ARCHITECTURAL STRUCTURES: FORM, BEHAVIOR, AND DESIGN

ARCH 331 DR. ANNE NICHOLS SUMMER 2014

Lecture sixteen

steel construction trusses, decks &

Steel Trusses 1

ARCH 331

Paris 2002/09, Eiffel Tower

Iron & Steel Trusses

- cast iron
 - 18th century
 - chain links
- wrought-iron
- rivets

http://nisee.berkeley.edu/godder

Foundations Structures

F2009abr

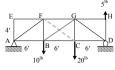
Truss Connections

- gusset plates
- bolts
- welds

Foundations Structures ARCH 331

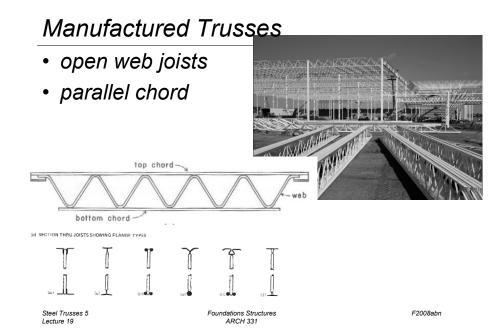
F2009ahn

Trusses


Steel Trusses 2

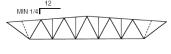
Lecture 19

- require lateral bracing
- consider buckling
- indeterminate trusses
 - extra members
 - · diagonal tension counters
 - solvable with statics
 - · cables can't hold compression
 - displacement methods
 - · elastic elongation


- too few members, unstable

F2009ahn

Steel Trusses 3 Lecture 19



Load Tables - w

LRFD STANDARD LOAD TABLE FOR OPEN WEB STEEL JOISTS, K-SERIES 12K3 12K5 14K1 14K3 14K4 14K6 16K2 16K3 16K4 Designation Depth (in.) 16 5.2 6.0 load for live load deflection limit (L/360) in RED total in BLACK

Open Web Joists

- SJI: www.steeljoist.com
- Vulcraft: www.vulcraft.com
 - K Series (Standard)
 - 8-30" deep, spans 8-50 ft
 - LH Series (Long span)
 - 18-48" deep, spans 25-96 ft
 - DLH (Deep Long Spans)
 - 52-72" deep, spans 89-144 ft
 - SLH (Long spans with high strength steel)
 - pitched top chord
 - 80-120" deep, spans 111-240 ft

Steel Trusses 6 Lecture 19 Foundations Structures ARCH 331 F2008abr

Decks

Light-gage Steel

- sheet metal
 - shaped
 - studs, panels, window frames
 - gage
 - · based on weight of 41.82 lb/ft² / inch of thickness
 - 24, 22, 18, 16, i.e.
 - 0.0239, 0.0329, 0.0474, 0.0598 in

LOADINGS ON LONGITUDINAL FACES

ARCH 331

Rigid roof diaphragm

stiff plane or shear wal

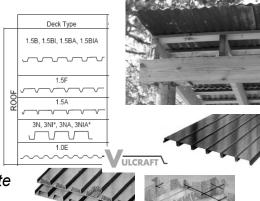
• 0.6, 0.85, 1.0, 1.3, 1.6 mm

Steel Decks

- common fire proofing
 - cementitious spray
 - composite concrete
- non-composite
 - concrete is fill
- lateral bracing
- diaphragm action

F2008abn

Foundations Structures Su2011ahn


Steel Decks

- "Texas" style
 - corrugated
- common

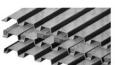
Steel Trusses 10

Lecture 19

- -1-3 spans
- can be insulated
- composite
 - · with concrete

5.71 In.2/Cell

Foundations Structures ARCH 331

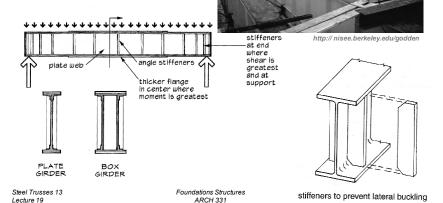

~~~~

F2008abn

Load Tables - w

 live load deflection limit L/240

VERTICAL LOADS FOR TYPE 1.5B

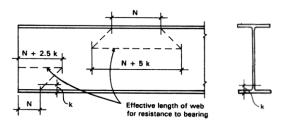

		Max.	Allowable Total (Dead + Live) Uniform Load (PSF) Span (ftin.) C. to C. of Support										
No. of	Deck	SDI Const.											
Spans	Туре	Span	5'-0	5'-6	6'-0	6'-6	7'-0	7'-6	8'-0	8'-6	9'-0	9'-6	10'-0
1	B 24	4'-8	66	52	42	36	30	27	24	21	20		
	B 22	5'-7	91	71	57	47	40	34	30	27	24	22	20
	B 21	6'-0	104	81	64	53	44	38	33	29	26	24	22
	B 20	6'-5	115	89	71	58	48	41	36	31	28	25	23
	B 19	7'-1	139	107	85	69	57	48	41	36	32	29	26
	B 18	7'-8	162	124	98	79	65	55	47	41	36	32	29
	B 16	8'-8	206	157	123	99	81	68	58	50	44	39	34
2	B 24	5'-10	126	104	87	74	64	55	47	41	36	32	29
	B 22	6'-11	102	85	71	61	52	46	40	35	32	28	26
	B 21	7'-4	118	97	82	70	60	52	46	41	36	33	29
	B 20	7'-9	132	109	91	78	67	59	51	46	41	36	33
	B 19	8'-5	154	127	107	91	79	69	60	53	48	43	39
	B 18	9'-1	174	144	121	103	89	78	68	60	54	48	44
	B 16	10'-3	219	181	152	130	112	97	86	76	68	61	55
	B 24	5'-10	130	100	79	65	54	45	39	34	31	27	25
	B 22	6'-11	128	106	89	76	65	57	50	44	39	34	31
	B 21	7'-4	147	122	102	87	75	65	56	49	42	38	34

Steel Trusses 12

Foundations Structures

Plate Girders

- welds
- web stiffeners

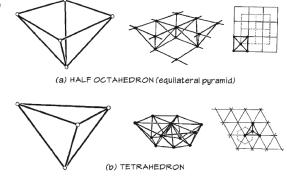


Web Bearing

max loads

$$P_{\text{n(max-end)}} = (N + 2.5k)F_{y}t_{w}$$

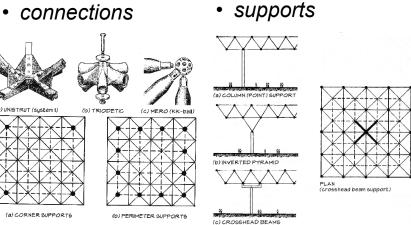
$$P_{\text{n(max-interior)}} = (N + 5k)F_{yw}t_{w}$$


Steel Trusses 14 Lecture 19

Foundations Structures ARCH 331

F2008abn

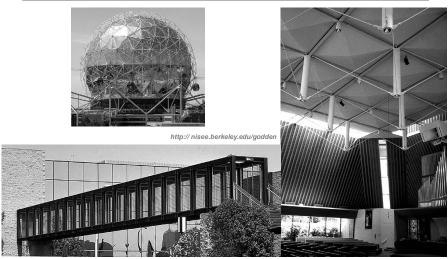
Space Trusses


- 3D with 2 force bodies and pins
 - pyramid
 - tetrahedron
- "frames" have fixed joints
- layers
- 40's

F2008abn

Space Trusses

connections



Steel Trusses 16 Lecture 19

Foundations Structures ARCH 331

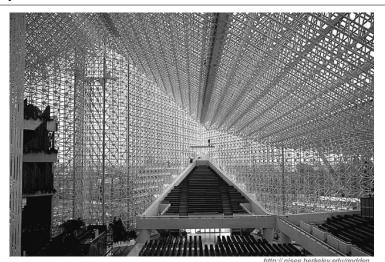
Foundations Structures ARCH 331

Space Trusses

Steel Trusses 17 Foundations Structures F2009abn Lecture 19 ARCH 331

Tensegrities

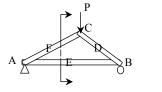
- 3D frame
- discontinuous struts
- continuous cables

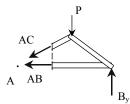


Free Ride Home - Kenneth Snelso

Steel Trusses 19 Foundations Structures Lecture 19 ARCH 331

Space Trusses

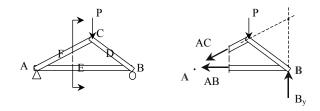

Steel Trusses 18 Lecture 19


Foundations Structures ARCH 331

F2009abn

Method of Sections

- relies on internal forces being in equilibrium on a section
- cut to expose <u>3 or less</u> members
- coplanar forces $\rightarrow \Sigma M = 0$ too



Steel Trusses 20 Lecture 19 Foundations Structures ARCH 331

Method of Sections

- joints on or off the section are good to sum moments
- quick for few members
- not always obvious where to cut or sum

Steel Trusses 21 Lecture 19

ARCH 331