Bringing energy and the environment into harmony.*

Steam Turbine Upgrades: The Key to Optimizing Overall Plant Cycle Performance

Bob Beck Sr. Application Engineer Steam turbine Applied Technology.

Safe Harbor Disclosure

Some of the information contained in this document contains "forward-looking statements". In many cases, you can identify forward-looking statements by terminology such as "may," "will," "should," "expects," "plans," "anticipates," "believes," "estimates," "predicts," "potential," or "continue," or the negative of such terms and other comparable terminology. These forward-looking statements are only predictions and as such inherently included risks and uncertainties. Actual events or results may differ materially as a result of risks facing Dresser-Rand Company (D-R) or actual results differing from the assumptions underlying such statements. These forward-looking statements are made only as of the date of this presentation, and D-R undertakes no obligation to update or revise the forward-looking statements, whether as a result of new information, future events or otherwise. All forwardlooking statements are expressly qualified in their entirety by the "Risk Factors" and other cautionary statements included in D-R's annual, quarterly and special reports, proxy statements and other public filings with the Securities and Exchange Commission and other factors not known to D-R. Your decision to remain and receive the information about to be presented to you shall constitute your unconditional acceptance to the foregoing.

2

Effective Uprates Come in Many Forms

Component Upgrades for :

- Improved Turbine Efficiency
- Unit / Component Reliability
- Increased operating times between outages.

• **Turbine Uprates** to Support Overall Plant Optimizations

- Review overall plant thermal cycle
- Identify any changes in Plant Process Requirements
- Review Overall Turbine Capability to Accommodate Anticipated Process Changes;
 - Revised Section flows / Pressures / Stage loadings
 - Boiler / Condenser/ Generator Capability
 - Minimize off Peak operation / Optimize Section performance.

3

Effective overall cycle optimization often requires accommodating a wide range of OEM equipment Impulse Reaction

- GE
- MHI
- W Industrial
- Delaval
- Toshiba
- Thermodyn
- Allen
- Shin Nippon
- ABB
- Ansaldo
 Industrial
- Elliot

- Franco Tosi
- Hitachi
- Metro Vickers
- Skoda
- BHEL
- Bellis
- DR
- Worthington
- IR
- TurboDyne
- Peter Brotherhood
- Terry
- Murray

- Siemens
 - Parsons
 - W Utility
 - Nuovo Pignone
 - Fuji
 - Allis Chalmers
 - Alstom
 - Ansaldo Utility
 - Escher Weiss
 - Man
 - BHEL

Impulse Turbine Design

Impulse

- Steam accelerated by pressure drop across stationary components
- Pressure drop limited to stationary components.
- High velocity steam impinges on rotating blades creating torque
- Most common US design due to rugged construction and reliability

Reaction Turbine Design Methodology

Reaction

Typical Component / Reliability Upgrades

Modernization of Obsolete / Unreliable Blade Designs

<u>From</u>

- Mechanically attached
 (Peened) shrouds
- Constant profile vanes
- Short band groups
- Thru-Penetration tie
 wires
- 1960 Design standard

<u>To</u> :

- Optimized aerodynamic vane
- Continuously coupled integral tip shroud.
- Improved Dovetail
 /Fastener (as required)

Continuously coupled integral cover.

Typical Reliability Upgrade Opportunity

From :

- Obsolete constant cross section vane
- Hard peened tenons
- Short band groups
- Through drilled tie-wire
- Stress concentration at tie-wire penetration
- Challenging wet and corrosive operating environment

Typical Tall Blade Modernizations

Original Design

- Rigid / Brazed Lashing lugs & tie wires
- Reduced damping
- Repetitive maintenance

Fully Modernized design

- Integral (not through drilled) mid-span lugs
- Inserted (loose)mid-span couplings for increased damping and vibration suppression.

Performance Improvements SummaryDesign Feature% GAIN

© Copyright 21

extract flow / pressure & output

Steam Turbine Types & Opportunities

- Double auto extraction condensing (DAXC)
 - Changes in extraction pressures
 - Changes in section flows
 - Eliminate need to PRV of steam for process
 - Changes typically driven by revised process requirements
 - Common Paper Mill / Refinery Configuration

Typical Industrial Cycle Optimization

Optimizing Turbine Sections

Turbines originally designed by specification to provide:

- Maximum capability at nameplate/max-rating
- Optimum efficiency at "Guarantee" point
- AE's always provide additional flow capacity to account for degradation and compressor margin, API 612 requirement

• But turbine sections must also accommodate:

- All maximum and minimum swings in section flow and pressure
- Variable summer and winter process demands
- Specified power and section flow requirements
- Need for supplemental PRV steam for process use
- Provide optimum performance at "normal" operating point

As a result many turbine sections actually operate at significantly off peak design flow and efficiency

The Key Thermodynamic Design Parameter.

Velocity Ratio

W/Vo = <u>Wheel Speed</u> Steam Jet Velocity

Key Characteristics

- Max Eff @ turbine design point
- Efficiency Max when Wheel speed =¹/₂ Steam Jet Velocity
- W/Vo directly Influenced by offdesign section flows.
- Efficiency reduced when operated off peak.

Stage loading characteristics @ part load operation.

Ex - Optimization For Part Load Operation

- **Problem :** Turbine operating @ part load / well below design Conditions.
- Result Significant efficiency loss
- Solution: De-rate individual turbine section or entire steam path to fit new cycle requirements

• Example

- Turbine running @ 20% design throttle flow.
- Original efficiency = 80%. Efficiency @ 20% throttle flow = 40%.
- Inlet = 900 psig / 900-F/ Exhaust 50 psig.
- Original max flow = 1,200 K#/hr / new flow is 240 K #/hr
- Purchased Power costs \$.07/kw-hr
- De-rated unit can achieve Approx. 70 + % overall efficiency
- Output at 40% efficiency = **3,980 kW's**
- Output @ 70% efficiency = 6,964 kW's (Post Rerate)
- Power Gain from Re-Rate = 2,984 KW
- Savings = \$1,835,000 /year

Seemingly insignificant changes can often yield surprisingly large benefits!

Typical Single Auto Extraction Cond (SAXC)

Head end section sized for maximum inlet and extract flow

Head End must accommodate full range of required inlet flows

Exhaust sized for max & min condensing flow

Individual sections often run at significant variance from original design limits

DRESSER RAND.

1250 # inlet

18

Part Load Operation - Auto Extraction Turbine

Impact of Changes in Extract Pressure on Section Loading

Typical Revamp Scenario-Cycle Change

- Single-Auto-Extract-Condensing unit (SAXC)
- Process changes require change in extraction pressure from 100 to 50 psig
- Process demand currently satisfied by PRV of 200,000 #/hr of 100 psig steam to 50 psig level
- Loss of flow through turbine HP section results in loss of 2,700 KW output
- Assume Electricity valued \$.07 cent per kw-hr.

Potential Economic Benefit = <u>\$1.6M/year</u>

Seemingly insignificant changes can often yield surprisingly large benefits!

Ex- Impact of Eliminating Extraction

Define Objective:

- ♦ 5 MW GE -SAXNC
- Change in plant process eliminates need for extraction steam
- Loss of extraction flow results <u>loss of</u> <u>available MW output.</u>
- LP section unable to pass additional flow required to make up for MW shortfall.

Current Turbine Section Flow Limits Unit capability as shown on Original Extraction Map Max capability w: 30 Max Exh flow ٠ And 50K #/hr Extract 3.75 MW • Max capability w/ Zero Extract flow 2.35 MW ٠ Change in plant process MEAN DE VALVE LOOP PERFORM flow eliminated need for extract Max Exhaust flow flow capability Throttle **Boiler capacity available &** process requires additional 50 MW output. Max NPR capability Max Cond output = 2.35 MW GENERATOP DRESSER RAND. **MW** output

Observations on Unit limitations:

- Extraction valve gear restricts flow capability to the LP section.
- Pressure @ Stg # 5 no longer limited by Extraction
- LP stages 5-8 undersized for HP flow capability.
- Straight Non-Condensing operation without flow path changes results in loss of MW output.

Uprate Changes & Benefits

LP Rerate Modifications

- LP Section Modifications:
 - New forged wheels with high performance blades
 - New high efficiency diaphragms
 - Blank Casing Extraction Ports
 - Remove Extraction valve gear
 - Low leakage Inter-stage & gland seal labyrinths

Net Benefit

- Increased :
 - L.P section flow capability,
 - Efficiency,
 - MW output.

Post Uprate Steam Path configuration

Revamp Solution:

- Convert unit to straight through Non-Condensing operation
- Remove Extraction
 - Nozzle box
 - Valve gear
 - Reduces losses
 - Simplifies controls

New LP staging to Increase :

- Efficiency
- Flow capability
- MW Output

Reduced scope rerate options

Limited Increases in flow passing capability possible with minor changes.

- Modify diaphragm flow passing area by grinding
- Increase d flow capability with some limited reduction in performance.
- Mods typically implemented as a short term fix during outage, with follow up optimization

DRESSER RAND.

Reconfigured nozzle exit edge.

28

Advanced optical scanning technology can provide critical data despite limited access to original design records.

Detailed Casing & Rotor Scans can be completed on site with minimum impact on outage schedule

3-D models can be used to analyze and Verify Critical Component Assembly & Interfaces,

Solid models applied to support:

- Dimensional verification
- Detailed stress analysis
- Short cycle / flexible mfg.

- Identify potential limitations w/ design.
- Facilitate installation
- Reduce outage cycle & risk
- Confirm revamp design prior to installation

Reapplied Turbines Can = Excellent Value

- Non-Reheat units have near unlimited service life w/ proper inspection and upgrade.
- Steam Path measurement can identify potential uprate options.
- Cost effective modifications often possible to accommodate new service conditions.
- Older units often more robust than modern designs.
- New units less than 50MW often Geared vs Direct coupled TG sets.

DRESSER RAND.

31

Benefits of Uprate vs New Unit

- Reduced delivery cycle 30wks vs 12-18 months
- Reduced initial Capital Investment / Cost.
- Typically Installed during normal turbine outage.
- Minimizes BOP / Foundation changes and Installation costs
 - These can be 3-10X the cost of comparable revamp
- Minimum power interruption / delayed installation
- Uprated units w/ modern Steam path components can deliver comparable new Unit performance @ significantly reduced cost
- Assured of a Proven Reliable Design.
- New unit start up delays can extend installation time
- New 30-60 MW Turbines are often less rugged High Speed Geared sets.

Uprates Typically Far More Cost Effective Than a New Replacement Turbine

Tailoring Turbine Uprates to Enhance Overall Cycle Efficiency

<u>Optimizing Cycle Efficiency</u> is the most Significant Optimization Opportunity.

Cost Effective Revamps Not Always Obvious

- Impact of Off-Optimum operation seldom recognized
- Customers experts on their process but not always on turbine design.
- OEM's typically concerned with their equipment / not overall cycle benefits.

Significant Optimization Opportunities Include:

- Optimizing the turbine to fit the cycle
- Resizing turbine section flow to meet cycle demands.
- Adding Extractions / removing process and cycle bottlenecks
- Reconciling original design and actual operating conditions.
- Fully understanding turbine's role in cycle and unit operation
- Compensating for loss in MW output due to Addition of Emissions
 Equip
 Optimizing Overall Plant Performance Requires a Focus

on Both Cycle and Individual Turbine Efficiency.

Common Misconceptions about Turbine Uprates

- They are always complex
- That they are prohibitively expensive
- They cannot be accommodated during a normal turbine outage
- Paybacks are difficult to commercially justify
- They require major balance of plant changes.

Turbine Uprates are often overlooked in cycle
optimization studies, and can
represent a cost effective way to significantly
improve overall system performance, and
DRESSER-RAND.DRESSER-RAND.

Thanks For Your Attention !

© Copyright 2014