## **Steam System Modeling Tool**

Overview and Tour



This document is designed to be used as both a comprehensive presentation and a quick reference for the **Steam System Modeling Tool (SSMT)** 

To use as a quick reference:

- The <u>table of contents</u> provides links to all of the key topics covered.
- Each page also includes a direct link back to the table of contents
- A direct link to SSMT is also provided a the bottom of every page (*internet connection required*)







**SSMT** is designed to be easy to use with significant built-in documentation and detailed calculations. Specifically the examples, and pop-up hints allows users to test all features instantly and get immediate feedback:

**Examples** are available in all calculators and the modeler. When selected, they demonstrate the functions of the calculators by being loaded just as though it had been entered by the user. Almost all examples are randomly generated, allowing users to evaluate numerous examples.

**Pop-Up Hints** appear for all data fields

Every data field has a pop-up hint that provides details about the field units, description, acceptable range, and where the entered value is





## Table of Contents (1/2) (click links to jump to section)

#### Introduction to SSMT

**General Layout** 

Customizing Units and Language

Steam Properties and Calculators

Equipment Calculators [description structure]:

| - Boiler:        | <u>Overview</u> | <u>Inputs</u> | <b>Calculation</b> | <u>Results</u> |
|------------------|-----------------|---------------|--------------------|----------------|
| - Heat Loss:     | <u>Overview</u> | <u>Inputs</u> | <b>Calculation</b> | <u>Results</u> |
| – Flash Tank:    | <u>Overview</u> | <u>Inputs</u> | <b>Calculation</b> | <u>Results</u> |
| - <b>PRV</b> :   | <u>Overview</u> | <u>Inputs</u> | <b>Calculation</b> | <u>Results</u> |
| - Header:        | <u>Overview</u> | <u>Inputs</u> | <b>Calculation</b> | <u>Results</u> |
| - Deaerator:     | <u>Overview</u> | <u>Inputs</u> | <b>Calculation</b> | <u>Results</u> |
| – Steam Turbine: | Overview        | Inputs        | Calculation        | Results        |

ENERGY Steam Calculators formitten Disees. Steam Calculators 2 Steam Picaerty Calculator
 7 Steam Elacycrowel Calculation
 Statem Steam Minister Description ( Properties Calculators Inten Property Recommend Early Refer Magnicese Treat Tank Flash Lash Determines the mass flows and projection of any EXAMPLE The second seco to a limited Description the siggined some and steals from he Store, labine Calculates the energy gener Stears Senters Modeler Stram Settern Bodelar Crafter a basic Mann system model with up to 3 different proc Carta DE, Troit MB, Poloter I U.B, Daparthari all'Enarge i USA gen-Verman el 8.142 - Rait Sare USDOS Main Entry Page of SSMT

Steam System Modeler:

-SEE FOLLOWING PAGE



#### Steam System Modeler :

Overview Key Terms

#### Using the Steam System Modeler

#### Generating a Base Model: Overview

Sections: Boiler General Headers Steam Turbines

#### Reviewing the Model: Overview

Diagram [MouseOver Equipment]

Steam Balance Energy Flow

#### Creating an Adjusted Model: Overview

Adjustments:GeneralUnit CostsSteam DemandBoilerSteam TurbinesCondensateHeat Loss

#### **Comparing the Models**

**Reloading and Savings**: Download Spreadsheet Reloading a Model

Export to AMO eCenter

Tips and Tricks



The **Steam System Modeling Tool (SSMT)** is designed to enable steam system operators to both better understand their systems and provide the tools to evaluate potential improvements.

#### *Key features include:*

- Custom Steam Property Tables
- Equipment Calculators
- Steam System Modeler
- Web-based
- Customizable Units
- Transparent Calculations





#### **Custom Steam Property Tables**

Users can generate customized steam tables based on specific operating conditions of their steam system.

#### **Equipment Calculators**

Basic steam system equipment can be independently modeled and evaluated without creating a complete model.

#### **Steam System Modeler**

A 1-3 header steam system model can be generated with the associated PRVs, steam turbines, flash tanks, heat losses, and condensate return conditions. Users can then evaluate the impact of a significant number of adjustments to the model.

#### Web-based

Only an internet connection and the current version of any major browser are required to immediately start using SSMT. *There are no installation requirements.* 

#### **Customizable Units**

Users can select and switch between a number of different units at any time.

#### **Transparent Calculations**

Calculations details are provided through tool to allow users to verify results.



## **General Layout and Structure**

#### Major Sections of SSMT:

- General Information
- Property Calculators
- Equipment Calculators
- Steam System Modeler

All calculators follow a similar format *detailed on the following page*.





## **General Calculator Layout**



Examples

for a few common configurations with random data

Assumptions specific to the calculation

**GO TO SSMT ONLINE** 



#### **Diagram of** Equipment

with Complete **Steam Property** Details

Calculation **Details** populated with data from current calculation



The **Preferences** page allows users to customize the following at anytime:

- Unit Types
- Language
- Currency Symbol

By default, NO information will be stored about the users preferences. If a user wishes to store their preferences between sessions they must switch the "Permanently Store Preferences"

Option to "Yes"

Permanently Store Preferences No -

| Main                                                         | Dreference         |           |          |             |                               |
|--------------------------------------------------------------|--------------------|-----------|----------|-------------|-------------------------------|
|                                                              | Preference         | S         |          |             |                               |
| About                                                        | Set preferred unit | systems,  | individu | al units, a | ind languages.                |
| Preferences                                                  | Language Englis    | ih 👻      |          |             |                               |
| Glossary                                                     |                    |           |          |             |                               |
| Resources<br>Properties Calculators:<br>Saturated Properties | Currency Symbol    | ş •       |          |             |                               |
| Steam Properties                                             |                    |           |          |             |                               |
| Equipment Calculators:<br>Boiler                             | measurement Syst   | Cust      | om 💌 🤫   | wwet cus    | tom to prok individual units. |
| Heat Loss                                                    |                    | Imperial  | SI       | Chinese     | Custom                        |
| Flash Tank                                                   | Temperature        | °F        | *C       | °C          | Fahrenheit 'F 💌               |
| PRV w/ Desuperheating                                        | Pressure           | psig      | barg     | barg        | psi (gauge) 👻                 |
| Header                                                       | Vacuum Pressure    | psia      | bara     | bara        | psi (absolute) 💌              |
| Deserator                                                    | Specific Enthalpy  | btulbm    | kJ/kg    | kJ/kg       | btu/lbm 👻                     |
| Steam Turbine                                                | Specific Entropy   | btu/lbm/R | kJ/kg/K  | kJ/kg/K     | btu/lbm/R -                   |
| Steam System Modeler                                         | Specific Volume    | #*//b     | m³/kg    | m*/kg       | ft*/lb 💌                      |
|                                                              | Mass Flow          | klb/br    | the      | thr         | klb/br =                      |
|                                                              | Dansity            | ID MP     | olm?     | olm?        | IS MALE .                     |
|                                                              | Enormy Flow        | MMDhuthr  | 1000     | TOEAU       | MMBhulbr =                    |
|                                                              | Energy How         | MMDNum    | himi     | TOF         | MMDuym +                      |
|                                                              | Energy             | MMENU     | Nm-      | ICE         | WMOU +                        |
|                                                              | Power              | RVV       | KW       | KVV         | KYV ·                         |
|                                                              | Electricity        | KWh       | KWh      | KWh         | KWN -                         |
|                                                              | Volume             | gal       | 1        | 1           | gai •                         |
|                                                              | Volume Flow        | gpm       | Ipm      | Ipm         | gpm 👻                         |



## **Customizing Units**

- Users may select between predefined units sets or customize each individual unit.
- This may be done at any time, even if a model has already been generated. The model and entered values will all be updated to match the new units.
- SSMT remembers which units were selected when any values are entered. This ensures that entered values are at most converted only 1 time regardless of how many times a user switches units.

| ENERGY Energy El                                            | ficiency &<br>le Energy             |                         |          |              |                        |           |         |         |                  |
|-------------------------------------------------------------|-------------------------------------|-------------------------|----------|--------------|------------------------|-----------|---------|---------|------------------|
| Steam Calcu                                                 | ulators                             |                         |          |              |                        |           |         |         |                  |
| ERE » Advanced Manufacturi                                  | ing Office = Steam Calcul           | iator <u>s</u> » Pre    | ferences |              |                        |           |         |         |                  |
| Main<br>About<br>Preferences<br>Olossary                    | Preference<br>Set preferred unit    | S<br>t systems,<br>sh ▼ | individ  | ual units, a | ind languages.         |           |         |         |                  |
| Resources<br>Voperties Calculators:<br>Saturated Properties | Currency Symbol                     | 5                       |          |              |                        |           |         |         |                  |
| Steam Properties<br>quipment Calculators:                   | Measurement Sys                     | tem Cust                | lom 👻    | Select 'Cus  | tom' to pick individue | i unita.  |         |         |                  |
| Heat Loss                                                   |                                     | Imperial                | SI       | Chinese      | Custom                 |           |         |         |                  |
| Flash Tarik                                                 | Temperature                         | ۹F                      | *C       | *C           | Fahrenheit 'F +        |           |         | _       |                  |
| PRV w/ Desuperheating                                       | Pressure                            | psig                    | barg     | barg         | psi (gauge) 💌          |           |         |         |                  |
| Header                                                      | Vacuum Pressure                     | psia                    | bara     | bara         | psi (absolute)         |           |         |         |                  |
| Deperator                                                   | Specific Enthalm                    | bhalbm                  | kilke    | k.lika       | btulbm *               |           |         |         |                  |
| Steam Turbine<br>Steam System Modeler                       | Specific Entropy<br>Specific Volume | bturb<br>mitb           |          |              |                        | Imperial  | SI      | Chinese | Custom           |
|                                                             | Mass Flow<br>Density                | kib/hr<br>Ib/ff*        | Те       | mpera        | ture                   | °F        | °C      | °C      | Fahrenheit °F 👻  |
|                                                             | Energy Flow<br>Energy               | MMBN                    | Pr       | essure       | e                      | psig      | barg    | barg    | psi (gauge) 🛛 👻  |
|                                                             | Power<br>Electricity                | KWV<br>KWVN             | Va       | cuum         | Pressure               | psia      | bara    | bara    | psi (absolute) 🔻 |
|                                                             | Volume<br>Volume Flow               | gai                     | Sp       | ecific       | Enthalpy               | btu/lbm   | kJ/kg   | kJ/kg   | btu/lbm ▼        |
|                                                             | Permanently Store                   | Prefer                  | Sp       | ecific       | Entropy                | btu/lbm/R | kJ/kg/K | kJ/kg/K | btu/lbm/R ▼      |
|                                                             | UPDATE PRE                          | FERE                    | Sp       | ecific       | volume                 | π-/Ib     | m²/kg   | m²/kg   | π*/ID ▼          |
|                                                             |                                     |                         | Ma       | iss Flo      | W                      | klb/hr    | t/hr    | t/hr    | klb/hr ▼         |
|                                                             |                                     |                         | De       | nsity        |                        | lb/ft³    | g/m³    | g/m³    | lb/ft³ ▼         |
|                                                             |                                     |                         | En       | ergy F       | low                    | MMBtu/hr  | kW      | TCE/hr  | MMBtu/hr 👻       |
|                                                             |                                     |                         | En       | ergy         |                        | MMBtu     | Nm³     | TCE     | MMBtu 👻          |
|                                                             | \                                   |                         | Ро       | wer          |                        | kW        | kW      | kW      | kW 👻             |
|                                                             | ١                                   |                         | Ele      | ectricit     | y .                    | kWh       | kWh     | kWh     | kWh ▼            |
|                                                             |                                     | $\backslash$            | Vo       | lume         |                        | gal       | I       | I       | gal 🔻            |
|                                                             |                                     |                         | Vo       | lume F       | low                    | gpm       | lpm     | lpm     | gpm 👻            |



## **Customizing Languages**

- SSMT is design to support alternate languages options. It currently includes:
  - Chinese
  - Russian
- To further support international use of the tool, users can also select an alternate currency symbol.
  - This is used in the steam system modeler which includes steam related costs and cost savings calculated from various system adjustments.

|                                                                                                                               |                                                                          | liculators + Preferences                                   |                                                    |                                   |                                                     |                               |          |  |
|-------------------------------------------------------------------------------------------------------------------------------|--------------------------------------------------------------------------|------------------------------------------------------------|----------------------------------------------------|-----------------------------------|-----------------------------------------------------|-------------------------------|----------|--|
| tain<br>About<br>Preferences<br>Olossary<br>Resources<br>operties Calculators:<br>Salurated Properties                        | Currency Syn                                                             | Ces<br>unit systems, individual<br>unish •<br>ENERGY Rener | units, and langs<br>y Efficiency &<br>vable Energy | ages.                             |                                                     |                               |          |  |
| Steam Properties<br>suipment Calculators:<br>Boler<br>Heat Loss<br>Flash Tark<br>PRV w Desuperheating<br>Header<br>Deservator | Measuremen<br>Temporature<br>Pressure<br>Vacuum Pres                     | 蒸汽计算器<br>EEEE + Advanced Menulae<br>#第<br>#7<br>#2         | tarina Office + 書名<br>设置<br>设定单位)<br>(Alt AZ       | 注意题。 梁章<br>陈统、 其 俳<br>百百 公二 - 1   | 的单位者                                                | 0语言。                          |          |  |
| Steam Turbine<br>beam System Modeler                                                                                          | Specific Enth<br>Specific Entry<br>Specific Volu<br>Mass Flow<br>Density | 4000余<br>快速<br>開始計算算<br>信和是項<br>游代英语<br>使各计算题:<br>我的       | · 按由符号                                             | 92.471 74<br>N •                  | 640                                                 |                               |          |  |
|                                                                                                                               | Energy Flow<br>Energy                                                    | 市住み<br>内高橋<br>株式市工社内市工作                                    | 刺激系统                                               | 英制单位                              | • •#/                                               | *****                         | R.八井约孝位。 |  |
|                                                                                                                               | Electricity<br>Volume                                                    | 818 ADADA                                                  | 道度<br>压力                                           | 美制单位<br>"F<br>2010                | SR<br>°C<br>barg                                    | •Bang                         |          |  |
|                                                                                                                               | Volume Flow<br>Permanently                                               | AAAMBRIA                                                   | 真空压力<br>比型<br>比型                                   | psta<br>bhaltim<br>bhaltimR       | bara<br>KJ/kg<br>KJ/kg/K                            | bara<br>kJikg<br>kJikgK       |          |  |
|                                                                                                                               | UPDATE                                                                   |                                                            | 比符<br>斯里克里<br>密度<br>新星克                            | RND<br>KISINY<br>ILAR*<br>MMERUNY | m <sup>4</sup> kg<br>Shu<br>gimi <sup>a</sup><br>KW | mflig<br>thr<br>gm*<br>TCEItr |          |  |
| _                                                                                                                             | _                                                                        |                                                            | 載型<br>电力<br>电力                                     | MMBN/<br>KW                       | Nimi*<br>KW<br>KWh                                  | TCE<br>NV<br>KWh              |          |  |
|                                                                                                                               |                                                                          |                                                            | 音樂<br>百樂点樂                                         | gal<br>gpm                        | t<br>Ipm                                            | t<br>Ipm                      |          |  |



GO TO Table of Contents

SSMT calculates all steam properties using the International Association for the Properties of Water and Steam's Thermodynamic Properties of Water and Steam Industrial Formulation, IAPWS-IF97, 2007, <u>www.iapws.org</u>

Calculated properties include\*:

- Pressure
- Temperature
- Specific Enthalpy
- Specific Entropy
- Phase
- Quality

13

Specific Volume

\*Due to the complexity of the steam calculations, they are not displayed by SSMT.





SSMT provides 2 steam property calculators:

- Saturated Properties Calculator
  - Determines saturated liquid and gas properties for a given pressure or temperature
- Steam Properties Calculator
  - Determines steam and liquid water properties given two properties that fix the state

#### Both calculators include:

- Steam Property Details
- Temperature-Entropy Diagram (Vapor Dome)
- History of 20 most recent property calculation
- Downloadable properties (custom steam tables)



|                              |                   | 666 party                                  |                             |                 |                |
|------------------------------|-------------------|--------------------------------------------|-----------------------------|-----------------|----------------|
| Saturated Qui                | slity + *         | 0.23                                       |                             |                 |                |
| Required                     |                   | Enter                                      |                             |                 |                |
| Example: Sati                | inated Mid        | ure.                                       |                             |                 |                |
| Kamples: 14                  | use Over          |                                            |                             |                 |                |
| iteam Propert                | fes               |                                            | Temperatu                   | re-Entropy Diag | ram            |
|                              |                   | 6.7054733                                  |                             |                 |                |
| Pressure                     | 000.0             | pag                                        |                             |                 | 11             |
| femperature                  | 500.0             | 4                                          |                             |                 |                |
| Specific Enthal              | Ny 652.2          | AlduAldama                                 | 24                          | 61              |                |
| Specific Entrop              | y 0.800           | Intuitionality                             |                             |                 | 1.7            |
| Phase / Quality              | 0.23              |                                            |                             | · V/            |                |
| Specific Volum               | 0.171             | #Wp                                        |                             | X               |                |
|                              | ties (max         | 20) - [download] -                         | (sined)<br>Specific Entropy | Phase / Quality | Specific Volum |
| Pressure To                  | imperaturs        | and an |                             |                 |                |
| Pressure To<br>prog          | imperaturi<br>17  | hiultim                                    | partim#                     |                 | 1910           |
| Pressure To<br>prop<br>566.0 | *#<br>*#<br>100.0 | 31415m<br>812-2                            | 004701miPF<br>0.860         | 0.23            | 0.171          |



#### **Saturated Properties Calculator**

Determines saturated liquid and gas properties for a given pressure or temperature

- Saturated liquid and gas refer to the 2 separate states of water that co-exist when boiling
- Both the saturated liquid and the gas will be the same temperature and pressure
- Quality refers to the portion of the total mass of water that is a gas/vapor (0 to 1). A quality of 1 indicates that it is entirely a saturated gas/vapor
- Saturated properties can be determined given only the temperature or pressure as they both correspond to the boiling temperature at a given pressure

| Fiesdare -   |            | 046.2          | 240                |                    |                  |                    |               |                  |                     |             |                  |
|--------------|------------|----------------|--------------------|--------------------|------------------|--------------------|---------------|------------------|---------------------|-------------|------------------|
| * Required   |            | Ente           | e)                 |                    |                  |                    |               |                  |                     |             |                  |
| 'Exemple: A  | landom P   | wassen.        |                    |                    |                  |                    |               |                  |                     |             |                  |
| Examples:    | Master Ov  | Wr.            |                    |                    |                  |                    |               |                  |                     |             |                  |
| Steam Prop   | erties     |                |                    |                    |                  | Temp               | oraturo-Entro | py Diagram       |                     |             |                  |
|              | Sal<br>Liq | torated<br>pid | Exapora            | Goe Saturat<br>Gas | od uets          |                    |               |                  |                     |             |                  |
| Pressure     |            |                | 2,846              | 2                  | prig             |                    |               |                  |                     |             |                  |
| Temperature  | 10. I.I.   |                | 680.               | 1                  | . W.             |                    | 1             |                  |                     |             |                  |
| Specific Ent | hakry      | 779.2          | 267.1              | 1,045              | e boyth          | m                  |               |                  | 1                   |             |                  |
| Specific Est | гору       | 0.954          | 9.23               | 1.187              | t i otutor       | 1R                 | /             | VIII.            |                     |             |                  |
| Specific Vol | atte       | 0.032          | 0.05               | 0.094              | t ittp           |                    |               | 101              |                     |             |                  |
|              |            |                |                    |                    |                  | 1-                 |               |                  |                     |             |                  |
| lecent Sala  | ration Pr  | opertie        | n (max 2           | n) (davenia        | ad] - [clear]    |                    |               |                  |                     |             |                  |
|              |            | - 1            | pecific En         | bulpy              |                  | Specific En        | tropy         |                  | Specific Vo         | lame        |                  |
| Pressere     | Tempera    | three Sa       | aductated<br>isped | Evaporation        | Saturated<br>Gas | Saturated<br>Lapid | Evaporation   | Saturated<br>Gas | Saturated<br>Liquid | Evaporation | Saturated<br>Gas |
| peig         | 生          | .0             | ndbm:              |                    |                  | blutbmR            |               |                  | 1910                |             |                  |
| 2,646.2      | 688.3      | - 75           | 79.2               | 267.7              | 1,046.9          | 0.954              | 0.233         | 1.187            | 0.032               | 0.066       | 0.098            |
|              |            |                |                    |                    |                  |                    |               |                  |                     |             |                  |
|              |            |                |                    |                    |                  |                    |               |                  |                     |             |                  |



Energy Efficiency & Renewable Energy

**GO TO SSMT ONLINE** 

#### **Steam Properties Calculator**

Determines steam and liquid water properties given two properties that fix the state

- Pressure and a secondary steam property are required to determine the exact state of the steam
- Potential secondary properties include:
  - Temperature
  - Specific Enthalpy
  - Specific Entropy
  - Quality

GO TO SSMT ONLINE

 This calculator can evaluate: sub-cooled liquid, saturated liquid, saturated mixture, saturated gas, superheated gas, and supercritical properties

|                                                                                                                      |                                                                                                                             | 666 polg                                                                       |                                                   |                                 |                                          |
|----------------------------------------------------------------------------------------------------------------------|-----------------------------------------------------------------------------------------------------------------------------|--------------------------------------------------------------------------------|---------------------------------------------------|---------------------------------|------------------------------------------|
| Saturated Qua                                                                                                        | ity • *                                                                                                                     | 0.23                                                                           |                                                   |                                 |                                          |
| *Required                                                                                                            |                                                                                                                             | Enter                                                                          |                                                   |                                 |                                          |
| "Example: Satu                                                                                                       | rated Mod                                                                                                                   | ture                                                                           |                                                   |                                 |                                          |
| Examples: Mo.                                                                                                        | ise Over                                                                                                                    |                                                                                |                                                   |                                 |                                          |
| Steam Properti                                                                                                       | es                                                                                                                          |                                                                                | Temperatu                                         | re-Entropy Diag                 | ram                                      |
|                                                                                                                      |                                                                                                                             | Units                                                                          |                                                   |                                 |                                          |
| Pressure                                                                                                             | 666.0                                                                                                                       | paig                                                                           |                                                   |                                 | 11                                       |
| Temperature                                                                                                          | 500.0                                                                                                                       | ۰۶                                                                             |                                                   |                                 | 1.11                                     |
| Specific Enthalp                                                                                                     | 652.2                                                                                                                       | blufbm                                                                         |                                                   | 6 11                            | 10                                       |
|                                                                                                                      |                                                                                                                             |                                                                                |                                                   |                                 |                                          |
| Specific Entropy                                                                                                     | 0.850                                                                                                                       | blafomR                                                                        | 1                                                 |                                 | 11                                       |
| Specific Entropy<br>Phase / Quality                                                                                  | 0.860                                                                                                                       | btulbm/R                                                                       | /                                                 | $\sim \langle \rangle$          | 11                                       |
| Specific Entropy<br>Phase / Quality<br>Specific Volume                                                               | 0.850                                                                                                                       | Plantom/R                                                                      |                                                   |                                 |                                          |
| Specific Entropy<br>Phase / Quality<br>Specific Volume<br>Recent Propert<br>Pressure Ter                             | 0.850<br>0.23<br>0.171<br>les (max                                                                                          | bhallom/R<br>#HD<br>20) - [download] -<br>s Specific Enthalpy                  | [clear]<br>Specific Entropy                       | Phase / Quality                 | Specific Volum                           |
| Specific Entropy<br>Phase / Quality<br>Specific Volume<br>Recent Propert<br>Pressure Ter<br>2009                     | 0.860<br>0.23<br>0.171<br>ies (max<br>mperature<br>*5                                                                       | bhallom/R<br>#HD<br>20) - [download] -<br>e Specific Enthalpy<br>Dhallom       | [clear]<br>Specific Entropy<br>DU/DmR             | Phase / Quality                 | Specific Volumo                          |
| Specific Entropy<br>Phase / Quality<br>Specific Volume<br>Recent Propert<br>Pressure Ter<br>poly<br>666.0            | 0.860<br>0.23<br>0.171<br>ies (max<br>mperature<br>*5<br>500.0                                                              | 20) - [download] -<br>e Specific Enthalpy<br>Ditultom<br>652.2                 | [clear]<br>Specific Entropy<br>Daufbrurk<br>0.860 | Phase / Quality<br>0.23         | Specific Volum<br>Alia<br>0.171          |
| Specific Entropy<br>Phase / Quality<br>Specific Volume<br>Recent Propert<br>Pressure Ter<br>poig<br>666.0<br>1,056.0 | <ul> <li>0.860</li> <li>0.23</li> <li>0.171</li> <li>les (max<br/>mperature<br/>"%</li> <li>500.0</li> <li>553.0</li> </ul> | 20) - (download) -<br>stillo<br>Specific Enthalpy<br>Obultom<br>652.2<br>941.5 | specific Entropy<br>bioliformiR<br>0.860<br>1.137 | Phase / Quality<br>0.23<br>0.61 | Specific Volum<br>#100<br>0.171<br>0.261 |



## **SSMT Equipment Calculators:**

Boiler Calculator
Heat Loss Calculator
Flash Tank Calculator
PRV w/ Desuperheating Calculator
Header Calculator
Deaerator Calculator
Steam Turbine Calculator





### **OVERVIEW**

Description of the calculator and key features

## <u>INPUTS</u>

Each input listed in the following format: **INPUT NAME** [**property type**]: description of input type

## **CALCULATIONS**

Each step listed in the following format:

Step #: Description additional details

## <u>RESULTS</u>

Listing of all calculations results provided by the calculator





SSMT EQUIPMENT Boiler Calculator OVERVIEW

The **Boiler Calculator** determines the amount of fuel energy required to produce steam with the specified properties at a given flow rate using general boiler operational characteristics.

Capable of evaluating generation of:

- Saturated Steam
- Superheated Steam
- Supercritical Steam





#### <u>GO TO</u> Table of Contents

## SSMT EQUIPMENT Boiler Calculator

#### INPUTS

#### **Deaerator Pressure [pressure]:**

Initial pressure of the feedwater before it is increased to boiler pressure

#### **Combustion Efficiency** [%]:

% of the fuel energy that is transferred to the boiler water and steam

#### Blowdown Rate [%]:

% of feedwater being drained from the boiler as a

saturated liquid to reduce the concentration of dissolved solids

#### Pressure [pressure]:

Operating pressure of the boiler, blowdown, and generated steam

#### Secondary Steam Property [varies]:

[Either: Temperature, Specific Enthalpy, Specific Entropy, or Quality] Second steam property associated with the generated steam

#### Steam Mass Flow [mass flow]:

Mass flow of the steam produced by the boiler

#### eaerator Pressure\* 35.2 psig

boiler operational characteristics.

**Boiler Calculator** 

| Deaerator Pressure*    | 35.Z  | psig    |
|------------------------|-------|---------|
| Combustion Efficiency* | 79.9  | %       |
| Blowdown Rate*         | 3.7   | %       |
| Stea                   | m     |         |
| Pressure*              | 853.4 | psig    |
| Saturated Quality - *  | 1     | ]       |
| Steam Mass Flow *      | 85.1  | klb/hr  |
| * Required             | Enter | [reset] |

Determines the amount of fuel energy required to



GO TO Table of Contents

## **SSMT EQUIPMENT** Boiler Calculator CALCULATION

#### **Step 1: Determine Properties of Steam Produced**

Steam properties are determined using the **Pressure**, **Secondary Steam Property**, and **Steam Mass Flow**.

#### **Step 2: Determine Feedwater Properties and Mass Flow**

Feedwater properties are assumed to be equal to the properties of saturated liquid at **Deaerator Pressure**. The feedwater mass flow is calculated using the **Blowdown Rate** and **Steam Mass Flow**.

#### Step 3: Determine Blowdown Properties and Mass Flow

The blowdown properties are assumed to be equal to the properties of a saturated liquid at Boiler **Pressure.** The blowdown mass flow is calculated using the **Blowdown Rate** and feedwater mass flow.

#### **Step 4: Determine Boiler Energy**

The boiler energy is calculated as the difference between the total outlet (steam, blowdown) energy flows and inlet (feedwater) energy flows.

#### **Step 5: Determine Fuel Energy**

The total required fuel energy is determined by dividing the boiler energy by the **Combustion Efficiency.** 





**Boiler Calculator** 

RESULTS

The **Boiler Calculator** provides the following results:

- Properties and Mass Flows for:
  - Feedwater
  - Blowdown
  - Generated Steam
- Boiler Energy
- Required Fuel Energy

|                   | Stea                           | am                                                          |                                                                                                |                                              | Mas                      | s Flow                                                                                  | 85.1 klb/hr                                                                                |
|-------------------|--------------------------------|-------------------------------------------------------------|------------------------------------------------------------------------------------------------|----------------------------------------------|--------------------------|-----------------------------------------------------------------------------------------|--------------------------------------------------------------------------------------------|
| e                 | Pres                           | sure                                                        | 853.4                                                                                          | psig                                         | Sp.                      | Enthalpy                                                                                | 1,197.2 btu/lbm                                                                            |
|                   | Temp                           | erature                                                     | 527.8                                                                                          | °F                                           | Sp.                      | Entropy                                                                                 | 1.407 btu/lbm/F                                                                            |
|                   | Satur                          | ated                                                        | 1.00                                                                                           |                                              | Ene                      | rgy Flow                                                                                | 101.9 MMBtu/hr                                                                             |
| Г                 | <u>_</u>                       | Boi                                                         | ler                                                                                            | _ <u>ц</u><br>Т                              | _                        |                                                                                         |                                                                                            |
|                   | Blow                           | down Rate                                                   |                                                                                                | 3.7 %                                        |                          |                                                                                         |                                                                                            |
|                   | Boile                          | r Energy                                                    |                                                                                                | 81.5 M                                       | MBtu/                    | hr                                                                                      | _                                                                                          |
|                   | Com                            | oustion Effic                                               | iency                                                                                          | 79.9 %                                       |                          |                                                                                         | _                                                                                          |
| r t               | Fuel E                         | Energy                                                      |                                                                                                | 102.0 /                                      | MBtu                     | Inr                                                                                     |                                                                                            |
| <b>1</b>          |                                | linergy                                                     |                                                                                                |                                              |                          | u i ii                                                                                  | <b></b> _                                                                                  |
| ľ                 |                                | lioigj                                                      |                                                                                                |                                              |                          |                                                                                         | <b>□</b> ↓                                                                                 |
| ľ                 | Blo                            | wdown                                                       |                                                                                                |                                              | Mas                      | s Flow                                                                                  | 3.3 klb/hr                                                                                 |
|                   | Blo                            | wdown<br>sure                                               | 853.4                                                                                          | psig                                         | Mas<br>Sp.               | s Flow<br>Enthalpy                                                                      | 3.3 <i>klb/hr</i><br>521.5 <i>btu/lbm</i>                                                  |
|                   | Blov<br>Press<br>Temp          | wdown<br>sure<br>perature                                   | 853.4<br>527.8                                                                                 | psig<br>°F                                   | Mas<br>Sp.<br>Sp.        | s Flow<br>Enthalpy<br>Entropy                                                           | 3.3 <i>klb/hr</i><br>521.5 <i>btu/lbm</i><br>0.723 <i>btu/lbm/F</i>                        |
|                   | Bloy<br>Press<br>Temp<br>Satur | wdown<br>sure<br>berature<br>rated                          | 853.4<br>527.8<br>0.00                                                                         | psig<br>°F                                   | Mas<br>Sp.<br>Sp.<br>Ene | ss Flow<br>Enthalpy<br>Entropy<br>rgy Flow                                              | 3.3 <i>klb/hr</i><br>521.5 <i>btu/lbm</i><br>0.723 <i>btu/lbm/F</i><br>1.7 <i>MMBtu/hr</i> |
|                   | Blov<br>Press<br>Temp<br>Satur | wdown<br>sure<br>berature<br>rated                          | 853.4<br>527.8<br>0.00                                                                         | psig<br>°F                                   | Mas<br>Sp.<br>Sp.<br>Ene | ss Flow<br>Enthalpy<br>Entropy<br>rgy Flow                                              | 3.3 <i>klb/hr</i><br>521.5 <i>btu/lbm</i><br>0.723 <i>btu/lbm/F</i><br>1.7 <i>MMBtu/hr</i> |
| eedwa             | Blov<br>Press<br>Temp<br>Satur | wdown<br>sure<br>berature<br>rated                          | 853.4<br>527.8<br>0.00                                                                         | psig<br>°F                                   | Mas<br>Sp.<br>Sp.<br>Ene | ss Flow<br>Enthalpy<br>Entropy<br>rgy Flow<br>88.4 klb/hr                               | 3.3 <i>klb/hr</i><br>521.5 <i>btu/lbm</i><br>0.723 <i>btu/lbm/F</i><br>1.7 <i>MMBtu/hr</i> |
| ectwa             | Blov<br>Press<br>Temp<br>Satur | wdown<br>sure<br>perature<br>rated<br>35.2 psig             | 853.4<br>527.8<br>0.00<br>Mas<br>Sp.                                                           | psig<br>°F<br>ss Flow<br>Enthalpy            | Mas<br>Sp.<br>Sp.<br>Ene | ss Flow<br>Enthalpy<br>Entropy<br>rgy Flow<br>88.4 klb/hr<br>250.1 btu/k                | 3.3 <i>klb/hr</i><br>521.5 <i>btu/lbm</i><br>0.723 <i>btu/lbm/F</i><br>1.7 <i>MMBtu/hr</i> |
| essure<br>mperatu | Blov<br>Press<br>Temp<br>Satur | wdown<br>sure<br>berature<br>rated<br>35.2 psig<br>280.9 °F | <ul> <li>≥53.4</li> <li>≥27.8</li> <li>0.00</li> <li>Mass</li> <li>Sp.</li> <li>Sp.</li> </ul> | psig<br>°F<br>as Flow<br>Enthalpy<br>Entropy | Mas<br>Sp.<br>Sp.<br>Ene | ss Flow<br>Enthalpy<br>Entropy<br>rgy Flow<br>88.4 klb/hr<br>250.1 btu/k<br>0.411 btu/k | 3.3 <i>klb/hr</i><br>521.5 <i>btu/lbm</i><br>0.723 <i>btu/lbm/F</i><br>1.7 <i>MMBtu/hr</i> |



The Heat Loss Calculator determines the energy [heat] loss and outlet steam properties for a steam pipe or header based on specific given inlet steam conditions and a % heat loss.

- % heat loss is relative to the triple point of water at which point the energy content of water is set a 0
- This calculator is primarily used to determine the % heat loss that best approximates the actual heat loss on a specific steam header

| EERE + Advanced Manufactur | ing Office + Steam Calculators                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                 | Heat Loss                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                       | Calculator                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                 |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                            |                                                            |                                                                             | Printable Version                              | D                |
|----------------------------|----------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|-----------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|----------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|--------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|------------------------------------------------------------|-----------------------------------------------------------------------------|------------------------------------------------|------------------|
| Main<br>About              | Heat Loss Cal                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                  | culato                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                          | and outlet ste                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                             | am properties given                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                        | inlet steam                                                | conditions and                                                              | a % heat loss.                                 |                  |
| Preferences                |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                 |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                            | Indat Passa                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                | 00222543023                                                |                                                                             |                                                |                  |
| Glossey                    | East and a second se                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                 |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                            | iniet stean                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                | 1                                                          | Mass Flow                                                                   | 23.6 MD/mr                                     |                  |
| Resources                  | Pressure"                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                      | 929                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                             | pag                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                        | Pressure                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                   | 929 0 parg                                                 | Sp. Entholpy                                                                | 420,4 btulbm                                   |                  |
| Properties Calculators:    | Temperature • *                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                | 440.9                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                           | . ite                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                      | Temperature                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                | 440.9 %                                                    | Sp. Entropy                                                                 | 0.015 D00/0m/R                                 |                  |
| Saturated Properties       | Mans Flow *                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                    | 23.6                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                            | Allaftir.                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                  | Phase                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                      | Liquid                                                     | Energy Flow                                                                 | 9.9 MARILANT                                   |                  |
| Steam Properties           | Percent Heat Loss *                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                            | 7.95                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                            | 16                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                         |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                            | 100                                                        |                                                                             |                                                |                  |
| Boller                     | F OTCOM FIGURE LOUG                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                            | 1.00                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                            | 1                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                          |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                            | - <b>1</b>                                                 | set Loss 7.95 %                                                             |                                                |                  |
| Heat Loos                  | * Forquired                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                    | Ente                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                            | treast                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                     |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                            | He                                                         | atLoss 0.0 LAN                                                              | 10/a/hr                                        |                  |
| Flash Tank                 | **Example: Liquid                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                              |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                 |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                            |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                            |                                                            |                                                                             |                                                |                  |
| PRV w/ Desupertveating     | Examples: Moure Over                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                           |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                 |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                            | Outlet Ste                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                 |                                                            | Manual Closer                                                               | 22.6 60.54                                     |                  |
| Header                     | Columbus Data                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                  |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                 |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                            | December Stee                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                              | 1000.0                                                     | for Failed                                                                  | 200 0 Roberts                                  |                  |
| Deserator                  | Calculation Details and                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                        | Assumpt                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                         | Ions below                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                 | Tressure                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                   | 440.0.10                                                   | Sp. Chinaipy                                                                | a P10 of the P1                                |                  |
| Steam Turbine              |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                 |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                            | Temperature                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                | 410.3.7*                                                   | sp. Entropy                                                                 | 0.578.00000092                                 |                  |
| Steam System Modeler       |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                 |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                            | Phase                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                      | Lidnig                                                     | Fuelow How                                                                  | 9.1 MM265/07                                   |                  |
|                            | Step 1: Determine Inlet<br>Using the Steam Prope<br>Specific Enthalpy, Spec<br>• Pressure = 929.0 pm<br>• Temperature = 440.9                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                  | Propertienty Calcula<br>inc Entrop                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                              | es<br>itor, properties a<br>y, or Quality). Tr                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                             | re determined using le<br>se Specific Enthalpy i                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                           | slet Pressure :<br>s then multipli                         | and the selected<br>ed by the Mass I                                        | second parameter (Te<br>flow to get the Energ  | mpera<br>y Flow  |
|                            | Step 1: Determine Intel<br>Using the Steam Prope<br>Specific Enthalpy, Speci<br>Enthalpy, Speci<br>Temperature = 929 0 pm<br>Temperature = 440 9<br>(Steam Property Cal<br>Intel Energy Flow = 3<br>[Intel Energy Flow = 3<br>Energy Flow = 3                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                  | Propertie<br>ty Calcula<br>the Entrop<br>"""<br>culator[ ==<br>sectle Entrop<br>9.9 AMAGEN                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                      | es<br>for, properties a<br>y, or Quality). Tr<br>Specific Enthalp<br>alpy * Mass Flow<br>drr = 420.4 bind<br>Elow after Mas                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                | re determined using le<br>le Specific Enthalpy i<br>y = 420.4 blu/lom<br>[bm * 23.6 klo/br ]                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                               | nlet Pressure a<br>s then multipli                         | and the selected<br>ed by the Mass i                                        | second parameter (Te<br>Flow to get the Energy | mpera<br>y Flow  |
|                            | Step 1: Determine Infet<br>Using the Steam Proper<br>Specific Enthalpy, Spec<br>Pressure = 929 0 pm<br>Temperature = 4.40 p<br>(Steam Property Call<br>Infet Energy Flow = 3<br>Infet Energy Flow = 3<br>Step 2: Determine OutB<br>OutBat Energy Flow =<br>OutBat Energy Flow =                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                | Propertia<br>ty Calculation<br>for Entrop<br>culator[ ==<br>seculator] ==<br>seculator[ ==<br>9.9 MMBh<br>et Energy<br>Intel Energy<br>9.1 MMB                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                  | es<br>for, properties a<br>y, or Quality). Th<br>specific Enthalp<br>elpy * Mass Flore<br>dre = 420.4 bruil<br>Flow after Hea<br>y Flow * (1 - Mass<br>Unit = 9.9 MM20                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                     | re determined using h<br>se Specific Enthalpy i<br>y = 420.4 blue/bm<br>bm * 23.6 Atbdw ]<br>tLoss (%) )<br>nub* * (1 - 0.0795 ) ]                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                         | nlet Pressure<br>a then multipli                           | and the selected<br>ad by the Mass I                                        | second parameter (Te                           | mpera<br>y Flow  |
|                            | Step 1: Determine Intel<br>Ung the Steam Prope<br>Specific Einhalpy, Spec<br>• Pressure = 928 0 no<br>• Isteam Property Cal<br>• Isteam Property Cal<br>• Isteam Property Cal<br>• Isteam Energy Frow = 3<br>[Intel Energy Frow = 3<br>[Intel Energy Frow = 3<br>[Outlet Energy Frow = 3<br>[Intel                                                                                                     | Properti<br>ty Calculation<br>ty Calculation<br>()<br>()<br>()<br>()<br>()<br>()<br>()<br>()<br>()<br>()                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                        | es<br>for, properties a<br>y, or Quality). Th<br>specific tothalp<br>elay * Mass Flow<br>effor * 420 4 brain<br>Flow after Hee<br>y flow * (1 - Hea<br>hardy = 9.9 MAR)<br>ties<br>entrained from en                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                       | re determined using is<br>specific Enthalpy i<br>y = 420.4 blut/bm<br>,<br>bm * 23.6 klb/br ]<br>tLoss (%) ]<br>ub/r * (1 - 0.0795 ) ]<br>ergy and mass flows:                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                             | nlet Pressuré<br>s then multipli                           | and the selected<br>ad by the Mass i                                        | second parameter (Te                           | mpera<br>y Flow  |
|                            | Step 1: Determine Intel Using the Steam Proper Specific Einstapy, Specific Einstapy, Specific Einstapy, Specific Einstapy, Steam Property Cala  Steam Property Cala  Intel Einstey Prom 3: E Intel Einstey Prom 3: EInste 2: Determine Out  Outlet Einstey Prom  Step 3: Determine Out  Outlet Einstey Prom  Step 3: Determine Out  Outlet Einstey Prom  Dutter Einstey Prom                                                                                                                                                                                                                                                                                   | Propertia<br>try Calculation<br>find Entrop<br>"7"<br>culator[ ====================================                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                             | es<br>Rot, properties a<br>y, or Quality). Th<br>specific Enthalp<br>alpy * Mass Flow<br>drv = 420.4 bruil<br>Flow after Hee<br>y Flow * (1 - Hea<br>hubbr = 9.9 MMB<br>lifes<br>entrined from en<br>taw<br>a Flow * Outlet Si<br>Emergy Flow / Hu<br>Doublow = 9.1                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                        | <pre>te determined using b est Specific Enthalpy i y = 420.4 btu/tom , m* 23.6 ktto/br] fLoss fLoss(%) } ergy and mass flows: pecific Enthalpy at Mass Tiow MURUUM / 23.6 ktto/br)</pre>                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                   | tlet Pressure ,<br>a then multiple                         | and the selected<br>of by the Mass I                                        | second parameter (Te                           | mpera<br>y Flow  |
|                            | Step 1: Determine Intel<br>Using the Steam Prope<br>Specific Enhalpy, Specific Enhalpy,<br>Specific Enhalpy, Specific Enhalpy,<br>Steam Property Call<br>Steam Property Call<br>Intel Tearry Flow = 1<br>Could Energy Flow | Properticity Calculation<br>for Entrop<br>"""<br>culator[ ====================================                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                  | es<br>for, properties a<br>specific trihinip<br>steps ' Massa Flow<br>and ' All and ' All and ' All and<br>Flow after Heal<br>Plow after Heal<br>prove 1, and the All and<br>the second and the second and the second and<br>the second and the second and the second and<br>the second and the second and the second and the second and<br>the second and the second and                                                                                                           | re determined using to<br>the Specific Enthalpy in<br>y = 420.4 bhu/lom<br>y = 420.4 bhu/lom<br>y = 420.4 bhu/lom<br>y = 420.4 bhu/lom<br>i Loss (%)<br>those (%)<br>i Loss (%)<br>wh(Plank / 23.6 khb/l<br>AMPEND / 23.6 khb/l<br>AMPEND / 23.6 khb/l                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                     | niet Pressure ;<br>a then multiple<br>v ]<br>ressure and 8 | and the selected<br>at by the Mass I                                        | second parameter (Te                           | empera<br>y Flow |
|                            | Step 1: Determine Indet<br>Using the Steam Prope<br>Specific Enthalpy, Specific Enthalpy,<br>Specific Enthalpy, Specific Enthalpy,<br>Steam Property Call<br>• Indet Energy Flow = 3r<br>[Indet Energy Flow = 3r<br>[Indet Energy Flow = 3r<br>[Outlet Energy Flow = 3r<br>] Outlet Energy Flow = 3<br>2 Outlet Energy Flow = 3<br>3 Outl                              | Properti-<br>try Calculation<br>fice Entrop<br>"7"<br>culator[ ==<br>becific Entrop<br>9.9 //M/07n<br>et Energy<br>et En | ne<br>dor, properties a<br>go, or Clustey) Tr<br>Specific totholgy<br>thy "Mass from driver 4204 & bruil<br>Flow after 1440 & bruil<br>Flow after 1440 & bruil<br>Flow after 1440 & bruil<br>tes<br>envired from en<br>ouve<br>s flow " 0.04845 & bruilet 55<br>bruings flow / billion = 9.1.<br>bruings flow / builtet 55<br>bruings flow / billion = 9.1.<br>bruings flow / billi | re determined uning to<br>the Specific Enthalpy in<br>the specific Enthalpy in<br>the second state of the second<br>the second state of the second<br>the second state of the second state<br>second Enthalpy and mass flows:<br>second Enthalpy and mass flows:<br>second Enthalpy and the second state<br>second state second state second state<br>second state second state second state<br>second state second sta | vet Pressure<br>a then multiple<br>v ]<br>tressure and §   | and the exelected<br>ed by the Mass I<br>by the Mass I<br>specific Enthulpy | second parameter (Te                           | r Flow           |
|                            | Step 1: Determine Inde<br>Using the Steam Prope<br>Specific Enthalpy, Specific Enthalpy,<br>Specific Enthalpy, Specific Enthalpy,<br>Steam Property Call<br>Inde Tamperature = 4.40 9<br>ISteam Property Call<br>Entry The Steam Property Call<br>Duties Energy Prove = 1<br>(Duties Energy Prove = 1<br>(Dut                              | Properti-<br>try Calculation<br>fice Entrop<br>"7"<br>culator[ ==<br>becific Entrop<br>= 9 AMADin<br>et Energy<br>mistet Energy<br>et Energy<br>s det entrop<br>et Proper<br>aloy is det<br>et Proper<br>aloy is det<br>et Mass F<br>Outlet Mass F<br>out                                                                                                                                                                   | In the second se                                                                                                                                             | re determined using b<br>we Specific Enthalpy in<br>port * 23.6 Atto/re ]<br>tLose (*) ]<br>usin * (1 - 0.0795 ) ]<br>enty and mass flows:<br>second Enthalpy<br>at blass flows<br>ModRuhr / 23.6 Atto/re<br>te determined using F<br>410.3 '/F                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                            | niet Pressure and S<br>then multipli                       | and the subscied<br>of by the Mass I<br>ipecific Enthulpy                   | second parameter (Te                           | P Flow           |
|                            | Step 1: Determine Inde<br>Ung the Steam Prope<br>Specific Enthalpy, Specific Enthalpy,<br>1990 - 1990 - 1990 - 1990<br>- Steam Propenty Cali<br>I Steam Propenty Cali<br>I Step 2: Determine Outh<br>- Outlet Energy Flow = 1<br>- Specific Energy Flow                                          | Properti-<br>try Calculation<br>file Entering<br>"""<br>seculatori ==<br>seculatori ==                                                                                                                                                                             | IS Specific properties a<br>concentration of the second seco                                                                                                                                           | re determined uning b<br>e Specific Enthalpy i<br>y = 420.4 blueform<br>,<br>bm * 23.6 Albe/re]<br>Albess<br>(1.0.000795.)]<br>mity and mass flows:<br>section Enthalpy<br>at Mass Thow<br>MMMLahr / (2.5.6 Kib/r<br>re determined uning F<br>410.3 '/F                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                    | niet Pressure<br>a then multipli<br>tressure and S         | and the exelected<br>ed by the Mass I<br>ipecific Enthalpy                  | second parameter (Te                           | mper<br>y Flov   |



**OVERVIEW** 

#### Pressure [pressure]:

Pressure of the input steam

#### Secondary Steam Property [varies]:

[Either: Temperature, Specific Enthalpy, Specific Entropy, or Quality] Second steam property associated with the inlet steam

#### Mass Flow [mass flow]:

Mass flow of the steam

#### Percent Heat Loss [%]:

% of steam heat [*enthalpy*] lost between the inlet and the outlet

| Inle              | t             |
|-------------------|---------------|
| ressure*          | 929 psig      |
| emperature 🔹 *    | 440.9 °F      |
| ass Flow *        | 23.6 klb/hr   |
| rcent Heat Loss * | 7.95 %        |
| Required          | Enter [reset] |



#### **Step 1: Determine Inlet Properties**

Inlet steam properties are determined using the **Pressure**, **Secondary Steam Property**, and **Mass Flow.** 

#### **Step 2: Determine Outlet Energy Flow after Heat Loss**

The outlet energy flow calculated by reducing the inlet energy flow by the **Percent Heat Loss.** 

#### **Step 3: Determine Outlet Properties**

The outlet steam properties are determined using the **Inlet Pressure** and the calculated outlet energy flow.







Heat Loss Calculator

# The **Heat Loss Calculator** provides the following results:

- Inlet Steam Properties
- Outlet Steam Properties
- Total Heat Loss

ATORS

| inlet Steam                            |                                            |      | Mass                     | Flow           | 23.6 klb/hr                                     |
|----------------------------------------|--------------------------------------------|------|--------------------------|----------------|-------------------------------------------------|
| Pressure                               | 929.0 psig                                 | g    | Sp. Er                   | nthalpy        | 420.4 btu/lbm                                   |
| Temperature                            | 440.9 °F                                   |      | Sp. Er                   | ntropy         | 0.615 btu/lbm/R                                 |
| Phase                                  | Liquid                                     |      | Energ                    | y Flow         | 9.9 MMBtu/hr                                    |
|                                        |                                            | Loat |                          |                | -                                               |
|                                        |                                            | nea  | LOSS                     | 0.8 MMBt       | u/hr                                            |
| Outlet Stea                            | m                                          | nea  | Mass                     | 0.8 MMBta      | 23.6 klb/hr                                     |
| Outlet Stea                            | <b>m</b><br>929.0 psi <u>c</u>             |      | Mass<br>Sp. Er           | 0.8 MMBt       | 23.6 klb/hr<br>387.0 btu/lbm                    |
| Outlet Stea<br>Pressure<br>Temperature | <b>m</b><br>929.0 psi <u>c</u><br>410.3 °F | ŋ    | Mass<br>Sp. Er<br>Sp. Er | Flow<br>Thalpy | 23.6 klb/hr<br>387.0 btu/lbm<br>0.578 btu/lbm/R |



The **Flash Tank Calculator** determines the mass flows and steam properties of any resulting outlet gas and/or liquid from a flash tank based on inlet conditions.

A **flash tank** is used to capture the steam generated when a high pressure, high temperature liquid has its pressure reduced causing some of the liquid to vaporize, as known as flashing.





**OVERVIEW** 

#### Pressure [pressure]:

Pressure of the input steam

#### Secondary Steam Property [varies]:

[Either: Temperature, Specific Enthalpy, Specific Entropy, or Quality] Second steam property associated with the inlet steam

#### Mass Flow [mass flow]:

Mass flow of the steam

#### Percent Heat Loss [pressure]:

Pressure inlet steam is reduced to in the flash tank

#### Flash Tank Calculator

INPUTS

Determines the mass flows and properties of ar

| Inle                  | t             |
|-----------------------|---------------|
| Pressure*             | 622 psig      |
| Saturated Quality - * | 0.01          |
| Mass Flow *           | 47.3 klb/hr   |
| Tank Pressure *       | 393.1 psig    |
| * Required            | Enter [reset] |





**SSMT EQUIPMENT** Flash Tank Calculator CALCULATION

#### GO TO Table of Contents

#### **Step 1: Determine Inlet Water Properties**

Inlet properties are determined using the **Pressure**, **Secondary Steam Property**, and **Mass Flow.** 

#### Step 2: Determine the Specific Enthalpy and other properties for Saturated Liquid and Gas at Flash Pressure

The saturated liquid and gas/vapor properties for the **Flash Tank Pressure** are calculated.

#### Step 3: Evaluate Flash Tank

- If Inlet Specific Enthalpy is less than the Saturated Liquid Specific Enthalpy, only liquid leaves the flash tank at inlet specific enthalpy and flash tank pressure.
- If Inlet Specific Enthalpy is greater than the Saturated Gas Specific Enthalpy, only Steam leaves the flash tank at inlet specific enthalpy and flash tank pressure.
- If Inlet Specific Enthalpy is in between, proceed to Step 4.

#### **Step 4: Determine Flash Properties**

A mass and energy balance is used to determine the ratio of the saturated liquid and gas that equals the mass and energy flows of the inlet water.





#### **Flash Tank Calculator** CALCULATORS

The Flash Tank Calculator provides the following results:

- **Properties and Mass Flows for:** •
  - Inlet High Pressure Water
  - Outlet Gas
  - Outlet Liquid

| Inlet Wa  | ater                          |                                        | Mass Flow                                         |                                                                      | 47.3 klb/hr                    |                                                  |                        |
|-----------|-------------------------------|----------------------------------------|---------------------------------------------------|----------------------------------------------------------------------|--------------------------------|--------------------------------------------------|------------------------|
| Pressure  | ssure 622.0 psig              |                                        |                                                   | Sp. Enthalpy                                                         |                                | bm                                               |                        |
| Temperatu | ire                           | 492.7 °F                               | PF Sp. Entropy 0.688 btu/h                        |                                                                      |                                | bm/R                                             |                        |
| Saturated |                               | 0.01                                   | Energy Flow                                       | N                                                                    | 23.0 MMBtu                     | ı/hr                                             |                        |
| ₽↓        |                               |                                        |                                                   |                                                                      |                                |                                                  |                        |
|           | Out                           | tlet Gas                               |                                                   | Mas                                                                  | s Flow                         | 3.7 klb/h                                        | r                      |
|           | Pressure 33<br>Temperature 44 |                                        | 393.1 psig                                        | 93.1 psig         Sp. Enthalpy           46.5 °F         Sp. Entropy |                                | 1,205.1 <i>btu/lbm</i><br>1.483 <i>btu/lbm/R</i> |                        |
|           |                               |                                        | 446.5 °F                                          |                                                                      |                                |                                                  |                        |
|           | Saturated                     |                                        | 1.00                                              | Energy Flow                                                          |                                | 4.4 MMBtu/hr                                     |                        |
| L         |                               |                                        |                                                   | Fla                                                                  | ash Tanl                       | ĸ                                                |                        |
|           |                               |                                        | <b>–</b>                                          | F .                                                                  |                                |                                                  |                        |
|           | Out                           | tlet Liqui                             | d 🗬                                               | Mas                                                                  | s Flow                         | 43.6 klb/                                        | hr                     |
|           | Out<br>Pres                   | tl <b>et Liqui</b><br>sure             | <b>d</b><br>393.1 <i>psig</i>                     | Mas<br>Sp. 1                                                         | s Flow<br>Enthalpy             | 43.6 klb/<br>426.3 bt/                           | hr<br>J/Ibm            |
|           | Out<br>Pres                   | tl <b>et Liqui</b><br>sure<br>perature | <b>d</b><br>393.1 <i>psig</i><br>446.5 ° <i>F</i> | Mas<br>Sp.  <br>Sp.                                                  | ss Flow<br>Enthalpy<br>Entropy | 43.6 klb/<br>426.3 btt<br>0.624 btt              | hr<br>J/Ibm<br>J/Ibm/R |



GO TO



The **Pressure Reducing Valve (PRV) Calculator** determines the properties of steam after a pressure drop with optional desuperheating.

PRVs reduce the pressure of steam without adding or removing energy. This is known as an isenthalpic process.

In some cases, outlet steam needs to be reduced to a set temperature. To do this, PRVs can be configured to desuperheat the outlet steam by injecting water into the steam.

|                                             | floiency &                                                                                                                                                                                                                                                                                                                                                                      |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                          |                                                                                                                                                                                                            |                                                                                                                                                             |                                                                                                                        | ЕЕЛЕ                                                                                                                                         | Home   Programs 8                                                                                                                | & Offices   Co                              | naumer Information           |
|---------------------------------------------|---------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|----------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|-------------------------------------------------------------------------------------------------------------------------------------------------------------|------------------------------------------------------------------------------------------------------------------------|----------------------------------------------------------------------------------------------------------------------------------------------|----------------------------------------------------------------------------------------------------------------------------------|---------------------------------------------|------------------------------|
| NERGT Renewal                               | are Energy                                                                                                                                                                                                                                                                                                                                                                      |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                          |                                                                                                                                                                                                            |                                                                                                                                                             |                                                                                                                        |                                                                                                                                              |                                                                                                                                  |                                             |                              |
| Steam Calc                                  | ulators                                                                                                                                                                                                                                                                                                                                                                         |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                          |                                                                                                                                                                                                            |                                                                                                                                                             |                                                                                                                        |                                                                                                                                              |                                                                                                                                  |                                             |                              |
| RE » Advanced Manufactur                    | ring Office = Steam Calculators =                                                                                                                                                                                                                                                                                                                                               | PRV Calcula                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                              | itor                                                                                                                                                                                                       |                                                                                                                                                             |                                                                                                                        |                                                                                                                                              | Printab                                                                                                                          | le Version                                  | C SHARE                      |
| tain                                        | PRV w/ Desun                                                                                                                                                                                                                                                                                                                                                                    | erheati                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                  | ing Calcul                                                                                                                                                                                                 | ator                                                                                                                                                        |                                                                                                                        |                                                                                                                                              |                                                                                                                                  |                                             |                              |
| About                                       | Calculates the propertie                                                                                                                                                                                                                                                                                                                                                        | is of steam                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                              | after a pressure                                                                                                                                                                                           | drop with opt                                                                                                                                               | ional desuper                                                                                                          | heating.                                                                                                                                     |                                                                                                                                  |                                             |                              |
| Preferences                                 | Inte                                                                                                                                                                                                                                                                                                                                                                            | t                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                        |                                                                                                                                                                                                            |                                                                                                                                                             | nlet                                                                                                                   |                                                                                                                                              | Maco Flow                                                                                                                        | 60.3 Mb                                     | for .                        |
| Glossary                                    | Pressure*                                                                                                                                                                                                                                                                                                                                                                       | 226                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                      | asia                                                                                                                                                                                                       |                                                                                                                                                             | Prossuro                                                                                                               | 226.0 psig                                                                                                                                   | So Fotbalov                                                                                                                      | 1 204 8                                     | htvähm                       |
| Resources                                   | Temperature *                                                                                                                                                                                                                                                                                                                                                                   | 554.4                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                    | +6                                                                                                                                                                                                         |                                                                                                                                                             | Temperature                                                                                                            |                                                                                                                                              | Sp. Entropy                                                                                                                      | 1.631.01                                    | withmiR                      |
| perbes Calculators:<br>Saturated Properties | Mare Elser *                                                                                                                                                                                                                                                                                                                                                                    | 60.3                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                     | kibbr                                                                                                                                                                                                      |                                                                                                                                                             | hase                                                                                                                   | Gas                                                                                                                                          | Energy Flow                                                                                                                      | 78.1 MM                                     | Bluhr                        |
| Steam Properties                            | ING STRONG                                                                                                                                                                                                                                                                                                                                                                      | 00.0                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                     | Riterio                                                                                                                                                                                                    |                                                                                                                                                             | <b>_</b> 1                                                                                                             |                                                                                                                                              |                                                                                                                                  |                                             |                              |
| ipment Calculators:                         | Outlet Pressure *                                                                                                                                                                                                                                                                                                                                                               | 156.6                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                    | paig                                                                                                                                                                                                       |                                                                                                                                                             | 1                                                                                                                      |                                                                                                                                              |                                                                                                                                  |                                             |                              |
| ceer                                        | Desuperhea                                                                                                                                                                                                                                                                                                                                                                      | ting +                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                   |                                                                                                                                                                                                            |                                                                                                                                                             | PRV                                                                                                                    |                                                                                                                                              |                                                                                                                                  |                                             |                              |
| Tash Tark                                   | Feedw                                                                                                                                                                                                                                                                                                                                                                           | ater                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                     |                                                                                                                                                                                                            |                                                                                                                                                             | <b>_</b>                                                                                                               |                                                                                                                                              |                                                                                                                                  |                                             |                              |
| RV w/ Desuperheating                        | Pressure*                                                                                                                                                                                                                                                                                                                                                                       | 79.1                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                     | paig                                                                                                                                                                                                       | - I                                                                                                                                                         | <b>1</b> 1                                                                                                             |                                                                                                                                              |                                                                                                                                  |                                             |                              |
| feader                                      | Saturated Quality - *                                                                                                                                                                                                                                                                                                                                                           | 0                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                        |                                                                                                                                                                                                            | 4                                                                                                                                                           | Dutlet                                                                                                                 |                                                                                                                                              | Mass Flow                                                                                                                        | 63.3 k/b                                    | /hr                          |
| Deaerator                                   | Decuperheating                                                                                                                                                                                                                                                                                                                                                                  | 455                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                      | 1.0                                                                                                                                                                                                        |                                                                                                                                                             | Pressure                                                                                                               | 156.6 psig                                                                                                                                   | Sp. Enthalpy                                                                                                                     | 1,247.6                                     | blullbm                      |
| Steam Turbine                               | Temperature *                                                                                                                                                                                                                                                                                                                                                                   | 400                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                      |                                                                                                                                                                                                            |                                                                                                                                                             | emperature                                                                                                             | 455.0 °F                                                                                                                                     | Sp. Entropy                                                                                                                      | 1.618 bi                                    | w/bm/R                       |
| eam System Modeler                          | * Required                                                                                                                                                                                                                                                                                                                                                                      | Enter                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                    | Ireset                                                                                                                                                                                                     |                                                                                                                                                             | hase                                                                                                                   | Gas                                                                                                                                          | Energy Flow                                                                                                                      | 79.0 MM                                     | Stuthr                       |
|                                             | "Evamola: Dandom - Wit                                                                                                                                                                                                                                                                                                                                                          | h Desunarh                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                               | eating                                                                                                                                                                                                     | 1                                                                                                                                                           |                                                                                                                        |                                                                                                                                              |                                                                                                                                  |                                             |                              |
|                                             | Example: Handom - Hin                                                                                                                                                                                                                                                                                                                                                           | n Desapern                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                               | earry                                                                                                                                                                                                      | Feedwate                                                                                                                                                    | ər                                                                                                                     | Mass Flow                                                                                                                                    | 3.0 kib/hr                                                                                                                       |                                             |                              |
|                                             | Examples: Mouse Over                                                                                                                                                                                                                                                                                                                                                            | Pressure                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                 | 79.1 paig                                                                                                                                                                                                  | Sp. Enthalpy 293.8 bit                                                                                                                                      |                                                                                                                        | vibm                                                                                                                                         |                                                                                                                                  |                                             |                              |
|                                             | Calculation Details and                                                                                                                                                                                                                                                                                                                                                         | Temperature                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                              | Ale 323.2 °F Sp. Entropy                                                                                                                                                                                   |                                                                                                                                                             | 0.468 btul                                                                                                             | 0.468 btuilbm/R                                                                                                                              |                                                                                                                                  |                                             |                              |
|                                             | Pressure = 226 0.00     Immeriate = 226 0.00     Immeriate = 554.4     Islaam Property Cala     Step 2 * 10 Desuperhead     ArPV is an isentiality     Ind entiality and culter     Islam Proper     Specific Entiality. Spec     Pressure = 731 1.00     Islam Property Cala     Step 3. Determine Desu     Ung the Steam Prope     Understander = 156 0.00     Islam Property | "/F<br>ading': Det<br>process, m<br>pressure:<br>g': Determ<br>ty Calculati<br>(calculation) => 1<br>perheated<br>ty Calculation<br>Typerheated<br>ty Calculation<br>Typerheated<br>ty Calculation<br>Typerheated<br>typerheated<br>typerheated<br>typerheated<br>typerheated<br>typerheated<br>typerheated<br>typerheated<br>typerheated<br>typerheated<br>typerheated<br>typerheated<br>typerheated<br>typerheated<br>typerheated<br>typerheated<br>typerheated<br>typerheated<br>typerheated<br>typerheated<br>typerheated<br>typerheated<br>typerheated<br>typerheated<br>typerheated<br>typerheated<br>typerheated<br>typerheated<br>typerheated<br>typerheated<br>typerheated<br>typerheated<br>typerheated<br>typerheated<br>typerheated<br>typerheated<br>typerheated<br>typerheated<br>typerheated<br>typerheated<br>typerheated<br>typerheated<br>typerheated<br>typerheated<br>typerheated<br>typerheated<br>typerheated<br>typerheated<br>typerheated<br>typerheated<br>typerheated<br>typerheated<br>typerheated<br>typerheated<br>typerheated<br>typerheated<br>typerheated<br>typerheated<br>typerheated<br>typerheated<br>typerheated<br>typerheated<br>typerheated<br>typerheated<br>typerheated<br>typerheated<br>typerheated<br>typerheated<br>typerheated<br>typerheated<br>typerheated<br>typerheated<br>typerheated<br>typerheated<br>typerheated<br>typerheated<br>typerheated<br>typerheated<br>typerheated<br>typerheated<br>typerheated<br>typerheated<br>typerheated<br>typerheated<br>typerheated<br>typerheated<br>typerheated<br>typerheated<br>typerheated<br>typerheated<br>typerheated<br>typerheated<br>typerheated<br>typerheated<br>typerheated<br>typerheated<br>typerheated<br>typerheated<br>typerheated<br>typerheated<br>typerheated<br>typerheated<br>typerheated<br>typerheated<br>typerheated<br>typerheated<br>typerheated<br>typerheated<br>typerheated<br>typerheated<br>typerheated<br>typerheated<br>typerheated<br>typerheated<br>typerheated<br>typerheated<br>typerheated<br>typerheated<br>typerheated<br>typerheated<br>typerheated<br>typerheated<br>typerheated<br>typerheated<br>typerheated<br>typerheated<br>typerheated<br>typerheated<br>typerheated<br>typerheated<br>typerheated<br>typerheated<br>typerheated<br>typerheated<br>typerheated<br>typerheated<br>typerheated<br>typerheated<br>typerheated<br>typerheated<br>typerheated<br>typerheated<br>typerheated<br>typerheated<br>ty | specific Enthalpy =<br>armine Outlet S<br>earning the infet e<br>line Cooling Wa<br>yr, properties are (<br>of Quality):<br>specific Enthalpy =<br>Outlet Steam P<br>or, properties are (                  | 1.294.8 btwfbm<br>team Propertie<br>nthalpy is equal<br>ter Properties<br>fetermined using<br>293.8 btwfbm<br>roperties<br>fetermined using                 | s<br>to the outlet e<br>g Iniet Pressure<br>g Outlet Pressu                                                            | nthalpy. The out<br>a and the select<br>are and Desupe                                                                                       | llet properties a<br>led second para<br>rheating Tempe                                                                           | re determi<br>imeter (Ter<br>rature:        | ned using the mperature,     |
|                                             | Temperature = 455.0     [Steam Property Calc Step 4: Determine Feed If the Desurremented of                                                                                                                                                                                                                                                                                     | vater and                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                | outlet Mass Flo                                                                                                                                                                                            | 1,247.6 bfu/lbm                                                                                                                                             | ter specific eri                                                                                                       | thalmy or preate                                                                                                                             | r than the inlet                                                                                                                 | Steam on                                    | acific anthalme              |
|                                             | the PRV outlet cannot b<br>Flows are determined us                                                                                                                                                                                                                                                                                                                              | e desuperh                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                               | eated to the set to<br>and energy balance                                                                                                                                                                  | emperature and e equations:                                                                                                                                 | desuperheating                                                                                                         | is canceled.                                                                                                                                 |                                                                                                                                  | oveani ap                                   | circ unitary,                |
|                                             | Mass Flow = WF     Specific Inhibity = 25     Specific Inhibity = 25     Duttet Staum MF = Inh     Specific Steam MF = 0.0     (Qalet Steam MF = 0.0     (Qalet Steam MF = 0.0     (Datet Steam MF = 0.0     )     [reedwater MF = 0.0     ]     Feedwater MF = 0.0     [reedwater MF = 0.0     ]     (Duttet Steam MF = 0.0     ]     [reedwater MF = 0.0     ]                | t Steam MF<br>liet Steam St<br>dwater MF)<br>it Steam SE<br>it Steam SE<br>iteam MF *<br>(Ib/hr = 60,<br>it Steam MF                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                     | + Feedwater INF<br>E] = [Iniet Steam NE<br>* Outlet Steam SE<br>+ [Feedwater MF<br>- [Feedwater MF<br>- [Feedwater SE<br>] Niet Steam SE - 0<br>3 klb/hr * (1,294.1<br>+ Feedwater INF<br>0.3 klb/hr * 2.0 | IF * Inlet Steam S<br>= [Inlet Steam N<br>* Outlet Steam S]<br>Feedwater SE] =<br>= [Inlet Steam M]<br>utlet Steam SE] /<br>S bfurfbm - 1,24)<br>utlet deam | 8] + [Feedwate<br>IF * Iniet Steam<br>8] = [Iniet Steam M<br>* iniet Steam M<br>(Outlet Steam )<br>(Outlet Steam ) / ( | r MF * Feedwate<br>SE] + [Feedwate<br>n MF * Inlet Stea<br>F * Inlet Stears :<br>SE - Outlet Stears :<br>E - Feedwater 5<br>1,247.6 bitwithm | er St]<br>er MF <sup>®</sup> Feedwat<br>MS <sup>‡</sup>   feedw<br>kt] - [intet Stear<br>MSE)]<br>kt]<br>a - <b>293.8</b> blwfbr | ter SE]<br>atter MF * F<br>MF * Outb<br>m]] | eedwater SE]<br>et Steam SE] |



## SSMT EQUIPMENT PRV Calculator INPUTS

#### Inlet - Pressure [pressure]:

Inlet steam pressure

#### Inlet - Secondary Steam Property [varies]:

[Either: Temperature, Specific Enthalpy, Specific Entropy, or Quality] Second steam property associated with the inlet steam

#### Inlet - Mass Flow [mass flow]:

Mass flow of the inlet

#### Outlet Pressure [pressure]:

Outlet steam pressure

#### If Desuperheating:

#### Feedwater - Pressure [pressure]:

Feedwater pressure

#### Feedwater - Secondary Steam Property [varies]:

[Either: Temperature, Specific Enthalpy, Specific Entropy, or Quality] Second steam property associated with the feedwater

#### **Desuperheating Temperature** [temperature]:

Target temperature for desuperheating

| Inl                             | et      |        |
|---------------------------------|---------|--------|
| Pressure*                       | 226     | psig   |
| Temperature 👻 *                 | 554.4   | °F     |
| Mass Flow *                     | 60.3    | klb/hr |
| Outlet Pressure *               | 156.6   | psig   |
| Desuperhe                       | ating 👻 |        |
| Feedv                           | vater   |        |
| Pressure*                       | 79.1    | psig   |
| Saturated Quality - *           | 0       |        |
| Desuperheating<br>Temperature * | 455     | °F     |
| * Required                      | Enter   | [rese  |



## SSMT EQUIPMENT PRV Calculator CALCULATION

#### GO TO Table of Contents

# Step 1: Determine Inlet Steam Properties Inlet steam properties are determined using the Pressure, Secondary Steam Property, and Mass Flow. Step 2: 'If NO Desuperheating': Determine Outlet Steam Properties Outlet steam properties are determined using the Outlet Pressure and inlet steam specific enthalpy. ['NO Desuperheating' CALCULATION COMPLETE] 'If Desuperheating': Determine Cooling Water Properties Feedwater steam properties are determined using the Feedwater-Pressure and Feedwater-Secondary Steam Property. Step 3: Determine Desuperheated Outlet Steam Properties

Desuperheated outlet steam properties are determined using **Desuperheating Temperature** and **Outlet Pressure**.

#### **Step 4: Determine Feedwater and Outlet Mass Flows**

A mass and energy balance is used to determine the ratio of steam and feedwater required to product steam at the desuperheated temperature.





JIPMENT PRV Calculator RESULTS

# The **PRV Calculator** provides the following results:

- Inlet Steam Properties
- Outlet Steam Properties

*If desuperheating:* 

- Feedwater Properties and Mass Flows
- Total Outlet Steam Mass Flow

|         | Inle | t                |   |              | Mas | s Flow          | 60.3 klb/ | 'nr     |
|---------|------|------------------|---|--------------|-----|-----------------|-----------|---------|
|         | Pres | sure             | 2 | 26.0 psig    | Sp. | Enthalpy        | 1,294.8   | otu/lbm |
|         | Temp | erature          | 5 | i54.4 °F     | Sp. | Entropy         | 1.631 bt  | u/lbm/R |
|         | Phas | е                | Ģ | Gas          | Ene | rgy Flow        | 78.1 MM   | Btu/hr  |
| ٢       | đ    | PRV              |   |              | Mar | an Flaur        | 62.2 Mb   |         |
|         | Jui  | ICL              |   |              | Mas | STIOW           | 03.3 KID  | rir     |
|         | Pres | sure             | 1 | 56.6 psig    | Sp. | Enthalpy        | 1,247.6   | ptu/lbm |
|         | Temp | erature          | 4 | 55.0 °F      | Sp. | Entropy         | 1.618 bt  | u/lbm/R |
|         | Phas | е                | G | Gas          | Ene | rgy Flow        | 79.0 MM   | Btu/hr  |
| È.      |      |                  |   |              |     |                 |           |         |
| eedwa   | ter  |                  |   | Mass Flow    |     | 3.0 klb/hr      |           |         |
| essure  |      | 79.1 <i>psig</i> |   | Sp. Enthalpy |     | 293.8 btu/lb    | m         |         |
| mperatu | re   | 323.2 °F         |   | Sp. Entropy  |     | 0.468 btu/lbm/R |           |         |
| turated |      | 0.00             |   | Energy Flow  |     | 0.9 MMBtu/br    |           |         |





The **Header Calculator** determines the combined steam properties of multiple steam inlets.

This simulates situations commonly found in steam systems where multiple sources of steam, with varying pressures and temperatures, are combined into a single steam distribution line, referred to as a steam header.

| Enterior   Renewal        | Har molet (09)                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                       |                                                                                                                                                             |                                                                                                                         |                                                                                                                            |                                        |                   |                   |                |
|---------------------------|------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|-------------------------------------------------------------------------------------------------------------------------------------------------------------|-------------------------------------------------------------------------------------------------------------------------|----------------------------------------------------------------------------------------------------------------------------|----------------------------------------|-------------------|-------------------|----------------|
| Steam Calc                | ulators                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                              |                                                                                                                                                             |                                                                                                                         |                                                                                                                            |                                        |                   |                   |                |
| ERE = Advanced Manufactur | inu Office + Siteam Calculatora                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                      | Header Cal                                                                                                                                                  | culator                                                                                                                 |                                                                                                                            |                                        |                   | Printago la Va    | nian 🖸 swar    |
| them.                     | Header Calcul                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                        | ator                                                                                                                                                        |                                                                                                                         |                                                                                                                            |                                        |                   |                   |                |
| Abeul                     | Calculates the combine                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                               | ator                                                                                                                                                        | roperties of                                                                                                            | multiple steam inlot                                                                                                       |                                        |                   |                   |                |
| Preferences               |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                      |                                                                                                                                                             |                                                                                                                         | Combined                                                                                                                   | Handas                                 |                   |                   |                |
| Gussay                    | Number of Inieta 3 +                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                 |                                                                                                                                                             |                                                                                                                         | Combined                                                                                                                   | rieader                                | Mann Flow         | 133.5 ADDAY       |                |
| Resources                 | Header Pressure *                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                    | 388.4                                                                                                                                                       | paig                                                                                                                    | Pressure                                                                                                                   | 388.4 pag                              | Sp. Enthalpy      | 747.1.0526500     |                |
| voperties Calculators     | Inte                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                 | 11                                                                                                                                                          |                                                                                                                         | Temperature                                                                                                                | 445.4.2                                | Sp. Entropy       | 0.979 (112/10/05  | R              |
| Classe Docentice          | Pressure*                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                            | 553.2                                                                                                                                                       | ping.                                                                                                                   | Saturated                                                                                                                  | 0.41                                   | Energy flow       | 99.7 MMD5244      |                |
| quipment Calculatora:     | Temperature • *                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                      | 246.8                                                                                                                                                       | 40                                                                                                                      | cent                                                                                                                       |                                        |                   |                   |                |
| Buller                    | Mass Flow *                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                          | 52.9                                                                                                                                                        | Alber                                                                                                                   | a second second                                                                                                            | inlet 1                                |                   | Mass Flow         | 52:9 kilshr    |
| Heat Loss                 | Inte                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                 | 12                                                                                                                                                          |                                                                                                                         |                                                                                                                            | Pressure                               | 553.2 pmg         | Sp. Enthalpy      | 216.5 blutom   |
| Plash Tank                | Pressure                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                             | 490.5                                                                                                                                                       | (cm)u                                                                                                                   |                                                                                                                            | Temperature                            | 246.8 %           | Sp. Entropy       | 0.362 pluthm   |
| PRV w/ Desigerheating     | Temperature                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                          | 1171                                                                                                                                                        | - prog                                                                                                                  | _                                                                                                                          | Phase                                  | Liquid            | Energy Flow       | 11.5 MAINUT    |
| Pressler                  | There is a second second                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                             | 10.1                                                                                                                                                        | han                                                                                                                     |                                                                                                                            |                                        |                   |                   |                |
| Conservator               | and bit Flow -                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                       | 10.2                                                                                                                                                        | NUDAX.                                                                                                                  |                                                                                                                            | Inlet 2                                |                   | Mass flow         | 15.2 Mb/hr     |
| Stears Turbie             | Inte                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                 | 497.8                                                                                                                                                       |                                                                                                                         |                                                                                                                            | Pressure                               | 496.5.peig        | Sp. Enthalpy      | 80.4 bhz/0m    |
| annan ayatan Monoyr       | Presente.                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                            | 427.0                                                                                                                                                       | pdy.                                                                                                                    |                                                                                                                            | Temperature                            | 117.1 %           | Sp. Entropy       | 0.159 ptulb/n  |
|                           | Temperature • *                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                      | 645.6                                                                                                                                                       | 96                                                                                                                      |                                                                                                                            | Phase                                  | Liquid            | Energy Flow       | 1.3 /////00/07 |
|                           | Mass flow *                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                          | 65.4                                                                                                                                                        | Althere .                                                                                                               |                                                                                                                            |                                        |                   |                   |                |
|                           | * Required                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                           | Enter                                                                                                                                                       | treest                                                                                                                  |                                                                                                                            | Inlet 3                                |                   | Mass Flow         | 65.4 N/b/hr    |
|                           | "Example: Random Inlet                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                               |                                                                                                                                                             |                                                                                                                         |                                                                                                                            | Pressure                               | 427.8 prig        | Sp. Enthalpy      | 1.329.9 (0.40) |
|                           | Examples House Corr                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                  |                                                                                                                                                             |                                                                                                                         | -                                                                                                                          | Temperature                            | 645.6 9           | Sp. Entropy       | 1.600 064000   |
|                           | EXAMPLES. MOVIE DYN                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                  |                                                                                                                                                             |                                                                                                                         |                                                                                                                            | Phane                                  | Gas               | Energy Flow       | 87.0 LARDAN    |
|                           | Bigedite: Erithalpy: Boye<br>Iniet1<br>• Pressure = 56.5.2 pm<br>• Temperature = 24.6 big<br>• Direct Direct Case<br>• Direct Direct Case<br>• Pressure = 40.6 pm<br>• Temperature = 107.6<br>• Direct Direct Case<br>• Direct Direct Case<br>• Direct Case | 9<br>7/<br>2014001 =>><br>excite Enthal<br>11.6 AMADna<br>9<br>7/<br>2014001 =>><br>yeothe Enthal<br>1.3 AMADnaf<br>9<br>7/<br>2014001 =>><br>yeothe Enthal | er Guality)<br>Specific Enthal<br>by * Mass Fis<br>for = 216.5 bi<br>Specific Enthal<br>by * Mass Fis<br>w = 06.4 bitul | The Specific Enthalpy<br>wy = 216.5 bit/fbm<br>w<br>widdem * 52.9 kit/sfr ]<br>try = 89.4 bit/fbm<br>w<br>* 15.2 kit/sfr ] | is then multiple                       | ed by the Mass    | Flow to get the D | nergy Flaw.    |
|                           | Steph Property Case     Iniet Energy Flow = 5(     Iniet Energy Flow = 1)     Iniet Energy Flow = 1     The header specific ent     Total letet Energy Flow                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                          | Header Spe<br>halpy can b<br>r = 99.7 MM                                                                                                                    | toroni Unha<br>try * Mass Ro<br>Ar = 1,329.9<br>solfic Enthal<br>e calculated I<br>Elludr = 11.5                        | w = 1,229 9 stortom<br>w<br>boultern * 65.4 kotome<br>py<br>ny dividing the Total Ini<br>JANEDhame = 1,3 ARARE             | )<br>et Energy Flow<br>(why + 67.0 Mil | s by the Total In | et Mass Flows     |                |
|                           | Total Inlet Mass Flow     Beader Specific Enthal                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                     | = 133.5 Alla                                                                                                                                                | dv = 52.9 kib<br>sergy Now / 1                                                                                          | vity + 15.2 kits/ly + 65<br>otal Mass Flow                                                                                 | 4 Addutha                              |                   |                   |                |
|                           | I Header Specific Enth                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                               | atpy = 747.1                                                                                                                                                | Difutition = 9                                                                                                          | 9.7 MMBN//fr/133.5                                                                                                         | (may) I                                |                   |                   |                |
|                           | Step 3: Determine Hear                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                               | get Probel                                                                                                                                                  | 10.0                                                                                                                    |                                                                                                                            |                                        |                   |                   |                |



**OVERVIEW** 

GO TO Table of Contents

## CALCULATORS Header Calculator

INPUTS

#### Number of Inlets [#]:

Specifies the number of steam inlets that the used in the calculation

#### Header Pressure [pressure]:

The final of the combined steam inlets

#### For Each Steam Inlet:

#### Pressure [pressure]:

Inlet steam pressure

#### Secondary Steam Property [varies]:

[Either: Temperature, Specific Enthalpy, Specific Entropy, or Quality] Second steam property associated with the inlet steam

#### Mass Flow [mass flow]:

Mass flow of the inlet

| lumber of Inlets  | 3 •   |       |        |
|-------------------|-------|-------|--------|
| Header Pressure ' |       | 388.4 | psig   |
|                   | Inle  | 1     |        |
| Pressure*         |       | 553.2 | psig   |
| Temperature       | • *   | 246.8 | *F     |
| Mass Flow *       |       | 52.9  | klb/hr |
|                   | Inlet | 12    |        |
| Pressure*         |       | 496.5 | psig   |
| Temperature       | ••    | 117.1 | *F     |
| Mass Flow *       |       | 15.2  | kib/hr |
|                   | Inlet | 13    |        |
| Pressure*         |       | 427.8 | psig   |
| Temperature       | • *   | 645.6 | *F     |
| Mass Flow *       |       | 65.4  | klb/hr |
| * Required        |       | Enter | Ireset |


INPUTS

## **Header Calculator** CALCULATORS

#### Step 1: Determine the properties and energy flows for the inlets Steam properties for each inlet are determined using the associated Pressure, Secondary Steam Property, and Steam Mass Flow.

#### **Step 2: Determine the Header Specific Enthalpy**

The header specific enthalpy is calculated by dividing the total inlet energy flows by the total inlet mass flows.

#### **Step 3: Determine Header Properties**

The header properties are determined using **Header Pressure** and the header specific enthalpy.





Energy Efficiency & **Renewable Energy** 



SSMT EQUIPMENT

**Table of Contents** 

GO TO

The **Header Calculator** provides the following results:

- Properties and Mass Flows for each Inlet
- The Combined Header Properties and Mass Flow

| Combined H  | Combined Header              |             | 133.5 klb/hr    |                 |
|-------------|------------------------------|-------------|-----------------|-----------------|
| Pressure    | 388.4 psig Sp. Enthalpy      |             | 747.1 btu/lbm   |                 |
| Temperature | 445.4 ° <i>⊢</i> Sp. Entropy |             | 0.979 btu/lbm/R |                 |
| Saturated   | 0.41                         | Energy Flow | 99.7 MMBtu/hr   |                 |
| <b>_</b> 1  |                              |             | -               |                 |
|             | Inlet 1                      |             | Mass Flow       | 52.9 klb/hr     |
|             | Pressure                     | 553.2 psig  | Sp. Enthalpy    | 216.5 btu/lbm   |
| -           | Temperature                  | 246.8 °F    | Sp. Entropy     | 0.362 btu/lbm/R |
|             | Phase                        | Liquid      | Energy Flow     | 11.5 MMBtu/hr   |
|             |                              |             |                 |                 |
|             | Inlet 2                      |             | Mass Flow       | 15.2 klb/hr     |
|             | Pressure                     | 496.5 psig  | Sp. Enthalpy    | 86.4 btu/lbm    |
|             | Temperature                  | 117.1 °F    | Sp. Entropy     | 0.159 btu/lbm/R |
|             | Phase                        | Liquid      | Energy Flow     | 1.3 MMBtu/hr    |
|             |                              |             |                 |                 |
|             | Inlet 3                      |             | Mass Flow       | 65.4 klb/hr     |
| ┕╴ϼ         | Pressure                     | 427.8 psig  | Sp. Enthalpy    | 1,329.9 btu/lbm |
| · ·         | Temperature                  | 645.6 °F    | Sp. Entropy     | 1.600 btu/lbm/R |
|             |                              |             |                 |                 |

RESULTS





The **Deaerator Calculator** determines the required water and steam flows for a given feedwater mass flow.

- A *deaerator* is a tank used to remove dissolved gases from the feedwater before being sent to the boiler
- The solubility of gases in water is reduced as the water temperature increases. Therefore deaerators increase feedwater to near boiling temperature to remove as much gas a possible.
- The small amount of steam is vented in the process of venting the gases
- Steam is commonly used as the heat source for the deaerator

| Stama Calculators                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                | Duffer<br>Duffer<br>Multipart<br>Malagor<br>Heliow<br>I Filow<br>I Filow<br>Uffer<br>Johnson                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                    | 11 0.94                                              |
|------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|-----------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|------------------------------------------------------|
| Aus       Aus         Aus       Catalant data data data data data data data d                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                    | Softer Softer<br>Softer<br>Softer<br>Southersofter<br>Some Softer<br>Hadopy Friday<br>Friday Friday<br>Friday Softer<br>Softer<br>Softer<br>Friday Softer<br>Softer<br>Friday Softer<br>Softer<br>Softer<br>Friday Softer<br>Softer<br>Softer<br>Softer<br>Softer<br>Softer<br>Softer<br>Softer<br>Softer<br>Softer<br>Softer<br>Softer<br>Softer<br>Softer<br>Softer<br>Softer<br>Softer<br>Softer<br>Softer<br>Softer<br>Softer<br>Softer<br>Softer<br>Softer<br>Softer<br>Softer<br>Softer<br>Softer<br>Softer<br>Softer<br>Softer<br>Softer<br>Softer<br>Softer<br>Softer<br>Softer<br>Softer<br>Softer<br>Softer<br>Softer<br>Softer<br>Softer<br>Softer<br>Softer<br>Softer<br>Softer<br>Softer<br>Softer<br>Softer<br>Softer<br>Softer<br>Softer<br>Softer<br>Softer<br>Softer<br>Softer<br>Softer<br>Softer<br>Softer<br>Softer<br>Softer<br>Softer<br>Softer<br>Softer<br>Softer<br>Softer<br>Softer<br>Softer<br>Softer<br>Softer<br>Softer<br>Softer<br>Softer<br>Softer<br>Softer<br>Softer<br>Softer<br>Softer<br>Softer<br>Softer<br>Softer<br>Softer<br>Softer<br>Softer<br>Softer<br>Softer<br>Softer<br>Softer<br>Softer<br>Softer<br>Softer<br>Softer<br>Softer<br>Softer<br>Softer<br>Softer<br>Softer<br>Softer<br>Softer<br>Softer<br>Softer<br>Softer<br>Softer<br>Softer<br>Softer<br>Softer<br>Softer<br>Softer<br>Softer<br>Softer<br>Softer<br>Softer<br>Softer<br>Softer<br>Softer<br>Softer<br>Softer<br>Softer<br>Softer<br>Softer<br>Softer<br>Softer<br>Softer<br>Softer<br>Softer<br>Softer<br>Softer<br>Softer<br>Softer<br>Softer<br>Softer<br>Softer<br>Softer<br>Softer<br>Softer<br>Softer<br>Softer<br>Softer<br>Softer<br>Softer<br>Softer<br>Softer<br>Softer<br>Softer<br>Softer<br>Softer<br>Softer<br>Softer<br>Softer<br>Softer<br>Softer<br>Softer<br>Softer<br>Softer<br>Softer<br>Softer<br>Softer<br>Softer<br>Softer<br>Softer<br>Softer<br>Softer<br>Softer<br>Softer<br>Softer<br>Softer<br>Softer<br>Softer<br>Softer<br>Softer<br>Softer<br>Softer<br>Softer<br>Softer<br>Softer<br>Softer<br>Softer<br>Softer<br>Softer<br>Softer<br>Softer<br>Softer<br>Softer<br>Softer<br>Softer<br>Softer<br>Softer<br>Softer<br>Softer<br>Softer<br>Softer<br>Softer<br>Softer<br>Softer<br>Softer<br>Softer<br>Softer<br>Softer<br>Softer<br>Softer<br>Softer<br>Softer<br>Softer<br>Softer<br>Softer<br>Softer<br>Softer<br>Softer<br>Softer<br>Softer<br>Softer<br>Softer<br>Softer<br>Softer<br>Softer<br>Softer<br>Softer<br>Softer<br>Softer<br>Softer<br>Softer<br>Softer<br>Softer<br>Softer<br>Softer<br>Softer<br>Softer<br>Softer<br>Softer<br>Softer<br>Softer<br>Softer<br>Softer<br>Softer<br>Softer<br>Softer<br>Softer<br>Softer<br>Softer<br>Softer<br>Softer<br>Softer<br>Softer<br>Softer<br>Softer<br>Softer<br>Softer<br>Softer<br>Softer<br>Softer<br>Softer<br>Softer<br>Softer<br>Softer<br>Softer<br>Softer<br>Softer<br>Softer<br>Softer<br>Softer<br>Softer<br>Softer<br>Softer<br>Softer<br>Softer<br>Softer<br>Softer<br>Softer<br>Soft | m C 94                                               |
| Image: Specific Calculation: Speci                                                                                                                                                                                                                                                                   | Differ<br>SQUADER<br>SQUADER<br>MULTIMENT<br>AND TO<br>Base<br>Inter<br>Flow<br>Flow<br>Flow<br>Norm                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                            | 0.2 MD/hr<br>1,172.3 nn<br>1.867 Coul<br>0.2 MM/Rou  |
| About       Determines the required water and steam flows for a required feedwater mass flow.         Preferences       Dearator Pressure*       0.6       programmed feedwater mass flow.         Preferences       Dearator Pressure*       0.6       programmed feedwater mass flow.       4.7 All         Brearcise       Dearator Pressure*       0.6       programmed feedwater mass flow.       4.7 All         Brearcise       Pressure*       0.4       %       %       1.0 All       1.0 All         Brearcise       Pressure*       2.6       programmed feedwater flass flow.       4.5 7 All       1.0 A                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                          | Editor<br>Studioma Providence Provi                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                | 0.2 MD/tr<br>1,172.3 AB<br>1.867 AD45<br>0.2 MM/BIU  |
| Performan     Dearratic Pressure*     30 6     program       Basary     Performan     04     50       Pressure     04     51     1000000000000000000000000000000000000                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                           | Exitin<br>Socializers of a<br>Matter                                                                                                                                                                                                                                                                                                                                                    | 0.2 MD/Hr<br>1,172.3 AB<br>1.007 AD45<br>0.2 MM/BR4  |
| Gasary     Martin fait     0.4     initial fait     0.4     initial fait       Baser res     Feedbrater Mass How*     0.4     initial fait     0.4     initial fait       Baser res     Feedbrater Mass How*     45.7     initial fait     0.4     initial fait       Baser res     Feedbrater Mass How*     45.7     initial fait     0.4     initial fait       Baser formers     Second     Feedbrater Mass How*     45.7     initial fait       Baser Tomors     Temperature     2.6     fait     initial fait       Baser Tomors     Second     Feedbrater Mass How*     57.9     juig       Baser Tomors     Seconder     Social fait     initial fait     initial fait       Baser Tomors     Seconder     Social fait     initial fait     initial fait       Baser Stream     Autor Loss     Freesure*     57.9     juig       Baser Tomor     Temperature     1.55.7     initial fait     initial fait       Baser Tomor     Seconder     Social fait     initial fait     initial fait       Baser Tomor     Seconder     Social fait     initial fait     initial fait       Baser Tomor     Seconder     Social fait     initial fait     initial fait       Baser Tomor     Seconder     Soci                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                      | Studions Studions Revealed Stu                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                  | 0.2 MD-Pr<br>1,172.3 nn<br>1.007 DN-M<br>0.2 MM-DN-  |
| Reserver     Volume       Data Propertiest Calculators     State Pressure*     2.6     prop       Data Propertiest Calculators     Pressure*     2.6     prop       Transportiest Calculators     Pressure*     2.6     prop       Transportiest Calculators     Pressure*     2.6     prop       Transportiest Calculators     Pressure*     57.9     prop       Transportiest Calculators     Pressure*     57.9     prop       Transportiest Calculators     Pressure*     57.9     prop       Temperature     * 1258.7     'prop     Temperature     27.4.8 'prop       Temperature     * 1258.7     'prop     Staturated     0.0.0     Description       Temperature     * 1258.7     'prop     Staturated     0.0.0     Description       Staturate     Note Over     Temperature     27.4.8 'prop     Staturated     0.0.0     Description       Staturate     Note Over     Temperature     2.6.0.0     Staturated     0.0.0     Description       Staturate     Note Over     Temperature     2.6.0.0     Staturated     0.0.0     Description       Staturate     Note Over     Temperature     2.6.0.0     Staturated     0.0.0     Description       Staturate     Note Over                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                         | Matura Providence Prov                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                  | 0.2 ktp/tr<br>1,172.3 nn<br>1,007 pn/d<br>0.2 M/ABU/ |
| Properators Cacculators<br>Bainstand Imports<br>Bainstand Imports<br>Bainsta             | Hitum<br>Now<br>Inalogy<br>Plaw<br>Plaw<br>Plaw                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                 | 0.2 MD/hr<br>1,172.3 nn<br>1,067 chui<br>0.2 MR/Bui  |
| Description     Uniter     Uniter       Equipment Calculations<br>basis     Pressure*     51.8     1/2       Pressure*     57.9     0.00     Temperature     57.9       Pressure*     10.0     Exerning       Dearstor     **Eample: Random       Basis     Exerning test       Calculation Details and Assumptions below     10.8       Indet Steam     10.9       Pressure     2.6 pags phone       10.9     Exerning test       Temperature     1.0       Exerning test     **Eample: Random       Basis     Temperature       Temperature     1.0       Exerning test     **Eample: Random       Basis     **Eample                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                            | Flow thatpy tropy those the second se                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                  | 0.2 MDHr<br>1,172.3 nn<br>1,007 chui<br>0.2 MMHau    |
| Encyment Caculators     Pressure     2.5     pressure       nam     Temperature     •     6.2     pressure       nam     Temperature     •     7.2     pressure       Tarts Tisk     Pressure     57.9     pressure     2.0     pressure       Temperature     •     1258.7     pressure     1.00     Eeregy       Temperature     •     1.00     Eeregy     Eeregy     Eeregy       Temperature     •     1.00     Eeregy     Eeregy<                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                 | How theley from the form                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                        | 0.2 Albehr<br>1,172.3 nn<br>1,067 chui<br>0.2 MABRA  |
| baser Termperature • • • • • • • • • • • • • • • • • • •                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                         | thatpy<br>tropy<br>Flow<br>the<br>Mom                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                           | 1,172.3 nn<br>1,007 chui<br>0,2 MRADU                |
| Trans Tisks Team Tisks                                                                                                                                                                                                                                   | tropy<br>Flow<br>the<br>More                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                    | 1.867 chuł<br>0.2 MACRU                              |
| Trans mok.<br>Transport autra view<br>Temportaura vi | e Florer<br>vitre<br>vitorm                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                     | 0.2 MMBNu                                            |
| Temperature       1/250.7       1/7         Bream       */Request       Entel       Isaati         Bream Turke       **Exemple: Random       Entel       Isaati         Stream System Modeler       Example: Andom Over       Entel       Isaati         Calculation Details and Assumptions below       Pressure       2.0.00       Sp. 6.tholy       2.00.00         Pressure       2.0.00       Sp. 6.tholy       0.00.00       2.00.00       Sp. 6.tholy       0.00.00         Phase       0.00       Control of the stress of the                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                             | iftr<br>Mores                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                   |                                                      |
| Itema     Propursed     Enter     Itema       Dearwater     **Example: Random       Braven Turkte     **Example: Random       Data Structure     *Example: Random       Data Structure     Calculation Details and Assumptions below       Intel Water     Mass Flow       Data Structure     0.000 // Peasure       Data Structure     <                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                | vite<br>Vitera                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                  |                                                      |
| Team Turke "Erample: Andor<br>Team Turke Calculation Details and Assumptions below Inter System Voldster<br>Calculation Details and Assumptions below Inter Calculation Details and Assumptions Details an                                                                                                                                                                                                                               | wher<br>Vitors                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                  |                                                      |
| Steam System Modeler     Calculation Details and Assumptions below     Intel Water     Nasas Nove     398 and       Telesure     2.0.00     Sp. Extrahys     2.0.00     2.0.00     2.0.00     2.0.00     2.0.00     2.0.00     2.0.00     2.0.00     2.0.00     2.0.00     2.0.00     2.0.00     2.0.00     2.0.00     2.0.00     2.0.00     2.0.00     2.0.00     2.0.00     2.0.00     2.0.00     2.0.00     2.0.00     2.0.00     2.0.00     2.0.00     2.0.00     2.0.00     2.0.00     2.0.00     2.0.00     2.0.00     2.0.00     2.0.00     2.0.00     2.0.00     2.0.00     2.0.00     2.0.00     2.0.00     2.0.00     2.0.00     2.0.00     2.0.00     2.0.00     2.0.00     2.0.00     2.0.00     2.0.00     2.0.00     2.0.00     2.0.00     2.0.00     2.0.00     2.0.00     2.0.00     2.0.00     2.0.00     2.0.00     2.0.00     2.0.00     2.0.00     2.0.00     2.0.00     2.0.00     2.0.00     2.0.00     2.0.00     2.0.00     2.0.00     2.0.00     2.0.00     2.0.00     2.0.00     2.0.00     2.0.00     2.0.00     2.0.00     2.0.00     2.0.00     2.0.00     2.0.00     2.0.00     2.0.00     2.0.00     2.0.00                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                       | uthe<br>VIDytta                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                 |                                                      |
| Intel Water     Mass Rev     30 8 and       Calculation Details and Assumptions below       Intel Water     Mass Rev     30 8 and       Tensor     2 40 30 8 and       Tensor     Colspan="2">Colspan="2"     3 50 50 70 50 70 50 70 50 70 70 70 70 70 70 70 70 70 70 70 70 70                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                         | uthe<br>MDetts                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                  |                                                      |
| Intel Water         Mass Trow         58 B m           Pressure         2.0.00         50, Exthaluy         26.9.00           Temperature         0.1.8.1%         50, Exthaluy         26.9.00           Peasure         0.1.8.1%         50, Exthaluy         26.9.00           Peasure         0.0.2         Temperature         1.0.00         2.0.00           Peasure         0.1.8.1%         Sp. Extra point         0.009 /r           Peasure         0.1.8.1%         Temperature         1.0.00           Peasure         0.1.8.1%         Temperature         1.0.00           Peasure         0.1.8.1%         Temperature         1.0.00           Peasure         0.0.00         Temperature         1.0.00           Peasure         0.0.00         Temperature         0.0.00           Peasure         0.0.00         Temperature         0.0.00                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                              | uthe<br>stickes                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                 |                                                      |
| Pressure         2.6 page         Sp. Exitably         2.9 9 of           Temperature         61.8 °/         Sp. Exitably         0.090 /           Phase         Lipid         Exercy How         1.2 0.00           Inite Steam         Temperature         1.0 0.00 /         500 /           Pressure         C7.9 page         Sp. Exercy         1.2 0.00           Temperature         1.2 0.07         Sp. Exercy         1.2 0.07           Phase         C.0 0.0 0 /         Exercy         Sp. Exercy                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                | NDM                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                             |                                                      |
| Temperature<br>Phase         0.1.3 ½         Sp. Entropy         0.009 //<br>L10/d         0.009 //<br>Encry         10.009 //<br>L2.00/           Initiat Steam         Encry         None         50.00         50.00           Pressure         07.9 Jung         Sp. Encry         Sp. Encry           Phase         Gas         Encry                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                       |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                 |                                                      |
| Phase         Lippid         Energy Flow         1.2 3/6           Inlet Stear         Inlet Stear         Mass           Pressure         57.9 Jung         Sp. G           Temperature         1.256.7 '*         Sp. G           Passe         Gas         Energy                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                             | Piervallua                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                      |                                                      |
| Iniet Steam     Mass       Pressure     57.9 µmg       Temperature     1256.7 ½       Phase     Gos                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                              | Inum:                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                           |                                                      |
| Inici Steam     Mass       Presuperatore     57.90 mg       Tresuperatore     1258.77       Phase     Gas                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                        |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                 |                                                      |
| Pressure         57 θ μου         Sp. G           Temporature         1.258 7 ½         Sp. G           Phase         Gas         Energy                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                         | Flow                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                            | 6.1 kib/hr                                           |
| Temporature 1258 7 % Sp. E<br>Phase Gas Energ                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                    | thatpy                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                          | 1.670.2 pr                                           |
| Phase Gos Energ                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                  | tropy                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                           | 2.043 blut                                           |
|                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                  | y Flow                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                          | 10.2 MMB                                             |
| Calculation Details<br>Step 1: Determine Intel Water Properties<br>Using the Steam Property Calculator, progeness are determined using lefet Water Pressure and the selected are<br>(temperature, Specific Enthalpy, Specific Entropy, or Quality)<br>• Pressure = 2.6 arcsit                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                    | cond parar                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                      | ameter                                               |
| Temperature = 61.8 <sup>sp</sup> (Steam Property Calculated) => Specific Entirety = 29.9 <i>Objective</i>                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                        |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                 |                                                      |
| Step 2: Determine Indel Steam Properties<br>Using the Steam Properly Calculator, progenies are determined using lotet Steam Pressure and the selected s<br>(Temperature, Specific Enthalpy: Specific Entropy, or Quality)                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                        | icond para                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                      | ameter                                               |
| Pressure = 57.9 ptc)     Temperature = 1.286.7 1/m     IBern Property Calculated => specific Enthalpy = 1.670.2 blueform                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                         |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                 |                                                      |
| Step 3: Determine Feedwater and Vented Steam Properties                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                          |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                 |                                                      |
| Pressure = 30.6 poly     Estimated Properties Calculated #>     Submitted Properties Calculated #>     Submitted Calculated Sector Entertainy = 243.9 Diuriform     Saturated Case (specific Entertainy = 1,172.3 Diuriform                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                      |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                 |                                                      |
| Step 4: Determine Feedwater and Vented Mass Flows and Total Outlet Energy Flows                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                  |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                 |                                                      |
| <ul> <li>Vented Basar Mass Flow = Vent Rate * Feedwater Mass Flow.<br/>[Veeted Stearn Mass Flow = 0.2 http://www.com/article/stearney/article/stearney/article/stearney/article/stearney/article/stearney/article/stearney/article/stearney/article/stearney/article/stearney/article/stearney/article/stearney/article/stearney/article/stearney/article/stearney/article/stearney/article/stearney/article/stearney/article/stearney/article/stearney/article/stearney/article/stearney/article/stearney/article/stearney/article/stearney/article/stearney/article/stearney/article/stearney/article/stearney/article/stearney/article/stearney/article/stearney/article/stearney/article/stearney/article/stearney/article/stearney/article/stearney/article/stearney/article/stearney/article/stearney/article/stearney/article/stearney/article/stearney/article/stearney/article/stearney/article/stearney/article/stearney/article/stearney/article/stearney/article/stearney/article/stearney/article/stearney/article/stearney/article/stearney/article/stearney/article/stearney/article/stearney/article/stearney/article/stearney/article/stearney/article/stearney/article/stearney/article/stearney/article/stearney/article/stearney/article/stearney/article/stearney/article/stearney/article/stearney/article/stearney/article/stearney/article/stearney/article/stearney/article/stearney/article/stearney/article/stearney/article/stearney/article/stearney/article/stearney/article/stearney/article/stearney/article/stearney/article/stearney/article/stearney/article/stearney/article/stearney/article/stearney/article/stearney/article/stearney/article/stearney/article/stearney/article/stearney/article/stearney/article/stearney/article/stearney/article/stearney/article/stearney/article/stearney/article/stearney/article/stearney/article/stearney/article/stearney/article/stearney/article/stearney/article/stearney/article/stearney/article/stearney/article/stearney/article/stearney/article/stearney/article/stearney/article/stearney/article/stearney/article/stearney/article/</li></ul>                                                                                                                                                                                                                         |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                 |                                                      |
| • Total DA Mass Row = Venited Steam Mass Row + Feedwater Mass Row [Total DA Mass Row = 45.9 $k(tothr = 0.2 \ k(tothr + 45.7 \ k(tothr)$                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                          |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                 |                                                      |

**OVERVIEW** 



Energy Efficiency & Renewable Energy

GO TO SSMT ONLINE

## Deaerator Pressure [pressure]:

Operating pressure of the deaerator

## Vent Rate [%]:

Deaerator vent rate as a % of feedwater mass flow

## Feedwater Mass Flow [mass flow]:

Mass flow of the feedwater sent to the boiler

## Water - Pressure [pressure]:

Inlet water pressure

## Water - Secondary Steam Property [varies]:

[Either: Temperature, Specific Enthalpy, Specific Entropy, or Quality] Second steam property associated with the inlet water

## Steam - Pressure [pressure]:

Inlet steam pressure

## Steam - Secondary Steam Property [varies]:

[Either: Temperature, Specific Enthalpy, Specific Entropy, or Quality] Second steam property associated with the inlet steam



Energy Efficiency & Renewable Energy

#### Deaerator Calculator

INPUTS

Determines the required water and steam flows

| Deaerator Pressure *  | 30.6 psig     |
|-----------------------|---------------|
| Vent Rate *           | 0.4 %         |
| Feedwater Mass Flow * | 45.7 klb/hr   |
| Wat                   | er            |
| Pressure*             | 2.6 psig      |
| Temperature •         | 61.8 °⊱       |
| Stea                  | m             |
| Pressure*             | 57.9 psig     |
| Temperature •         | 1258.7 °F     |
| * Required            | Enter [reset] |

**SSMT EQUIPMENT** CALCULATORS Deaerator Calculator

CALCULATION

#### **Step 1: Determine Inlet Water Properties**

Inlet water properties are determined using the associated **Pressure** and **Secondary Property.** 

#### **Step 2: Determine Inlet Steam Properties**

Inlet steam properties are determined using the associated **Steam Pressure** and **Secondary Steam Property.** 

#### **Step 3: Determine Feedwater and Vented Steam Properties**

The saturated steam properties are calculated for the **Deaerator Pressure**. Feedwater properties set to that of the saturated liquid and the vented steam is set to that of the saturated gas/vapor.

#### Step 4: Determine Feedwater and Vented Mass Flows and Total Outlet Energy Flows

The vented steam mass flow is determined using the Feedwater Mass Flow and Vent Rate. The energy flow of the vented steam and feedwater is then totaled.

#### **Step 5: Determine Inlet Water and Steam Mass Flows**

A mass and energy balance is used to determine the ratio of inlet water and inlet steam required to match the outlet mass and energy flows.



**Calculation Datails** 



**EQUIPMENT** Deaerator Calculator

The **Deaerator Calculator** provides the following results:

- Properties and Mass Flows for:
  - Inlet Water
  - Inlet Steam
  - Feedwater
  - Vented Steam

| Feedwater Ma                                    |                                                                               | ss Flow                           | 45.7 klb/hi                                                                  |                                                                                                                                     |                              |                                                                       |
|-------------------------------------------------|-------------------------------------------------------------------------------|-----------------------------------|------------------------------------------------------------------------------|-------------------------------------------------------------------------------------------------------------------------------------|------------------------------|-----------------------------------------------------------------------|
| Pressure                                        | 30.6 psig Sp. Enthalpy                                                        |                                   | 243.9 btu/lbm                                                                |                                                                                                                                     |                              |                                                                       |
| Temperature                                     | 274.8 °F                                                                      | °F Sp. Entropy                    |                                                                              | 0.403 btu/lbm/R                                                                                                                     |                              |                                                                       |
| Saturated                                       | 0.00 Energy Flow                                                              |                                   | 11.1 MMBt                                                                    | 11.1 MMBtu/hr                                                                                                                       |                              |                                                                       |
| <b>_</b> _↑                                     |                                                                               |                                   |                                                                              |                                                                                                                                     |                              |                                                                       |
|                                                 | Vented S                                                                      | tea                               | m                                                                            | Mass Flow                                                                                                                           | /                            | 0.2 klb/hr                                                            |
|                                                 | Pressure                                                                      |                                   | 30.6 psig                                                                    | Sp. Enthal                                                                                                                          | ру                           | 1,172.3 btu/lbm                                                       |
|                                                 | Temperature                                                                   | е                                 | 274.8 °F                                                                     | Sp. Entrop                                                                                                                          | y                            | 1.667 btu/lbm/R                                                       |
|                                                 | Saturated                                                                     |                                   | 1.00                                                                         | Energy Flo                                                                                                                          | w                            | 0.2 MMBtu/hr                                                          |
| L                                               |                                                                               | erate                             | or) - L                                                                      |                                                                                                                                     |                              |                                                                       |
| Inlet Water                                     |                                                                               | erato<br>Mas                      | or L                                                                         | 39.8 klb/hr                                                                                                                         |                              |                                                                       |
| Inlet Water<br>Pressure                         | 2.6 psig                                                                      | erate<br>Mas<br>Sp.               | or<br>as Flow<br>Enthalpy                                                    | 39.8 klb/hr<br>29.9 btu/lbl                                                                                                         | m                            |                                                                       |
| Inlet Water<br>Pressure<br>Temperature          | 2.6 <i>psig</i><br>61.8 ° <i>F</i>                                            | erate<br>Mas<br>Sp.<br>Sp.        | es Flow<br>Enthalpy<br>Entropy                                               | 39.8 klb/hr<br>29.9 btu/lbi<br>0.059 btu/ll                                                                                         | m<br>bm/R                    |                                                                       |
| Inlet Water<br>Pressure<br>Temperature<br>Phase | 2.6 psig<br>61.8 °F<br>Liquid                                                 | erate<br>Mas<br>Sp.<br>Sp.<br>Ene | es Flow<br>Enthalpy<br>Entropy<br>rgy Flow                                   | 39.8 klb/hr<br>29.9 btu/lbi<br>0.059 btu/ll<br>1.2 MMBtu/l                                                                          | m<br>bm/R<br>hr              |                                                                       |
| Inlet Water<br>Pressure<br>Temperature<br>Phase | 2.6 psig<br>61.8 °F<br>Liquid                                                 | Mas<br>Sp.<br>Ene                 | es Flow<br>Enthalpy<br>Entropy<br>rgy Flow                                   | 39.8 klb/hr<br>29.9 btu/lb<br>0.059 btu/ll<br>1.2 MMBtu/l                                                                           | m<br>bm/R<br>hr              |                                                                       |
| Inlet Water<br>Pressure<br>Temperature<br>Phase | 2.6 psig<br>61.8 °F<br>Liquid                                                 | erato<br>Mas<br>Sp.<br>Sp.<br>Ene | es Flow<br>Enthalpy<br>Entropy<br>rgy Flow                                   | 39.8 klb/hr<br>29.9 btu/lbi<br>0.059 btu/lt<br>1.2 MMBtu/l                                                                          | m<br>bm/R<br>hr              | 6.1 <i>klb/hr</i>                                                     |
| Inlet Water<br>Pressure<br>Temperature<br>Phase | 2.6 psig<br>61.8 °F<br>Liquid<br>Inlet Stea<br>Pressure                       | erato<br>Mas<br>Sp.<br>Sp.<br>Ene | ss Flow<br>Enthalpy<br>Entropy<br>rgy Flow                                   | 39.8 klb/hr<br>29.9 btu/lb<br>0.059 btu/lb<br>1.2 MMBtu/l<br>Mass Flow<br>Sp. Entha                                                 | m<br>bm/R<br>hr              | 6.1 <i>klb/hr</i><br>1,670.2 <i>btu/lbm</i>                           |
| Inlet Water<br>Pressure<br>Temperature<br>Phase | 2.6 <i>psig</i><br>61.8 °F<br>Liquid<br>Inlet Stea<br>Pressure<br>Temperature | Mas<br>Sp.<br>Sp.<br>Ene<br>am    | ss Flow<br>Enthalpy<br>Entropy<br>rgy Flow<br>57.9 <i>psig</i><br>1,258.7 °F | 39.8 klb/hr         29.9 btu/lbi         0.059 btu/lbi         1.2 MMBtu/li         Mass Flow         Sp. Enthal         Sp. Entrop | m<br>bim/R<br>hr<br>N<br>Ipy | 6.1 <i>klb/hr</i><br>1,670.2 <i>btu/lbm/</i><br>2.043 <i>btu/lbm/</i> |

RESULTS





The **Steam Turbine Calculator** generates a basic steam turbine model, solving for either:

- Outlet Steam Conditions given inlet steam conditions and isentropic efficiency
- Isentropic Efficiency given inlet and outlet steam conditions

Users also have the option to enter either the steam mass flow or power generated and the calculator determines the value of the other





**OVERVIEW** 

# SSMT EQUIPMENT Steam Turbine Calculator INPUTS (1/2)

## -SOLVING FOR Outlet Properties-

#### Inlet Steam - Pressure [pressure]:

Pressure of inlet steam

#### Inlet Steam - Secondary Steam Property [varies]:

[Either: Temperature, Specific Enthalpy, Specific Entropy, or Quality] Second steam property associated with the inlet steam

### Isentropic Efficiency [%]:

The energy actually removed as a percent (%) of the energy removed if the turbine were an isentropic process.

### Generator Efficiency [%]:

The percent of the energy extracted by the turbine that is converted to power

Either Mass Flow or Power Out:

### Mass Flow [mass flow]:

Mass flow of steam

#### Power Out [power]:

Mass flow of the feedwater sent to the boiler

#### Outlet Steam - Pressure [pressure]:

Outlet water pressure



| Steam Turbine<br>Calculates the energy g | Calculator<br>enerated or steam outle |  |  |  |
|------------------------------------------|---------------------------------------|--|--|--|
| Solve for:                               |                                       |  |  |  |
| Outlet Properties 🔹                      |                                       |  |  |  |
| Inlet Steam                              |                                       |  |  |  |
| Pressure*                                | 565.4 psig                            |  |  |  |
| Temperature • *                          | 1064.3 °F                             |  |  |  |
| Turbine Properties                       |                                       |  |  |  |
| Selected Turbine<br>Property             | Mass Flow -                           |  |  |  |
| Mass Flow *                              | 39.3 klb/hr                           |  |  |  |
| Isentropic Efficiency *                  | 75.7 %                                |  |  |  |
| Generator Efficiency *                   | 96.2 %                                |  |  |  |
| Outlet Steam                             |                                       |  |  |  |
| Pressure*                                | 266.1 psig                            |  |  |  |
| * Required                               | Enter [reset]                         |  |  |  |
|                                          |                                       |  |  |  |



## -SOLVING FOR Isentropic Efficiency-

#### Inlet Steam - Pressure [pressure]:

Pressure of inlet steam

#### Inlet Steam - Secondary Steam Property [varies]:

[Either: Temperature, Specific Enthalpy, Specific Entropy, or Quality] Second steam property associated with the inlet steam

### **Generator Efficiency** [%]:

The percent of the energy extracted by the turbine that is converted to power

Either Mass Flow or Power Out:

### Mass Flow [mass flow]:

Mass flow of steam

### Power Out [power]:

Mass flow of the feedwater sent to the boiler

### Outlet Steam - Pressure [pressure]:

Outlet water pressure

GO TO SSMT ONLINE

#### Outlet Steam - Secondary Steam Property [varies]:

[Either: Temperature, Specific Enthalpy, Specific Entropy, or Quality] Second steam property associated with the outlet steam





**INPUTS** (2/2)

# Inlet steam properties are determined using the **Pressure** and **Secondary Property.**

**Steam Turbine Calculator** 

Step 2: Calculate Ideal Outlet Properties (Inlet Entropy equals Outlet Entropy Ideal outlet steam properties are determined using the associated Outlet Steam Pressure and inlet specific entropy. The ideal case assumes that no entropy is created in the turbine.

Step 3: If solving for 'Isentropic Efficiency', Determine Outlet Properties Outlet steam properties are determined using the Outlet Steam Pressure and Outlet Secondary Steam Property.

**Step 3: If solving for 'Outlet Properties', Determine Outlet Specific Enthalpy** The outlet specific enthalpy is calculated using the **Isentropic Efficiency**, inlet specific enthalpy, and ideal outlet specific enthalpy. The outlet specific enthalpy and outlet pressure are used to determine the outlet properties.

Step 4: Calculate Steam Turbine Energy Out and Generation (Power Out) The difference between the outlet and inlet steam energy flows are used to determine the energy extracted from the steam (Energy Out). The Generation Efficiency is then used to determine the power generated (Power Out)

46

SSMT EQUIPMENT

CALCULATORS

en millants - 3 Saladati mat



CALCULATION

**Sainulation Details** 

1.1001110

The **Steam Turbine Calculator** provides the following results:

- Inlet Steam Properties
- Outlet Steam Properties
- Isentropic Efficiency
- Energy Out (energy extracted)
- Power Out (power generated)

| Inlet Steam                            |                       | Mass Flow                                                                                     | 39.3 klb/hr                                                                             |  |
|----------------------------------------|-----------------------|-----------------------------------------------------------------------------------------------|-----------------------------------------------------------------------------------------|--|
| Pressure                               | 565.4 ps/             | Sp. Enthalpy                                                                                  | 1,553.8 btulbm                                                                          |  |
| Temperature                            | 1,054.3 *             | Sp. Entropy                                                                                   | 1.744 btullbm/R                                                                         |  |
| Phase                                  | Gas                   | Energy Flow                                                                                   | 61.1 MMBluthr                                                                           |  |
|                                        | L                     |                                                                                               |                                                                                         |  |
|                                        |                       | sentropic Efficiency                                                                          | 75.7 %                                                                                  |  |
|                                        |                       |                                                                                               |                                                                                         |  |
|                                        | E                     | Energy Out                                                                                    | 3.3 MMBlu/ht                                                                            |  |
|                                        |                       | Energy Out<br>Generator Efficiency                                                            | 3.3 MMBluthr<br>96.2 %                                                                  |  |
|                                        |                       | Energy Out<br>Generator Efficiency<br>Power Out                                               | 3.3 MMBtu/hr<br>96.2 %<br>926.4 kW                                                      |  |
|                                        |                       | Energy Out<br>Generator Efficiency<br>Power Out                                               | 3.3 MMBtu/w<br>96.2 %<br>926.4 kW                                                       |  |
| Outlet Stea                            |                       | Energy Out<br>Generator Efficiency<br>Power Out<br>Mass Flow                                  | 3.3 MMBtu/hv<br>96.2 %<br>926.4 kW<br>39.3 ktb/hr                                       |  |
| Outlet Stea                            | 266.1 pai             | Energy Out<br>Generator Efficiency<br>Power Out<br>Mass Flow<br>Sp. Enthalpy                  | 3.3 MMBtu/hr<br>96.2 %<br>926.4 kW<br>39.3 ktb/hr<br>1,470.1 btu/lbm                    |  |
| Outlet Stea<br>Pressure<br>Temperature | 266.1 psi<br>891.7 °F | Energy Out<br>Generator Efficiency<br>Power Out<br>Mass Flow<br>9 Sp. Enthalpy<br>Sp. Entropy | 3.3 MMBlu/hr<br>96.2 %<br>926.4 kW<br>39.3 klb/hr<br>1,470.1 blu/lbm<br>1.764 blu/lbm/R |  |

RESULTS



## **Steam System Modeler**

A 1-3 header steam system model can be generated with the associated PRVs, steam turbines, flash tanks, heat losses, and condensate return conditions. Users can then evaluate the impact of a significant number of adjustments to the model.



GO TO Modeler Table of Contents

SSMT is capable of creating a basic *steam system model* that can be used to better understand the current operating conditions of a system and evaluate the impacts of numerous adjustments. Steam models include the following components:

- Boiler
- Deaerator
- 1 to 3 Steam Pressure Headers

**Overview** 

- Backpressure Steam Turbines
- Condensing Steam Turbine
- Flash Tanks
- Pressure Reducing Values (PRVs)
- Blowdown Heat Exchanger

Models are NOT saved online and must be manually downloaded and reload in later sessions.





## **Base Model**

The initial steam system model created by the user.

## **Adjusted Model**

The model generated by applying all selected adjustments to the base model.

## SSAT

50

The Steam System Assessment Tool which was the previous steam system modeler. The modeler is able to load examples based on the default models used by SSAT.

## HP, MP, and LP

High Pressure, Medium Pressure, and Low Pressure. These terms are just relative to each other and do not have further meaning.



The basic steps for using the Steam System Modeler are as follows:

## Step 1: Generate a Base Model

There are 3 ways to generate a Base Model:

- Manually enter specific steam system details
- Load an example
- Reload a previously downloaded model

## Step 2: Generate an Adjusted Model

• A series of projects and system adjustments may be selected and combined with the Base Model to generate an Adjusted Model.

## Step 3: Compare Base Model to Adjusted Model

- A summary of Base Model vs Adjusted Model metrics will be generated once both a Base Model and Adjusted Model have been created.
- A generated model may also be downloaded as an excel file and reuploaded later.



#### **SSMT STEAM** SYSTEM MODELER Initial Generation a Base Model

#### GO TO Modeler Table of Contents

The initial generation of a base model only requires the successful submission on 1 form which is broken into 4 sections (*additional details on the following pages*):

#### **Boiler Details**

Boiler and deaerator related information

#### **General Details**

Unit costs, operating hours, make-up water, and electricity

### **Header Details**

Pressures, steam usage, and other related data

#### **Steam Turbine Details**

Operating conditions for the various possible steam turbines configuration





#### **SSMT STEAM** SYSTEM MODELER Base Model – Boiler Details

#### **Boiler Combustion Efficiency** [%]:

% of the fuel energy that is transferred to the boiler water and steam

#### Fuel Type [fuel type]:

Primary fuel for the boiler

#### Blowdown Rate [%]:

% of feedwater being drained from the boiler as a saturated liquid to reduce dissolved solids concentration

#### Is the blowdown flashed? [yes/no]:

Indicate if model should include flashing of blowdown

#### Preheat Make-Up Water with Blowdown [yes/no | temperature]:

Indicate if mode should preheat make-up water with blowdown. If 'Yes', an approach temperature can also be set

#### Steam Temperature [temperature]:

Temperature of the generated steam which must be equal to or greater than the boiling temperature

#### Deaerator Vent Rate[%]:

GO TO SSMT ONLINE

Vent rate as a % of feedwater mass flow

#### **Deaerator Pressure [pressure]:**

Operating pressure of the deaerator

| Boiler Details                       |               |
|--------------------------------------|---------------|
| Boiler Combustion Efficiency*        | 85 %          |
| Fuel Type*                           | Natural Gas 🔹 |
| Blowdown Rate*                       | 2 %           |
| Is the blowdown flashed?*            | No 🔻          |
| Preheat Make-Up Water with Blowdown* | No 🔻          |
| Steam Temperature*                   | °F            |
| Deaerator Vent Rate*                 | 0.1 %         |
| Deaerator Pressure*                  | psig          |



#### **SSMT STEAM Base Model – General Details**

#### Site Power Import [power]:

The average power import rate of electricity for the site which is primarily used to evaluate the potential of steam turbine generation

#### Electricity Unit Cost [\$/electricity]:

The unit cost associated with electricity

#### Yearly Operating Hours [hours]:

Total hours of operation for the steam system

#### Make-Up Water Unit Cost [\$/volume]:

The unit cost associated with make-up water

#### Make-Up Water Temperature [temperature]:

The average temperature of the make-up water

#### Fuel Unit Cost [\$/energy]:

The unit cost associated with the fuel

| General Details            |    |            |
|----------------------------|----|------------|
| Site Power Import*         |    | kW         |
| Electricity Unit Cost*     |    | \$ I kWh   |
| Yearly Operating Hours*    |    | hrs        |
| Make-Up Water Unit Cost*   |    | \$ I gal   |
| Make-Up Water Temperature* | 50 | °F         |
| Fuel Unit Cost*            |    | \$ / MMBtu |



#### **SSMT STEAM SYSTEM MODELER Base Model – Header Details**

#### Number of Headers [#]:

The total number of steam headers (1-3) *For each Header:* 

#### Pressure [pressure]:

Operating pressure of the header

#### Process Steam Usage[mass flow]:

The amount of header steam used for processes

#### Condensate Recovery [%]:

% of process steam recovered as condensate

#### Flash Condensate into Header [yes/no]:

Indicate if model should flash condensate into the lower pressure header (*for 3 headers: HP into MP, MP to LP*)

#### Condensate Return Temperature [temperature]:

Average temperature of the returned combined condensate

#### Flash Condensate Return [yes/no]:

Indicate if model should flash returned condensate into the lowest pressure header

#### Heat Loss [%]:

% heat loss for each header adjusting for numerous sources of heat loss in a header

#### Desuperheat Steam into MP/LP [yes/no | temperature]:

Indicate if PRV is also desuperheating and set the target temperature



| Energy Efficiency & |
|---------------------|
| Renewable Energy    |

| Header Details       | •            |       |      |      |        |
|----------------------|--------------|-------|------|------|--------|
| Number of Headers    | 3 - Header   | •     |      |      |        |
| HEADERS              |              | НР    | MP   | LP   |        |
| Pressure*            |              |       |      |      | psig   |
| Process Steam Usag   | je*          |       |      |      | klb/hr |
| Condensate Recover   | γ*           |       |      |      | %      |
| Flash Condensate int | to Header    |       | No 🔻 | No 🔻 |        |
| Condensate Return 1  | femperature* | 150   | °F   |      |        |
| Flash Condensate Re  | eturn*       | No 🔻  |      |      |        |
| Heat Loss*           |              | 0.1   | 0.1  | 0.1  | %      |
| Desuperheat Steam    | into MP* No  | ▼ 370 | °F   |      |        |
| Desuperheat Steam    | into LP* No  | ▼ 270 | °F   |      |        |

GO TO SSMT ONLINE

## Each Steam Turbine can be turned ON/OFF and the following operational conditions can be set:

#### Isentropic Efficiency [%]:

The energy actually removed as a percent (%) of the energy removed if the turbine were an isentropic process (*entropy in = entropy out*)

#### Generator Efficiency [%]:

The percent of the energy extracted by the turbine that is converted to electricity (*power*)

#### **Condenser Pressure** [vacuum pressure] (condensing turbine only):

The vacuum pressure at the exit of the turbine

**Operation Type** (condensing turbine can only use Steam Flow and Power Gen):

#### **Balance Header**

Allows enough steam flow to balance lower pressure header

#### Steam Flow [mass flow]:

Operates at this specific steam mass flow

#### Flow Range [mass flow]:

Sets minimum and maximum flow based on balancing requirements

#### Power Generation [power]:

Operates at this specific power generation

#### Power Range [power]:

Sets minimum and maximum power generation based on balancing requirements

#### **Steam Turbine Details**

| Condensing Turbine                           | On/Off                           |
|----------------------------------------------|----------------------------------|
| Isentropic Efficiency*                       | 65 %                             |
| Generation Efficiency*                       | 98 %                             |
| Condenser Pressure*                          | 725.2 psia                       |
|                                              |                                  |
| Operation Type*                              | Steam Flow 🔹                     |
| Operation Type* Fixed Flow*                  | Steam Flow   Iloo klb/hr         |
| Operation Type* Fixed Flow*                  | Steam Flow   Iloo klb/hr         |
| Operation Type* Fixed Flow* HP to LP Turbine | Steam Flow    Steam Flow  On/Off |

| HP to LP Turbine       | I On/Off                       |
|------------------------|--------------------------------|
| Isentropic Efficiency* | 65 %                           |
| Generation Efficiency* | 98 %                           |
| Operation Type*        | Flow Range                     |
| Minimum Flow*          | Balance Header<br>Steam Flow   |
| Maximum Flow*          | Flow Range<br>Power Generation |
|                        | Power Range                    |
| HP to MP Turbine       | On/Off                         |
|                        |                                |
| MP to LP Turbine       | On/Off                         |



Once the base model has successfully been generated, user may:

- View a **Diagram** of the Base Model
- **Update** the Base Model by modifying the initial base model form
- View a **Steam Balance** of the Base Model
- View a Sankey diagram of the base model **Energy Flow**
- And create an Adjusted version of the base model

## Moving the mouse over "Base Model" will open the menu of viewing options







# SSMT STEAM MODELER MODEL Diagram

The Steam System Modeler Diagram includes:

 A customized layout of equipment and headers dependent on the specific model Example:



- Marginal Steam Costs by Header
  - these are marginal costs associated with a small increase or decrease in steam usage
- Power, Fuel, and Water Cost Summary
- Moving the mouse over each piece of equipment and steam point provides additional information
- Clicking on a specific piece of equipment provides even more detail (cont.)





## SSMT STEAM MODELER MODELER MODELER MODELER

All plants of the diagram are interactive and provide additional details when a mouse is moved over it. The diagram below has *over 50 different components* that provide specific additional pop-up details:







# SSMT STEAM MODELER MODEL Diagram – Equipment Details

**Clicking on specific equipment** will open an in-page window with complete details on all associated steam properties and operational conditions.

Users also have the option to **copy** the properties of the selected piece of equipment to the associated individual equipment calculator. This allows modifications of the equipment to be evaluated without having to modify the entire model.





# SSMT STEAM SYSTEM MODELER STEAM Balance

Users can view a detailed *mass and energy balance* This collectively referred to a "**Steam Balance**" in SSMT.

- Validates that the steam system model has properly converged
- Includes all key sections of the model. For a 3 header steam model the sections include:
  - System Overall
  - HP Header
  - MP Header
  - LP Header
  - Condensate Return
  - Feedwater

| St | 03 | m | Bal | a | nc   | ., |
|----|----|---|-----|---|------|----|
| 31 | ea |   | Dal | a | III. | 1  |

Mass and Energy flows are listed and summed system wid for and the model has correctly converged.

| System               |          |          |         |
|----------------------|----------|----------|---------|
|                      | Base N   | lodel    |         |
|                      | klb/hr   | MMBtu/hr | btu/lbm |
| Boiler Energy        | -        | 580.0    |         |
| Boiler Energy Losses | *        | -87.0    |         |
| Cond Turbine         |          | -2       |         |
| Cond Turbine Losses  | 4        |          |         |
| HP tp MP Turbine     | ×        | -10.2    |         |
| HP to LP Turbine     |          | -48.1    |         |
| MP to LP Turbine     | 2        | -        |         |
| HP Energy Losses     | -        | -0.6     |         |
| HP Process Losses    | -25.0    | -59.8    |         |
| MP Energy Losses     | -        | -0.1     |         |
| MP Condensate Losses | -50.0    | -116.1   |         |
| LP Energy Losses     | <u>e</u> | -0.3     |         |
| LP Condensate Losses | -100.0   | -225.7   |         |
| LP Vented Steam      | -        | -        |         |
| Make Up Water        | 183.6    | 3.3      | 18.1    |
| Blowdown             | -8.2     | -3.9     | 474.8   |
| Condensate Flash     | -        | -        |         |
| Condensate Heat Loss | -        | -30.9    |         |
| Deaerator Steam Vent | -0.4     | -0.5     | 1,163.9 |
| TOTAL:               | 2        | 5        |         |

| HP Header                |        |          |         |
|--------------------------|--------|----------|---------|
|                          | Base N | lodel    |         |
|                          | klb/hr | MMBtu/hr | btu/lbm |
| Boiler Steam             | 403.4  | 578.9    | 1,435.1 |
| Condensing Turbine Inlet | -      | а.<br>-  |         |
| HP to MP Turbine Inlet   | -100.0 | -143.4   | 1,433.7 |
| HP to LP Turbine Inlet   | -253.4 | -363.3   | 1,433.7 |
| HP to MP PRV Inlet       | -      | 2        |         |
| HP Processes             | -50.0  | -71.7    | 1,433.7 |
| HP Energy Losses         | -      | -0.6     |         |
| TOTAL:                   | -      | а<br>С   |         |





The energy flows of both the base model and adjusted models can be viewed in **Sankey diagrams** as seen below. Each segment is dynamically adjusted to be proportionate to the associated energy flow.

#### **Base Energy Flows**

| Boiler Losses Flow: 87.00 MMBtu/hr Loss: 87.00 MMBtu/hr    |
|------------------------------------------------------------|
| HP Header Flow: 72.26 MMBtu/hr Loss: 0.58 MMBtu/hr         |
| Condensing Turbine Flow: 0.00 MMBtu/hr Loss: 0.00 MMBtu/hr |
| HP to LP Turbine Flow: 48.14 MMBtu/hr Loss: 0.00 MMBtu/hr  |
| HP to MP Turbine Flow: 10.23 MMBtu/hr Loss: 0.00 MMBtu/hr  |
| MP Header Flow: 133.13 MMBtu/hr Loss: 0.13 MMBtu/hr        |
|                                                            |
| MP to LP Turbine Flow: 0.00 MMBtu/hr Loss: 0.00 MMBtu/hr   |
| LP Header Flow: 248.80 MMBtu/hr Loss: 0.32 MMBtu/hr        |
|                                                            |
|                                                            |
| Deareator Flow: 0.48 MMBtu/hr Loss: 0.48 MMBtu/hr          |





# SSMT STEAM Creating an Adjusted Model

Adjusted Models are created by adding various adjustments, relative to the Base Model, grouped in these major areas: (additional details on the following pages)

- Adjust General Operation
- Adjust Unit Costs
- Adjust Steam Demand
- Adjust Boiler Operation
- Adjust Steam Turbine Operation
- Adjust Condensate Handling
- Adjust Insulation / Heat Loss

#### Notes:

- Users must select at least 1 adjustment
- Updates to the base model automatically update the adjusted model
- The adjusted model represents **combined impacts** of all adjustments on the base model





## **General Operation** adjustments include:

- Operating Hours [hours]
  - This reflects a potential change in yearly operation of the steam system
- Average Make-Up Water Temperature [temperature]
  - By changing sources, average make-up water temperatures may also change

| Adjust General Operation                                                           |         |                                   |       |  |  |  |  |  |
|------------------------------------------------------------------------------------|---------|-----------------------------------|-------|--|--|--|--|--|
| Modify Operating Hours                                                             |         |                                   |       |  |  |  |  |  |
| Initial Operating Hours         8,000 hrs         NEW Operating Hours*         hrs |         |                                   |       |  |  |  |  |  |
| Modify Make-Up Water Temperature                                                   |         |                                   |       |  |  |  |  |  |
| Initial Make-Up Water<br>Temperature                                               | 50.0 °F | NEW Make-Up Water<br>Temperature* | 50 °F |  |  |  |  |  |



## **Unit Costs** adjustments include:

- Electricity Unit Cost [\$/electricity]
  - Electricity prices are generaly always subject to change
- Fuel Unit Cost [\$/energy]
  - Normal market fluctuations as well as switching fuels and/or suppliers can adjust cost
- Make-Up Water Unit Cost [\$/volume]
  - Changes in water source, supplier, and water treatment can all impact water cost

| Modify Electricity Unit Cost       |                      |                                 |           |
|------------------------------------|----------------------|---------------------------------|-----------|
| Initial Electricity Unit Cost      | \$ 0.0500 / kWh      | NEW Electricity Unit Cost*      | \$ I kWh  |
| Modify Fuel Unit Cost              |                      |                                 |           |
| Initial Fuel Unit Cost             | \$ 5.7800 /<br>MMBtu | NEW Fuel Unit Cost*             | MMBtu \$1 |
| Modify Make-Up Unit Cost           |                      | •                               |           |
| Initial Make-Up Water Unit<br>Cost | \$ 0.0025 / gal      | NEW Make-Up Water Unit<br>Cost* | \$ / gal  |



### **Steam Demand** adjustments may include only 1 of the 2 subcategories:

**Energy Demand** – fixes the energy usage levels for each headers process steam usage. Therefore if header steam properties change, the process steam usage will be adjusted to match the energy usage.

#### Energy Usage (for each header) [energy]

Any change in a systems process steam requirements would change energy usage requirements

**Steam Demand/Usage** – fixes the steam usage levels for each header's process steam usage regardless of changes in steam properties.

#### Steam Usage (for each header) [mass flow]

Any change in a systems process steam requirements would change steam usage requirements

| Modify Process Steam Dema  | nd/Usage     |                  |     |       |                                      | Just onit costs             |                |                   |           |
|----------------------------|--------------|------------------|-----|-------|--------------------------------------|-----------------------------|----------------|-------------------|-----------|
| Initial HP Steam Usage     | 50.0 klb/hr  | NEW Steam Usage* | 50  | klb/h | V Ad                                 | just Steam Demand (only     | 1 may be selec | ted)              |           |
| Initial MP Steam Usage     | 100.0 klb/hr | NEW Steam Usage* | 100 | klb/h | /h Modify Process Steam Demand/Usage |                             |                |                   |           |
| Initial LP Steam Usage     | 200.0 klb/hr | NEW Steam Usage* | 200 | klb/h |                                      | Modify Process Energy Demai | nd             |                   |           |
| Modify Process Energy Dema | ind          |                  |     |       |                                      | Initial HP Energy Usage     | 40.3 MMBtu/hr  | NEW Energy Usage* | 40.3 MMBt |
|                            |              |                  |     |       |                                      | Initial MP Energy Usage     | 86.3 MMBtu/hr  | NEW Energy Usage* | 86.3 MMBt |
|                            |              |                  |     |       |                                      | Initial LP Energy Usage     | 180.0 MMBtu/hr | NEW Energy Usage* | 180 MMBt  |





## SSMT STEAM Adjusted Model – Boiler Operation

#### Combustion Efficiency [%]:

Various improvements to the boiler can improve combustion efficiency

#### Fuel Type [fuel type]:

Fuel types may sometimes be switched for a variety of reasons

#### Blowdown Rate [%]:

Blowdown rates can often be reduced with better controls and water treatment, saving energy and water

#### Is the blowdown flashed? [yes/no]:

Steam systems may add blowdown flash tanks to improve waste energy and water recovery

#### Preheat Make-Up Water with Blowdown [yes/no]:

Blowdown water can also be used to preheat make-up water

#### Steam Temperature [temperature]:

Steam generation temperature may be changed by the adjusting boiler pressure or adding a superheating section

#### Deaerator Vent Rate[%]:

The deaerator vent rate may be reduced with better controls, reducing associated steam losses

#### Deaerator Pressure [pressure]:

Operating pressure may be adjusted to match condensate return pressure

| ~, | ast boner operation                     |             |                                           |        |         |
|----|-----------------------------------------|-------------|-------------------------------------------|--------|---------|
| 1  | Change Boiler Combustion Effic          | iency       |                                           |        |         |
|    | Initial Boiler Combustion<br>Efficiency | 85.0 %      | NEW Combustion<br>Efficiency <sup>4</sup> | 85.0   | %       |
| 7  | Change Fuel Type                        |             |                                           |        |         |
|    | Initial Fuel Type:                      | Natural Gas | NEW Fuel Type*                            | Natura | l Gas 🔹 |
| J  | Change Boller Blowdown Rate             |             |                                           |        |         |
|    | Initial Boiler Blowdown Rate            | 2.0 %       | NEW Blowdown Rate*                        | 2.0    | 56      |
| 4  | Blowdown Flash to LP                    |             |                                           |        |         |
|    | Flash Blowdown? Base:                   | No          | Adjusted*                                 | No •   |         |
| 7  | Preheat Make-Up Water with Bl           | owdown      |                                           |        |         |
|    | Preheat Make-Up                         | No          | NEW Preheat Make-Up <sup>z</sup>          | No +   |         |
|    | Approach Temperature                    | 20.0 °F     | NEW Approach<br>Temperature*              | 20     | 1F      |
| 4  | Change Steam Generation Cond            | itions      |                                           |        |         |
|    | Initial Steam Temperature:              | 588.9 'F    | NEW Steam Temperature*                    |        | 'F      |
| V  | Change DA Operating Condition           | 5           |                                           |        |         |
|    | Initial DA Vent Rate                    | 0.1 %       | NEW DA Vent Rate*                         | 0.1    | 1%      |
|    | Initial DA Pressure                     | 15.0 psig   | NEW DA Pressure*                          | 15     | APP     |



## SSMT STEAM Adjusted Model – Steam Turbine

The adjustment to the Steam Turbine are the same as the base model. On/Off can be changed to add or remove a steam turbine:

#### Isentropic Efficiency [%]:

During turbine maintenance and overhauls isentropic efficiency can be changed inadvertently or intentionally

#### Generator Efficiency [%]:

Upgrading or repairing a generator can improve efficiency

#### **Condenser Pressure** [vacuum pressure] (condensing only): Changes to cooling fluid flow/temperature affect pressure

**Operation Type** (switching types is an allowed adjustment)

#### **Balance Header**

Removes limits and fixed operation

#### Steam Flow [mass flow]:

Specifically set steam flow

#### Flow Range [mass flow]:

Flow might be allowed to change when it was previously fixed or unrestricted

#### Power Generation [power]:

Specifically set power generation

#### Power Range [power]:

Power generation might be allowed to change when it was previously fixed or unrestricted

| 1  | Modify HP to Condensing Ste | eam Turbine    |                              |           |        |
|----|-----------------------------|----------------|------------------------------|-----------|--------|
|    | Initial Turbine Status      | Off            | Adjusted Status*             | 0n/0      | ff     |
| 71 | Modify HP to LP Steam Turb  | ine            |                              |           |        |
|    | Initial Turbine Status      | On             | Adjusted Status*             | 🗹 0n/0    | ff     |
|    | Isentropic Efficiency       | 65.0 %         | Isentropic Efficiency*       | 65        | %      |
|    | Generation Efficiency       | 100.0 %        | Generation Efficiency*       | 100       | %      |
|    | Operation                   | Balance Header | Operation* Flow              | Range     | •      |
|    |                             |                | Minimum Flow*                | 50        | klb/hr |
|    |                             |                | Maximum Flow*                | 150       | klbftr |
| 7  | Modify HP to MP Steam Turb  | ine            |                              |           |        |
|    | Initial Turbine Status      | On             | Adjusted Status*             | 🗹 0n/0    | ff     |
|    | Isentropic Efficiency       | 65.0 %         | Isentropic Efficiency*       | 65        | %      |
|    | Generation Efficiency       | 100.0 %        | Generation Efficiency*       | 100       | %      |
|    | Operation                   | Balance Header | Operation <sup>®</sup> Balar | nce Heade | r •    |
| 71 | Modify MP to LP Steam Turb  | ine            |                              |           |        |



### Condensate adjustments include:

- Condensate Return Rates [%]
  - Improvements to the condensate return system can increase the return rate
- Condensate Flash to Header (MP/LP) [yes/no]
  - Flash tanks can be added that will flash high pressure condensate, saving energy and water
- Condensate Return Temperature [temperature]
  - Improvements to the condensate return system can increase the return temperature

| 1 | Condensate Recovery                       |          |                                       |        |
|---|-------------------------------------------|----------|---------------------------------------|--------|
|   | Initial HP Condenstate Return             | 50.0 %   | NEW Condenstate Return*               | 50.0 % |
|   | Initial MP Condenstate<br>Return          | 50.0 %   | NEW Condenstate Return*               | 50.0 % |
|   | Initial LP Condenstate Return             | 50.0 %   | NEW Condenstate Return*               | 50.0 % |
| 7 | Condensate Flash to MP                    |          |                                       |        |
|   | Flash Condensate to MP?<br>Base:          | No       | Adjusted*                             | No •   |
| 7 | Condensate Flash to LP                    |          | •                                     |        |
|   | Flash Condensate to LP?<br>Base:          | No       | Adjusted*                             | No 🕶   |
| V | Modify Condensate Return Tempe            | rature   |                                       |        |
|   | Initial Condensate Return<br>Temperature: | 150.0 °F | NEW Condensate Return<br>Temperature* | *F     |





## **Insulation / Heat Loss** adjustments include:

- Heat Loss for each Header [%]
  - Improvements in insulation will likely reduce a header's heat loss by a certain %, the heat loss % should similarly be adjusted to reflect this improvement Example:

Initial Heat Loss: 0.10%

Potential Improvement of Insulation: 50%

NEW Heat Loss: 0.05%

| Adjust Insulation / Heat Loss |        |                |        |  |  |  |  |
|-------------------------------|--------|----------------|--------|--|--|--|--|
| V Adjust Heat Loss Percentage |        |                |        |  |  |  |  |
| Initial HP Heat Loss          | 0.10 % | NEW Heat Loss* | 0.05 % |  |  |  |  |
| Initial MP Heat Loss          | 0.10 % | NEW Heat Loss* | 0.05 % |  |  |  |  |
| Initial LP Heat Loss          | 0.10 % | NEW Heat Loss* | 0.05 % |  |  |  |  |



The Adjusted Model can be reviewed in exactly the same way as the Base Model:

- View a **Diagram** of the Adjusted Model
- **Update** the Base Model by modifying the initial base model form
- View a **Steam Balance** of the Base Model
- View a Sankey diagram of the base model **Energy Flow**
- And create an Adjusted version of the base model
   \*See the "<u>Review the Base Model</u>" section for specific details on these

Moving the mouse over "Adjusted Model" will open the menu of viewing options





GO TO SSMT ONLINE

The model **Comparison** page provides a detailed breakdown of the total costs and relative operating conditions. The benefit of these collective adjustments can quickly be evaluated based on the difference between both.

[Green = savings | Red = loss]

#### Included Tables:

#### **Cost Summary**

power, fuel, water, and total cost

### **Utility Balance**

fuel, water, and electricity use

## **Lists Active Projects/Adjustments**

specifically lists the name of each adjustment

#### Base Model vs Adjusted Model

| Cost Summary       | Base Model | Adjusted Model | Reductio   | n     |
|--------------------|------------|----------------|------------|-------|
|                    | \$'000s/yr | \$'000s/yr     | \$'000s/yr |       |
| Power Cost         | \$ 2,000   | \$ 2,265       | 265        | 13.3% |
| Fuel Cost          | \$ 23,837  | \$ 22,856      | -981       | -4.1% |
| Make-Up Water Cost | \$ 441     | \$ 434         | -6         | -1.4% |
| Total Cost         | \$ 26,277  | \$ 25,555      | -722       | -2.7% |

| Utility Balance   | Base        | After Projects | Reduction |       | Units    |
|-------------------|-------------|----------------|-----------|-------|----------|
| Power Generation  | 13,807.6    | 13,144.3       | -663.2    | -4.8% | kW       |
| Power Import      | 5,000.0     | 5,663.2        | 663.2     | 13.3% | kW       |
| Total Site Demand | 18,807.6    | 18,807.6       | 0.0       | 0.0%  | kW       |
|                   |             |                |           |       |          |
| Boiler Fuel       | 515.5       | 494.3          | -21.2     | -4.1% | MMBtu/hr |
| Fuel Type         | Natural Gas | Natural Gas    |           |       |          |
| CO2 Emissions*    | 218,818     | 209,815        | -9,003    | -4.1% | tons     |
|                   |             |                |           |       |          |
| Boiler Steam      | 410.2       | 393.3          | -16.9     | -4.1% | klb/hr   |
|                   |             |                |           |       |          |
| Make Up Water     | 367.2       | 361.9          | -5.3      | -1.4% | gpm      |

\*Source of CO2 Coefficients: http://www.eia.gov/oiaf/1605/coefficients.html

#### Adjusted Model: Active Projects

Adjust Boiler Operation

Blowdown Flash to LP

#### Adjust Condensate Handling

- Condensate Flash to MP
- Condensate Flash to LP


#### SSMT STEAM SYSTEM MODELER MODELER MODELER MODELER MODELER <u>GO TO Modeler</u> <u>Table of Contents</u>

#### WARNING:

- STEAM MODELS ARE NOT SAVED ONLINE
- IF THE WEB BROWSER IS CLOSED, THE STEAM MODELS ARE CLEARED

To save for future use, models must be downloaded. Once downloaded, they can easily be reloaded at anytime.

To download, click on the "Download Excel" link in the model navigation menu:



For reload instruction go to <u>Reloading Models</u>

Models can also be exported to the AMO Opportunity Tracker by clicking on the "Export to AMO Tracker" and following the instructions. **NOTE: The AMO Tracker file cannot be used to reload a model.** 





## SYSTEM MODELER DOWNLOAD Excel Spreadsheet

The downloadable spreadsheet has 6 sheets, most of which mirror SSMT's online forms and reports :

- Title Page
- Base Model Details
- Adjusted Model Details
- Steam Balance
- Comparison of Models
- Upload Data used to reload model into SSMT

| NIN 1 0                                                            |                                                          |                                  |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                | -                                      |                             |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                     |
|--------------------------------------------------------------------|----------------------------------------------------------|----------------------------------|--------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|----------------------------------------|-----------------------------|--------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|-----------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|
|                                                                    |                                                          | A100 - 5                         |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                | A 8                                    | C D                         | 8 F G H                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                        | Optend 15 Feet                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                      |
| 1                                                                  | 3 Base Model                                             | A 8 C                            | D E I I Inter presubjector prese                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                               | 1 Base Model va                        | Adjusted Model              |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                | A1 + (*                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                             |
| 2 [Demo] Steam Tool                                                | 2 Buller Datalle                                         | 1 Adjusted Model                 | 8 PORTON 01 00 00 00 00 00 00 00 00 00 00 00 00                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                | 1 Cost Summary                         | Base Medal Adjusted Medal I | adaction                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                       |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                     |
| Charles Carlos Mandal                                              | 2 Builes Combustion URbienty 00.0 %.                     | 2                                | A Designed and the second seco | 1                                      | Page Ar Page Ar             | TRATE Are                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                      | and the second se |
| Steam System Model                                                 | Part Type     Manufactor data                            | Adjust Balles Operation          | 8 Patricks                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                     | A Desired Sector                       | 10000 F 1000                | a new constant                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                 | 1 Copy this MTHE spreadsheet a                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                      |
| 4 link to website                                                  | Binadows Sacked? Inc.                                    | a Ringshare Shak to 19           | M Management 14 14                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                             | <ul> <li>Power cost</li> </ul>         | 32,000 32,100               | 2202 11.3 %                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                    | 2                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                   |
| 5                                                                  | I Maan Temperature 200.0 V                               | Glash Bloudense                  | 4 Program 54 51 54 54                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                          | 5 Puer Cost                            | 5 23,837 5 22,656           | 231 418                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                        | a systemSelimperial                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                 |
| 6 devenuent in the                                                 | K Descrafor Vent Bale 0.1 %                              | 3 PND/I BIOWOUWIII TED           | N Programs 10 1                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                | <ul> <li>Make-Op water cost</li> </ul> | 3 5.641 5.434               | 38 148                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                         | A temperatif                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                        |
| 7 Department of Energy:                                            | T Destruction Pressant 10.4 million                      | a ddiwd ffrederiota Handling     | W. Jines and M. M. M. C. C.                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                    | 7 Total Cost                           | 5.86.277 5.25,555           | -3.747 -2.7%                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                   | 5 pressure pole                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                     |
| 8 Advanced Manufacturing Office                                    | 11. Beneral Details                                      | 7 Adjust Condensate Handling     | P d'articles. In his is it                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                     |                                        |                             |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                | > biestore bid                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                      |
| 5 Steam Tool System Modeler                                        | 12 Bits Power logost 5,000.0 x m                         | 8 Condensate Flash to MP         | M Marca Mar<br>Marca Marca Marc                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                            | 9 Utility Balance                      | Base Model Adjusted Model # | eduction Units                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                 | n vacuum pina                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                       |
| 10 10-22-2013                                                      | 1) Electricity Molt Cost \$4.000 / yorn                  | 9 -Flash Condensate Into MP Yes  | W printed by all all all all all all all all all al                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                            | 10 Power Generation                    | 13,808 23,144               | 200                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                            | 7 specificEnibtu/Ibm                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |
| 11                                                                 | 34 Vearly Operating Neural 8,000                         | 10 Condensate Flash to LP        | R Descriptions and the set along the set of his                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                | 11 Power Import                        | 5,000 5,663                 | 663 13.3 % KW                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                  | specificEnibtu/Ibm/R                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |
| This is a snap shot of a steam system model generated with the     | 10 Make (b) Writer Sumperation 20.0 7                    | 11 -Flash Condensate Into LP Yes |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                | 12 Total Site Demand                   | 18,808 18,808               | 1102                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                           | massflow kit/hr                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                     |
| online steam tool. Updating individual fields WILL NOT update      | 17 Paul Institut \$2.03                                  | 12                               | a preserve branch profest profest                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                              | 10                                     |                             |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                | 10 energyfio MMBtu/hr                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                               |
| 12 other fields, spreadsheets, or the overall model.               | 14                                                       | 13                               | If several out that the bud to                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                 | 1 34 Boiler Fuel                       | 515.50 494.29               | -21.21 4.1% AIMIN//0+                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                          | 11 contrar history                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                  |
| This model can be reloaded to the online Steam System Modeler      | 12 Header Details                                        | 14                               | W Internet and the Arts R. 200 M                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                               | 15 Fuel Type                           | Natural Gas Natural Gas     | and the second se                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                            | and the second                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                      |
| 13 by following the instructions on the 'Upload Data' spreadsheet. | II Presents III A LIA -                                  | 15                               | W. Production of the later of the later                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                        | 16 CO2 Emissions                       | 218.817.74 209.815.16       | -9.002.58 -4.1% fairs                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                          | 12 temperator                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                       |
| 14                                                                 | 32 Steam Usage 30.0 10.0 20.0 1                          | 16                               | 11 07 Transmon 0.0 001 1.07.0 0.0 1.0<br>10 07 Transmon 1.0 1.0                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                | 17                                     |                             |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                | 13 power aw                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                         |
| 15                                                                 | <ol> <li>Emolemate Revenue</li> <li>MATE MATE</li> </ol> |                                  | a                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                              | 18 Builer Steam                        | #10.23 293.25               | -16.88 -4.1% 3/b/b/                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                            | 3.4 electricity kWh                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                 |
| 18                                                                 | 21 Plade Condemate to Lonier Headler (No. No.            |                                  | A Rective contraction Manufacture                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                              | 12                                     |                             | and the second s | 15 volume gal                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                       |
| 17                                                                 | 11 Flab Contrast Tong Inc.                               |                                  | 21 M Dealer BLAY Description (117 Description)                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                 | 20 Make Lin Water                      | 23 023 87 21 207 55         | 111 47 A 47 A 41                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                               | 16 volumefic apm                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                    |
| 15                                                                 | 17 Bestine 615 615                                       |                                  | A property backware bit of the backware backwa                                                                                                                                                                                                                                             |                                        |                             |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                | 17 density In/81                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                    |
| 13                                                                 | 28                                                       |                                  | W. M. DOCTORINGTON AND DOCTORING TO A 10 10 10 10 10 10 10 10 10 10 10 10 10                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                   |                                        |                             |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                | and an and a second second                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                          |
| 20                                                                 | 27 Designed Board Viscous Lattic MP No.                  |                                  | H of the Partner wat in the set                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                | 4                                      |                             |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                | Lill specific/cft3/ib                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                               |
| 23                                                                 | 10 Designer boost blauen better 19 ton                   |                                  | 8 07 0000 001 001 000 000 001 000 000 000                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                      | . 4                                    |                             |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                | 19                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                  |
| 22                                                                 | 12 Magen Turking Datals                                  |                                  | 10 10 10 10 10 10 10 10                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                        | 24                                     |                             |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                | 20 sitePower 5000                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                   |
| 23                                                                 | 12 Catalencing furthine city                             |                                  | II Backford Address                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                            |                                        |                             |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                | 21 sitePower0.05                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                    |
| 24                                                                 | 24                                                       |                                  | THE DEPARTMENT OF A DEPARTMENTA DEPARTMENT OF A DEPARTMENTA DEPARTMENT |                                        |                             |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                | 22 operatine 8000                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                   |
| 25                                                                 | 11 107 to 17 he lone the                                 |                                  | B Despectancy instance information in the information of the information in the inform    |                                        |                             |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                | 21 mahaumat 0.0025                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                  |
| 25                                                                 | 17 Generative Physics and a build                        |                                  | H. Introduction and and All Anna 2011 All Anna                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                 | 6                                      |                             |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                | and manual the original                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                             |
| 0                                                                  | 18 Gasestion Type Asiatro Income                         |                                  | W Breedood Partners 100 000 000 000 000 000 000 000 000 00                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                     | 8                                      |                             |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                | 24 maxeupw 50                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                       |
| 15                                                                 | 10                                                       |                                  | P Pressent and Links Links and Links | 2                                      |                             |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                | 25 FuelUnitCi 3,78                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                  |
|                                                                    | an left to MP Tables (In                                 |                                  | Contractions and the second se |                                        |                             |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                | 26 blowdowr No                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                      |
|                                                                    | 47 Generation (Province) (20.0%)                         |                                  | 2 100 10 10 10 10 10                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                           |                                        |                             |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                | 27 blowdowr 20                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                      |
|                                                                    | 8.1 Description Types Rataria Insulta-                   |                                  | - Buckey Adjustment                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                            |                                        |                             |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                | 28 boilerEff 45                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                     |
|                                                                    | 44                                                       |                                  | IN DEFENSION MADE AND DESCRIPTION DESCRIPTION OF AN ADDRESS OF ADD |                                        |                             |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                | PR biometrum 1                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                      |
|                                                                    | Mr to D Terline Ort                                      |                                  | M Landmark Astron. And Astron. Astro. Astron. Astron. Astron. Astron. Astron. Astron. Astron.  | ÷                                      |                             |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                | 20 Internet a                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                       |
|                                                                    |                                                          |                                  | al Intendighteen Ed Ed Ed Ed                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                   | 1                                      |                             |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                | 10 010wdowi No                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                      |
|                                                                    |                                                          |                                  | 10 1000, 55 50 50 50 50                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                        |                                        |                             |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                | 31 supernear100                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                     |
|                                                                    |                                                          |                                  | N Rest Mart Martin Manual Martin Martin                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                        |                                        |                             |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                | -32 boilerTex 388.9                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                 |
|                                                                    |                                                          |                                  | A Participa State Journal States (State States)                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                | 1                                      |                             |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                | 23 fuelType natGas                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                  |
|                                                                    |                                                          |                                  | West with a second deal the white " was and white the "                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                        |                                        |                             |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                | In deventile 0.1                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                    |
|                                                                    |                                                          |                                  |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |                                        |                             |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                | an annound an                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                       |



Energy Efficiency & Renewable Energy



# To reload a Model, it must first have been downloaded as a spreadsheet.

To reload a model, copy the **ENTIRE** "Upload Data" spreadsheet and paste it into the steam tool reload/upload field on the "Reload Model" page.

#### *There are 3 reload options:*

- Base and Adjusted Model reloads the model just as it was when it was downloaded
- Base Model Only only reloads the base model
- Load Adjusted Model as Base Model

   only reloads adjusted model as if it were the
   base model





## SSMT STEAM DOWNLOAd/Export AMO Tracker

The export option is limited to English using imperial units.

#### **Instructions for Export**

- Generate downloadable file by hovering your mouse over "[download]," clicking "Export to AMO tracker," and saving the file on your computer.
- Log on to the eCenter, go to the Project Opportunities Tracker, click "Import", and choose the file that you just saved
- You will now be able to sort, edit, and save data from the Steam System modeler in the Project Opportunities Tracker







#### Number of Headers can be changed at any time

Base and adjusted models will automatically update.

#### Units can be changed at any time

Just go to preferences and change the units at any time. All models and calculations will automatically update.

#### Adjusted models can be set as a new base model

If modifications have been made an adjustment model can be set as a base model, allowing further adjustments to be modeled.

### All Calculations and Models can be Reset and/or Cleared

To do this look for the reset and clear model links. Be careful as resets and clears are permanent.

