow 0$
$k=\lim _{h \rightarrow 0}\left[\frac{5(2+h)-8}{8-3(2+h)}\right]^{\frac{3}{2 h}}$

$$
\begin{aligned}
& =\lim _{h \rightarrow 0}\left(\frac{10+5 h-8}{8-6-3 h}\right)^{\frac{3}{2 h}} \\
& =\lim _{h \rightarrow 0}\left(\frac{2+5 h}{2-3 h}\right)^{\frac{3}{2 h}}
\end{aligned}
$$

$=\lim _{\mathrm{h} \rightarrow 0}\left[\frac{2\left(1+\frac{5 \mathrm{~h}}{2}\right)}{2\left(1-\frac{3 \mathrm{~h}}{2}\right)}\right]^{\frac{3}{2 \mathrm{~h}}}$
$=\lim _{h \rightarrow 0} \frac{\left(1+\frac{5 h}{2}\right)^{\frac{3}{2 h}}}{\left(1-\frac{3 h}{2}\right)^{\frac{3}{2 h}}}$
$=\lim _{\mathrm{h} \rightarrow 0}\left[\left(1+\frac{5 \mathrm{~h}}{2}\right)^{\frac{2}{5 \mathrm{~h}}}\right]^{\frac{5}{2} \times \frac{3}{2}}$
$\lim _{h \rightarrow 0}\left[\left(1-\frac{3 h}{2}\right)^{\frac{-2}{3 h}}\right]^{\frac{-3}{2}}$
$=\frac{\mathrm{e}^{\frac{15}{4}}}{\mathrm{e}^{\frac{-9}{4}}} \quad \cdots\left[\begin{array}{l}\because \mathrm{h} \rightarrow 0, \frac{5 \mathrm{~h}}{2} \rightarrow 0, \frac{-3 \mathrm{~h}}{2} \rightarrow 0 \\ \text { and } \lim _{x \rightarrow 0}(1+x)^{\frac{1}{x}}=\mathrm{e}\end{array}\right]$
$=\mathrm{e}^{\frac{24}{4}}$
$=e^{6}$
2. $\mathrm{f}(x)=\frac{45^{x}-9^{x}-5^{x}+1}{\left(\mathrm{k}^{x}-1\right)\left(3^{x}-1\right)}$, for $x \neq 0$

$$
=\frac{2}{3}, \quad \text { for } x=0, \text { at } x=0
$$

Solution:

$\mathrm{f}(x)$ is continuous at $x=0$
$\therefore \quad \lim _{x \rightarrow 0} \mathrm{f}(x)=\mathrm{f}(0)$
$\therefore \quad \lim _{x \rightarrow 0} \frac{(45)^{x}-9^{x}-5^{x}+1}{\left(\mathrm{k}^{x}-1\right)\left(3^{x}-1\right)}=\frac{2}{3}$
$\therefore \quad \lim _{x \rightarrow 0} \frac{9^{x} \cdot 5^{x}-9^{x}-5^{x}+1}{\left(\mathrm{k}^{x}-1\right)\left(3^{x}-1\right)}=\frac{2}{3}$
$\therefore \quad \lim _{x \rightarrow 0} \frac{9^{x}\left(5^{x}-1\right)-1\left(5^{x}-1\right)}{\left(\mathrm{k}^{x}-1\right)\left(3^{x}-1\right)}=\frac{2}{3}$
$\therefore \quad \lim _{x \rightarrow 0} \frac{\left(5^{x}-1\right)\left(9^{x}-1\right)}{\left(\mathrm{k}^{x}-1\right)\left(3^{x}-1\right)}=\frac{2}{3}$
$\therefore \quad \lim _{x \rightarrow 0} \frac{\frac{\left(5^{x}-1\right)\left(9^{x}-1\right)}{x^{2}}}{\frac{\left(\mathrm{k}^{x}-1\right)\left(3^{x}-1\right)}{x^{2}}}=\frac{2}{3}$
$\ldots\left[\begin{array}{l}\text { Divide Numerator and Deno min ator } \\ \text { by } x^{2} \\ \because x \rightarrow 0, \therefore x \neq 0 \quad \therefore x^{2} \neq 0\end{array}\right]$
$\therefore \quad \frac{\lim _{x \rightarrow 0}\left(\frac{5^{x}-1}{x}\right)\left(\frac{9^{x}-1}{x}\right)}{\lim _{x \rightarrow 0}\left(\frac{\mathrm{k}^{x}-1}{x}\right)\left(\frac{3^{x}-1}{x}\right)}=\frac{2}{3}$
$\therefore \frac{\left(\lim _{x \rightarrow 0} \frac{5^{x}-1}{x}\right) \cdot\left(\lim _{x \rightarrow 0} \frac{9^{x}-1}{x}\right)}{\left(\lim _{x \rightarrow 0} \frac{\mathrm{k}^{x}-1}{x}\right) \cdot\left(\lim _{x \rightarrow 0} \frac{3^{x}-1}{x}\right)}=\frac{2}{3}$
$\therefore \quad \frac{\log 5 \cdot \log 9}{\log \mathrm{k} \cdot \log 3}=\frac{2}{3}$
$\ldots\left[\because \lim _{x \rightarrow 0} \frac{\mathrm{a}^{x}-1}{x}=\log \mathrm{a}\right]$
$\therefore \quad \frac{\log 5 \cdot \log (3)^{2}}{\log \mathrm{k} \cdot \log 3}=\frac{2}{3}$
$\therefore \quad \frac{\log 5 \times \log 3}{\log \mathrm{k} \times \log 3}=\frac{1}{3}$
$\therefore \quad 3 \log 5=\log \mathrm{k}$
$\therefore \quad \log (5)^{3}=\log \mathrm{k}$
$\therefore \quad(5)^{3}=\mathrm{k}$
$\therefore \quad \mathrm{k}=125$
VI. Find a and b if following functions are continuous at the points or on the interval indicated against them.

1. $\mathrm{f}(x)=\frac{4 \tan x+5 \sin x}{\mathrm{a}^{x}-1}$, for $x<0$

$$
\begin{aligned}
& =\frac{9}{\log 2}, \quad x=0 \\
& =\frac{11 x+7 x \cdot \cos x}{b^{x}-1}, \text { for } x<0
\end{aligned}
$$

Solution:

1. $\mathrm{f}(x)$ is continuous at $x=0$
$\therefore \quad \lim _{x \rightarrow 0^{-}} \mathrm{f}(x)=\mathrm{f}(0)$

$$
\therefore \quad \lim _{x \rightarrow 0}\left(\frac{4 \tan x+5 \sin x}{\mathrm{a}^{x}-1}\right)=\frac{9}{\log 2}
$$

$\therefore \quad \lim _{x \rightarrow 0}\left(\frac{\frac{4 \tan x+5 \sin x}{x}}{\frac{\mathrm{a}^{x}-1}{x}}\right)$ $\ldots[\because x \rightarrow 0, x \neq 0]$

$$
=\frac{9}{\log 2}
$$

$$
\frac{\lim _{x \rightarrow 0}\left(\frac{4 \tan x}{x}+\frac{5 \sin x}{x}\right)}{\lim _{x \rightarrow 0} \frac{\mathrm{a}^{x}-1}{x}}=\frac{9}{\log 2}
$$

$\therefore \quad \frac{4 \lim _{x \rightarrow 0} \frac{\tan x}{x}+5 \lim _{x \rightarrow 0} \frac{\sin x}{x}}{\lim _{x \rightarrow 0} \frac{\mathrm{a}^{x}-1}{x}}=\frac{9}{\log 2}$
$\therefore \quad \frac{4(1)+5(1)}{\log \mathrm{a}}=\frac{9}{\log 2} \quad \ldots\left[\because \lim _{x \rightarrow 0} \frac{\mathrm{a}^{x}-1}{x}=\log \mathrm{a}\right]$

$$
\begin{array}{ll}
\therefore & \frac{9}{\log a}=\frac{9}{\log 2} \\
\therefore & \log a=\log 2 \\
\therefore & a=2
\end{array}
$$

Also $\lim _{x \rightarrow 0^{+}} \mathrm{f}(x)=\mathrm{f}(0)$
$\therefore \quad \lim _{x \rightarrow 0} \frac{11 x+7 x \cdot \cos x}{\mathrm{~b}^{x}-1}=\frac{9}{\log 2}$
$\therefore \quad \lim _{x \rightarrow 0} \frac{\frac{11 x+7 x \cos x}{x}}{\frac{\mathbf{b}^{x}-1}{x}}=\frac{9}{\log 2}$
$\therefore \quad \frac{\lim _{x \rightarrow 0}(11+7 \cos x)}{\lim _{x \rightarrow 0}\left(\frac{\mathrm{~b}^{x}-1}{x}\right)}=\frac{9}{\log 2}$
$\therefore \quad \frac{11+7 \cos 0}{\log \mathrm{~b}}=\frac{9}{\log 2} \quad \ldots\left[\because \lim _{x \rightarrow 0} \frac{\mathrm{a}^{x}-1}{x}=\log \mathrm{a}\right]$
$\therefore \quad \frac{11+7(1)}{\log b}=\frac{9}{\log 2}$
$\therefore \quad 9 \log \mathrm{~b}=18 \log 2$
$\log b=2 \log 2$
$\begin{aligned} & =\log (2)^{2} \\ \log b & =\log 4\end{aligned}$
$b=4$
$\therefore \quad a=2$ and $b=4$
2. $f(x)=a x^{2}+b x+1$, for $|2 x-3| \geq 2$

$$
=3 x+2, \quad \text { for } \frac{1}{2}<x<\frac{5}{2}
$$

Solution:

$$
|2 x-3| \geq 2
$$

$$
\therefore \quad 2 x-3 \geq 2 \quad \text { or } \quad 2 x-3 \leq-2
$$

$\therefore \quad 2 x \geq 5$
$\therefore \quad x \geq \frac{5}{2}$
or
$2 x \leq 1$
$\therefore \quad \mathrm{f}(x)$ is redefined as

$$
\begin{array}{rlrl}
\mathrm{f}(x) & =\mathrm{a} x^{2}+\mathrm{b} x+1 ; & & x \leq \frac{1}{2} \\
& =3 x+2 & ; & \\
& \frac{1}{2}<x<\frac{5}{2} \\
& =\mathrm{a} x^{2}+\mathrm{b} x+1 ; & & x \geq \frac{5}{2}
\end{array}
$$

$\mathrm{f}(x)$ is continuous everywhere on its domain
$\therefore \quad \mathrm{f}(x)$ is continuous at $x=\frac{1}{2}$ and $x=\frac{5}{2}$
As $\mathrm{f}(x)$ is continuous at $x=\frac{1}{2}$
$\therefore \quad \lim _{x \rightarrow \frac{1^{-}}{2}} \mathrm{f}(x)=\lim _{x \rightarrow \frac{1^{+}}{2}} \mathrm{f}(x)$
$\therefore \quad \lim _{x \rightarrow \frac{1}{2}^{-}}\left(\mathrm{a} x^{2}+\mathrm{b} x+1\right)=\lim _{x \rightarrow \frac{1}{2}^{+}}(3 x+2)$
$\therefore \quad a\left(\frac{1}{2}\right)^{2}+b\left(\frac{1}{2}\right)+1=3\left(\frac{1}{2}\right)+2$
$\therefore \quad \frac{\mathrm{a}}{4}+\frac{\mathrm{b}}{4}+1=\frac{7}{2}$
$\therefore \quad a+2 b+4=14$
...[Multiplying by 4]
$\therefore \quad a+2 b=10$
Also $\mathrm{f}(x)$ is continuous at $x=\frac{5}{2}$
$\therefore \quad \lim _{x \rightarrow \frac{5^{-}}{2}} \mathrm{f}(x)=\lim _{x \rightarrow \frac{5^{+}}{2}} \mathrm{f}(x)$
$\therefore \quad \lim _{x \rightarrow \frac{5^{-}}{2}}(3 x+2)=\lim _{x \rightarrow \frac{5^{+}}{2}}\left(\mathrm{a} x^{2}+\mathrm{b} x+1\right)$
$\therefore \quad 3\left(\frac{5}{2}\right)+2=\mathrm{a}\left(\frac{5}{2}\right)^{2}+\mathrm{b}\left(\frac{5}{2}\right)+1$
$\therefore \quad \frac{15}{2}+2=\frac{25 a}{4}+\frac{5 b}{2}+1$
$\therefore \quad 30+8=25 a+10 b+4$
...[Multiplying both sides by 4]
$\therefore \quad 25 a+10 b=34$
Multiplyinig (i) by 5, we get
$5 a+10 b=50$
Subtract (iii) from (ii),
$20 a=-16$
$\therefore \quad a=\frac{-16}{20}=\frac{-4}{5}$
Substituting $\mathrm{a}=\frac{-4}{5}$ in (iii), we get
$5\left(\frac{-4}{5}\right)+10 b=50$
$\therefore \quad-4+10 b=50$
$\therefore \quad 10 b=54$
$\therefore \quad \mathrm{b}=\frac{54}{10}=\frac{27}{5}$
$\therefore \quad a=\frac{-4}{5}, b=\frac{27}{5}$
VII. Find $f(a)$, if f is continuous at $x=a$ where,

1. $\mathrm{f}(x)=\frac{1+\cos (\pi x)}{\pi(1-x)^{2}}$, for $x \neq 1$ and at $\mathrm{a}=1$.

Solution:

$\mathrm{f}(x)$ is continuous at $x=1$
$\therefore \quad \mathrm{f}(1)=\lim _{x \rightarrow 1} \mathrm{f}(x)$
$\mathrm{f}(1)=\lim _{x \rightarrow 1} \frac{1+\cos \pi x}{\pi(1-x)^{2}}$
Put $1-x=\mathrm{h}$
$\therefore \quad x=1-\mathrm{h}$
As $x \rightarrow 1, \mathrm{~h} \rightarrow 0$
$\therefore \mathrm{f}(1)=\lim _{\mathrm{h} \rightarrow 0} \frac{1+\cos [\pi(1-\mathrm{h})]}{\pi \mathrm{h}^{2}}$
$=\lim _{\mathrm{h} \rightarrow 0} \frac{1+\cos (\pi-\pi \mathrm{h})}{\pi \mathrm{h}^{2}}$

$$
\begin{aligned}
& =\lim _{h \rightarrow 0} \frac{1-\cos \pi h}{\pi h^{2}} \\
& =\lim _{h \rightarrow 0} \frac{1-\cos \pi h}{\pi h^{2}} \times \frac{1+\cos \pi h}{1+\cos \pi h} \\
& =\lim _{h \rightarrow 0} \frac{1-\cos ^{2} \pi h}{\pi h^{2}(1+\cos \pi h)} \\
& =\frac{1}{\pi} \lim _{h \rightarrow 0} \frac{\sin ^{2} \pi \mathrm{~h}}{\mathrm{~h}^{2}(1+\cos \pi \mathrm{h})} \\
& =\frac{1}{\pi} \lim _{\mathrm{h} \rightarrow 0}\left(\frac{\sin \pi \mathrm{~h}}{\mathrm{~h}}\right)^{2} \times \frac{1}{1+\cos \pi h} \\
& =\frac{1}{\pi} \lim _{\mathrm{h} \rightarrow 0}\left(\frac{\sin \pi \mathrm{~h}}{\pi \mathrm{~h}}\right)^{2} \times \pi^{2} \times \frac{1}{\lim _{\mathrm{h} \rightarrow 0}(1+\cos \pi \mathrm{h})} \\
& \left.=\frac{1}{\pi} \times(1)^{2} \times \pi^{2} \times \frac{1}{1+1} \times \operatorname{As} \mathrm{h} \rightarrow 0, \pi \mathrm{~h} \rightarrow 0\right] \\
& =\frac{\pi}{2}
\end{aligned}
$$

2. $\quad f(x)=\frac{1-\cos [7(x-\pi)]}{5(x-\pi)^{2}}$, for $x \neq \pi$ and at $\mathrm{a}=\pi$.

Solution:

f is continuous at $x=\pi$.
$\therefore \quad \mathrm{f}(\pi)=\lim _{x \rightarrow \pi} \mathrm{f}(x)=\lim _{x \rightarrow \pi} \frac{1-\cos [7(x-\pi)]}{5(x-\pi)^{2}}$
Put $x-\pi=\mathrm{h}$, as $x \rightarrow \pi, \mathrm{~h} \rightarrow 0$
$\therefore \quad \mathrm{f}(\pi)=\lim _{\mathrm{h} \rightarrow 0} \frac{1-\cos 7 \mathrm{~h}}{5 \mathrm{~h}^{2}}$

$$
=\lim _{h \rightarrow 0} \frac{2 \sin ^{2}\left(\frac{7 h}{2}\right)}{5 h^{2}}
$$

$$
=\frac{2}{5} \lim _{\mathrm{h} \rightarrow 0} \frac{\sin ^{2}\left(\frac{7 \mathrm{~h}}{2}\right)}{\left(\frac{7 \mathrm{~h}}{2}\right)^{2}} \times\left(\frac{7}{2}\right)^{2}
$$

$$
=\frac{2}{5}\left[\lim _{\mathrm{h} \rightarrow 0} \frac{\sin \left(\frac{7 \mathrm{~h}}{2}\right)}{\left(\frac{7 \mathrm{~h}}{2}\right)}\right]^{2} \times \frac{49}{4}
$$

$$
=\frac{2}{5} \times(1)^{2} \times \frac{49}{4} \quad \ldots\left[\because \lim _{\theta \rightarrow 0} \frac{\sin \theta}{\theta}=1\right]
$$

$\therefore \mathrm{f}(\pi)=\frac{49}{10}$

VIII. Solve using intermediate value theorem.

1. Show that $5^{x}-6 x=0$ has a root in [1, 2]

Solution:

1. Let $\mathrm{f}(x)=5^{x}-6 x$.
5^{x} and $6 x$ are continuous functins for all $x \in \mathrm{R}$.
$\therefore \quad 5^{x}-6 x$ is also continuous for all $x \in \mathrm{R}$.
i.e. $\mathrm{f}(x)$ is continuous for all $x \in \mathrm{R}$.

A root of $\mathrm{f}(x)$ exists if $\mathrm{f}(x)=0$ for at least one value of x.
$\mathrm{f}(1)=5^{1}-6(1)$
$=-1<0$
$f(2)=(5)^{2}-6(2)$

$$
=13>0
$$

$\therefore \quad \mathrm{f}(1)<0$ and $\mathrm{f}(2)>0$
By intermediate value theorem, there has to be a point ' c ' between 1 and 2 such that $f(c)=0$.
$\therefore \quad$ There is a root of the given equation in $[1,2]$.
2. Show that $x^{3}-5 x^{2}+3 x+6=0$ has at least two real roots between $x=1$ and $x=5$.

Solution:

Let $\mathrm{f}(x)=x^{3}-5 x^{2}+3 x+6$.
$\mathrm{f}(x)$ is a polynomial function and hence it is continuous for all $x \in \mathrm{R}$.
A root of $\mathrm{f}(x)$ exists if $\mathrm{f}(x)=0$ for at least one value of x.
Here we have been asked to show that $\mathrm{f}(x)$ has at least two roots between $x=1$ and $x=5$.

$$
\begin{aligned}
\mathrm{f}(1) & =(1)^{3}-5(1)^{2}+3(1)+6 \\
& =5>0 \\
\mathrm{f}(2) & =(2)^{3}-5(2)^{2}+3(2)+6 \\
& =8-20+6+6 \\
& =0 \\
\therefore \quad x= & 0 \text { is a root of } \mathrm{f}(x) .
\end{aligned}
$$

Also $f(3)=(3)^{3}-5(3)^{2}+3(3)+6$

$$
\begin{aligned}
& =27-45+9+6 \\
& =-3<0
\end{aligned}
$$

$$
\begin{aligned}
\mathrm{F}(4) & =(4)^{3}-5(4)^{2}+3(4)+6 \\
& =64-80+12+6 \\
& =2>0
\end{aligned}
$$

$\therefore \quad \mathrm{f}(3)<0$ and $\mathrm{f}(4)>0$
$\therefore \quad$ By intermediate value theorem, there has to be point ' c ' between 3 and 4 such that $\mathrm{f}(\mathrm{c})=0$.
$\therefore \quad$ There are two roots, $x=2$ and a root between $x=3$ and $x=4$.
Thus there are at least two roots of the given equation between $x=1$ and $x=5$.

Activities for Practice

Let $\mathrm{f}(x)=\frac{1-\sqrt{2} \sin x}{\pi-4 x}, x \neq \frac{\pi}{4}$

$$
=\mathrm{a}, \quad x=\frac{\pi}{4}
$$

If function f is continuous at $x=\frac{\pi}{4}$ then evaluate a by completing the activity.

Solution:

$\because \quad$ function f is continuous at $x=\frac{\pi}{4}$
$\therefore \quad \mathrm{f}\left(\frac{\pi}{4}\right)=\lim _{x \rightarrow \frac{\pi}{4}} \mathrm{f}(x)$
Let $x=\frac{\pi}{4}-\mathrm{t}$
$\therefore \quad a=\lim _{t \rightarrow 0} \frac{1-\sqrt{2} \sin \left(\frac{\pi}{4}-t\right)}{\square}$

$$
\begin{equation*}
=\square \lim _{t \rightarrow 0} \frac{1-\cos t+\sin t}{t} \tag{i}
\end{equation*}
$$

Consider, $\lim _{t \rightarrow 0} \frac{1-\cos t}{t}=\lim _{t \rightarrow 0} \frac{2 \sin ^{2}\left(\frac{t}{2}\right)}{2\left(\frac{t}{2}\right)}$

$$
\begin{equation*}
=\lim _{\mathrm{t} \rightarrow 0}\left(\frac{\sin \left(\frac{\mathrm{t}}{2}\right)}{\frac{\mathrm{t}}{2}} \cdot \sin \left(\frac{\mathrm{t}}{2}\right)\right) \tag{ii}
\end{equation*}
$$

By substituting (ii) in (i), we get
$a=\square\left[\lim _{t \rightarrow 0}\left(\left(\frac{\sin \frac{t}{2}}{\frac{t}{2}}\right) \cdot \sin \left(\frac{t}{2}\right)\right)+\lim _{t \rightarrow 0}\left(\frac{\sin t}{t}\right)\right]$
$\therefore \quad \mathrm{a}=\square$
2. Let $\mathrm{f}(x)=\cos \pi(|x|+[x]),-1 \leq x \leq 1$, where [] represents greatest integer function. Show that f is a discontinuous function, by completing the activity.

Solution:

$\mathrm{f}(x)=\cos \pi(\square), \quad-1 \leq x<0$
$=\cos \pi(\square)$), $0 \leq x<1$
$\therefore \mathrm{f}(x)=-\cos \pi x, \quad-1 \leq x<0$
$=\cos \pi x, 0 \leq x<0$
In $(-1,0) \cup(0,1)$, f is continuous as cosine function is continuous.

Continuity at $\boldsymbol{x}=0$:

L. h. lim. $=\lim _{x \rightarrow 0^{-}}(-\cos \pi x)=\square$
R. h. lim. $=\lim _{x \rightarrow 0^{+}}(\cos \pi x)=\square$
$\because \quad$ L. h. $\lim \neq$ R. h. lim
$\therefore \quad \mathrm{f}$ is not continuous at $x=0$
$\therefore \quad \mathrm{f}$ is a discontinuous function in $(-1,1)$.
3. Let a function f be defined as
$\mathrm{f}(x)=\frac{\sqrt{1+\mathrm{p} x}-\sqrt{1-\mathrm{p} x}}{x},-1 \leq x<0$
$=\frac{2 x+1}{x-2}$
, $0 \leq x \leq 1$
If the function f is continuous in the interval $[-1,1]$ then to evaluate p, complete the activity.

Solution:

$\because \quad \mathrm{f}$ is continuous in $[-1,1]$
$\therefore \quad \mathrm{f}$ is continuous at $x=0$.
$\therefore \quad \lim _{x \rightarrow 0^{-}} \mathrm{f}(x)=\lim _{x \rightarrow 0^{+}} \mathrm{f}(x)=\mathrm{f}(0)$
$\therefore \quad \lim _{x \rightarrow 0^{-}} \frac{\sqrt{1+\mathrm{p} x}-\sqrt{1-\mathrm{p} x}}{x}=\lim _{x \rightarrow 0^{+}} \frac{2 x+1}{x-2}$
On Rationalizing, we get
$\therefore \quad \lim _{x \rightarrow 0^{-}} \frac{(1+\mathrm{p} x)-(1-\mathrm{p} x)}{x(\sqrt{1+\mathrm{p} x}+\sqrt{1-\mathrm{p} x})}=\square$
$\lim _{x \rightarrow 0} \frac{\square}{\sqrt{1+\mathrm{p} x}+\sqrt{1-\mathrm{p} x}}=\square$
$\therefore \quad \mathrm{p}=\square$
4. Let a function f be defined as
$\mathrm{f}(x)=[\tan x]+\{\tan x\}, x \in\left(\frac{\pi}{4}-\delta, \frac{\pi}{4}+\delta\right)$
where δ is a small positive number. Show that function f is a continuous at $x=0$, by completing the activity.

Solution:

When $x<\frac{\pi}{4}$, then $0<\tan x<1$
$\therefore \quad\{\tan x\}=\tan x$
When $x=\frac{\pi}{4}$, then $\tan x$ is an integer
$\therefore \quad\{\tan x\}=0$
When $x>\frac{\pi}{4}$, then $\tan x>1$ but less than 2

$$
\begin{aligned}
\{\tan x\} & =\tan x-[\tan x] \\
& =\tan x-1
\end{aligned}
$$

$\begin{array}{lrl}\therefore & \{\tan x\} & =t \\ & = & \text { Let us write the explicit } \\ & \text { for } x \in\left(\frac{\pi}{4}-\delta, \frac{\pi}{4}+\delta\right)\end{array}$

$$
\begin{aligned}
\mathrm{f}(x) & =0+\sqrt{\square} & & x<\frac{\pi}{4} \\
& =1 & & x=\frac{\pi}{4} \\
& =1+\sqrt{\square} & & x>\mathrm{c}
\end{aligned}
$$

$\therefore \quad$ L. h. $\lim =\lim _{x \rightarrow \frac{\pi^{-}}{4}} \mathrm{f}(x)=\square$ and
R. h. $\lim =\lim _{\mathrm{I}^{+}} \mathrm{f}(x)=$
\square
$\because \quad$ L. h. $\lim =$ R. h. $\lim =f\left(\frac{\pi}{4}\right)$
$\therefore \quad \mathrm{f}$ is continuus at $x=\frac{\pi}{4}$
5. If the following function is continuous at $x=0$, find a and b .

$$
\begin{aligned}
\mathrm{f}(x) & =x^{2}+\mathrm{a} & & \text { for } x>0 \\
& =2 \sqrt{x^{2}+1}+\mathrm{b} & , & \text { for } x<0 \\
& =2 & & , \text { for } x=0
\end{aligned}
$$

Solution:

Given
$\begin{array}{rlrl}\mathrm{f}(x) & =x^{2}+\mathrm{a} & & , \text { for } x>0 \\ & =2 \sqrt{x^{2}+1}+\mathrm{b} & , \text { for } x<0\end{array}$
$\lim _{x \rightarrow 0^{+}} \mathrm{f}(x)=\lim _{x \rightarrow 0^{+}}\left(x^{2}+\mathrm{a}\right)$
$\lim _{x \rightarrow 0^{+}} \mathrm{f}(x)=\square$
Since, $\mathrm{f}(x)$ is continuous at $x=0$
$\therefore \quad \lim _{x \rightarrow 0^{+}} \mathrm{f}(x)=\mathrm{f}(0)$
$\therefore \quad \mathrm{a}=\square$
$\lim _{x \rightarrow 0^{-}} \mathrm{f}(x)=\lim _{x \rightarrow 0^{-}}\left(2 \sqrt{x^{2}+1}+\mathrm{b}\right)$
$\therefore \quad \lim _{x \rightarrow 0^{-}} \mathrm{f}(x)=\square+\mathrm{b}$
Since, $\mathrm{f}(x)$ is continuous at $x=0$.
$\therefore \quad \lim _{x \rightarrow 0^{-}} \mathrm{f}(x)=\mathrm{f}(0)$
$\therefore \quad \mathrm{b}=$

6. If $\mathrm{f}(x)=\frac{x^{2}-4}{x-2}$, for $x \neq 2$ is continuous at $x=2$, then find $\mathrm{f}(2)$.

Solution:

$$
\begin{array}{ll}
& \mathrm{f}(x)=\frac{x^{2}-4}{x-2} \\
& \lim _{x \rightarrow 2} \mathrm{f}(x)=\lim _{x \rightarrow 2} \frac{x^{2}-4}{x-2} \\
& =\lim _{x \rightarrow 2} \frac{(x+\square)(x-\square)}{x-2} \\
\therefore \quad & \lim _{x \rightarrow 2} \mathrm{f}(x)=\square \\
& \text { Since, } \mathrm{f}(x) \text { is continuous at } x=2 . \\
\therefore \quad & \lim _{x \rightarrow 2} \mathrm{f}(x)=\mathrm{f}(2) \\
\therefore \quad & \mathrm{f}(2)=\square
\end{array}
$$

7. Determine whether the function ' f ' is continuous on its domain

$$
\begin{aligned}
\mathrm{f}(x) & =3 x+1, & & x<2 \\
& =7, & & 2 \leq x<4 \\
& =x^{2}-8, & & x \geq 4
\end{aligned}
$$

Solution:

$$
\begin{aligned}
\lim _{x \rightarrow 2^{-}} \mathrm{f}(x) & =\lim _{x \rightarrow 2^{-}}(3 x+1) \\
& =7
\end{aligned}
$$

Now $\lim _{x \rightarrow 2^{+}} \mathrm{f}(x)=\square$
But $\mathrm{f}(x)=7$ at $x=2$
$\therefore \quad$ The given function is \square at $x=2$.
Also $\lim _{x \rightarrow 4^{-}} \mathrm{f}(x)=\square$
$\lim _{x \rightarrow 4^{+}} \mathrm{f}(x)=\lim _{x \rightarrow 4^{+}}\left(x^{2}-8\right)=8$
$\therefore \quad$ the given function is \square at $x=4$.

Answers

1. i. $4 t$
ii. $\frac{1}{4}$
iii. $\frac{1}{4}$
iv. $\frac{1}{4}$
2. i. $x+1$
iii. -1
ii. x
,
3. i. $-\frac{1}{2}$
iv. 1
iii. $-\frac{1}{2}$
ii. $2 p$
iv.

4. i. $\tan x$
iii. 1
5. i. a
iii. 2
ii. $\tan x-1$
iv. 1
ii. 2
iv. 0
6. i. 2
ii. 2
iv. 4
7.

$\begin{array}{ll}\text { i. } & 7 \\ \text { ii. } & \text { continuous }\end{array}$
iii. 7
iv. discontinuous

Additional Problems for Practice

Based on Exercise 8.1

1. Examine the continuity of the following funtions at the given point:
i. $\quad \mathrm{f}(x)=\frac{\sin x}{x}+\cos x$, for $x \neq 0$

$$
=2, \quad \text { for } x=0 ; \text { at } x=0
$$

ii. $\quad \mathrm{f}(x)=\frac{1}{2} \sin x^{2}$, for $x \neq 0$

$$
=0, \quad \text { for } x=0 ; \text { at } x=0
$$

iii. $\quad \mathrm{f}(x)=(1+2 x)^{1 / x}, \quad$ for $x \neq 0$

$$
=\mathrm{e}^{2}, \quad \text { for } x=0 ; \text { at } x=0
$$

iv. $\mathrm{f}(x)=\frac{x^{2}-x-6}{x-3}$, for $x \neq 3$

$$
=7, \quad \text { for } x=3 ; \text { at } x=3
$$

v. $\quad \mathrm{f}(x)=x^{2}+6 x+10$, for $x \leq 4$

$$
=x^{2}-x+38, \quad \text { for } x>4 ; \text { at } x=4
$$

vi. $\quad \mathrm{f}(y)=\frac{\left(\mathrm{e}^{2 y}-1\right) \cdot \sin y}{y^{2}}$, for $y \neq 0$

$$
=4, \quad \text { for } y=0 ; \text { at } y=0
$$

vii. $\mathrm{f}(x)=\left(1+\frac{4 x}{5}\right)^{\frac{1}{x}}, \quad$ for $x \neq 0$

$$
\text { for } x \neq 0 \text { at } x=0
$$

viii. $\mathrm{f}(x)=\frac{1}{2} \sin \frac{\pi}{2}(x+1)$, for $x \leq 0$

$$
=\frac{\tan x-\sin x}{x^{3}}, \text { for } x>0 ; \text { at } x=0
$$

ix. $\mathrm{f}(x)=\frac{x^{3}+2 x^{2}+2 x-5}{x^{3}+3 x^{2}-3 x-1}$, for $x<1$

$$
=\left[\frac{1}{x-1}-\frac{1}{x^{4}-x^{3}}\right], \text { for } x \geq 1 ; \text { at } x=1
$$

x. $\mathrm{f}(x)=\frac{\sqrt{x+3}-2}{x^{3}-1}$, for $x \neq 1$

$$
=\frac{1}{12}, \quad \text { for } x=1 ; \text { at } x=1
$$

2. Discuss the continuity of the following functions:
i. $\quad \mathrm{f}(x)=\frac{\mathrm{a}^{3 x}-\mathrm{a}^{5 x}}{x}, \quad$ for $x \neq 0$

$$
=\log \mathrm{a}, \quad \text { for } x=0 ; \text { at } x=0
$$

ii. $\quad \mathrm{f}(x)=\left(1+\frac{x}{\mathrm{a}}\right)^{\frac{1}{x}}, \quad$ for $x \neq 0$

$$
=\mathrm{e}^{\frac{1}{2}}, \quad \text { for } x=0 ; \text { at } x=0
$$

iii. $g(x)=\frac{\log \left(1+\frac{5}{2} x\right)}{x}$, for $x \neq 0$

$$
=\frac{5}{2}, \quad \text { for } x=0 ; \text { at } x=0
$$

iv. $\mathrm{f}(x)=\frac{5^{x}-\mathrm{e}^{x}}{\sin 2 x}, \quad$ for $x \neq 0$

$$
=\frac{1}{2}(\log 5+1), \text { for } x=0 ; \text { at } x=0
$$

v. $\mathrm{f}(x)=\frac{\sin ^{2} \mathrm{a} x}{x^{2}}$, for $x \neq 0$

$$
=1, \quad \text { for } x=0 ; \text { at } x=0
$$

vi. $\quad \mathrm{f}(x)=x^{2} \sin \frac{1}{x}, \quad$ for $x \neq 0$

$$
=0, \quad \text { for } x=0 ; \text { at } x=0
$$

vii. $\mathrm{f}(x)=\frac{1-\cos x}{x}, \quad$ for $x \neq 0$

$$
=0, \quad \text { for } x=0 ; \text { at } x=0
$$

viii. $\mathrm{f}(x)=\frac{\sqrt{4+x}-2}{3 x}$, for $x \neq 0$

$$
=\frac{1}{12}, \quad \text { for } x=0 ; \text { at } x=0
$$

ix. If $\mathrm{f}(x)=\frac{2^{3 x}-1}{\tan x}, \quad$ for $x \neq 0$

$$
=1 \quad, \text { for } x=0
$$

+3. Discuss the continuity of the function $\mathrm{f}(x)=|x-3|$ at $x=3$.
+4 . Determine whether the function f is continuous on the set of the real numbers
Where $\mathrm{f}(x)=3 x+1$, for $x<2$

$$
\begin{array}{ll}
=7 & \text { for } 2 \leq x<4 \\
=x^{2}-8 & \text { for } x \geq 4
\end{array}
$$

+5. Test whether the function $\mathrm{f}(x)$ is continuous at $x=-4$, where

$$
f(x)=\frac{x^{2}+16 x+48}{x+4}, \text { for } x \neq 4
$$

$$
=8, \quad \text { for } x=-4
$$

+6. Discuss the continuity of $\mathrm{f}(x)=\sqrt{9-\mathrm{a}^{2}}$, on the interval $[-3,3]$.
+7. Show that the function $\mathrm{f}(x)=\lfloor x\rfloor$ is not continuous at $x=0$, in the interval $[-1,2)$
8. Discuss the continuity of the following functions at the points given against them. If the function is discontinuous, determine whether the discontinuity is removable. In that case, redefine the function, so that it becomes continuous.
i. $\mathrm{f}(x)=\frac{1-\cos 3 x}{x \tan x}, \quad$ for $x \neq 0$
ii. $\begin{aligned} \mathrm{f}(x) & =\frac{\sin \pi x}{5 x}, & & \text { for } x \neq 0 \\ & =\frac{5}{\pi}, & & \text { for } x=0 ; \text { at } x=0\end{aligned}$
iii. $\mathrm{f}(x)=\frac{2-\sqrt{x+4}}{\sin 2 x}, \quad$ for $x \neq 0$

$$
=8, \quad \text { for } x=0 ; \text { at } x=0
$$

iv. $\mathrm{f}(x)=\frac{\sin \left(x^{2}-x\right)}{x}$, for $x \neq 0$

$$
=2, \quad \text { for } x=0 ; \text { at } x=0
$$

+9. Identify discontinuities for the following functions as either a jump or a removable discontinuity on R .
i. $\mathrm{f}(x)=\frac{x^{2}-3 x-18}{x-6}$,
ii. $\quad g(x)=3 x+1, \quad$ for $x<3$

$$
=2-3 x, \quad \text { for } x \geq 3
$$

iii. $\mathrm{h}(x)=13-x^{2}, \quad$ for $x<5$ $=13-5 x, \quad$ for $x>5$
+10 . Show that the function
$\mathrm{f}(x)=\frac{5^{\cos x}-\mathrm{e}^{\left(\frac{\pi}{2}-x\right)}}{\cot x}$, for $x \neq \frac{\pi}{2}$

$$
=\log 5-\mathrm{e}, \quad \text { for } x=\frac{\pi}{2}
$$

has a removable discontinuity at $x=\frac{\pi}{2}$.
Redefine the function so that it becomes continuous at $x=\frac{\pi}{2}$.
+11 . If $\mathrm{f}(x)$ is defined on R , discuss the continuity of f at $x=\frac{\pi}{2}$, where

$$
\begin{array}{rlr}
\mathrm{f}(x) & =\frac{5^{\cos x}+5^{-\cos x}-2}{(3 \cot x) \cdot \log \left(\frac{2+\pi-2 x}{2}\right)}, & \text { for } x \neq \frac{\pi}{2} \\
& =\frac{2 \log 5}{3}, & \text { for } x=\frac{\pi}{2}
\end{array}
$$

+12 . Discuss the continuity of the following function at $x=0$, where
$\mathrm{f}(x)=x^{2} \sin \left(\frac{1}{x}\right)$, for $x \neq 0$

$$
=0, \quad \text { for } x=0
$$

13. If f is continuous at $x=0$, then find $\mathrm{f}(0)$.
i. $\quad \mathrm{f}(x)=\frac{\left(4^{\sin x}-1\right)^{2}}{x \log (1+2 x)}, x \neq 0$
ii. $\mathrm{f}(x)=\frac{\log (1+\mathrm{a} x)-\log (1-\mathrm{b} x)}{x}$
iii. $\mathrm{f}(x)=\frac{\log (2+x)-\log (2-x)}{\tan x}$
iv. $\mathrm{f}(x)=\frac{\cos ^{2} x-\sin ^{2} x-1}{\sqrt{x^{2}+1}-1}$
+v. $\mathrm{f}(x)=\left(\frac{3 x+2}{2-5 x}\right)^{\frac{1}{x}}$, for $x \neq 0$
14. Find $\mathrm{f}(3)$ if $\mathrm{f}(x)=\frac{x^{2}-9}{x-3}, x \neq 3$ is contiuous at $x=3$.
15. Find the value of k, if the function
i. $\quad \mathrm{f}(x)=\frac{8^{x}-2^{x}}{\mathrm{k}^{x}-1}, \quad$ for $x \neq 0$

$$
=2, \quad \text { for } x=0
$$

is continuous at $x=0$
ii. $\mathrm{f}(x)=\frac{\log (1+\mathrm{k} x)}{\sin x}$, for $x \neq 0$

$$
=5, \quad \text { for } x=0
$$

is continuous $x=0$
iii. $\mathrm{f}(x)=x^{2}+\mathrm{k}, \quad$ for $x \geq 0$

$$
=-x^{2}-\mathrm{k}, \quad \text { for } x<0
$$

is continuous at $x=0$
iv. $\mathrm{f}(x)=\frac{x^{2}+3 x+\mathrm{k}}{2\left(x^{2}-1\right)}$, for $x \neq 1$

$$
=\frac{5}{4}, \quad \text { for } x=1
$$

is continuous at $x=1$
$+\mathrm{v} . \mathrm{f}(x)=\frac{x \mathrm{e}^{x}+\tan x}{\sin 3 x}$, for $x \neq 0$

$$
=\mathrm{k} \quad \text { for } x=0
$$

+16 . If f is continuous at $x=1$, where

$$
\begin{aligned}
f(x) & =\frac{\sin (\pi x)}{x-1}+\mathrm{a}, & & \text { for } x<1 \\
& =2 \pi, & & \text { for } x=1 \\
& =\frac{1+\cos (\pi x)}{\pi(1-x)^{2}}+b, & & \text { for }>1,
\end{aligned}
$$

then find the values of a and b.
17. If f is continuous at $x=0$, where

$$
\begin{aligned}
\mathrm{f}(x) & =x^{2}+\mathrm{a}, & & \text { for } x \geq 0 \\
& =2 \sqrt{x^{2}+1}+\mathrm{b}, & & \text { for } x<0
\end{aligned}
$$

Find a, b given that $\mathrm{f}(1)=2$.
18. If $\mathrm{f}(x)=\frac{\tan 2 x}{3 x}+\mathrm{a}, \quad$ for $x<0$

$$
\begin{array}{ll}
=1, & \text { for } x=0 \\
=x+4-\mathrm{b}, & \\
\text { for } x>0
\end{array}
$$

is continuous at $x=0$, then find the values of a and b .
19. If the function $\mathrm{f}(x)=\frac{\mathrm{k} \cos x}{\pi-2 x}$, for $x \neq \frac{\pi}{2}$

$$
=3, \quad \text { for } x=\frac{\pi}{2}
$$

be continuous at $x=\frac{\pi}{2}$, then find k
20. Is the function
$\mathrm{f}(x)=2 x^{3}+3 x^{2}+3 x-\cos x+\sin 5 x+3$
continuous at $x=\frac{\pi}{4}$? Justify

Based on Miscellaneous Exercise - 8

1. Examine the continuity of the following funtions at the given point:
i. $\quad \mathrm{f}(x)=\frac{10^{x}+7^{x}-14^{x}-5^{x}}{1-\cos x}$, for $x \neq 0$

$$
=\frac{10}{7}, \quad \text { for } x=0 ; \text { at } x=0
$$

ii. $\mathrm{f}(x)=\frac{\sin 3 x}{\tan 2 x}, \quad$ for $x<0$

iii. $\mathrm{f}(x)=\frac{\sqrt{23}-\sqrt{4 x-1}}{(x-6)}, \quad$ for $x \neq 6$
$=\frac{1}{5}, \quad$ for $x=6$; at $x=6$
iv. $f(x)=\frac{\sqrt{1-2 x}-\sqrt{1+2 x}}{x}$, for $x<0$

$$
=2 x^{2}+3 x-2, \quad \text { for } x \geq 0 ; \text { at } x=0
$$

v. $\mathrm{f}(x)=\frac{x^{3}+x^{2}-16 x+20}{(x-2)^{2}}$, for $x \neq 2$

$$
=7
$$

for $x=2$; at $x=2$
2. Discuss the continuity of the following functions:
i. $\quad \mathrm{f}(x)=\frac{2^{x}-5^{x}}{4^{x}-3^{x}}$, for $x \neq 0$

$$
=\log \frac{3}{10}, \quad \text { for } x=0 ; \text { at } x=0
$$

ii. $\quad \mathrm{f}(x)=\frac{\left(2^{x}-1\right)^{2}}{\tan x \cdot \log (1+x)}, \quad$ for $x \neq 0$

$$
=\log 4, \quad \text { for } x=0
$$

3. Discuss the continuity of the following functions at the points given against them. If the function is discontinuous, determine whether the discontinuity is removable. In that case, redefine the function, so that it becomes continuous:
i. $\quad \mathrm{f}(x)=\frac{4^{x}-\mathrm{e}^{x}}{6^{x}-1}$, for $x \neq 0$

$$
=\log \left(\frac{2}{3}\right), \quad \text { for } x=0 ; \text { at } x=0
$$

ii. $\quad \mathrm{f}(x)=\frac{3^{x}+3^{-x}-2}{x^{2}}$, for $x \neq 0$

$$
=2 \log 3, \quad \text { for } x=0 ; \text { at } x=0
$$

iii. $\mathrm{f}(x)=\frac{x^{6}-\frac{1}{64}}{x^{3}-\frac{1}{8}}$, for $x \neq \frac{1}{2}$

$$
=\frac{1}{3}, \quad \text { for } x=\frac{1}{2} ; \text { at } x=\frac{1}{2}
$$

iv. $\mathrm{f}(x)=\frac{\left(8^{x}-1\right)^{2}}{\sin x \log \left(1+\frac{x}{4}\right)}$, for $x \neq 0$

$$
=8 \log 8, \quad \text { for } x=0 ; \text { at } x=0
$$

4. If f is continuous at $x=0$, then find $\mathrm{f}(0)$.
i. $\quad \mathrm{f}(x)=\frac{4^{x}-2^{x+1}+1}{1-\cos x}, x \neq 0$
ii. $\mathrm{f}(x)=\frac{\mathrm{e}^{5 x}-\mathrm{e}^{2 x}}{\sin 3 x}$
5. Find the value of k, if the function
$\mathrm{f}(x)=\frac{\sin ^{2} \frac{3 x}{2}}{x^{2}}$, for $x \neq 0$

$$
=\mathrm{k}, \quad \text { for } x=0
$$

is continuous at $x=0$
6. If $\mathrm{f}(x)=\frac{\sin 4 x}{5 x}+\mathrm{a}$, for $x>0$

$$
\begin{array}{ll}
=x+4-\mathrm{b}, & \text { for } x<0 \\
=1, & \text { for } x=0
\end{array}
$$

is continuous at $x=0$, find a and b .
7. If $\mathrm{f}(x)=\frac{1-\cos 4 x}{x^{2}}$, for $x<0$

$$
\begin{array}{ll}
=\mathrm{a}, & \text { for } x=0 \\
=\frac{\sqrt{x}}{\sqrt{(16+\sqrt{x})}-4}, & \text { for } x>0
\end{array}
$$

is continuous at $x=0$, then find the value of ' a '.
8. Discuss the continuity of the function f at $x=0$, where $\mathrm{f}(x)=\frac{5^{x}+5^{-x}-2}{\cos 2 x-\cos 6 x}$, for $x \neq 0$

$$
\frac{1}{8}(\log 5)^{2}, \quad \text { for } x=0
$$

Multiple Choice Questions

1. If $\mathrm{f}(x)=\left\{\begin{array}{ll}2 & , 0 \leq x<1 \\ \mathrm{c}-2 x & , 1 \leq x \leq 2\end{array}\right.$ is continuous at $x=1$, then $\mathrm{c}=$
(A) 2
(B) 4
(C) 0
(D) 1
2. If $\mathrm{f}(x)=\left\{\begin{array}{ll}1, & \text { if } x \leq 3 \\ \mathrm{ax+b} & , \text { if } 3<x<5 \\ 7 & \text { if } 5 \leq x\end{array}\right.$ is continuous, then the value of a and b is
(A) 3,8
(B) $-3,8$
(C) $3,-8$
(D) $-3,-8$
3. The sum of two discontinuous functions
(A) is always discontinuous.
(B) may be continuous.
(C) is always continuous.
(D) may be discontinuous.
4. For what value of k the function
$\mathrm{f}(x)=\left\{\begin{array}{cc}\frac{\sqrt{5 x+2}-\sqrt{4 x+4}}{x-2}, & \text { if } x \neq 2 \\ \mathrm{k} & , \text { if } x=2\end{array}\right.$ is continuous at $x=2$?
(A) $\frac{-1}{4 \sqrt{3}}$
(B) $\frac{1}{2 \sqrt{3}}$
(C) $\frac{1}{4 \sqrt{3}}$
(D) $\frac{-1}{2 \sqrt{3}}$
5. The function $\mathrm{f}(x)=\frac{\log (1+\mathrm{a} x)-\log (1-\mathrm{b} x)}{x}$ is not defined at $x=0$. The value which should be assigned to f at $x=0$ so that it is continuous at $x=0$, is
(A) $a-b$
(B) $\mathrm{a}+\mathrm{b}$
(C) $\quad \log \mathrm{a}+\log \mathrm{b}$
(D) $\log a-\log b$
6. In order that the function $\mathrm{f}(x)=(x+1) \cot x$ is continuos at $x=0, \mathrm{f}(0)$ must be defined as
(A) $\mathrm{f}(0)=\frac{1}{\mathrm{e}}$
(B) $\mathrm{f}(0)=0$
(C) $f(0)=\mathrm{e}$
(D) None of these
7. If $\mathrm{f}(x)=\left\{\begin{array}{cc}\frac{\sin 3 x}{\sin x}, & x \neq 0 \\ \mathrm{k}, & x=0\end{array}\right.$ is a continuous function, then $\mathrm{k}=$
(A) 1
(B) 3
(C) $\frac{1}{3}$
(D) 0
8. A function f is continuous at a point $x=\mathrm{a}$ in the domain of ' f ' if
(A) $\lim _{x \rightarrow \mathrm{a}} \mathrm{f}(x)$ exists
(B) $\lim _{x \rightarrow \mathrm{a}} \mathrm{f}(x)=\mathrm{f}(\mathrm{a})$
(C) $\lim _{x \rightarrow \mathrm{a}} \mathrm{f}(x) \neq \mathrm{f}(\mathrm{a})$
(D) both (A) and (B)
9. Which of the following function is discontinuous?
(A) $\mathrm{f}(x)=x^{2}$
(B) $\mathrm{g}(x)=\tan x$
(C) $\mathrm{h}(x)=\frac{3 x}{x^{2}+1}$
(D) none of these
10. If the function $\mathrm{f}(x)=\left\{\begin{array}{l}\frac{\mathrm{k} \cos x}{\pi-2 x}, \text { when } x \neq \frac{\pi}{2} \\ 3,\end{array}\right.$ when $x=\frac{\pi}{2}$ is continuous at $x=\frac{\pi}{2}$, then $\mathrm{k}=$
(A) 3
(B) 6
(C) 12
(D) None of these
11. The points at which the function $\mathrm{f}(x)=\frac{x+1}{x^{2}+x-12}$ is discontinuous, are
(A) $-3,4$
(B) $3,-4$
(C) $-1,-3,4$
(D) $-1,3,4$
12. Which of the following statement is true for graph $\mathrm{f}(x)=\log x$
(A) Graph shows that function is continuous
(B) Graph shows that function is discontinuous
(C) Graph finds for negative and positive values of x
(D) Graph is symmetric along x-axis
13. If $\mathrm{f}(x)=\left\{\begin{array}{ll}\frac{x^{2}-1}{x+1}, & \text { when } x \neq-1 \\ -2, & \text { when } x=-1\end{array}\right.$, then
(A) $\quad \lim _{x \rightarrow(-1)^{-}} \mathrm{f}(x)=-2$
(B) $\lim _{x \rightarrow(-1)^{+}} \mathrm{f}(x)=-2$
(C) $\mathrm{f}(x)$ is continuous at $x=-1$
(D) All the above are correct
14. If $\mathrm{f}(x)=\left\{\begin{array}{ll}\frac{|x-\mathrm{a}|}{x-\mathrm{a}}, & \text { when } x \neq \mathrm{a} \\ 1, & \text { when } x=\mathrm{a}\end{array}\right.$, then
(A) $\mathrm{f}(x)$ is continuous at $x=\mathrm{a}$
(B) $\mathrm{f}(x)$ is discontinuous at $x=\mathrm{a}$
(C) $\lim _{x \rightarrow \mathrm{a}} \mathrm{f}(x)=1$
(D) None of these
15.

$$
= \begin{cases}\frac{1-\cos 4 x}{x^{2}}, & \text { when } x<0 \\ \frac{a}{} \quad & \text { when } x=0 \\ \frac{\sqrt{x}}{\sqrt{(16+\sqrt{x})}-4} & , \text { when } x=0\end{cases}
$$

is continuous at $x=0$, then the value of ' a '
will be
(A) 8
(B) -8
(C) 4
(D) None of these

If $\mathrm{f}(x)=\left\{\begin{array}{r}\frac{x^{4}-16}{x-2}, \text { when } x \neq 2 \\ 16, \text { when } x=2\end{array}\right.$, then
(A) $\mathrm{f}(x)$ is continuous at $x=2$
(B) $\mathrm{f}(x)$ is discountinuous at $x=2$
(C) $\lim _{x \rightarrow 2} \mathrm{f}(x)=16$
(D) None of these
17. The values of A and B such that the function
$\mathrm{f}(x)= \begin{cases}-2 \sin x, & x \leq-\frac{\pi}{2} \\ \mathrm{~A} \sin x+\mathrm{B},-\frac{\pi}{2}<x<\frac{\pi}{2}, \text { is continuous } \\ \cos x, & x \geq \frac{\pi}{2}\end{cases}$ everywhere are
(A) $\mathrm{A}=0, \mathrm{~B}=1$
(B) $\mathrm{A}=1, \mathrm{~B}=1$
(C) $\mathrm{A}=-1, \mathrm{~B}=1$
(D) $\mathrm{A}=-1, \mathrm{~B}=0$
18. If $\mathrm{f}(x)=\left\{\begin{array}{ll}\frac{\sqrt{1+\mathrm{k} x}-\sqrt{1-\mathrm{k} x}}{x}, & \text { for }-1 \leq x<0 \\ 2 x^{2}+3 x-2 & , \text { for } 0 \leq x \leq 1\end{array}\right.$, is continuous at $x=0$, then $\mathrm{k}=$
(A) -4
(B) -3
(C) $\quad-2$
(D) -1
19. The function $\mathrm{f}(x)=\sin |x|$ is
(A) Continuous for all x
(B) Continuous only at certain points
(C) Differentiable at all points
(D) None of these
20. The function $\mathrm{f}(x)=\frac{1-\sin x+\cos x}{1+\sin x+\cos x}$ is not defined at $x=\pi$. The value of $\mathrm{f}(\pi)$, so that $\mathrm{f}(x)$ is continuous at $x=\pi$, is
(A) $-\frac{1}{2}$
(B) $\frac{1}{2}$
(C) -1
(D) 1
21. The function $\mathrm{f}(x)=\frac{2 x^{2}+7}{x^{3}+3 x^{2}-x-3}$ is discontinuous for
(A) $x=1$ only
(B) $x=1$ and $x=-1$ only
(C) $x=1, x=-1, x=-3$ only
(D) $x=1, x=-1, x=-3$ and other values of x
22. The function f is defined by $\mathrm{f}(x)=2 x-1$, if $x>2, \mathrm{f}(x)=\mathrm{k}$ if $x=2$ and $x^{2}-1$, if $x<2$ is continuous, then the value of k is equal to
(A) 2
(B) 3
(C) 4
(D) -3
23. Function $\mathrm{f}(x)=\frac{1-\cos 4 x}{8 x^{2}}$, where $x \neq 0$ and $\mathrm{f}(x)=\mathrm{k}$, where $x=0$ is a continous function at $x=0$ then the value of k will be?
(A) $\mathrm{k}=0$
(B) $\mathrm{k}=1$
(C) $\mathrm{k}=-1$
(D) None of these
24. If $\mathrm{f}(x)=\left\{\begin{array}{l}x, \quad \text { when } 0<x<1 / 2 \\ 1, \quad \text { when } x=1 / 2 \\ 1-x, \text { when } 1 / 2<x<1\end{array}\right.$, then
(A) $\lim _{x \rightarrow 1 / 2+} \mathrm{f}(x)=2$
(B) $\quad \lim _{x \rightarrow 1 / 2-} \mathrm{f}(x)=2$
(C) $\mathrm{f}(x)$ is continuous at $x=\frac{1}{2}$
(D) $\mathrm{f}(x)$ is discontinuous at $x=\frac{1}{2}$
25. If $\mathrm{f}(x)=\frac{x^{2}-10 x+25}{x^{2}-7 x+10}$ for $x \neq 5$ and f is continuous at $x=5$, then $\mathrm{f}(5)=$
(A) 0
(B) 5
(C) 10
(D) 25

Answers to Additional Practice Problems

Based on Exercise 8.1

1. i. Continuous
iii. Continuous
v. Continuous
vii. Continuous
ix. Discontinuous
2. i. Discontinuous
iii. Continuous
v. Discontinuous
vii. Discontinuous
ii. Continuous
iv. Discontinuous
vi. Discontinuous viii. Continuous
x. Continuous
ii. Continuous
iv. Discontinuous
vi. Continuous
viii. Discontinuous ix. Discontinuous
3. Continuous
4. Discontinuous
5. Continuous
6. Continuous
7. Discontinuous
8.

i. Discontinuous, removable
ii. Discontinuous, removable
iii. Discontinuous, removable
iv. Discontinuous, removable
i. Discontinuous
ii. Discontinuous
iii. Discontinuous
11. $x=\left(\frac{\pi}{2}\right)$
12. Continuous
13. i. $\frac{(\log 4)^{2}}{2}$
iii. 1
v. e^{4}
14. 6
15. i. 2
ii. 5
iii. 0
iv. -4
v. $\frac{2}{3}$
16. $\mathrm{a}=3 \pi, \mathrm{~b}=\frac{3 \pi}{2}$
17. $\mathrm{a}=1, \mathrm{~b}=-1$
18. $\mathrm{a}=\frac{1}{3}, \mathrm{~b}=3$
19. 6
20. Addition of continuous functions.
$\mathrm{f}(x)$ is continuous.

Based on Miscellaneous Exercise - 8

1. i. Discontinuous
ii. Continuous
iii. Discontinuous iv. Continuous
v. Continuous
2. i. Discontinuous ii. Discontinuous
3. i. Discontinuous, removable
ii. Discontinuous, removable
iii. Discontinuous, removable
iv. Discontinuous, removable
4. i. $2(\log 2)^{2} \quad$ ii. 1
5. $\frac{9}{4}$
6. $\mathrm{a}=\frac{1}{5}, \mathrm{~b}=3$
7. 8
8. Discontinuous

Answers to Multiple Choice Questions

1. (B)
2. (C)
3. (B)
4. (C)
5. (B)
6. (C)
7. (B)
8. (D)
9. (B)
10. (B)
11. (B)
12. (A)
13. (D)
14. (B)
15. (A)
16. (B)
17. (C)
18. (C)
19. (A)
20. (C)
21. (C)
22. (B)
23. (B)
24. (D)
25. (A)

Competitive Corner

1. For what value of k , the function defined by $\mathrm{f}(x)=\frac{\log (1+2 x) \sin x^{\circ}}{x^{2}}, \quad$ for $x \neq 0$

$$
=\mathrm{k} \quad, \quad \text { for } x=0
$$

is continuous at $x=0$?
[MHT CET 2016]
(A) 2
(B) $\frac{1}{2}$
(C) $\frac{\pi}{90}$
(D) $\frac{90}{\pi}$
2. If the function $\mathrm{f}(x)$ defined by

$$
\begin{aligned}
\mathrm{f}(x) & =x \sin \frac{1}{x}, & & \text { for } x \neq 0 \\
& =\mathrm{k} & & \text { for } x=0
\end{aligned}
$$

is continuous at $x=0$, then $\mathrm{k}=$
[MHT CET 2016]
(A) 0
(B) 1
(C) -1
(D) $\frac{1}{2}$
3. If the function $\mathrm{f}(x)=(x+1)^{\cot x}$ is continuous at $x=0$, then $\mathrm{f}(0)=$
[MHT CET 2019]
(A) $\frac{1}{\mathrm{e}}$
(B) $\frac{1}{\mathrm{e}^{2}}$
(C) e
(D)
4. If $\mathrm{f}(x)$ is continuous at $x=\mathrm{a}$, where $\mathrm{f}(x)=\frac{\sqrt{x}-\sqrt{\mathrm{a}}+\sqrt{x-\mathrm{a}}}{\sqrt{x^{2}-\mathrm{a}^{2}}}$, for $x \neq \mathrm{a}$, then $\mathrm{f}(\mathrm{a})=$
[MHT CET 2019]
(A) $\frac{1}{\sqrt{2 \mathrm{a}}}$
(B) $\frac{1}{2 \sqrt{a}}$
(C) $\frac{1}{2 \mathrm{a}}$
(D) $2 \sqrt{\mathrm{a}}$

Answers:

1. (C)
(A)
2. (C)
3. (A)

Hints:

1. For $\mathrm{f}(x)$ to be continuous at $x=0$,
$\mathrm{f}(0)=\lim _{x \rightarrow 0} \mathrm{f}(x)$
$\mathrm{k}=\lim _{x \rightarrow 0} \frac{\log (1+2 x) \sin x^{\circ}}{x^{2}}$
$\therefore \quad \mathrm{k}=\lim _{x \rightarrow 0} \frac{\log (1+2 x)}{2 x} \times 2 \times \frac{\sin \frac{\pi x}{180}}{\frac{\pi x}{180}} \times \frac{\pi}{180}$
$\therefore \quad \mathrm{k}=1 \times 2 \times 1 \times \frac{\pi}{180}=\frac{\pi}{90}$
2. $\lim _{x \rightarrow 0} \mathrm{f}(x)=\lim _{x \rightarrow 0} x \sin \frac{1}{x}$, but $-1 \leq \sin \frac{1}{x} \leq 1$ and $x \rightarrow 0$
$\therefore \quad \lim _{x \rightarrow 0} \mathrm{f}(x)=0$
Since, $\mathrm{f}(x)$ is continuous at $x=0$.
$\therefore \mathrm{f}(0)=\lim _{x \rightarrow 0} \mathrm{f}(x)$
$\therefore \quad \mathrm{k}=0$
3. \quad Since, $\mathrm{f}(x)$ is continuous at $x=0$.
$\therefore \mathrm{f}(0)=\lim _{x \rightarrow 0} \mathrm{f}(x)$

$$
\begin{aligned}
& =\lim _{x \rightarrow 0}(x+1)^{\cot x} \\
& =\lim _{x \rightarrow 0}\left[(1+x)^{\frac{1}{x}}\right]^{\frac{x}{\tan x}} \\
& =\mathrm{e}^{1}=\mathrm{e}
\end{aligned}
$$

4. Since, $\mathrm{f}(x)$ is continuous at $x=\mathrm{a}$.
$\therefore \mathrm{f}(\mathrm{a})=\lim _{x \rightarrow \mathrm{a}} \mathrm{f}(x)$

$$
\begin{aligned}
& =\lim _{x \rightarrow \mathrm{a}} \frac{\sqrt{x}-\sqrt{\mathrm{a}}+\sqrt{x-\mathrm{a}}}{\sqrt{x^{2}-\mathrm{a}^{2}}} \\
& =\lim _{x \rightarrow \mathrm{a}} \frac{\sqrt{x}-\sqrt{\mathrm{a}}+\sqrt{x-\mathrm{a}}}{\sqrt{x+\mathrm{a}} \cdot \sqrt{x-\mathrm{a}}} \\
& =\lim _{x \rightarrow \mathrm{a}} \frac{1}{\sqrt{x+\mathrm{a}}}\left(\frac{\sqrt{x}-\sqrt{\mathrm{a}}+\sqrt{x-\mathrm{a}}}{\sqrt{x-\mathrm{a}}}\right) \\
& =\frac{1}{\sqrt{2 \mathrm{a}}} \lim _{x \rightarrow \mathrm{a}}\left(\frac{\sqrt{x}-\sqrt{\mathrm{a}}}{\sqrt{x-\mathrm{a}}+1}\right) \\
& =\frac{1}{\sqrt{2 \mathrm{a}}} \lim _{x \rightarrow \mathrm{a}}\left[\frac{(\sqrt{x})^{2}-(\sqrt{\mathrm{a}})^{2}}{\sqrt{x-\mathrm{a}}(\sqrt{x}+\sqrt{\mathrm{a}})}+1\right] \\
& =\frac{1}{\sqrt{2 \mathrm{a}}} \lim _{x \rightarrow \mathrm{a}}\left(\frac{x-\mathrm{a}}{\sqrt{x-\mathrm{a}}(\sqrt{x}+\sqrt{\mathrm{a}})}+1\right) \\
& =\frac{1}{\sqrt{2 \mathrm{a}}} \lim _{x \rightarrow \mathrm{a}}\left[\frac{\sqrt{x-\mathrm{a}}}{\sqrt{x}+\sqrt{\mathrm{a}}}+1\right] \\
& =\frac{1}{\sqrt{2 \mathrm{a}}}(0+1) \\
& =\frac{1}{\sqrt{2 \mathrm{a}}}
\end{aligned}
$$

Std.XI Perfect Science

For students who want to excel in board exams and simultaneously study for entrance exams

Salient Features

BUY NOW

- Sub-topic wise segregation for powerful concept building
- Complete coverage of textual exercise questions, intext questions and numericals
- Extensive coverage of new type of questions
- NCERT Corner, Gyan Guru, Reading between the lines are designed to impact holistic education
- Competitive Corner presents questions from prominent competitive examinations

8879939712 / 13 / 14 / 15
(mail@targetpublications.org
www.targetpublications.org

[^0]: This reference book is transformative work based on textbook Mathematics - II; First edition: 2019 published by the Maharashtra State Bureau of Textbook Production and Curriculum Research, Pune. We the publishers are making this reference book which constitutes as fair use of textual contents which are transformed by adding and elaborating, with a view to simplify the same to enable the students to understand, memorize and reproduce the same in examinations.
 This work is purely inspired upon the course work as prescribed by the Maharashtra State Bureau of Textbook Production and Curriculum Research, Pune. Every care has been taken in the publication of this reference book by the Authors while creating the contents. The Authors and the Publishers shall not be responsible for any loss or damages caused to any person on account of errors or omissions which might have crept in or disagreement of any third party on the point of view expressed in the reference book.
 © reserved with the Publisher for all the contents created by our Authors.
 No copyright is claimed in the textual contents which are presented as part of fair dealing with a view to provide best supplementary study material for the benefit of students.

