

STEAM into STEM: Linking to the Australian Curriculum

Where every student is known

Overview

- 1. What is STEM education?
- 2. School context
- 3. Why the focus on STEM education?
- 4. Beginning the STEM Curriculum Journey?
- 5. STEAM to STEM Curriculum?
- 6. Implementing STEM curriculum Challenges and Opportunities
- 7. Where to from here?

What is STEM Education:

from an analysis of many documents, reports and research articles

STEM - Science, Technology, Engineering, Mathematics

- Separated S.T.E.M. Each subject is taught separately with the hope that the synthesis of disciplinary knowledge will be applied – referred to as "Silos"
- Integrated STEM The principles of science and the analysis of mathematics are combined with the design process of technology and engineering in the classroom.

What is STEM?

A frequently cited definition of STEM was provided by Tsupros, Kohler, and Hallinen (2009):

"STEM education is an interdisciplinary approach to learning where rigorous academic concepts are coupled with real-world lessons as students apply science, technology, engineering, and mathematics in contexts that make connections between school, community, work, and the global enterprise enabling the development of STEM literacy and with it the ability to compete in the new economy."

So what is STEAM then?

every child, every school, every day

- Language arts (English, ESL,...)
- Fine arts (painting, sculpture...)
- Physical arts (sports, dance...)
- Manual arts (physical skills...)
- Liberal arts (sociology, philosophy, psychology, history, ...)

Arts education

- Art
- Drama/Theatre
- Music
- Dance
- Film
- Creative Writing
- Architecture/Landscape Design

Corwin/Sage: 2013

Arts education (research)

The arts can be, for both students and teachers, forms of expression, communication, creativity, imagination, observation, perception, and thought...The arts can also open pathways toward understanding the richness of peoples and cultures that inhabit our world, particularly during this period of global change.

(Bucheli, Goldberg & Philips: 1991/2013, *Harvard Educational Review*, Expanding our Vision for the Arts in Education)

Arts education

- **creativity** innovation, ingenuity, imagination
- **aesthetics** beauty, sentiment, contemplation
- **ethics** virtues, human rights, justice
- **rhetoric** expression, representation, persuasion

STEAM Education - WA

'The Crazy Scientist' - *Gary Cass* bioalloys + fashion design

'The Beer Dress' bacterial fermentation of beer...microbial cellulose technology

- World Expo Milan, 2015
- National Science Week Perth, 2015
- artist in residence @ CA SHS, 2016
- Art + Technology + English

bioalloy.org

Governing Curriculum Authorities

Education Queensland STEM Statement

The state schools approach to <u>STEM education maintains the</u> integrity of individual learning areas aligned to the Australian Curriculum, and supports interdisciplinary approaches to realworld contexts.

Everton Park State High School

- Small School (250) students
- Years 7 12
- Brisbane city (8km North of CBD)
- Transitional suburb (ex-low SES suburb)
- <u>https://evertonparkshs.eq.edu.au/Pages/default.aspx</u>

Everton Park State High School spared the State Government axe

SHANNON SAGAIDAK QUEST NEWSPAPERS SEPTEMBER 17, 2013 3:35PM

Everton Park High School students Joel Bennet, Kayla Brock, Priscilla Iles, Ebony Bain Perkins, Thida Hamtun,

Why STEM in the beginning? (2013)

- Gap in local market
- Sports schools/Arts schools/Schools of excellence (capped)
- Message from admin 'No such thing as business as usual'
- STEM was seen to be a marketing tool for the school
- STEM was introduced as an Elective class in year 9&10 (3x70min)

Why STEM HODS perspective?

- New HOD appointed in 2014
- Implementation of C2C
 - Prescriptive
 - Baby thrown out with the bath water
- Opportunities to bring back project based learning
- Inquiry learning opportunity (time)

Why STEAM?

In 2015 the following were identified;

- Teacher capability issues
 - Knowledge of curriculum
 - Willingness to teach curriculum
- Time table issues
 - How to fit in all electives into offerings?
 - Who to teach electives & when?
- HR
 - Where are the technologies & art teachers coming from?

STEM Curriculum – Beginning the Journey 2013

	Year A	Year B
Term 1	 Robotics Introduction to robotics Flow charting Programming basics Basic numeracy Data gathering Graphing Conditional statements 	 Green Buildings Energy in buildings Home wind turbines Home solar electric systems Energy for heating buildings Home solar water heating systems Insulation Glass in construction Heat pumps Air-conditioning Building a sunroom

Term 2	Structures	Intro to electronics
	 Forces on structures Beams Concrete Green materials for construction Problem solving: Building bridges 	 Electric Current Voltage Resistance Relationship between Voltage, Current and Resistance Switches Safety and Protection Devices Magnetism Motors Generators and Transformers Problem Solving

·		1
	Year A	Year B
Term 3	Year A Pneumatics. hydraulics • Principles of Pneumatics • Components, Symbols and Circuits • Cylinders • Valves • Speed Control • Pneumatic Logic Functions • Electro-pneumatics • Sequential Control & Automatic Circuits • Time Delays • Problem Solving	Year B Industrial Control Industrial Control and Manufacturing Industrial Controllers Human Versus Machine Logic (AND, OR, and NOT) Truth Tables and Step Logic Latching Actuators Counting Parts Timing Events Measuring Part Width
	Problem Solving	Width Problem Solving – Sorting Parts

Term 4	Robotics (ext)• Data logging• Environmental• Biological• Technological• Testing• Date Set• Resolution• Sample Frequency	 Mechanisms Mechanical Systems and Motion Gear Trains Changing Axis of Rotation with Gears Belt Drives Pulleys Levers Cams and Cranks Inclined Planes
	• Sample Frequency	 Cams and Cranks Inclined Planes Friction Problem Solving

Curriculum STEAM to STEM

- Importance of the Arts to the STEM philosophy of teaching
- The Arts are imperative to connecting the dots between the disciplines of STEM
- Arts education is a key to igniting creative and imaginative thinking which is an essential driver behind innovation a founding principle behind STEM education
- Teaching and preparing students for jobs that at present do not even exist
- Need to train and educate students on how to interface with technology no matter what digital solution might emerge or to design solutions that have never been considered previously.
- STEM intertwines principles of Science, Technology, Engineering & Mathematics with key skills such as problem solving, strategic thinking and collaboration to produce quality products.

Year 7 STEAM

Term 1	Term 2	Term 3	Term 4
 Principles of design 	 Coding – intro 	 Robotics – intro 	 Rapid prototyping
 Elements of design 	scratch <mark>etc</mark>	Sphero? Arduino?	
 Sketching 			
 technologies 			

Year 8 STEAM

Term 1	Term 2	Term 3	Term 4
 Science of flight 	 Sustainability – 	 Structures – Bridges 	• Coding – Make an
	Clean energy /		app
	Aquaponics /		
	material science /		
	developing		
	technologies		

STEAM 7-8 Assessment Rubric (10/02/2016)

Dimension	Strand	Content Descriptors	A
Knowledge and Understanding	Concepts and Procedures	 Investigate how data are transmitted and secured in wired, wireless and mobile networks, and how the specifications of hardware components impact on network activities (ACTDIK023) Investigate how digital systems represent text, image and audio data in binary (ACTDIK024) Analyse how motion, force and energy are used to manipulate and control electromechanical systems when designing simple, engineered solutions (ACTDEK031) Analyse ways to produce designed solutions through selecting and combining characteristics and properties of materials, systems, components, tools and equipment (ACTDEK034) 	Comprehensive description and explanation of the features of technologies and technological processes. Comprehensive description and explanation of how the features of technologies and technological processes influence the creation of technological products, services and environments.
	STEAM and Society	 Examine and prioritise competing factors including social, ethical and sustainability considerations in the development of technologies and designed solutions to meet community needs for preferred futures (ACTDEK029) Investigate the ways in which products, services and environments evolve locally, regionally and globally through the creativity, innovation and enterprise of individuals and groups (ACTDEK030) Identify and connect specific features and purposes of designs from contemporary and past times to explore viewpoints and enrich their design, starting with Australian designs including those of Aboriginal and Torres Strait Islander Peoples (ACAVAR124) Identify specific features and purposes of multi - media designs from contemporary and past times to explore viewpoints and enrich their media design making, starting with Australian media design including of Aboriginal and Torres Strait Islander Strait Islander media design including of Aboriginal and Torres Strait Islander Strait Islander media design including of Aboriginal and Torres Strait Islander Strait Islander media design including of Aboriginal and Torres Strait Islander media design including of Aboriginal and Torres Strait Islander media design including of Aboriginal and Torres Strait Islander media design including of Aboriginal and Torres Strait Islander media design including of Aboriginal and Torres Strait Islander media designs (ACAMAR072) 	 Comprehensive description and explanation of: factors, including social, ethical and sustainability, which influence the design of technological products, services and environments to meet present and future needs. the changing contributions of technological innovations to society. Identification and thorough analysis of: how representations of social values and points of view are portrayed in the multimedia made, distributed and viewed. the social and ethical responsibility of the makers and users of media artworks.

School Time Table

	Monday	Tuesday	Wednesday	Thursday	Friday
Home	8:55-9:05	8:55-9:05	8:55-9:05	8:55-9:05	8:55-9:05
	08-2	08-2	08-2	08-2	08-2
	MCKEME	MCKEME	MCKEME	MCKEME	MCKEME
	H07	H07	H07	H07	H07
Per 1	9:05-10:15	9:05-10:15	9:05-10:15	9:05-10:15	9:05-10:15
	HPE082B	SCI082B	<u>MAT082B</u>	ENG082A	ENG082A
	WYNNST	LYNCMI	STIRPE	WYNNST	WYNNST
	H06	K02	K04	H06	H06
Per 2	10:15-11:25	10:15-11:25	10:15-11:25	10:15-11:25	10:15-11:25
	STA082B	FDS082B	SCI082B	GEG082B	ENG082A
	LEWITI	COXCA0	LYNCMI	MCKEME	WYNNST
	B01	C06	K02	H07	H06
Per 3	12:05-1:15	12:05-1:15	12:05-1:15	12:05-1:15	12:05-1:15
	FDS082B	MAT082B	FDS082B	<mark>STA082B</mark>	GEG082B
	COXCA0	STIRPE	COXCA0	LEWITI	MCKEME
	C06	K04	C06	B01	H07
Per 4	1:50-3:00 MAT082B STIRPE K04	1:50-3:00 ENG082A WYNNST H06	1:50-3:00 SPT072B MCKEME	1:50-3:00 <u>MAT082B</u> STIRPE K04	1:50-3:00 STA082B LEWITI B01

What is Step Up?

www.stepup.edu.au

 StepUp is one of the five ETMST projects that aims to bring together Science, Maths and Education experts from universities across Queensland, with schools, government agencies and industry bodies, to develop a shared framework and initiatives that benefit maths and science teacher education across the state.

What is the STEM Studio?

- The STEM Studio provides a unique third space that brings together key participants from higher education (teacher educators, scientists and pre-service teachers) and high schools (Principals, practising teachers and school students).
- In essence:
 - 1-2 PSTs, an IST, Teacher-Educator, Discipline Expert
 - Plan and teach 4 lessons in a school classroom over a 4 week period
 - Non-assessed, extra-curricular 'third space'

STEM Educator in Residence

- Funded in school 1 day / week
- Facilitate STEM Studio as well as broader university-school partnership

The whole process of education should thus be conceived as the process of learning to think through the solution of real problems

John Dewey, 1938

STEM-IP model

- After first year, sat down with ISTs, TE and Engineering DE to talk through various experiences, models and curriculum documents.
- Emergence of STEM-Inquiry Process as a basis for guiding teachers (pedagogical model) and students (engineering process) as they engage in learning based upon problems or design challenges.

STEM-IP Model

Polya's Problem Solving

STEM Problem Solving Pedagogies (1)

Polya's	Mathematical	M	lodel Eliciting	5
Principles	Modelling			
1. Understand			1. Warmup	
the problem	1. Mathematise			
2. Devise a plan		2a. Model	3a. Model	4a. Model
3. Carry out the plan	2. Manipulate	Eliciting	exploration	Adaptation
4. Look back on your work	3. Interpret	2b. Discuss	3b. Discuss	4b. Discuss

STEM Problem Solving Pedagogies (2)

Polya's	Science Inquiry		Working	LEGO 4	4Cs
Principles	(5	SEs)	Technologically		
1.	1. E	ngage	1	1. Conr	nect
Understand			L.		
the problem			Investigation		
2. Devise a	2.	4.	2 Idention		
plan	Explore	Elaborate	Z. Ideation	2. Construct	Λ
3. Carry out the plan	•		3. Production		٦. Continue
4. Look back	3.	5.	1 Evaluation	3.	
on your work	Explain	Evaluate	4. EValuation	Contemplate	

S-CRE Model

- The model is cyclical

 a sequence of
 several related
 problem solving
 activities.
- Problems may get increasingly complex and/or students get less support.

Central to the STEM-IP model are:

- Understanding the facts, processes and concepts of STEM disciplines
- Skills –the ways of working in the STEM disciplines

The STEM-IP model is comprised of 4 major types of student activity:

- 1. Socialise
- 2. Challenge
- 3. Respond
- 4. Reflect

- Introduce students to the context
- Promote curiosity, student questions and to elicit students' prior knowledge.
- Establish base knowledge needed to make sense of the problem to be posed.

• Problem is posed for the students to address.

- Solve the problem that has been posed.
- 4 sub-phases.
- Based upon Polya's process
 - 1. Think \rightarrow Investigate
 - 2. Plan \rightarrow Ideate
 - 3. Do \rightarrow Produce
 - 4. Look back \rightarrow Evaluate

Students understand the problem by:

- Asking questions
- Break problem into parts
- Researching

- Generating, designing, evaluating and communicating alternative solution ideas
- Plan how they will work.

IDEATE

- Refine the solution's design
- Implement the solution
- Learn new ideas and processes as needed

- Test the solution.
- Compare solution to problem specification
- Justify their findings / result
- Present and compare solutions.

- Sometimes, problem solving does not go to plan
 - Perhaps the tests fail \rightarrow re-make solution
 - Perhaps solution is not possible → re-design the solution
 - Perhaps design is wrong → re-think the problem

- Considering what they have learnt
 - New understanding or knowledge
 - New skills

- Throughout the process
 - Work collaboratively within groups and between groups
 - Manage time and other resources
 - Communicate ideas with peers and share solutions

In short

- 1. Choose a theme or context, introduce the students to it, discover what they already know
- 2. Pose a problem that requires the students to produce a solution
- 3. Support students as they design, build and test their solution
- 4. Help students to reflect upon their experience and identify what they have learnt

STEAM into STEM curriculum

The content of STEAM into STEM has been developed by considering:

- The content descriptors of Australian Curriculum: Technologies and Australian Curriculum : The Arts (Visual Arts and Media Arts)
- The Achievement Standards of the Australian Curriculum documents
- The Standard Elaborations provided by the QCAA for Digital Technologies, Design and Technologies, Visual Arts and Media Arts
- The structure of the STEM-IP model

Digital Technologies

(nowledge and	Process and Production Skills
Jnderstanding	
Digital Systems	• Collecting, managing and
 Representation of Data 	analysing data
	 Creating digital solutions
	by:
	 Investigating and
	Defining
	 Generating and
	Designing
	 Producing and
	Implementing
	\circ Evaluating
	\circ Collaborating and
	Managing

Design and Technology

Knowledge and	Process and Production
Understanding	Skills
 Technologies and 	Creating designed
Society	solutions by:
 Technologies contexts 	\circ Investigating and
 Engineering 	Defining
principles and	 Generating and
systems	Designing
\circ Food and fibre	 Producing and
production	Implementing
 Food specialisation 	 Evaluating
 Materials and 	\circ Collaborating and
Technologies	Managing
specialisations	

The Arts – Overarching Content Descriptors

1	Exploring ideas and improvising with ways to represent ideas
2	Manipulating and applying the elements/concepts with intent
3	Developing and refining understanding of skills and techniques
4	Structuring and organising ideas into form
5	Sharing artworks through performance, presentation or display
6	Analysing and reflecting upon intentions
7	Examining and connecting artworks in context

Year 7-8 STEAM Knowledge and Understanding

Criteria	Sub-criteria	C-standard
Concepts	Technology concepts	Description and explanation of the features
and		of technologies and technological processes.
Procedures	Combining and creating	Description and explanation of how the
	technologies	features of technologies and technological
		processes influence the creation of
		technological products, services and
		environments.
STEAM and	Preferred Futures	Description and explanation of the changing
Society		contributions of technological innovations to
		society.
	Influencing Factors	Description and explanation of factors,
		including social, ethical and sustainability,
		which influence the design of technological
		products, services and environments.

Year 7-8 STEAM Process and Production Skills (1)

Criteria	Sub-criteria	C-standard	
Collecting,	Data management	Analysis and evaluation of data from a range	
Analysing		of sources.	
and	Modelling with data	Use of data to create technological	
Managing Data		solution(s).	
Investigating	Problem definition and decomposition	Decomposition and definition of problems by	
		taking into consideration	
		 Needs or opportunities; 	
		 Functional requirements; 	
		Constraints.	
	Success criteria	Development of criteria for success.	

Year 7-8 STEAM Process and Production Skills (2)

Criteria	Sub-criteria	C-standard	
Ideating	Solution design	Proposition, creation and comparison of designs for technological solutions.	
	Values	Representation of social values and points of view in	
	representation	designed works for particular audiences and contexts.	
Producing	Solution	Production processes that demonstrate:	
	implementation	• use of genre and media conventions and shaping	
		of technical and symbolic elements for specific	
		purposes and meaning;	
		 controlled use of equipment, technologies and 	
		technological processes to create solutions and/or	
		achieve intentions.	
	Testing and	Testing and improvement of technological processes	
	refining	and solutions.	
	Safe working	Consideration and following of safe working	
		procedures.	

Year 7-8 STEAM Process and Production Skills (3)

Criteria	Sub-criteria	C-standard	
Evaluating	Solution and	Evaluation of technological solution(s) and processes	
	process	against criteria for success.	
	evaluation		
	Critical	Evaluation of how designers (including themselves and	
	representation	designers from different cultures, times and places) use	
		elements and principles of design to create designed	
		works that meet functional and non-functional	
		requirements.	
Managing,	Project planning	Application of project management skills to document	
Collaborating	and	and follow project plans.	
and	management		
Communicating	Cooperating and	Working individually and in groups to complete tasks.	
	collaborating		
	Communication	Communication of technological ideas, processes, plans	
		or products using suitable technical language and	
		representations.	

STEAM into STEM Work Program

Term 1	Term 2	Term 3	Term 4			
Year 7						
Elements and	Science of Flight	Gamemaking with	Robots and			
Principles of Design		Scratch	Mechanisms			
Year 8						
Food production,	App building	3D design and	Un-manned			
sound and video		printing	vehicles			
production						
Year 9						
Eco-housing Design	Building	Bio-fuel production	Internet of things			
	automation	and fuel-efficient				
		vehicles				
Year 10						
Data-driven web	Cause and effects	Electronics	Bionics			
design						

Third spaces in STEM Initial Teacher Education

• "... shifting the epistemology of preservice teacher preparation from a place where academic knowledge in the university is seen as the primary source of knowledge about teaching to a situation where academic knowledge and expert P-12 teachers are treated with equal respect." (Zeichner, 2010, p.93)